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Primary Hemophagocytic lymphohistiocytosis (pHLH) is a rare, life-threatening,
hyperinflammatory disorder, characterized by uncontrolled activation of the immune
system. Mutations affecting several genes coding for proteins involved in the
cytotoxicity machinery of both natural killer (NK) and T cells have been found to be
responsible for the development of pHLH. So far, front-line treatment, established on the
results of large international trials, is based on the use of glucocorticoids, etoposide ±
cyclosporine, followed by allogeneic hematopoietic stem cell transplantation (HSCT), the
sole curative treatment for the genetic forms of the disease. However, despite major efforts
to improve the outcome of pHLH, many patients still experience unfavorable outcomes, as
well as severe toxicities; moreover, treatment-refractory or relapsing disease is a major
challenge for pediatricians/hematologists. In this article, we review the epidemiology,
etiology and pathophysiology of pHLH, with a particular focus on different cytokines at the
origin of the disease. The central role of interferon-g (IFNg) in the development and
maintenance of hyperinflammation is analyzed. The value of emapalumab, a novel IFNg-
neutralizing monoclonal antibody is discussed. Available data support the use of
emapalumab for treatment of pHLH patients with refractory, recurrent or progressive
disease, or intolerance to conventional therapy, recently, leading to FDA approval of the
drug for these indications. Additional data are needed to define the role of emapalumab in
front-line treatment or in combination with other drugs.

Keywords: emapalumab, hemophagocytic lymphohistiocytosis, primary hemophagocytic lymphohistiocytosis,
interferon-g, interferon-gammopathies
INTRODUCTION

Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening, hyperinflammatory
disorder, characterized by uncontrolled activation of the immune system. Without timely
diagnosis and appropriate treatment, the prognosis of children with primary HLH (pHLH) is
dismal (1). In the last decades, two multicenter, international studies (promoted by the Histiocyte
Society, namely HLH-94 and HLH-2004) conducted using well-defined treatment protocols, based
on multi-agent treatment strategy and allogeneic hematopoietic stem cell transplantation (HSCT),
have led to improvement of the outcome of patients affected by pHLH (2, 3). Front-line treatment of
pHLH is nowadays based on the combination of dexamethasone and etoposide to achieve disease
control for then rapidly proceeding to allogeneic HSCT, the sole curative treatment for pHLH.
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Intrathecal methotrexate and hydrocortisone are used in patients
with pHLH for preventing/treating central nervous system
(CNS) involvement. Although, approximately 80% of patients
respond to these therapies and are able to then undergo HSCT,
complete responses are only achieved in less than half of patients.
The majority of deaths prior to HSCT appear to be due to
uncontrolled disease activity.

The results of the last international protocol, HLH-2004,
investigating the addition of cyclosporine-A to the combination
of dexamethasone and etoposide in 369 treatment-naïve patients
did not lead to significant improvement of patient outcome in
comparison with the HLH-94 study where patients were given
dexamethasone and etoposide for 8 weeks, with the aim to induce
remission of the disease activity [overall survival (OS) was 61%
at 5 years, as compared to a 5-year OS of 54% (p = n.s.) in the
HLH-94 protocol] (3). Limited data on second-line therapies
are available to guide physicians regarding choice of therapy
for patients with refractory pHLH. Infliximab, anakinra,
alemtuzumab, daclizumab, vincristine, and other therapies have
been reported in a limited number of cases (4–7). A retrospective
analysis on 22 children with pHLH given alemtuzumab as
treatment of refractory HLH showed a 64% overall partial
response, defined as at least a 25% improvement in two or
more quantifiable symptoms or laboratory markers of HLH
2 weeks following drug administration (4). Notably, no
patient experienced a complete response to alemtuzumab
therapy; moreover, 32% and 23% of patients experienced
cytomegalovirus and adenovirus viremia. The 2-year probability
of OS was 61%. A multicenter, open-label, phase I/II, non-
comparative, non-randomized study (NCT02472054, which has
enrolled so far some 29 patients) is currently exploring the use of
alemtuzumab (in association to Methylprednisolone and CSA) in
pHLH patients who had not received any specific treatment prior
to enrolment except steroids and CSA. Mahlaoui and colleagues
reported on a retrospective single-center experience of 38 patients
treated with anti-thymocyte globulins; they received a total of 45
courses of therapy (5). Main adverse events were infections,
which occurred in 10 patients (22%), leading to death in four
cases. Complete response (CR) was obtained in 73% of 45
courses, a partial response (PR) in 24% of 45 courses, and no
response in one case. Relapse occurred in 10 patients, including
CNS involvement in five, and led to death of nine patients. These
studies are not fully comparable because of significant differences
in: i) type of patients treated (i.e., treatment-naïve, relapsed/
resistant patients); ii) time of follow-up; iii) type of endpoints
considered (i.e., response rate, overall survival); iv) endpoint
definition (e.g., in the study of Marsh and colleagues (4) PR
was defined as at least a 25% improvement in two or more
quantifiable symptoms or laboratory markers of HLH 2 weeks
following alemtuzumab). However, altogether, the results
obtained in these studies underline that new drugs, directly
targeting disease mechanism must be identified if we wish to
further improve the survival of patients with pHLH.

