G. Migliaccio and G. Ruta

ROTOR BLADES AS CURVED, TWISTED AND TAPERED BEAM-LIKE
STRUCTURES SUBJECTED TO LARGE DEFLECTIONS

G. Migliaccio! and G. Ruta?

L Civil and Industrial Engineering, University of Pisa
Largo Lucio Lazzarino 1, 56122, Pisa, Italy
e-mail: giovanni.migliaccio.it@gmail.com

2 Structural and Geotechnical Engineering, University “La Sapienza” of Roma
Via Eudossiana 18, 1-00184, Roma, Italy
e-mail: giuseppe.ruta@uniromal.it

Abstract. Non-prismatic beam-like structures are widespread in many engineering and science appli-
cations. Important examples include the rotor blades of wind turbines and helicopters. Their mechani-
cal behaviour can be simulated using 3D beam models, which are computationally efficient, accurate
and explicitly consider such structures’ main geometric features, the large deflection of their reference
centre-line and 3D warping of their transverse cross-sections. This paper proposes a mathematical
model for such structures. A variational approach and the smallness of the warping and strain fields
are exploited to obtain the model. Analytical and numerical results obtained with the proposed model-
ling approach are presented and compared to those from nonlinear 3D-FEM simulations.
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1 INTRODUCTION

Many complex engineering components, such as the rotor blades of wind turbines and hel-
icopters, are non-prismatic beam-like structures, which may be curved, twisted and tapered in
their unstressed state and undergo large centre-line displacements, as well as in- and out-of-
plane cross-sectional warping. Continuous efforts to better predict the mechanical behaviour
of such structures are aimed at improving their performance in terms of structural efficiency
and costs effectiveness [1-4]. At the same time, this offers the opportunity to address some
very interesting, challenging problems in the field of continuum and solid mechanics.

Over the years many theories have been proposed for beam-like structures, from classical
beam models for extension, twisting and bending [5], to formulations which include trans-
verse shear deformation [6], to geometrically exact and asymptotic approaches, involving the
research efforts of many investigators [7-13]. The available theories may be broadly grouped
into engineering theories and mathematical ones. The former are generally based on ad-hoc
corrections to simpler theories [14], or exploit geometrically exact approaches [15]. The latter
are usually based on directed continuum models [16] or exploit asymptotic methods [17]. A
number of reviews of such theories are available in the literature and summarize the model-
ling approaches and complicating effects. Many theories, for example, have been developed
for rotor blades with an initial twist [18]. In this regard, a wide-ranging review on pre-twisted
rods has been proposed by Rosen [19], who covers several aspects of the problem, from re-
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sponse to static loads, to dynamics and stability issues. Kunz [20] has provided an overview
of modelling methods for rotating beams, discussing how engineering theories for rotor
blades have evolved over the years, from recognition of the importance of bending flexibility,
to the development of linear equations for bending and torsion, to the introduction of nonline-
ar terms to such equations. A recent review on vibration issues in rotating beams summarizes
beam theories and complicating effects, such as non-uniform cross-sections, initial curvature,
twist and sweep [21]. In general, apart from pre-twisted rods, it seems that the results pub-
lished for beam-like structures with initial taper and sweep are quite scarce, although all the
mentioned geometric features may play an important role. This is especially true for modern
blades, which are ever more flexible and longer than in the past, are pre-twisted and, in addi-
tion, are characterized by significant chord variations, which means the cross-sections taper is
expected to have a significant influence on the stress and strain fields in the structure.

To date much progress has been made to develop powerful theories for beam-like struc-
tures. However, complex non-prismatic cases still require further investigation. In general, the
geometry of the reference and current states must be appropriately described. Curvature, twist
and taper are important design features and should be explicitly included in the model. More-
over, the analysis should not be restricted to small displacements. The model should provide
the stress and strain fields in the three-dimensional solid, be rigorous and application-oriented,
and provide classical results when applied to prismatic cases. Following these guidelines, a
mathematical model to simulate the mechanical behaviour of the aforementioned structures is
proposed in this work, which also extends the results of a previous work (see, for example,
[22]). Specifically, a modelling approach for non-prismatic beam-like structures, undergoing
large deflections, 3D cross-sectional warping and small strain, is introduced in section 2. The
focus is on the effects of important geometric features, such as the taper of the transverse
cross-sections. In this regards, new analytical results for bi-tapered beam-like structures are
presented in section 3. Finally, numerical examples are proposed in section 4, along with
comparisons with results from nonlinear 3D-FEM simulations.

