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Abstract: Reactive oxygen species (ROS) comprise the superoxide anion (O2
•−), hydrogen peroxide

(H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macro-
molecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or
reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which
ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best
characterized. Recently, evidence has been accumulating that some of the terminal oxidases in
bacterial respiratory chains may also play a protective role against ROS. The present review covers
this role of terminal oxidases in light of recent findings.
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1. Introduction

Reactive oxygen species (ROS) are partially reduced oxygen derivatives. They include
the superoxide anion (O2

•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and
singlet oxygen (1O2). ROS can be produced within the cell as an unavoidable consequence
of bacterial metabolism or derived from the environment. ROS are generated by the host
innate immune system in response to bacterial colonization. Invading pathogens are recog-
nized by pattern recognition receptors located on the surface of a phagocyte. As a result, in
the course of phagocytosis, the production of ROS and reactive nitrogen species (RNS) is
triggered to generate bactericidal oxidative stress [1]. O2

•− is generated by the phagocyte
NADPH oxidase. O2

•− can then undergo dismutation to form H2O2 spontaneously or
enzymatically by superoxide dismutase. H2O2 is also generated by many microorganisms
at concentrations sufficient to kill their nearby competitors. For instance, arginine-replete
Streptococcus gordonii monocultures can maintain H2O2 concentrations within 20–30 µM
throughout exponential growth [2]. In exponentially growing Escherichia coli (E. coli) cells,
H2O2 production was estimated to occur at rates of 9–22 µM/s using strains lacking in-
tracellular scavenging enzymes and grown on a variety of growth substrates [3]. H2O2
permeates freely across bacterial membranes and can react with Fe2+, producing a very
powerful oxidant through this Fenton reaction, •OH. One more extremely dangerous
ROS, 1O2, can be generated by endogenous photosensitizers, such as flavins, quinones,
porphyrins, and rhodopsins [4]. All these ROS, particularly •OH and 1O2, can damage
bacterial DNA, RNA, proteins, and lipids. To protect themselves against ROS-induced
oxidative stress, bacteria utilize different ROS defense mechanisms, of which the enzymatic
ROS scavengers, such as superoxide dismutases, catalases, and peroxidases are the best
characterized [1,5]. Superoxide dismutases catalyze the dismutation of 2O2

•− into H2O2
and O2 with the participation of 2H+ as co-substrate. The decomposition of H2O2 is usually
conducted by catalases or peroxidases. Catalases catalyze the disproportionation of 2H2O2
into 2H2O and O2. Peroxidases catalyze the reduction of H2O2 (and/or organic hydroper-
oxides) by a wide variety of organic and inorganic substrates that serve as electron donor.
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In the case of E. coli, the most studied species of bacteria, the following enzymes are used to
degrade H2O2 in vivo: the KatG and KatE catalases [6], the NADH peroxidase AhpCF [7],
and the periplasmic cytochrome c peroxidase YhjA (also denoted as Ccp) that possesses
quinol peroxidase activity [8,9].

Recently, evidence has been accumulated indicating that some of the enzymatic com-
plexes of the terminal segment of the O2-dependent respiratory chains, terminal oxidases,
may also contribute to ROS defense mechanisms in bacteria. These enzymes catalyze
the four-electron reduction of O2 to 2H2O using quinol or cytochrome c as the electron
donor [10–15]. The membrane-embedded terminal oxidases include the superfamily of
heme-copper oxidases [13,14,16–24] and the family of copper-lacking bd-type oxidases
(cytochrome bd) [11,25–29]. All these oxidases couple the catalytic redox reaction to the
generation of a proton motive force [30–32]. Unlike cytochrome bd [33–35], the heme-
copper oxidases create the proton motive force not only due to the transfer of protons
and electrons to the catalytic site from different sides of the membrane but also due to a
unique mechanism of the proton pumping [36,37]. This is a likely reason why the proton
to electron stoichiometry (characteristic of the bioenergetic efficiency) of the heme-copper
oxidases is 1.5-2 times higher than that of cytochrome bd [30,38]. Heme-copper oxidases are
divided into families A, B and C based on the constituents of their proton channels [39–41].
Cytochrome bd, in turn, can be classified into two subfamilies, S and L, based on the size
of a hydrophilic region between transmembrane helices 6 and 7 of subunit I, denoted as
the Q-loop [42,43]. A heme-copper oxidase usually carries three or four redox centers
depending on whether it is a quinol oxidase or cytochrome c oxidase (COX). In addition
to the electron entry subunit that carries a binuclear CuA center, some COXs (caa3, cbb3)
have an additional domain, the substrate cytochrome c [44–46]. A distinctive feature of
the heme-copper oxidase superfamily is an active site, called the binuclear center (BNC),
which consists of a high-spin heme (a3, b3, or o3) and a copper ion (CuB) close to the
heme-iron. In the binuclear center, O2 is reduced to two molecules of H2O. All cytochrome
bds known to date are quinol (ubiquinol or menaquinol) oxidases. A typical cytochrome bd
has three redox centers, hemes b558, b595, and d but no copper. The high-spin heme d is the
site in which the oxygen chemistry takes place. Sometimes heme d is replaced by heme
b [47]. Cytochrome bd usually reveals a much higher affinity for O2 than heme-copper
oxidases [48–51].