Emapalumab-Izsg (Gamifant®, formerly known as NI-0501)
is a fully-human IgG1 monoclonal antibody that binds with high
affinity to both free interferon-g (IFNg) and receptor (IFNgr1)-
Frontiers in Immunology | www.frontiersin.org 2
bound IFNg (Figure 1). This binding results in inhibition of
receptor dimerization and signal transduction of the cytokine
signalling. The drug has been approved in 2018 by the Food and
Drug Administration (FDA) for adult and pediatric patients
(both newborns and older children) with pHLH affected by
refractory, recurrent or progressive disease or intolerant to
conventional therapy (https://www.fda.gov/drugs/fda-approves-
emapalumab-hemophagocytic-lymphohistiocytosis).

In this article, we will discuss the genetic background of the
disease, its pathophysiology and the rationale for targeting IFNg
in patients with pHLH.
PATHOGENESIS OF HLH

HLH is a reactive process resulting from an uncontrolled
immune response triggered by different stimuli on the
background of an underlying inherited or acquired inability to
eliminate the trigger itself. Three main elements cooperate in the
development of the disease: a genetically-determined
predisposing background, a wide spectrum of triggers and
pathophysiologic cascades, which culminate in a life-
threatening cytokine storm.

The Predisposing Background
and the Triggers
HLH has been traditionally divided into a primary form (i.e.,
pHLH), which typically manifests in children with documented
genetic abnormalities of the cytotoxic function of both natural
killer (NK) and T cells, and a secondary form, which tends to
occur at older ages in the setting of an associated conditions, such
as rheumatologic disorders, infections and malignancies, without
an identifiable genetic defect. Since the first description of perforin
genemutations by Stepp et al. in 1999 (8), significant insights have
been gained into the genetic mutations that predispose to the
development of a pHLH phenotype. Decades of research into
pHLH have revealed that the disease is predominantly due to
mutations in genes crucial for the cytotoxic function of both NK
cells and cytotoxic T lymphocytes (CTLs) (9, 10).

NK cells and CTLs kill infected cells by a non-secretory
pathway involving Fas ligand (CD95-L), but, more importantly,
through a perforin-dependent pathway. Upon activation of
NK cells or CTLs, cytotoxic granules, which contain perforin
and granzymes, are carried along microtubules toward the
immunological synapse between effector immune cells and
target cells. In this complex process, activated granules migrate,
dock, and fuse with the cell membrane, releasing their contents
into the synapsis (11).

In ~30% of patients with pHLH, cytolytic dysfunction is due
to loss−of-function mutations in the gene encoding perforin
(PRF1). When released into the immune synapsis, perforin self-
polymerizes, creating pores in the plasma membrane that enable
granzymes to enter the target cell and trigger apoptosis (12).

In addition to perforin deficiency, all other inherited forms of
HLH in which HLH itself is the main manifestation of disease
December 2020 | Volume 11 | Article 608492
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(also named familial HLH, or FHL) are characterized by failure
to deliver cytotoxic granule contents (Table 1 reports details on
the different forms of the disease). Bi-allelic mutations in
UNC13D (encoding Munc13-4, accounting for about one third
of FHL cases), STX11 (encoding syntaxin 11, about 5% of FHL
cases), and STXBP2 (encoding syntaxin-binding protein 2, also
known as Munc18-2, about 10–15% of FHL cases) result into the
occurrence of HLH in FHL types 3, 4, and 5, respectively (13–
16). Notably, patients with STXBP2 mutations may present
additional clinical features, including sensorineural hearing
deficit, abnormal bleeding, and, most frequently, chronic
enteropathy (17).

Patients with mutations in lysosomal transport (LYST or
Chediak-Higashi syndrome), RAS-associated protein 27a
(RAB27A or Griscelli syndrome type 2), and adaptor protein 3
B1 subunit (AP3B1 or Hermansky-Pudlak syndrome type 2) share
a combination of pigment abnormalities and predisposition to
develop HLH (18–20). Remarkably, each of the molecules
defective in these three disorders mediates a crucial step in
cytotoxic granule exocytosis at the immune synapse.

Pat i en ts wi th mutat ions in SH2D1A (X- l inked
lymphoproliferative disease type 1, XLP1) develop HLH after
exposure to Epstein–Barr virus (EBV), and may also present with
Frontiers in Immunology | www.frontiersin.org 3
lymphoproliferative disorders or hypogammaglobulinemia (21).
In XLP1, cytotoxic lymphocytes are selectively impaired in their
cytotoxic response to EBV-infected B cells (22).

Some patients may have diverse genetic causes, including
inflammasomopathies or even primary immune deficiencies.
The importance of inflammasome activation in pHLH was
recently highlighted by the identification of heterozygous gain-
of-function mutations in the inflammasome component gene
NLRC4 (23). Spontaneous NLRC4 activation results in over-
activation of caspase-1 and excessive production of IL-18.
Patients with NLRC4 mutations present with recurrent fever
and severe systemic inflammation reminiscent of those
encountered in HLH, which may be associated with severe
enterocolitis (24). In contrast to what observed in XLP1, no
defects in the cytotoxic activity of NK cells and CTLs have been
identified in XLP2, which is, by contrast, caused by loss-of-
function mutations in X-linked inhibitor of apoptosis (XIAP)
(25). Recently, it has been hypothesized that the mechanisms
underlying EBV-driven HLH in XLP2 may involve altered
regulation of inflammasome and pro-inflammatory cytokine
production (10). Other primary immune-deficiencies (PIDs)
associated with HLH include defects in MAGT1, ITK, CD27,
IKBKG, or GATA 2. In addition, HLH has been reported to
FIGURE 1 | Mechanism of action of emapalumab. The drug binds to both free and receptor-bound IFNg, inhibiting both receptor dimerization and signal
transduction via JAK-STAT pathway.
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occur also in patients with Wiskott–Aldrich syndrome,
DiGeorge syndrome, chronic granulomatous disease, or STAT1
gain-of-function mutations (10, 26).