2 MECHANICAL MODEL

An important point in modelling structures in large displacements is the description of their
motion [23-28]. Here, we consider a non-prismatic beam-like structure as a collection of de-
formable plane figures (the transverse cross-sections) along a suitable 3D curve (the reference
centre-line). We assume that each point of each cross-section in the reference state moves to
its position in the current state through a global rigid motion on which a local generic (warp-
ing) motion is superimposed. In this way, the cross-sectional deformation can be examined
independently of the global motion of the centre-line. It is thus possible to consider the global
motion to be large, while the local motion and the strain may be small.

2.1  Geometry, kinematics and strain measures

Let us begin by introducing two local triads of orthogonal unit vectors. The first is the ref-
erence local triad, bi, in the reference state, with by aligned to the tangent vector of the refer-
ence centre-line (Figure 1, left). This frame is a function of the reference arch-length, s, i.e.
bi=bi(s). The second local triad, ai, is an image of b; in the current state. It is a function of the
arch-length, s, and time, t, that is, aj=ai(s,t). In general, the orientation of a;j and b; relative to a
fixed rectangular frame, ci, can be defined using two proper orthogonal tensor fields, A and B,
respectively, as follows

a, =Ac, b =Bc (1)
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Figure 1 shows a schematic representation of the reference and current states of the struc-
ture in terms of centre-lines and cross-sections. A generic cross-section in the reference state
is contained in the plane of bz and bs. In the current state, it may not remain plane (i.e. un-
warped) and may not belong to the plane of a» and as. In general, its (possibly warped) current
state is attained by superimposing an additional (warping) motion to the position of the points
of the un-warped cross-section (as in Figure 1, right).
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Figure 1: Representation of reference and current states in terms of centre-lines, cross-sections and local frames

We continue by introducing two mapping functions, Ra and Rg, to identify the position of
the structure’s points in the current and reference states, respectively. For the reference state,
we define the (reference) mapping function

RB(Zi) = ROB(21)+Xa (Zi)ba (Zl) 2)

where Rog is the position of the reference centre-line points relative to frame c;, b, are vectors
of the reference local frame in the plane of the reference cross-section, X, identify the position
of the points in the reference cross-section relative to the reference centre-line, and, finally, z;
are three independent mathematical variables which do not depend on time. More precisely, z1
is equal to arch-length s, while z, belong to a bi-dimensional domain, referred to as %o, which
is used to map the position, X, of the cross-sections points.

Throughout this paper, Greek indices (a and ) take values 2 and 3, Latin indices (i, j and
k) assume values 1, 2 and 3, and repeated indices are summed over their range.

It is worth noting that xx may or may not be equal to zx. The first option leads to common
modelling approaches [8-10]. Here, we choose relations between Xk and zx to explicitly simu-
late the shape of the considered non-prismatic structure. In particular, the span-wise variation
in the shape of its cross-sections is modelled via the following map

X, =N,z (3)

-]
where coefficients Ajj are functions of z1. Hereafter, we consider curved and twisted beam-

like structures with bi-tapered cross-sections, in which case map (3) reduces to

=12, X= ZzAz (21)' X3 = Z3A3(Zl) (4)
where coefficients A, are functions of z;.
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The position of the structure’s points in the current state are defined in a similar manner via
the (current) mapping function

Ra(2,8) = Roa(2u,1) + %, (2)a, (2,.) + W, (2,3, (2,1 (5)

where Roa is a function mapping the position of the structure’s centre-line points in the cur-
rent state, while wy are the components of 3D warping displacements in the local frame a,
introduced to describe the geometry of the deformed state without a-priori approximations.