While the main role of most heme-copper oxidases in microbial metabolism is to con-
serve energy, cytochrome bd appears to serve other important functions in bacteria [52–56].
The bd-type oxidases were reported to endow bacteria with resistance to nitric oxide
(NO) [57–66], peroxynitrite [53,67], sulfide [68–71], ammonia [72], cyanide [68,73,74]. This
is probably the reason why cytochrome bd is so common in pathogenic bacteria [75]. The
absence of these enzymes in eukaryotes makes them very attractive as potential targets for
new antibacterial drugs [76–81].

In this review, we discuss the contribution of the bd-type oxidases and other terminal
oxidases to oxidative stress defense mechanisms in bacteria in light of recent findings.

2. The bd-Type Oxidases by Fast O2 Scavenging Protect O2-Labile Enzymes from
Oxidative Inactivation and Reduce Intracellular ROS Levels

Possibly due to the lack of proton-pumping machinery, cytochrome bd generally
consumes O2 much more rapidly than heme-copper oxidases. In E. coli and Azotobacter
vinelandii, the bimolecular rate constant for O2 reaction with the bd enzyme approaches
diffusion control [82]. This trait allows the bd oxidase to play a crucial role in “respiratory
protection” of nitrogenase, the O2-labile N2-fixing enzyme complex, even under aerobic
conditions [83] (Figure 1). The prevention of O2 inhibition of nitrogenase activity by
cytochrome bd was shown in Azorhizobium caulinodans [84], A. vinelandii [83], Klebsiella
pneumoniae [85]. This is in agreement with the fact that mutant strains lacking cytochrome
bd are not able to fix nitrogen in the air [86]. Due to the presence of the bd enzyme,
some bacteria classified as strict anaerobes, e.g., Bacteroides fragilis [87] and Desulfovibrio
gigas [88,89], can survive at low O2 concentrations. In this case, apart from protection
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against the deleterious effects of O2, cytochrome bd provides the bacteria with the proton
motive force to drive ATP synthesis and dissipates excess reducing equivalents via the
O2-dependent respiratory chain. Consistently, in the anoxygenic phototroph Rubrivivax
gelatinosus, the bd oxidase is used to reduce the environmental O2 pressure [90]. This
expands the physiological range of ambient O2 tensions for this bacterium under which
photosynthesis can be initiated. In E. coli, a facultative anaerobic bacterium, cytochrome
bd inhibits the production of intracellular H2O2 by reduced fumarate reductase. This is
observed when anaerobic cultures of an E. coli strain devoid of canonical H2O2-scavenging
enzymes KatG, KatE, and AhpCF are abruptly aerated [91]. An underlying mechanism for
this phenomenon upon aeration is likely the action of cytochrome bd as an electron sink.
The bd enzyme pulls electrons away from fumarate reductase via the quinone pool. As a
consequence, the rate at which fumarate reductase generates H2O2 decreases [91].

Figure 1. Cytochrome bd and cytochrome cbb3 protect O2-labile nitrogenase from oxidative inactivation.

3. Bacterial Mutants Devoid of Cytochrome bd Show Higher Sensitivity to H2O2.
Cytochrome bd Expression Increases in the Presence of H2O2