It is noteworthy that HLH has been observed also in patients
with severe combined immunodeficiency lacking both T- and
NK-cells, the two main effectors involved in the pathogenesis of
pHLH. In these patients, the activation of macrophages and the
subsequent cytokine storm seems to occur despite the complete
absence of lymphocytes, although the precise mechanisms
through which HLH develops are still obscure (26).

We and other colleagues recently described a novel
hematological/auto-inflammatory condition (NOCARH
syndrome) associated with the development of HLH. Affected
patients shared the same de novo CDC42 mutation
(Chr1 :22417990C >T , p .R186C) and had a l t e r ed
hematopoietic compartment, with neonatal-onset cytopenia
and dyshematopoiesis, rash, immune dysregulation, and
inflammation (27).

Although secondary HLH was classically determined to have
no genetic background, evidence is currently accumulating for
genetic overlap between primary and secondary forms. Indeed,
in some patients with classical secondary HLH, hypomorphic
Frontiers in Immunology | www.frontiersin.org 4
mutations or double heterozygosity in genes typically implicated
in pHLH have been detected (28). Moreover, mutations and
polymorphisms in non-cytotoxicity-related genes, affecting NK-
cell receptors, cytokine production, cytokine signaling,
inflammasome activation and TLR signaling, may also
predispose to secondary HLH (29).

Infections and rheumatologic conditions are the most
common contributors to secondary HLH. Potent triggers are
viruses, especially those belonging to the herpes family.
Infectious mononucleosis can mimic most features of HLH and
EBV infection is the most common trigger of infection-associated
HLH (26).

Besides viruses, other pathogens have been implicated as
trigger for HLH, including protozoa, bacteria, and fungi (30).
A frequent trigger is represented by Leishmania; diagnostic work-
up of patients presenting with symptoms and signs suggestive for
HLH should include the search of this pathogen (31).

HLH in autoinflammatory and autoimmune conditions is
usually termed macrophage activation syndrome (MAS) (32).
The highest prevalence is found in patients with systemic
juvenile idiopathic arthritis (sJIA), adult-onset Still’s disease
and systemic lupus erythematosus (SLE) (33). Recently, genetic
TABLE 1 | Genetic conditions associated with predisposition to HLH.

Form Gene (locus) Protein Function Associated immunological and clinical features

Familial HLH
FHL1 Unknown

(9q21.3–q22?)
Unknown Unknown –

FHL2 PRF1
(10q21–22)

Perforin Pore formation –

FHL3 UNC13D
(17q25)

Munc13-4 Cytolytic granule priming and fusion –

FHL4 STX11
(6q24)

Syntaxin-11 Cytolytic granule fusion –

FHL5 STXBP2
(19p13)

Munc18-2 Cytolytic granule fusion Chronic enteropathy, sensorineural hearing
deficit, abnormal bleeding

Degranulation defect syndromes
Griscelli syndrome type 2 RAB27A

(15q21)
Rab27a Cytolytic granule docking Partial albinism, silver-grey hair

Chediak-Higashi syndrome LYST
(1q42–43)

LYST Cytolytic granule trafficking Partial albinism, recurrent pyogenic
infections

Hermansky-Pudlak
syndrome type 2

AP3B1
(5q14.1)

AP3B1 Cytolytic granule trafficking Partial albinism, bleeding
tendency

X-linked lymphoproliferative syndromes and EBV-susceptibility disorders
XLP-1 SH2D1A

(Xq24–25)
SAP Signaling in T and NK cells Defective killing of EBV-infected B cells;

May present with HLH, EBV-driven lymphoma,
hypogammaglobulinemia

XLP-2 BIRC4
(Xq25)

XIAP Inhibition of apoptosis, inflammasome
control, NOD1/NOD2 signaling

Elevated IL-18, colitis, hypogammaglobulinemia

X-linked immunodeficiency with
magnesium defect (XMEN)

MAGT1
(Xq21.1)

MAGT1 Mg transport, NKG2D-dependent
cytotoxicity

CD4 lymphopenia, EBV-driven lymphoproliferation/
lymphoma

IL-2-inducible T cell kinase
deficiency

ITK
(5q34)

ITK TCR signaling Absence of iNKT-cells, EBV-driven
lymphoproliferation/lymphoma

CD27 deficiency CD27
(12p13)

CD27 T-cell costimulatory signaling Combined immunodeficiency,
EBV-driven lymphoproliferation/lymphoma

Autoinflammatory syndromes
NLRC4 gain-of-function NLRC4

(2p22.3)
NLRC4 Inflammasome assembly Constitutive inflammasome activation, elevated IL-

1b/IL-18, recurrent fever, enteropathy
NOCARH syndrome CDC42

(1p36.12)
CDC42 Actin assembly Neonatal cytopenias, dyshematopoiesis, recurrent

febrile episodes, urticaria-like rash
December 2020 | Volume 11 | Article 608492
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studies have detected variants in MUNC13-4 among JIA patients
developing MAS (34).