Now we introduce the kinematic variables we use to describe the structure’s motion, start-
ing with the orthogonal tensor field T, which defines the relative orientation between frames
ai and bj, as follows

T = AB’ (6)

Then we define two skew tensor fields, Ka and Kg, which are related to the curvature of
the reference and current centre-lines of the structure, as follows

K,=AA"

(7
K, =B'B'
The apex prime denotes the derivative with respect to arch-length s. By combining (6)-(7),
the following identity holds

TT'=T'K,T-K, (8)

The left side of (8) defines a skew tensor field, herein denoted as K. The corresponding ax-
ial vector, k, can be determined via the relation

k=TTK, —k, 9)

where vector fields ka and kg are the axial vectors of the skew tensors Ka and Kg. These vec-
tors are referred to here as curvature vectors in the current and reference states, respectively. It
turns out that vector field k is the difference between the current curvature vector ka, rotated
back through tensor T, and reference curvature vector kg. It thus contains information on the
variation in curvature between the current and reference states.

In a similar manner, we introduce a vector field, vy, that is related to the difference between
the current and reference centre-line tangent vectors, as follows

7/:TTR(,)A_R(,JB (10)

It can be shown that y and k vanish for rigid motions and are invariant under superposed
rigid motion [23-24]. Herein they are referred to as 1D strain measures.

We proceed by introducing the skew tensor field Q, whose axial vector is called w, which
is associated with the variation in vectors a; over time, t, as follows

Q=AA (11)

where the apex dot denotes derivative over time t.

The local triad b; is independent of time, as is the function Ros, which maps the positions
of the centre-line’s points in the reference state. On the contrary, function Roa may change
over time t. In particular, its variation is the time rate of change of the position of the current
centre-line’s points, vo, that is

R,

oa =V

0 (12)
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By exploiting (6)-(12), we obtain the following kinematic relations
Vo—o AR, =Ty
o =Tk
where the operator A is the usual cross-product.

We are now in a position to introduce the tensor field, H, which is the gradient of the trans-
formation between the reference and current states. It can be determined as follows
— aRA

H=—A=G, ®g" 14
aRBkg (14)

(13)

In (14), Gk and g* are covariant and contravariant base vectors in the current and reference
states, respectively, and can be written in the form

gl = gémbl
gz = Agl(bZ - K;Za Zag(;llzbl)
93 = Agl(bS - K;3azag(;1/2bl)

" 15
G =a+ra+Ky,z,a+ KAijoai W& 1)
Gz =A,q, W,
Gs = Asa3 + W, 58,
where
2 *
=1+ K, 2
gO* Bla “«a (16)

!
K(BorA)ia =A, +AﬂaK(BorA)iﬁ

When H is known, the Green-Lagrange strain tensor, E, can be calculated. In the follow-
ing, we write tensor E in a form based on assumptions applicable to the considered structure.
In particular, we introduce the characteristic dimension of the cross-sections, herein called h,
the reference length of the centre-line, called L, and assume that h is much smaller than L.
Moreover, we consider a thin structure and assume its centre-line curvatures are much smaller
than 1/h. Also, we assume the warping displacements, wg, are small. More precisely, by intro-
ducing a non-dimensional parameter, &, much smaller than one, they are considered to be of
the same order as e, while the order of their derivative with respect to z; is ¢a/L. In general,
all deformation measures (i.e. the 1D strain measures y and k, and 3D strain tensor E) are as-
sumed to be small. In particular, their order of magnitude is at most .

For the considered structure, in the case of small strains and small local rotations, the strain
tensor, E, can be determined via the following relation

TTH+HTT_
2

El | (17)

2.2 Stress measures and constitutive model

Given the strain tensor, E, the choice of a constitutive model enables determining the cor-
responding stress fields as well [29]. Limiting our attention to elastic bodies in a purely me-
chanical theory, in the case of small strain, we use the following linear relation between the
second Piola-Kirchhoff stress tensor, S, and the Green-Lagrange strain tensor, E,

S=2uE+AtrE | (18)
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where p and A are known scalar parameters related to Young’s modulus and Poisson’s ratio
and 1 is the identity tensor [29]. For small strain and small local rotations, we also write

P=TS, C=TST" (19)

where P is the first Piola-Kirchhoff stress tensor and C is the Cauchy stress tensor.