Cytochrome bd plays a role in protecting bacterial cells against oxidative stress caused
by H2O2. E. coli mutant cells devoid of cytochrome bd-I (encoded by the cydAB operon)
are extremely sensitive to H2O2 exposure [92–94]. Consistently, expression of cytochrome
bd-I in E. coli K-12 increases in the presence of external H2O2 [94]. In uropathogenic E. coli,
the doubling time of strains lacking either cytochrome bd-I or cytochrome bd-II (encoded
by the cyxAB operon) increases considerably following treatment with 1 mM H2O2 [66].
Such a protective function of the bd enzyme is not limited to E. coli strains. In the case of A.
vinelandii cells, 0.15 mM H2O2 appeared to be more toxic to the mutant strain devoid of
the bd oxidase than to the wild-type strain [95]. The mutant strain of the sulfate-reducing
bacterium Alishewanella sp. WH16-1, deficient in cytochrome bd, is also more sensitive to
H2O2 than the wild type and complemented strain [96]. Similarly, Brucella abortus mutants
lacking the bd oxidase activity show higher sensitivity to added H2O2 [97]. This sensitiv-
ity is reversed after the introduction of a plasmid (pSEK102) that contains a copy of the
cydAB operon. Overexpression of superoxide dismutase and catalase can also alleviate the
loss of cytochrome bd [97], emphasizing that the antioxidant properties of these enzymes
are of similar importance. In Porphyromonas gingivalis involved in the pathogenesis of
periodontitis, the absence of the bd oxidase leads to an increase in the susceptibility of expo-
nentially growing bacteria to 0.5 mM H2O2 [98]. The complementation of the P. gingivalis
mutant with the native cydAB genes partially restores the resistance of the cells to H2O2
treatment. Small et al. [99] reported the catalase-independent hyper-resistance to H2O2 in
Mycobacterium tuberculosis cells overexpressing the bd enzyme. The hypersensitivity of the
cydAB mutants to exogenous H2O2 was also documented for Mycobacterium smegmatis [100].
Consistently, in Staphylococcus aureus, the cydAB genes are strongly (by 8-9-fold) induced
upon 20 min of exposure to H2O2 [101]. Altogether, these data suggest that at least in a
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few bacteria, including pathogenic strains, cytochrome bd contributes to mechanisms that
provide bacterial defense against H2O2-induced oxidative damage.

4. Catalase-Like Activity of Cytochrome bd

Apart from the above-described ways by which cytochrome bd can decrease intra-
cellular ROS levels indirectly, the enzyme was reported to be able to metabolize H2O2
directly. Borisov et al. [102] reported that the addition of Н2О2 to the isolated as-prepared
cytochrome bd-I from E. coli results in the О2 evolution in a sealed respirometry chamber
(Figure 2, main panel). The observed rate of О2 evolution is proportional to the enzyme
concentration. The reaction rate also increases linearly with the Н2О2 concentration, up
to 0.2–0.5 mM of the reactant. At higher [Н2О2], however, the dependence exhibits some-
what saturation behavior (Figure 2, inset), which may be due to partial inactivation of
cytochrome bd-I by ROS. In this reaction, there is the evolution of approximately one О2
molecule per every two Н2О2 molecules decomposed, implying the catalase-like reaction
mechanism. A series of experiments show that the reaction is indeed associated with the
bd-I enzyme [102]. After the thermal inactivation of cytochrome bd-I, the О2 evolution is no
longer detected. Hence, the possible presence of trace amounts of adventitious transition
metals cannot be the reason for the observed О2 evolution. The addition of NO, even at a
concentration of 20 µM, does not affect the rate of O2 formation. At the same time, NO was
reported to inhibit bona fide catalase with Ki of ~0.18 µM [103]. Furthermore, if the bd-I
enzyme is reduced completely with dithiothreitol (DTT) and 2,3-dimethoxy-5-methyl-6-(3-
methyl-2-butenyl)-1,4-benzoquinone (Q1), the catalase-like activity is lacking. However,
if bona fide catalase is then added to the chamber, the О2 evolution resumes. It is hard
to imagine that a contaminant catalase, if present, would be redox (DTT/Q1)-sensitive,
especially as many catalases are not reducible with as strong a reducing agent as dithion-
ite [104], even in the presence of a mediator [105]. Thus, the latter two findings suggest
that the isolated untagged cytochrome bd-I, rather than a potential presence of a native
catalase as a contaminant, is responsible for the observed activity. It should be noted that
this conclusion is not consistent with the data of Al-Attar et al. [106]. They reported that
the isolated His6-tagged cytochrome bd-I of E. coli does not perform a catalase-like activ-
ity as the addition of 1 mM Н2О2 to the enzyme does not lead to О2 generation [106].
Al-Attar et al. proposed that the catalase-like activity of cytochrome bd-I shown by
Borisov et al. [102] might be due to impurities that include an unknown membrane-
associated catalase. However, such an activity is also detected in vivo [102]. Substantial
rates of О2 production are observed if H2O2 is added to respiring E. coli UM2 cells devoid
of KatE and KatG but overexpressing the bd-I enzyme (Figure 3, red line). If cytochrome
bd-I is not overexpressed, the reaction is not seen (Figure 3, blue line). This can only
happen if “an unknown membrane-associated catalase” in the cells is cytochrome bd-I. This
discrepancy may be attributed to the differences between the protein forms (untagged vs.
hexahistidine-tagged) or other experimental conditions used for protein expression and
purification that Al-Attar et al. also do not exclude. Additional work is needed to resolve
the controversy.
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Figure 2. Catalase-like activity of the isolated as-prepared cytochrome bd-I from Escherichia coli (E.
coli). Main panel: O2 formation induced by addition of 0.1 mM H2O2 to the oxidase. Inset: Dependence
of the rate of O2 formation on H2O2 concentration. Adapted from [102].