There is a growing recognition of malignancy-associated HLH
(35). Malignancy is the most common trigger identified in adults
with HLH (45%), whereas it is a relatively rare event in childhood
HLH (8%). HLHmay present during chemotherapy when there is
typically substantial leukopenia and infectious triggers, or HLH
may present at the time of diagnosis. The vast majority of
triggering malignancies in adults and children are lymphomas
and leukemia, most frequently T-cell derived entities, including
anaplastic large cell lymphoma (ALCL) and mature T-cell
lymphomas (35). Secretion of pro-inflammatory cytokines by
the malignant cells could be one pathophysiological mechanism.

In addition, there is a link between pHLH and cancer: patients
with XLP1 have increased risk of lymphoma and cases of
malignancy have been reported in patients with FHLH 2, 4
and 5 (36, 37).

The Cytokine Storm and the Role of IFNg
In healthy subjects, immune homeostasis is maintained by
contraction of the immune response after successful
elimination of the dangerous trigger. When perforin-mediated
cytotoxicity is either diminished or absent, such as in case of
pHLH, severe immune dysregulation occurs as result of
inefficient removal of target cells. In this respect, animal
models of HLH, in which cytotoxicity-deficient mice are
challenged with a virus, have been an invaluable tool for
unravelling mechanism by which impairment of degranulation
machinery leads to the severe perturbation of immune
homeostasis typical of the disease (10, 29).

As already mentioned, a disparate group of disease triggers
are possible, each of which initiates the upstream events of CD8+
T-cell hyperstimulation. In the case of pHLH, the initiation event
is typically an infectious trigger. Defective elimination of infected
cells drives excessive antigen presentation to CD8+ T cells, likely
because of a combination of increased viral load and prolonged
antigen stimulation (38). Despite that, in several large case series,
an infectious trigger has been identified only in less than 50% of
pHLH cases (2, 3, 39) and this percentage is even lower in cases
with intrauterine or neonatal onset (40), this observation
suggesting that also non-infectious stimuli may initiate the
development of pHLH.

Indeed, a second effector function of CTLs ensures essential
immunoregulation via a negative feedback loop, which operates
through perforin-dependent killing of antigen-presenting
dendritic cells. In pHLH, persistence of activated dendritic cells
results in continuous antigen presentation and uncontrolled CTL
proliferation (41). Recent evidence suggests that also NK cells
exert crucial immunoregulatory functions in the context of
pHLH. In particular, models in which cytotoxic defects were
restricted to either NK cells or CTLs indicated that functional
NK-cell cytotoxicity has a key role in limiting hyperactivation
and excessive proliferation of CTLs and it offers protection from
severe immunopathology (42). In addition, in murine models, it
has been shown that a prolonged synapse time exists between
perforin-deficient or granzyme A/B-deficient cytotoxic
Frontiers in Immunology | www.frontiersin.org 5
lymphocytes and target cells. This longer contact results in
many successive rounds of Ca2+ flux into cytotoxic cells and
triggers the overproduction of pro-inflammatory cytokines,
further reinforcing the detrimental link between cytotoxicity
defects, hypercytokinemia and initiation of systemic
inflammation (43). The inability to clear the antigenic stimulus
and, thus, to turn off the inflammatory response ultimately leads
to a common pathway of uncontrolled cytokine storm, which is
responsible for cardinal laboratory and clinical features of HLH.
Several potential HLH-promoting cytokines have been
identified, including IFNg, IL-2, TNF-a, IL-6, IL-18, IL-33
(44–48) (Figure 2 shows a summary of the main cytokines
involved in HLH pathogenesis, as well as of new treatment
targets). In particular, increasing clinical and experimental
evidence suggests that IFNg plays a crucial role in the
pathogenesis of HLH. Serum IFNg levels and interferon
signature are elevated in patients with active disease (44, 48,
49). In a series of 71 patients monitored from HLH diagnosis
throughout treatment and follow-up, IFNg levels above the
upper normal limit (17.3 pg/ml) were observed in all patients,
with 53.5% having levels above 1,000 pg/ml (48). This can be
used, through the use of standardized assays, to facilitate the
diagnosis of HLH (50). It was also reported that IFNg levels rise
early and quickly during the course of the disease, and can fall
from >5,000 pg/ml to normal in 48 h upon effective treatment of
HLH (48). Elevated levels of IFNg and of the IFNg-inducible
chemokines CXCL9, CXCL10 and CXCL11 were also observed
both in patients with HLH secondary to infections and in
patients with HLH/MAS occurring in the context of sJIA (49,
51). Noteworthy, levels of IFNg and IFNg-inducible chemokines
CXCL9 and CXCL10 were significantly higher in patients with
MAS as compared with the levels observed in patients with
active sJIA without MAS at the time of sampling. In addition,
abnormalities in laboratory parameters of MAS, including ferritin,
alanine transferase levels, neutrophil and platelet counts, correlated
with levels of IFNg and CXCL9. These findings suggest that
IFNg may also play a pivotal role in the pathophysiology of
MAS (49).