We are now in a position to define the stress resultants on each transverse cross-section of
the beam-like structure. Using the first Piola-Kirchhoff stress tensor, P, for small warpings,
small strains and small local rotations, we write

= ) b,
F=T L P.b, 0

M =T x,P, b, Ab

In (20), X is the domain corresponding to the cross-section on which the integration is per-
formed. The stress resultants are described in terms of two vector fields (i.e. the force F and
moment M), which depends on the reference arch-length, s. Finally, the components of the
first Piola-Kirchhoff stress tensor, P, are defined as follows

P, =P-a ®b, (21)

By combining equations (14)-(20), the stress-resultants can be related to the geometric pa-
rameters of the structure and its 1D strain measures. However, such relations are actually
known only if we know the warping fields, wk. An approach to obtaining suitable warping
functions is discussed in section 2.4.

2.3 Expended power and balance equations

To complete formulation of the model, we introduce the principle of expended power and
the balance equations for the considered beam-like structure. For hyper-elastic bodies [29],
we write the principle of expended power in the form

jAp.v+ij-v=%jvcp (22)

In (22), p are surface loads per unit reference surface (A), b are body loads per unit reference
volume (V), @ is the 3D energy density function of the body, which is half the scalar product
of the tensor fields S and E (i.e. 20=S-E), and, finally, v is the time rate of change of the cur-
rent position of the body’s points, which is given by

V=V, +oAX,a, +W (23)

where w" is the time rate of change of the warping displacement.
For small warpings, strains, and local rotations, if the power expended by surface and body
loads on the warping velocities is neglected, the external power, ITe, reduces to the form

HezA(F-VO+M~w)+ISFS-VO+MS~w (24)

where Fsand Ms are the resultants of the inertial actions and prescribed loads per unit length
in the reference state, while symbol A simply indicates that the function between brackets is
evaluated at both ends of the beam and the difference between the two values is taken.

It is worth noting that the 3D warping fields, w, may play an important role in determining
the 3D energy density function, @, and are not neglected in the internal power, I1i. However,
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it is often useful to reduce the internal power, ITi, in a common form for beam-like structures,
by introducing a 1D energy density function, U, such that

d
IIL.=—|U 25
1 dt s ( )
Note that if U depends only on the 1D strain measures (i.e. U(y,k,s)), it is possible to write
the principle of expended power for the considered structure in the form

A(F~VO+M~a))+LFS~v0+MS-co=J‘Sf~7/+m~kT (26)
where the vector fields f and m are related to the vector fields F and M as follows
f=T'F, m=T'M 27)
and the force and moment, F and M, satisfy the following balance equations
F'+F, =0
(28)

M'+Rj,AF+M =0
At this point, we have the kinematic equations and strain measures, (9)-(13), the balance
equations for the stress resultants, (28), and the principle of expended power for the consid-
ered beam-like structures, e.g. (26). We only need relations between the stress resultants and
strain measures, which, in turn, depend on the warping fields. An approach to obtaining this
result is discussed in the following section.

2.4  Cross-sections warping and centre-line deflection

In general, 3D nonlinear elasticity problems can be formulated as variational problems, but
difficulties remain in directly solving such problems. However, for a beam-like structure with
transverse dimensions much smaller than the longitudinal one, assumptions based on the
smallness of the warping and strain fields can lead to useful simplifications. In particular,
solving the 3D problem can be reduced to solution of two main problems [30]. One of the two
problems governs the local distortion of the transverse cross-sections and is referred to here as
the cross-section problem, the other governs the global deflection of the reference centre-line
and is referred to here as the centre-line problem.