Figure 3. Catalase-like activity of catalase-deficient E. coli UM2 cells overexpressing cytochrome bd-I.
Shown is the change in O2 concentration after the addition of 0.235 mM H2O2 to respiring cells in
which the enzyme is either overexpressed (+pTK1 plasmid that carries the cydAB operon) or not
(−pTK1 plasmid). Adapted from [102].

The molecular mechanism underlying the catalase-like activity of cytochrome bd-I
remains unclear. To try to identify the enzyme site responsible for the observed reaction, a
few compounds targeting different sites were tested [102]. Antimycin A (167 µM), which
inhibits the bd-I oxidase via interaction with the quinol binding site [107], does not affect
the О2 evolution. Consistently, 250 µM oxidized Q1 also does not inhibit the reaction.
Hence, the quinol binding site does not participate in the activity. Similarly, the rate of О2
formation is not affected by 20 µM N-ethylmaleimide, a small organic electrophile that
blocks cysteine thiols through covalent modification [108]. This suggests that the enzyme
thiol groups are also not involved in the reaction. Neither 20 µM NO nor 2 µM CO inhibits
the О2 evolution. The canonical О2 reductase activity of cytochrome bd-I was reported
to be blocked by NO and carbon monoxide (CO) with Ki of 100 [57] and 40 nM [109],
respectively. Since both NO and CO do this through binding to heme d, the participation of
this heme in the catalase-like activity is not very likely. This conclusion is also supported
by the fact that the catalase-like and the heme d-based О2 reductase activities do not seem
to compete with each other. The reaction is also insensitive to its product, О2, as the rates
of О2 evolution at 3 and 255 µM О2 are virtually identical. Notwithstanding this, two small
molecules were found to effectively inhibit the catalase-like activity, cyanide and azide.
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These ligands are known to block heme-containing enzymes by targeting ferric heme-iron.
The О2 evolution is inhibited by cyanide with a Ki of 2.5 µM. Consistently, 100 µM azide
inhibits the activity almost completely—by 98%. The catalase-like activity appeared to be
approximately three orders of magnitude more sensitive to these ligands than the heme
d-based О2 reductase one. This indicates that a heme, but not heme d, is involved in the
reaction. The site at which the catalase-like chemistry occurs could be heme b595 (Figure 4).
It is pentacoordinate high-spin and therefore can potentially bind an external ligand, such
as H2O2 [110]. It also cannot be ruled out that this catalytic role is played by heme b558.
Although this is a hexacoordinate low-spin heme, the bond between its sixth axial ligand
Met393 and the iron ion is weak and can be replaced with a stronger external ligand [111].
Surprisingly, the addition of cyanide to the as-prepared cytochrome bd-I at a concentration
(50 µM) that fully inhibits the catalase-like activity induces small absorption changes
as if the ligand reacts with only some small population of heme b. If this is the case,
only a fraction of the enzyme (2–4%) is involved in the reaction but with an apparent
turnover number greater than 3000 s−1 [102]. The catalase-like activity of cytochrome bd-I
could be induced in vivo in response to the oxidative stress by post-translational protein
modification, proteolysis, protein truncation in the translation process, or interaction of the
enzyme with other cellular components.

Figure 4. Proposed catalase-like activity of cytochrome bd-I and cytochrome bd-II from E. coli. Shown
is the scheme for bd-type enzyme arrangement in the E. coli membrane bilayer based on the solved
bd-I structure [28,29]. The oxidase consists of four different subunits, CydA, CydB, CydX, and CydH.
CydA carries three hemes, b558, b595, and d.