IFNg is a type II interferon secreted by T lymphocytes and NK
cells during Th1-mediated immune responses. IFNg functions as
a pro-inflammatory cytokine that mediates antimicrobial,
antiviral, and antitumor responses by activating effector
immune cells and enhancing antigen presentation (52).

The importance of IFN-g in the pathogenesis of HLH has
been initially strengthened by data obtained in experimental
mouse models. It has been demonstrated that, after lymphocytic
choriomeningitis virus (LCMV) infection of perforin-deficient
mice, hyperactive CTLs and high levels of IFNg are the driving
forces behind the development of fatal HLH (53). In the same
model, neutralization of high circulating levels of IFNg by an
anti-mouse IFNg antibody not only reverted the clinical and
laboratory abnormalities, but also dramatically improved animal
survival. By contrast, the ablation of other elevated cytokines has
no significant impact on mice survival (53).

Similarly, in lymphocytic choriomeningitis virus/Rab27a-
deficient mice, neutralization of IFNg has been shown to revert
December 2020 | Volume 11 | Article 608492
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CNS involvement and to reduce hemophagocytosis (54).
Neutralization of IFNg is also capable to revert hematologic
abnormalities in a mouse model of secondary HLH, triggered by
repeated stimulation of Toll-like receptor (TLR) 9 on a normal
genetic background (55). Finally, in a mouse model of MAS, a
significant upregulation of the IFNg pathway and an increased
expression of the IFNg-inducible chemokines CXCL9 and
CXCL10 have been observed in the liver, spleen, and plasma.
In the same model, treatment with an anti-IFNg antibody
significantly improved mice survival, reverting clinical and
biochemical features of MAS (56).

Hypersecretion of IFNg may also explain several of the most
relevant clinical findings of HLH. In particular, IFNg was
demonstrated to directly stimulate macrophage activation in
vivo, instigating the onset of hemophagocytosis and possibly
causing cytopenias (57). In another experimental model,
persistent overexpression of IFNg was sufficient to induce
many of the disease-associated hallmarks associated with
autoinflammatory syndromes, including some of those
associated with HLH, such as splenomegaly, lymphadenopathy,
hyperferritinemia and macrophage activation (58).

Despite this evidence supporting a key role played by IFNg,
the cytokine storm in HLH is quite promiscuous and several
other pro-inflammatory mediators might be involved, at
different levels, in the immunopathology of the disease.

Recently, IL-33 was demonstrated to be a crucial amplifier of
immune dysregulation in murine models of perforin-deficient
HLH, being closely linked to IFNg overproduction. In particular,
signalling through the IL-33/ST2 axis promoted CTL activation
and production of IFNg, leading to systemic hypercitokinemia
and subsequent lethal inflammation (47).
Frontiers in Immunology | www.frontiersin.org 6
A discrepancy between the increase in IL-18 and its
antagonist IL-18 binding protein (IL-18BP) has been reported
in patients with secondary HLH, resulting in aberrantly high
levels of free IL-18. High levels of IL-18 induce CTL and
macrophage activation, thus contributing to IFNg production
(59, 60). Notably, IL-18 is significantly also elevated in patients
with activating lesions of the inflammasome (61). A clinical trial
testing the effects of recombinant IL-18 binding protein in
patients with NLRC4 Mutation and XIAP Deficiency is
currently ongoing (NCT03113760).

Under physiologic conditions, Tregs have a crucial role
in peripheral immune tolerance, eliminating activated CTLs
in a perforin- and granzyme-dependent way and indirectly
suppressing CTL proliferation through preferentially
consumption of available IL-2 (62). In perforin-deficient
mouse models, limited IL-2 availability was observed, as results
of both reduced IL-2 production and elevated levels of
antagonistic soluble CD25. The remaining IL-2 was preferably
consumed by hyperactivated CTLs, that upregulated their CD25
expression to surpass that of Tregs, inverting the IL2
consumption hierarchy and resulting in a precipitous decrease
in Treg cell numbers (63). Recently, the central role of IFNg in
HLH pathogenesis has been challenged by the observation of
HLH in IFNg-deficient mice (64) and in patients with genetic
defects in the IFNg signaling (65). Furthermore, Humblet-Baron
and co-workers demonstrated that severe HLH could be induced
after LMCV infection in a perforin and IFNg double knock-out
mouse model. In the same model, it was also shown that IFNg
and CD25 pathways act independently of each other in the
pathogenesis of HLH, with IFNg being strictly responsible for
hematologic abnormalities, while excessive consumption of IL-2
FIGURE 2 | Schematic representation of pathophysiology (including the cytokine storm) and new targeted treatments for HLH.
December 2020 | Volume 11 | Article 608492
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contributing to immunologic features of HLH (66). These
observations reinforce the concept that other mechanisms,
beyond IFNg-driven hyperinflammation, may be involved in
HLH pathogenesis and suggest that the therapeutic targeting of
these cytokine pathways might provide benefit in the control of
the disease.