Hereafter, we consider the following variational statement to determine the warping fields
responsible for cross-sectional deformation

5L®=o (29)

In (29), the symbol & stands for the variation operator, and the density function ® depends on
the warping fields, wx. Warping fields satisfying (29) can be obtained via the corresponding
Euler-Lagrange equations [31], by means of numerical methods, in general, or analytical ap-
proaches providing closed-form results, in particular cases. Once such problem is solved, we
can also relate the stress resultants and 1D strain measures via equations (17)-(20).

That said, note that we also need the displacements of the structure’s centre-line points to
determine its current state. This result can be achieved by solving the centre-line problem,
which is a non-linear problem governed by the kinematic, constitutive and balance equations
introduced in section 2. Specifically, we are referring to the constitutive model introduced in
section 2.2 (to relate the stress resultants and strain measures), and the balance equations in
section 2.3 (for the stress resultants). The resulting set of (nonlinear) ordinary differential
equations can then be numerically integrated with respect to arch-length s, using standard
mathematical methods (see for example [32-33]).
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In the following, we illustrate some analytical results (section 3) and numerical examples
(section 4) obtainable through the proposed modelling approach.

3 ANALYTICAL RESULTS

The stress and strain fields in the considered structure can be determined through solution
of (29). To this end, we exploit the aforementioned Euler-Lagrange equations, in which we
maintain the terms up to the order €h/L. The result is that we obtain a mathematical problem,
that is a partial differential equations (PDEs) problem, the solution of which enables deter-
mining the components of strain tensor E. Here, we also choose that the current local frames
be tangent to the current centre-line and include possible shear deformations within the warp-
ing fields. In addition, in this section we focus on the effects of cross-sections’ taper on the
stress and strain fields and neglect those related to cross-sections’ pre-twist.

Proceeding in this way, the components Ei1, E21 and Es; of strain tensor E, which are relat-
ed to the out-of-plane deformation of the cross-sections, can be written in the form

By =KXy =KX, + 7, +€py
2E,, = Aj'e, — KX + 2(L+v) (KX, —KoX, + 7)) AL ALX, +e, (30)
2B, = Aje, + KX, + 20+ V) (KX, — KoX, + 71) AT AL X, + €,
where the components of tensor E are defined by
E, =E-b ®b, (31)

In (30), the subscript comma-a indicates the derivative with respect to z,, comma-1 stands
for the derivative over xi, the scalar field e: is the solution to the following PDE problem

-2 _2 .
Ay, + A8 5 = 0 InZ,

(32)
(&, — A Ak zZ)n, + (e, —A,AKZ,)n, =0 onox,

and, finally, the fields e, and es can be obtained by solving the PDEs problem below
AR, , + Ay, =A,8,2, +Aja,2, INZ
Ay'e,, —AJ'e,, =ADb,z, +Abz, InZ (33)
A,e,n, +An, =0 onox,
In (33), coefficients a, and b, are linear functions of the 1D strain measures k, and their

first derivative with respect to s. Moreover, they explicitly depend on the initial shape of the
structure through the taper coefficients, A2 and As, as follows

a, = +2(L+v)kj + 2(1+v) (A;'AL + 2A,'A) )k,
a, = —2(L+v)ky — 21+ v)(A,'A) + 2A°A} )k,
b, =—2vk, —2(L+V)A;'ALk,
b, = —2vk] — 21+ V) A ALK,

(34)

The approach used can also provide relations for components E»», Ezz and E23 of strain ten-
sor E, which are related to cross-section in-plane deformations, plus an additional PDE prob-
lem in terms of unknown functions related to such in-plane deformations. In the following, we
do not go into the details of the mathematical problem related to the in-plane deformations,
but focus on the effects of taper included in functions e1, e> and es, which have a significant
influence on the strain and stress fields in non-prismatic beam-like structures.
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3.1 The case of bi-tapered elliptical cross-sections

Let us now consider beam-like structures with bi-tapered elliptical cross-sections. For such
a case we can provide analytical closed-form results, while for generic cross-section shapes
problems (32)-(33) have to be solved via numerical methods (which is not surprising, given
that analytical solutions are available only for a limited number of cases even in the classical
linear theory of prismatic beams [5]).