Preparations of untagged cytochrome bd-II isolated from E. coli also show high catalase-
like activity. Similar to cytochrome bd-I, NO at a high concentration (20 µM) does not affect
the activity (Figure 5, top panel). The observed О2 evolution is also susceptible to the
bd-II enzyme redox-state. When cytochrome bd-II is converted into the fully reduced
state following the consumption of all O2 in turnover with excess DTT and Q1, the H2O2-
induced catalase-like activity is no longer observed. However, if a bona fide catalase is
subsequently added, the reaction proceeds (Figure 5, bottom panel). Further studies will
show how this discovered activity of cytochrome bd-II (Figure 4) contributes to the bacterial
defense mechanisms against oxidative stress in vivo. In this regard, a very recent report by
Chanin et al. [112] on the role of cytochrome bd-II-mediated aerobic respiration of E. coli
during intestinal inflammation deserves attention. In the course of the inflammatory
process, the host produces antimicrobial products including O2

•− to impede bacterial
growth. The O2

•− molecules generated by the Nox1 NADPH oxidase undergo rapid
dismutation to H2O2 and O2 by superoxide dismutase. Using chemical and genetic murine
models of noninfectious colitis, Chanin et al. showed that cytochrome bd-II provides
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a fitness advantage for E. coli during anaerobic growth in the presence of H2O2 in the
inflamed murine intestine. In the absence of Nox1, this fitness advantage is ablated. To do
this, the bd-II enzyme may use H2O2 or its breakdown product O2 generated by the catalases
KatE and KatG, as the substrate. It turned out that in the absence of KatE and KatG, at 5 µM
H2O2, the wild-type strain outcompetes the mutant strain devoid of cytochrome bd-II. For
this reason, Chanin et al. concluded that O2 produced by catalase-mediated degradation of
H2O2 serves as the terminal electron acceptor for the bd-II oxidase [112]. However, given
the observed catalase-like activity of cytochrome bd-II (Figure 5, top panel), the possibility
that at higher H2O2 concentrations, cytochrome bd-II could also metabolize H2O2 in vivo,
contributing to the O2 pool formation in the inflamed gut, cannot be excluded. Whatever
the exact mechanism is, detoxification of the host-derived ROS through cytochrome bd-
II allows E. coli to respire in an otherwise anaerobic environment, promoting bacterial
outgrowth [112].

Figure 5. Catalase-like activity of the isolated cytochrome bd-II from E. coli. Top panel: The addition of
20 µM NO does not affect О2 evolution induced by the addition of 0.2 mM H2O2 to the as-prepared
enzyme (50 nM). Bottom panel: О2 evolution is lacking if, before the addition of 1.32 mM H2O2,
all O2 is consumed and cytochrome bd-II (12.8 nM) is converted into the fully reduced state by
10 mM DTT and 250 µM Q1. Subsequent addition of bona fide bovine catalase (2 µg/ml) restores
the reaction. Cytochrome bd-II was isolated from E. coli strain MB37 as described [38]. Changes
in O2 concentration were recorded using a high-resolution respirometer (Oxygraph-2k, Oroboros
Instruments). Assays were performed at 25 ◦C in 50 mM Na/phosphate buffer (pH 7.0) containing
0.1 mM ethylenediaminetetraacetate (EDTA), supplemented with 0.02% dodecyl-β-D-maltoside.

Reduced catalase-like activity was determined in cell-free extracts of A. vinelandii
when comparing the mutant strain MK5 devoid of the bd oxidase and the wild-type strain
UW136 [95]. In Alishewanella sp. WH16-1, cytochrome bd is also suggested to catalyze the
decomposition of H2O2 via the catalase-like reaction (see Figure 7 in [96]). A dramatic
increase in resistance of M. tuberculosis to Н2О2 upon the overexpression of cytochrome
bd reported by Small et al. [99] could be explained, at least in part, by the ability of the bd
oxidase to perform the catalase-like reaction [113].
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5. Peroxidase-Like Activity of Cytochrome bd

Borisov et al. reported [114] that the isolated untagged cytochrome bd-I from E. coli
displays a peroxidase-like activity. Under aerobic conditions, the enzyme can catalyze
the oxidation of guaiacol (o-methoxyphenol), benzohydroquinone, ferrocene, and ferro-
cyanide upon the addition of H2O2. Using guaiacol as the electron donor, the effect of a few
inhibitors of the O2 reductase activity of cytochrome bd-I on the peroxidase-like activity
was studied. It turned out that 2-n-heptyl 4-hydroxyquinoline-N-oxide (HQNO), pen-
tachlorophenol, and cyanide inhibit both activities at similar concentrations [114]. Based on
the inhibitory analysis, it was concluded that guaiacol binds and donates electrons to the
quinol binding site of cytochrome bd-I. The electrons are then transferred to the heme d site
at which H2O2 is bound and reduced to 2H2O. Although an apparent turnover number for
the guaiacol peroxidation reaction is as low as about 4 s−1, it was suggested [53] that this
value could be much higher in vivo where the natural quinol is used as the electron donor.