In this regard, the JAK/STAT pathway is activated by several,
pro-inflammatory cytokines that are elevated in HLH and may
represent a potential therapeutic target in pHLH. JAK/STAT
inhibition with the JAK1/2 inhibitor ruxolitinib has been shown
to ameliorate clinical and laboratory manifestations of the
disease in Prf1−/− and Rab27a−/− murine models of pHLH, as
well as in a mouse model of secondary HLH (67, 68). In
particular, Albeituni et al. have demonstrated that in models of
both primary and secondary HLH, JAK1/2 inhibition was
superior to IFNg-blocking alone in dampening inflammatory
biomarkers, improving clinical parameters and enhancing
survival. The beneficial effect of ruxolitinib in these
experimental models has been shown to be mediated by both
IFNg-dependent and -independent mechanisms, the latter
involving targeting of other cytokines (such as TNF-a and IL-
6) and inhibition of T-cell and neutrophil activation and tissue
infiltration (69). Preliminary clinical data suggest that ruxolitinib
was effective and well tolerated in five patients with secondary
HLH (70). Moreover, Wang et al. reported the results obtained
with ruxolitinib in 34 patients with refractory/relapsed HLH, the
majority (n = 25) being EBV-related. In this cohort, the overall
response rate (OR) was 73.5%, with 14.7% (5/34 patients) and
58.8% (20/34 patients) obtaining CR and PR, respectively (71).
Recently, Zhang and co-authors treated with ruxolitinib 12
children affected by secondary HLH (mainly Epstein–Barr
virus associated HLH). Eight out of 12 patients (66.7%)
achieved CR by day 28, while one patient (8.3%) obtained a
PR. Notably, no major adverse event was recorded. Considering
as event disease progression, relapse or death, with a median
follow-up of 8.2 months, the estimated 6-month EFS was
58.3% (72).
EMAPALUMAB

Pharmacological Properties
Emapalumab is a fully human monoclonal antibody that works
neutra l i z ing both f ree and receptor-bound IFNg .
Pharmacological properties of the drug are non-linear, being
characterized by target-mediated drug disposition (TMDD)
phenomenon (https://www.accessdata.fda.gov/drugsatfda_docs/
nda/2018/761107Orig1s000MultidisciplineR.pdf). This term
refers to a condition in which the pharmacokinetic properties
of the drug are influenced by the interactions between the drug
itself and its target (e.g., presence of dose-dependent effects on
apparent pharmacokinetic parameters, including clearance of the
drug, as well as its steady-state volume of distribution). For this
reason, pharmacokinetic data differ according to the status of the
recipient of the drug. A Phase 1 study performed in the UK in
adult healthy subjects (NI-0501-03 study) investigated the safety,
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tolerability and pharmacokinetic profiles of single i.v.
administration of emapalumab: in total, 14 subjects were
exposed to increasing doses of emapalumab (ranging from 0.01
to 3 mg/kg). In this healthy population, PK analysis showed a
half-life profile expected for an IgG1 (i.e., approximately
22 days).

Safety and Efficacy—Preclinical
Non-clinical toxicology studies, performed in Cynomolgus
monkeys, did not identify developmental or age-specific effects
between young and adult animals exposed to emapalumab
(https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/
761107Orig1s000MultidisciplineR.pdf).

Since IFNg is a cytokine with a central role in immune-
mediated reaction, its neutralization could be theoretically
expected to potentially facilitate the development of infections
by specific pathogens including Mycobacteria, Shigella,
Campylobacter and Salmonella (73, 74). Accordingly, the use of
emapalumab favoured the development of gastrointestinal
infections in animals harbouring Shigella, Campylobacter or
Salmonella in stools prior the initiation of the drug. Notably, in
animals where such pathogens were undetectable before the
starting of the treatment, repeated doses of emapalumab were
well tolerated without the development of gastrointestinal
infections or organ toxicity (https://www.accessdata.fda.gov/
drugsatfda_docs/nda/2018/761107Orig1s000MultidisciplineR.pdf).

Patients with pHLH should be evaluated for latent
tuberculosis infection with an IFNg release assay or purified
protein derivative (PPD) placement prior to initiation of
emapalumab. Patients are also recommended to receive
prophylaxis for Pneumocystis jirovecii, as well as for varicella-
zoster virus (VZV) infection, during the whole duration of
therapy with emapalumab.

Preclinical data regarding efficacy have already been discussed
above. Noteworthy, emapalumab has been shown to cross react
with IFNg from Rhesus or Cynomolgus monkeys, but not with
IFNg from pig, dog, cat, rat, or mouse. Thus, in preclinical
experiments performed in mouse models of HLH, a commercially
available anti-mouse IFNg mAb, XMG1.2, has been extensively
used. XMG1.2 is a high-affinity potent inhibitor of IFNg that has
similar functional characteristics to emapalumab, and is deemed a
suitable functional surrogate for the conduct of studies that are
representative of emapalumab in humans.