In this case, the aforementioned PDEs problems can be solved without resorting to numeri-
cal methods. In particular, we obtain the following analytical results

e, =(d; — p2d))(d; + p7°d;) TKkyx, X
e, = +(C,X, +C; X )32 AF X, + (Cy +a,d2A2)(d 2 ALK +d P APX. =1) 1 2 (35)
€, = —(C%, +C3%;)d; A%, — (€, —a,ds AZ)(d; A" X] +d;°Ag™x; —1) /2

In (35), d2 and dz are the major semi-axes of a reference elliptical cross-section (e.g. the one at
the root section), while coefficients ¢, and cz are defined as follows

¢, = (b, + pa,)(L+3p?) AZd?

_ oo (36)
¢, = (b, —p7°a,)(1+3p7") " ASd]

where p=As/Az is a known function of z;. Using this result, we can calculate the components
of strain tensor (30), as well as the corresponding stress fields (18)-(19). An important result
is that the effects of cross-sections’ taper appear explicitly in all equations in terms of two
specific application-oriented functions, that is, A2 and Aa.

It is also worth noting that the model and analytical results presented here generalize the
results of the classical linear theory of prismatic beams (see, for example, [34-35]), to which
the present results reduce if the structure is prismatic and the centre-line deflection is small.

As already noted, analytical results such as those shown here (35) can only be obtained for
a limited number of cases. However, problems (32)-(33) can always be solved with the aid of
numerical methods for all other cases as well.

4 NUMERICAL EXAMPLES

In this section we show some quantitative results obtainable with the modelling approach
presented in the previous sections, referred to as 3D-BLM in the following. To this end, we
have implemented 3D-BLM in a numerical code in Matlab language and have exploited
standard mathematical methods to numerically solve the corresponding differential equations
[32-33]. The results obtained from 3D-BLM are then compared with those from 3D-FEM
simulations performed with the commercial software Ansys, using a fine mesh and solid tet-
rahedral elements with 10 nodes and quadratic displacement behaviour [36].

In particular, test-case 1 addresses a rectangular cross-sectioned structure undergoing large
displacements, while fixed at one end (the root) and loaded at the other (the tip) by a trans-
verse force of progressively increasing magnitude (Figure 2). The results from 3D-BLM in
terms of displacements and simulation times are compared to those from 3D-FEM to high-
light the computational efficiency and accuracy of the proposed approach.

Test-case 2 is similar to test-case 1, except for its more complex geometry, which is
curved, twisted and tapered already in the unstressed reference state (Figures 4). The goal of
this second case is to show that the results obtainable for a simple geometry (e.g. test-case 1)
can be achieved for more complex geometries as well.
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Finally, the third and last test-case deals with a bi-tapered beam-like structure with ellipti-
cal cross-sections. The structure is fixed at the root and subjected to a flap-wise tip-force, F,
as shown in Figure 9. The aim of this last test case is to illustrate the results obtainable with
3D-BLM in terms of 3D stress and strain fields as compared to those from 3D-FEM simula-
tions. It also allows discussing the effects of cross-sections’ taper, for which the correspond-
ing analytical results have been presented in sections 3 and 3.1.

4.1

The first tests deal with a rectangular cross-sectioned structure undergoing large displace-
ments while clamped at the root and loaded at the tip by a force, F, as in Figure 2. The struc-
ture’s centre-line length is d1=90m, while the cross-section dimensions are d>=8m (edge-wise)
and ds=2m (flap-wise). The material properties are described in terms of reference values of
Young’s modulus, 70GPa, and Poisson’s ratio, 0.25. Finally, the flap-wise tip-force, F, varies
from 1000kN to 75000KN.

In all cases, the simulation time is significantly less than the time required by 3D-FEM
simulations, while the accuracy of the results is almost the same. A summary of the results
obtained in terms of tip-displacements and simulation times is shown in Figures 2 and 3.