Consistent with this, Al-Attar et al. later reported [106] that, under anaerobic condi-
tions, the isolated His6-tagged cytochrome bd-I of E. coli shows significant peroxidase-like
activity. As the electron donor, decyl-ubiquinol (dQH2) was used and the oxidation of
dQH2 by H2O2 was measured spectrophotometrically by monitoring the absorption change
at 260 nm. The average dQH2/H2O2 ratio appeared to be 1.05 ± 0.19, which is consistent
with the peroxidase reaction mechanism. The kcat and KM values were reported to be
101 ± 10 s−1 and 6.6 ± 1.1 mM H2O2, respectively. This gives a specificity constant kcat/KM
of 1.5 × 104 M−1 s−1 [106]. In contrast to the catalase-like activity, the dQH2 peroxidase
reaction is promptly, but reversibly, inhibited by NO (Figure 6). This suggests that the heme
d site is directly involved in the binding and reduction of H2O2 (Figure 7). The reaction is
also inhibited by HQNO (50% inhibition is measured at about 10-15 µM HQNO), empha-
sizing that dQH2 injects electrons directly into the quinol binding site of cytochrome bd-I.
The observed high rates of the reaction indicate that it may have physiological significance
in E. coli.

Figure 6. Inhibition of decyl-ubiquinol (dQH2) peroxidase activity of the isolated cytochrome bd-I
from E. coli by NO. The reaction is monitored spectrophotometrically under anaerobic conditions.
The addition of 6 µM NO promptly inhibits the enzymatic oxidation of 0.2 mM dQH2 by 10 mM
H2O2. The inhibition is reversible as the activity gradually resumes due to the disappearance of NO.
The latter is probably due to the reaction between NO and dQH2. Reprinted from [106].
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Figure 7. Proposed peroxidase-like activity of cytochrome bd-I from E. coli. Shown is the scheme for
the enzyme arrangement in the E. coli membrane bilayer based on the solved bd-I structure [28,29].
The oxidase consists of four different subunits, CydA, CydB, CydX, and CydH. CydA carries three
hemes (b558, b595, d) and the quinol binding site at which the electron donor dQH2) is likely bound.

6. ROS and Heme-Copper Oxidases

The main function of heme-copper respiratory oxidases in mitochondria and most
bacteria is highly efficient energy conversion and generation of the membrane potential (the
proton motive force) due to the redox energy of O2 reduction to water [115,116]. The unique
ability of heme-copper oxidases to pump protons through the membrane determines their
distinctive features: the presence of a special device for a redox-coupled proton pump
and intra-protein proton-conducting pathways arranged in a special way [37]. Each of
the single-electron steps in the catalytic cycle of COX during the O2 reduction in the BNC
(heme a3/CuB) is associated with the transfer of ~1 pumped proton through the membrane.
The catalytic cycle of heme-copper oxidases is a highly coordinated system of individual
electrogenic stages of electron transfer from cytochrome c on the P-side of the membrane
and substrate protons on the N-side through the protein matrix to the BNC, as well as the
transfer of pumped protons from the N-side of the membrane through temporary loading
proton sites to the external water phase [32].

The BNC of COX is designed by nature to avoid, during the reduction of O2, producing
of free forms of ROS, which would be released to the bulk phase. After binding of the
oxygen molecule to heme a3 in the reduced BNC, the O-O bond is broken and four electrons
are transferred to O2 in virtually one step. The heme a3 iron gives up two electrons and
is oxidized to an oxidation state of +4, while CuB and the redox-active tyrosine residue
give the other two electrons for complete reduction of the oxygen atoms to produce two
molecules of water. The resulting PM catalytic intermediate is homologous to compound I
of peroxidases. The P0 compound corresponding to compound 0 in horseradish peroxidase
with the bound primary H2O2 adduct of the heme moiety was not time-resolved in the
case of COX of mitochondria and other heme-copper oxidases of the A family. PM has
an oxoferryl state of heme a3 with the oxidized tyrosine residue (the radical form) whose
reduction by an electron from cytochrome c (the third electron in the COX catalytic cycle)
and protonation of the hydroxyl bound to CuB lead to the F state. The F state is homologous
to compound II of peroxidases. In the heme-copper oxidases of the B family, only the
intermediate state P was kinetically resolved [117]. The intermediate state F was observed
only in stationary measurements during prolonged incubation with excess H2O2 (for
details, see [118]). For the heme-copper oxidases of the C family, only computer calculations
were reported. According to these calculations, the PM state is not energetically favorable
and is not formed [119].