Efficacy—Clinical
Emapalumab efficacy was tested in the NI-0501-04 study
(NCT01818492), which enrolled patients aged 0–18 years with
a diagnosis of pHLH based on the presence of ≥5 of the eight
HLH-2004 diagnostic criteria or genetic confirmation/family
history of the disease. The study mainly recruited patients who
had failed conventional treatment (e.g., who had received
conventional HLH therapy and had a flare of disease after
initial response, or who did not achieve a satisfactory response
or showing intolerance to the drug) (i.e., second-line patients).
Treatment schedule was characterized by an initial dose of
emapalumab of 1 mg/kg every 3 days. The dose could be
progressively increased up to 10 mg/kg (60). The drug was
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administered on a backbone of 5–10 mg/m2/day of
dexamethasone, which could be tapered during the study, with
the goal of sparing the steroid-associated toxicity. During
emapalumab treatment, intrathecal therapy (glucocorticoids
and/or methotrexate) could be administered. Results of NI-
0501-04 study were recently published (75). Included in the
analysis were 34 patients (out of 53 screened; data cut-off applied
was July 2017). Twenty-seven of them were enrolled after failure
of first-line treatments, while seven patients were treatment-
naïve; median age at study entry was 0.85 years (range 0.03–
13.0). Twenty-seven out of 34 patients [79%, as compared to
approximately 53% of total population of the HLH-2004
protocol (3, 76)] had genetic confirmation of the disease: all
forms of FHL were represented, as well as Griscelli syndrome
(five patients) and XLP 1 and 2 (one patient each). Notably, 12
patients had signs and/or symptoms of CNS involvement.

The study was completed by 26 patients (76%), while eight
(24%) discontinued the study prematurely. A total of 28 patients
(82%) entered long-term follow-up (NI-0501-05). The primary
endpoint of the study was met, with an overall response rate [ORR
(i.e., CR + PR), which was based on pre-defined objective
parameters (CR = no fever, a normal spleen size, no cytopenia,
no hyperferritinemia, no evidence of coagulopathy, no CNS
disease and no sustained increase in the level of sCD25; PR =
three or more clinical and laboratory abnormalities that met the
criteria for a CR)] at the end of 8-week of treatment of 63% for the
previously treated patients (95% CI, 42–81) and 65% for the
patients whole population (95% CI, 46 to 80) (p-value 0.02 and
0.005 against pre-specified the null hypothesis of 40%,
respectively). Response rate based on investigator’s clinical
judgment was 70.6 and 70.4% in the two groups (77). CNS
disease was controlled in 6 of the 12 patients with CNS
involvement, improved in four, and could not be evaluated in
two because of worsening HLH. Six patients received additional
treatments (etoposide and/or alemtuzumab) because of an
unsatisfactory response based on clinical judgment; all but one
were non-responders in the primary efficacy analysis; median
exposure to etoposide in patients receiving additional therapy
was 450 mg/m2, at a median time of 55 days from the start of
treatment (76). Among previously treated patients, 26% achieved
CR, 30% PR, and 7% had improvement in measures of
hemophagocytic lymphohistiocytosis, while 37% had no
response. In treatment-naïve patients, 43% achieved PR, 28.5%
an improvement and 28.5% no response. Median time to response
was 8 days (95% CI 5–10) and it did not differ between first- and
second-line patients. Once achieved, the response was maintained
for 26 days in 75% of the whole population and for 18 days in 75%
of the second-line patients. Notably, low CXCL9 levels were
associated with a response in logistic regression analysis, further
confirming that neutralization of IFNg is a valid therapeutic
approach. Twenty-four patients were alive at last observation
(71%), with an estimated probability of survival of 69.3% (95%
CI 50.3–82.2). Twenty-two of them (65%) proceed to HSCT;
notably 20 of them are alive after the transplant procedure, with
a 1-year estimated probability of survival of 90.2% (95% CI, 66.2 to
97.5). The estimated probability of survival after transplantation at
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12 months was 89.5% (95% CI, 64.1 to 97.3) among children who
already failed or were intolerant to front-line therapy.

Infusions of emapalumab were well tolerated, with mild to
moderate infusion-related reactions reported in 27% of patients.
The observed safety events pre-HSCT were represented mostly
by HLH manifestations, infections or toxicities due to other
administered drugs. Only one patient experienced an infection
caused by a pathogen potentially favored by IFNg neutralization
(disseminated histoplasmosis) during emapalumab treatment;
however, it resolved without sequelae with appropriate
treatment. Notably, no off-target effects were observed (75).

Recently, a case report summarized the successful treatment
with emapalumab of a patient with refractory, EBV-associated
HLH (78). The patient was a male of Southeast Asian descent
who presented at 20 months of age with acute EBV infection and
essentially all diagnostic features of HLH as defined by the HLH
2004 criteria. Treatment with emapalumab was initiated after
documented failure of HLH conventional therapy (including
glucocorticoids and etoposide) along with antiviral (ganciclovir,
later switched to brincidofovir for adenoviremia), antifungal
(liposomal amphotericin), and antibacterial medications.
Treatment of HLH with emapalumab alone resulted in
resolution of all clinical symptoms and normalization of clinical
laboratory parameters typical of HLH. Treatment was successful
despite pre-existing multiple life-threatening infections; in
particular, during blockade of IFNg with emapalumab, all
infections resolved with supportive antimicrobial medications
and cessation of etoposide and dexamethasone.

Emapalumab was critical to the survival of one patient
affected by NOCARH syndrome due to de novo CDC42
mutation, who, after stabilization of HLH obtained through the
use of the monoclonal antibody, was successfully transplanted
from the father (27).

Use After HSCT
Our group recently reported on three patients affected by pHLH,
who, after rejecting a T-cell depleted (TCD) HSCT from an
haploidentical donor [both HLH and TCD are well-known risk
factors for graft failure (GF) (79)], were treated with
emapalumab to successfully control a flare of the disease.
Interestingly, patients continued the treatment during and for
some weeks after the second HSCT. No significant adverse event
was recorded and two out of three patients successfully
engrafted. Indeed, in the same manuscript, we showed that GF
(especially the primary form) resembles HLH because of clinical
findings (e.g., high-grade fever and organomegaly) and cytokine
profile (80).