Figures 2 (left) shows the un-deformed shape of the structure (F=0), the deformed shapes
for F=10000kN, F=25000kN and F=50000kN, and the 3D-FEM deformed shape for
F=25000kN (right), while Figure 3 provides comparisons between linear 3D-FEM, nonlinear
3D-FEM and 3D-BLM in terms of tip-displacements and simulation times.
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Figure 2: Global deflection with 3D-BLM for increasing F (left) and 3D-FEM for F=25000kN (right)
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Figure 3: Comparison of tip-displacements (left), tip-displacement differences and simulation times (right)
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4.2 Testcase 2

The non-prismatic beam-like structure in this case is a pre-bent and swept beam, with con-
stant curvatures and centre-line length of 90m (Figure 4). The reference local frames are pre-
twisted (20deg/m). The major semi-axes of the reference elliptical cross-section at 18m from
the root are d,=2m (edge-wise) and ds=0.5m (flap-wise). The sizes of the other cross-sections
change according to the taper coefficients in Figure 4 (right). The material properties are
summarized by reference values of Young’s modulus, 70GPa, and Poisson’s ratio, 0.25. Fi-
nally, the structure is clamped at the root and loaded at the tip by a flap-wise force, F, which
varies from 100kN to 1000kN (as in Figure 5).

The results obtained in terms of tip-displacements and simulation times are summarized in
Figure 6. As in test-case 1, the simulation times are significantly less than those required by
nonlinear 3D-FEM analyses, while the accuracy of the results is once again nearly the same.
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Figure 4: Curved, twisted and tapered beam-like structure (left), and its taper and twist coefficients (right)
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Figure 6: Comparison of tip-displacement (left), tip-displacement differences and simulation times (right)

Apart from those results, the model is able to provide other meaningful information, such
as the displacements of the centre-line’s points, the rotation of the local frames and the change
in curvature of the beam-like structure, as well as the corresponding force and moments stress
resultant with respect to the current local frames.

Figure 7, for example, shows the centre-line displacements for different tip-forces, while
Figure 8 reports the local frames orientation in terms of Euler angles. We have considered the
set of Euler angles corresponding to a first rotation, 6, about the initial z-axis, a second rota-
tion, vy, about the intermediate y-axis, and a third rotation, y, about the final x-axis.
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Figure 7: Displacement of the reference centre-line points using 3D-BLM for increasing F
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4.3 Testcase 3

The third and last test-case deals with a bi-tapered beam-like structure with elliptical cross-
sections undergoing large deflections. The centre-line length is 100m. The major semi-axes at
the root section are d>=4m (edge-wise) and ds=1m (flap-wise). The sizes of the other cross-
sections decrease linearly from the root to the tip, with a reduction at the tip equal to 30%
edge-wise and 15% flap-wise. The material properties are again described in terms of refer-
ence values of Young’s modulus, 70GPa, and Poisson’s ratio, 0.25. The structure is clamped
at the root and loaded at the tip by a flap-wise force, F, as shown in Figure 9.

Also in this case we can obtain the same set of results as for the structures presented in the
previous sections. Figure 9, for example, shows the un-deformed structure (F=0), its deformed
shapes for F=1000kN, F=5000kN, and F=10000N (left), and comparisons with the results
from 3D-FEM simulations in terms of centre-line displacements (right), while Figure 10
shows comparisons in terms of tip-displacements (left) and simulation times (right).
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Figure 10: Comparison of tip-displacements (left), tip-displacement differences and simulation times (right)

Apart from such information, the model can provide useful results also in terms of stress
and strain fields in the three-dimensional solid (see, for example, Figures 11-17).

We thus proceed by examining the results obtainable in terms of stress and strain fields for
two values of tip-force, F, corresponding to small, F=1000kN, and large, F=15000kN, centre-
line deflections. In doing so, we also highlight important effects of cross-sections’ taper, for
which the corresponding analytical results have been presented in section 3.
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Concerning taper, one important effect is certainly related to span-wise variation in cross-
section rigidities (such as bending rigidities), which affect centre-line deflection and, in turn,
the stress and strain fields in the structure. This effect is directly accounted for through the
taper functions, A, which act as scaling factors for the aforementioned rigidities [21].