In addition to the main reaction, for COX from mitochondria, peroxidase-like and
catalase-like activities were demonstrated. It was found that COX can catalyze the reduction
of H2O2 in the presence of cytochrome c, i.e., cytochrome c peroxidase-like reaction [120].
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The catalase-like activity (dismutation of H2O2) was observed initially by monitoring
spectrophotometrically how the mitochondrial COX reduces the concentration of added
H2O2 in the absence of an external electron donor [121]. This catalase-like activity of
COX was described as dismutation of H2O2 with a turnover number of about 100 min−1.
Recently, a second-order rate constant of 60–200 M−1·s−1 for the catalase-like activity of
the bovine COX was obtained in more accurate measurements using an H2O2-sensitive
electrode [122,123].

In the course of the reaction with H2O2, the BNC of COX goes through the same
intermediates (PM and F), which are resolved during the O2 reduction. The PM and F
intermediates of the mitochondrial COX (with different relative ratios) can be obtained in
a steady state in the presence of H2O2. The pre-steady state measurements showed that
the interaction of the BNC with two H2O2 molecules leads to the sequential formation
of PM and the reduction of PM to F by the second H2O2 molecule with the production of
O2
•− [124]. During the reaction of the mitochondrial COX with H2O2 at a high concentra-

tion, two molecules of H2O2 reduce the PM state formed upon the binding of the first H2O2
to heme a3. Two molecules of O2

•− are formed in the BNC and undergo dismutation into
the new H2O2 molecule [124]. At submillimolar concentrations of H2O2, its decomposition
occurs at least at two sites: (i) the catalytic heme a3−CuB center where H2O2 is reduced to
water via the PM and F states, and (ii) the surface-exposed lipid-based radicals generated
due to the migration of radicals formed initially in the catalytic heme a3−CuB center [125].

The mitochondrial COX can oxidize various aromatic compounds including some phar-
macologically and physiologically active substances via the peroxidase mechanism [122].
Noticeably, the rates of both catalase-like and peroxidase-like activities of the mitochon-
drial COX are several orders of magnitude less than those for the true catalases and specific
peroxidases (107 M−1·s−1). Hence, against the background of the specialized enzymes
designed to scavenge ROS, the “parasitic” reactions (peroxidase-like and catalase-like
activities) of the mitochondrial COX can be characterized as side reactions. For this reason,
they are unlikely to be of physiological significance in the ROS detoxification in mito-
chondria. However, COX is present at a high concentration in all tissues in the body,
and often there are tissues, such as the myocardium, in which there is no peroxidase
at all against the background of large numbers of mitochondria. Additionally, specific
localization of the enzyme in the mitochondrial membrane promotes the accumulation of
hydrophobic aromatic substances. Thus, the nonspecific peroxidation catalyzed by COX
via the peroxidase mechanism should be taken into account in some cases (e.g., metabolism
of hydrophobic medicinal or cardiotoxic compounds) [122]. It should be noted that cy-
tochrome c, which possesses peroxidase-like activity, could protect against ROS production
in mitochondria [126].

Even though in mitochondria the function of direct ROS detoxification, a kind of “man-
ual” work, is performed very effectively by specialized enzymes (peroxidases, catalases,
superoxide dismutase, and glutathione reductases), COX nevertheless participates in the
control of ROS but at a higher level of organization, through an indirect mechanism of ROS
regulation in which COX performs signaling, rather than a catalytic function. The mecha-
nism of reversible “allosteric ATP-inhibition” of dimeric COX keeps the ROS production
and heat generation low in mitochondria by maintaining low values for the mitochondrial
inner membrane potential [127]. This ability of COX to prevent oxygen radical formation
and cellular damage is canceled by increased intracellular calcium, as a consequence of
stress, which dephosphorylates and monomerizes COX.