Recently, a child affected by ADA-SCID transplanted from an
HLA-haploidentical donor after TCD was successfully treated
with emapalumab to control GF-related HLH (81). She
continued the treatment during the following transplant in
order to prevent GF, with good results. Notably, before starting
emapalumab treatment the child had developed several
infections (disseminated BCGitis, adenoviral infection,
Stenotrophomonas maltophilia bacteremia, invasive pulmonary
aspergillosis) which did not worsen with IFNg blockade.
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Other Ongoing Studies on the
Use of Emapalumab
Currently, the following studies on the use of emapalumab in
different IFNg-driven conditions are open:

- a Phase 2, single-arm study (a pilot, open-label, single arm,
multicenter study to evaluate safety, tolerability,
pharmacokinetics and efficacy of intravenous administrations
of emapalumab, in patients with systemic Juvenile Idiopathic
Arthritis (sJIA) developing Macrophage Activation Syndrome/
secondary HLH) in patients with HLH secondary to sJIA, also
known as MAS, who have failed to respond to the current
standard of care (NI-0501-06 study). The dosing schedule of
the drug is quite different from NI-0501-04 study, since
emapalumab is administered at the initial dose of 6 and 3
mg/kg twice a week for 4 weeks thereafter. This study will
contribute to elucidate the role of IFNg neutralization in HLH
associated with rheumatologic disorders (https://clinicaltrials.
gov/ct2/show/NCT03311854). Preliminary, but very promising
data on the first six patients have been presented at the 2019
European congress of rheumatology (82). Indeed, emapalumab
induced a rapid neutralization of IFNg and in all six patients
control of the disease was achieved by week 8.

- an open-label, single-arm, multicenter interventional study
performed in pediatric patients with pHLH (NI-0501-09
study). The study is similar to the NI-0501-04; however, a
higher starting dose (i.e., 3 mg/kg) compared to the NI-0501-
04 study is being assessed (https://www.clinicaltrialsregister.
eu/ctr-search/trial/2017-003114-10/DE);

- an open-label, single-arm, multicenter interventional study
conducted in adult patients with secondary HLH (NI-0501-
10; ClinicalTrials.gov Identifier: NCT03985423).
CONCLUSIONS

Outcome of pHLH patients remains suboptimal with patients
still experiencing high rates of treatment failure and death from
different causes. However, advancement in diagnostic algorithm,
as well as availability of new drugs (which allows sparing or
reduction of cytotoxic drugs), hold the promise of improving
patients’ outcome.

Thanks to the phase 2/3 study NI-0501-04 conducted in
patients with pHLH (NCT01818492), the neutralization of
IFNg has been validated as a therapeutic target in pHLH. In
view of the results of this phase 2/3 study, emapalumab,
Gamifant®, was approved by the US FDA for adult and
pediatric (newborns and older) patients with pHLH with
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refractory, recurrent or progressive disease or intolerance with
conventional HLH therapy. Emapalumab is the first drug
approved for the treatment of pHLH with refractory, recurrent
or progressive disease, a rare, hyperinflammatory, life-
threatening disease. More data are needed to recommend its
use in newly diagnosed patients; however, it has to be emphasized
that, in light of the failure of HLH-2004 protocol to improve the
outcome of pHLH patients in comparison to the HLH-94 study
(3), new effective targeted drugs are desirable for the standard
treatment of the disease. The need of more effective and safer
therapies is further supported by the findings of the recently
published study reporting in detail HSCT outcomes of patients
enrolled in the HLH-2004 protocol, showing suboptimal results,
with a 5-year OS and EFS of 66 and 60%, respectively (83).

The benefit deriving from the addition of drugs conventionally
used in the treatment of pHLH (e.g., etoposide ± cyclosporine-A)
remains a matter of future investigations through studies
designed to address this specific goal.

Given the similarity of pathophysiology of primary and
secondary HLH, currently ongoing and future studies will
contribute to define the precise role of this IFNg neutralizing
antibody in controlling HLH manifestations occurring in the
context of rheumatologic disorders or malignancies.

Finally, based on the effectiveness of emapalumab in
inhibiting IFNg, there is increasing interest in testing the drug
in other IFNg-driven conditions, such as the aforementioned GF
occurring after allogeneic HSCT or in patients developing
acquired severe aplastic anemia.

As already mentioned, ruxolitinib has shown efficacy in
secondary HLH, but its role in pHLH remains to be
investigated; several ongoing studies are testing this drug as
stand-alone therapy (NCT04120090) or in combination
[(NCT04551131) and (NCT03533790)] for newly diagnosed
and/or relapsed/refractory pHLH. A comparison of the benefits
and risks associated with either emapalumab or ruxolitinib and
their respective role in pHLH management will be defined in
view of the data that will become available in the next years. For
the time being, we can just valorize that ruxolitinib has the
potential of pleiotropically block the transduction pathway of
several inflammatory cytokines, but its use has been reported to
be associated with hematological cytopenia and, in patients with
acute GVHD, with an increased risk of CMV infections (84).
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