A second important effect is instead related to span-wise variation in taper functions per
unit centre-line length, or in other words, the derivative of such functions over arch-length s,
A'o. This latter directly affect the stress and strain fields in the three-dimensional solid, as also
shown by equations (30)-(34). Figures 11 and 12, for example, show the importance of such
effect in terms of component Es; of strain tensor E, for F=1000kN and F=15000kN, at three
reference cross-sections (at 30%, 50% and 70% of the span-wise length). In particular, the
results obtained from “full 3D-BLM” (blue lines), which includes all aforementioned taper
effects, are compared to those obtained from “truncated 3D-BLM” (black lines), in which the
effects related to the derivative of taper coefficients are neglected.
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Figure 11: Effects of taper on 2Es; in the cross-sections at 30%, 50%, 70% span for F=1000kN
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Figure 12: Effects of taper on 2Es; in the cross-sections at 30%, 50%, 70% span for F=15000kN

Finally, let us conclude by comparing the results obtained via 3D-BLM (full model) with
those from 3D-FEM simulations in terms of the components of Cauchy stress tensor, C, for
the same two values of tip-force, F=1000kN and F=15000kN.

In particular, Figures 13 and 14 show the results obtained for the longitudinal stress, Cxx, at
three reference cross-sections, while Figures 15 and 16 present similar plots for the transverse
shear stress, Cxx. Finally, Figure 17 provides the results in terms of span-wise variation in the
maximum cross-sectional value of the longitudinal stress, max-Cxx, for F=1000kN (left) and
F=15000kN (right).
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Figure 15: Transverse shear stress Czx in the cross-sections at 30%, 50%, 70% span for F=1000kN
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Figure 17: Span-wise variation in max longitudinal stress Cxx for F=1000kN (left) and F=15000kN (right)

As confirmed by many simulations and illustrated in the reported examples, the proposed
modelling approach performs well in terms of computational efficiency and accuracy. It can
moreover be used to predict the mechanical behaviour of non-prismatic beam-like structures
undergoing large centre-line deflections, 3D cross-sectional warping and small strains, as it
can provide useful and accurate information on the deformed states of such structures, e.g. the
corresponding displacement, strain and stress fields.

5 CONCLUSIONS

Wind turbine and helicopter rotor blades, as well as many other engineering structures, can
be considered non-prismatic beam-like structures which may undergo large centre-line deflec-
tion, in- and out-of-plane cross-sectional warping and small strain. Their mechanical behav-
iour can be simulated through suitable 3D beam models, which are computationally efficient,
accurate and explicitly consider their main geometric design characteristics, such as the taper
of their transverse cross-sections.

This paper has proposed a mathematical model for the aforementioned structures. Predic-
tion of their mechanical behaviour has been reduced to solution of two main problems, one of
which regards the local distortion of the transverse cross-sections, while the other governs the
global deflection of the reference centre-line. A variational approach and the smallness of the
warping and strain fields have been exploited to express the 3D stress and strain fields in
terms of 1D strain measures, 3D warping functions and geometric parameters. The proposed
modelling approach has allowed us to obtain analytical results which represent a generaliza-
tion of the results of the classical linear theory of prismatic beams to which the results pre-
sented reduce if the structure is prismatic and the centre-line deflection is small. The resulting
model can moreover be implemented in an accurate, computationally efficient numerical
code, as demonstrated through several numerical examples and comparisons with the results
from nonlinear 3D-FEM simulations.

The analytical results presented herein regard cases in which the effects of cross-section
pre-twist on the stress and strain fields are negligible. The inclusion of additional terms relat-
ed to pre-twist (along with those already accounting for the effects of taper) may be important
to accurately predict the stress and strain fields in a more general case. This is an important
point for further investigation and will be the subject of a subsequent work. It would also be
interesting to performing comparative analyses with other structural modelling approaches
(other than 3D-FEM), in order to gauge the performance of different models for non-prismatic
beam-like structures in terms of the information each approach can furnish directly (e.g. cen-
tre-line displacements, 1D strain measures, 3D stress and strain fields), as well as their com-
putational efficiency and accuracy of results.
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