The decomposition of H2O2 by the prokaryotic aa3-type cytochrome c oxidases from
Rhodobacter sphaeroides and Paracoccus denitrificans (homologous to the mitochondrial COX)
occurs at a rate of ten or more times faster as compared to the enzyme from mitochondria
(up to 2800 and 3300 M−1·s−1, respectively) [122,128]. In contrast to the bovine enzyme, the
observed rate of H2O2 decomposition by the bacterial COXs is too high to be explained by
the catalytic cleavage of H2O2 in the oxygen reducing center, since the rate of H2O2 binding
to the BNC is significantly smaller (500–800 M−1·s−1) than the catalase-like activity. This
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may indicate the protective significance of these “parasitic” reactions in bacteria. There is
reason to believe that the Mg ion located in the A family COXs near the proposed proton-
releasing pathways (for references, see [129]) can be replaced by the Mn ion, depending
on the environment in which the bacteria exist, and this ion can perform a catalytic
function [122]. Meanwhile, the Mn ions are known to be part of the catalytic center
of peroxidases and very good catalysts for the peroxidase reaction.

It is known that inhibition of mitochondrial respiration by NO (targeting COX) and
its derivatives stimulates ROS and RNS production by mitochondria, which have signaling
roles in the heart but may also contribute to cell death [130]. In contrast to the A family
mitochondrial COX, which is inhibited by NO, the NO reductase activity is observed for
the B family heme-copper oxidases, e.g., the ba3 oxidase from Thermus thermophilus [131]. It
is suggested that this activity may be related to the higher CuB affinity of these enzymes
for gaseous ligands. It is known that the activity of NO reductase, an enzyme related to
heme-copper oxidases, provides resistance of some bacteria to the immune response of
macrophages [132]. The presence of the NO reductase activity in prokaryotic heme-copper
oxidases may provide pathogenic bacteria with the antioxidant capacity to protect against
ROS and RNS in the course of an immune response and develop resistance against these
harmful species.

Finally, in bacteria, the heme-copper oxidases of the C family (cbb3-type enzymes),
which are expressed in low-oxygen environments, can also perform a protective function
against ROS, and are in some cases very effective. The high O2 affinity cytochrome
cbb3, along with the bd oxidase, plays an important role in the protection of O2-sensitive
nitrogenase in A. caulinodans by quickly consuming O2. The A. caulinodans mutant strain
devoid of both terminal oxidases is no longer capable of fixing N2 [84]. Akin to cytochrome
bd, the cbb3-type oxidase is necessary to reduce the environmental O2 pressure before
anaerobic photosynthesis. Accordingly, in contrast to the wild-type R. gelatinosus strain,
the double mutant lacking both cbb3 and bd oxidases can initiate photosynthesis only in
a deoxygenated medium [90]. The C family heme-copper oxidases have been much less
studied than the oxidases of the other families. For the oxidases of the B and C families,
variability in the stoichiometry of proton pumping was reported. How this could be
related/correlated to their activity to be expressed under low O2 conditions, as well as to
the ability to suppress ROS, remains to be elucidated.

7. Concluding Remarks

Bacteria have evolved elaborate strategies to defend themselves from ROS and min-
imize oxidative damage. Many specialized detoxifying enzymes, such as superoxide
dismutases, catalases, and peroxidases, have been extensively characterized. In this review,
according to recent data, we report that terminal oxidases in bacterial respiratory chains
may also play a protective role against ROS (Figure 8). Being efficient O2 scavengers, both
copper-lacking cytochrome bd and the heme-copper oxidase cbb3 protect nitrogenase, the
O2-labile enzyme complex responsible for catalyzing N2 fixation, from inactivation by O2,
as documented in A. caulinodans, A. vinelandii, and K. pneumoniae. The bd and cbb3 oxidases
also reduce the environmental O2 pressure, thereby expanding the physiological range of
O2 tensions for the anoxygenic phototroph R. gelatinosus, which allows photosynthesis to
start. The bd-type enzyme gives B. fragilis and D. gigas, classified as strict anaerobes, the
ability to survive in low-oxygen environments. Furthermore, the E. coli cytochrome bd-I
pulls electrons away from ROS-producing fumarate reductase, which leads to a reduced
amount of ROS. Finally, cytochrome bd-I and cytochrome bd-II from E. coli may directly
metabolize H2O2 through the catalase mechanism. The former cytochrome can apparently
catalyze ROS removal through another mechanism as well, acting as a quinol peroxidase.
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Figure 8. Overview of the proposed contribution of terminal oxidases to ROS defense mechanisms
in bacteria.

These relevant features of bacterial terminal oxidases may provide opportunities for
biotechnological applications aimed at increasing O2 and ROS resistance in microbes and
open up an attractive area of study for the development of novel antimicrobials to fight the
increasingly serious threat of antibiotic resistance in pathogenic microorganisms.
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