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Abstract: The research explores the potential of digital-twin-based methods and approaches aimed
at achieving an intelligent optimization and automation system for energy management of a
residential district through the use of three-dimensional data model integrated with Internet of
Things, artificial intelligence and machine learning. The case study is focused on Rinascimento III
in Rome, an area consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of
self-renewable energy. The combined use of integrated dynamic analysis algorithms has allowed
the evaluation of different scenarios of energy efficiency intervention aimed at achieving a virtuous
energy management of the complex, keeping the actual internal comfort and climate conditions.
Meanwhile, the objective is also to plan and deploy a cost-effective IT (information technology)
infrastructure able to provide reliable data using edge-computing paradigm. Therefore, the
developed methodology led to the evaluation of the effectiveness and efficiency of integrative
systems for renewable energy production from solar energy necessary to raise the threshold of self-
produced energy, meeting the nZEB (near zero energy buildings) requirements.

Keywords: digital construction; artificial intelligence; digital twin; nZEB; energy management;
energy efficiency; edge computing

1. Introduction

The energy management of building systems and urban areas such as residential
districts is assuming an increasingly relevant role in the control and assessment of urban
development and refurbishment processes.

Digital predictive technologies and sensor-based control systems are becoming
fundamental tools [1] supporting policies to reach near-zero requirements and targets for
buildings and urban districts. Nowadays, the integration of information communication
technologies (ICT) has an important role in the configuration of smart cities and in
defining digital strategies addressing social, public health, economic, environmental, and
safety issues [2].

The success of such digital transformations requires the ability to meet and manage
new emerging challenges [3]. Deep interactions between humans, infrastructures, and
technologies are increasingly created over time by the global consequences of
urbanization and the growth of human activities. Dealing with complexities related to
sustainability matters, cities are implementing technological improvements achieving
smarter performances through the definition of smart cities that adhere to a smart growth
agenda [4].

According to the above mentioned, it can be introduced the urban intelligence [5]
concept, providing insights into a number of issues currently faced by modern cities (i.e.,

Energies 2021, 14, 2338. https://doi.org/10.3390/en14082338

www.mdpi.com/journal/energies



Energies 2021, 14, 2338

2 of 27

air pollution, communication network demand, congested traffic, water floods, etc.)
through the introduction of data from Internet of Things (IoT) sensors processed by
intelligent and real-time advanced analytics. According to the United Nations prediction,
60% of cities will have at least half a million inhabitants by 2030, leading to issues in cities
such as the increasing of network demand and crowd congestions [6].

In the future, progressively current problems in cities will be necessarily managed
through intelligent urban reasoning algorithms and suitable deployment data-model
based on urban intelligence systems, pervasive computing, communication, big data
management technologies, and artificial intelligence (Al), leading to a strong evolution in
the management of urban environments as well as in the quality of life in smart cities [7,8].

The configuration of city digital twins represents a giant leap forward for urban
sustainability from design to construction and maintenance basing on the implementation
of Industry 4.0 principles [9,10]. It is defined as a digital replica of a physical asset,
collecting information from sensors, drones, or other sensive IoT devices, applying
advanced analytics, machine learning (ML), and Al obtaining real-time processed data
about the lifecycle process of physical assets.

In particular, digital twin (DT) ecosystems are related to three main entities: a
physical object, its virtual replica, and the connection between them in terms of collecting
and connecting real-time information. Such a digital ecosystem can effectively contribute
to the lifecycle management of both vertical and horizontal systems, in order to store,
manage and process big data about the urban environment in a three-dimensional data
model as a structured information system connected to the physical.

In this paper, the applications of such ICT-based digital approaches are related to
energy management systems, in order to predict real time situations, enriching and
leading to more effective decisions, obtaining the automation of repetitive tasks, and
providing added value with the optimization of decision-making processes.

In particular, the objective concerns the configuration of a solid methodology for an
increasingly intelligent system where the potential of ICT, IoT, big data and Al are
combined interacting with BIM (building information modeling) models (Figure 1),
defining three-dimensional information and predictive systems for energy management.

FBC

FB0

Figure 1. Rione Rinascimento III three-dimensional BIM model overview, consisting of encoded
functional blocks (FB) and building models (from C_On to H_On).

In fact, the connection between IoT devices, digital information models (BIM), and
Al defines an advanced smart-city ecosystem as an intelligent, ubiquitous, and sustainable
digital urban context [2] where real-time monitoring systems allow data connections and
processing anytime and anyplace [3,4].

More specifically, the project developed by CITERA Interdepartmental Centre of
Sapienza University of Rome explores the potential of digital-twin models integrated with
Al systems finding a specific application as an opportunity to apply the developed
methodology. The case study is related to the configuration of an effective DT model of a
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residential district in Rome, increasing energy efficiency and identifying a cost-optional
solution for which both consumption and costs are expected to be reduced.

Therefore, the 3D information model was developed gradually from the territorial,
infrastructural (using Autodesk InfraWorks for geographic information systems) up to
the building scale (using Autodesk Revit for building information modeling). The model
resulted both as a microscopic and macroscopic digital database, containing static,
dynamic, geometric, and semantic data about buildings and their functional interactions.

As mentioned, a BIM approach was carried out focusing on energy management
model-uses and leveraging interoperability using IFC (industry foundation classes)
models for energy diagnosis purposes. Basing on such analysis, a smart-energy-grid
management system was developed combining BIM as-built models with IoT and Al
obtaining a substantial as-performed and up-to-date city digital twin.

2. Background

The objective of bringing the virtual and physical worlds together is focused to better
support decision-making, reducing risks and configuring a citizen engagement tool,
improving urban sustainability [9]. The introduction of DT in construction processes
addresses the improvement of decision-making focusing on well-informed and advanced
real-time “what-if” scenario assessments, reducing wastes of time and resources that are
typical in construction.

In this regard, the Newecastle University created a DT of the city dedicated to
incidents and disasters responding and prevention, running simulations of incidents such
as burst pipes, heavy rainfall or floods to evaluate the potential impact on communities
over a 24 h period [10].

Another effective example of smart-city DT currently ongoing is virtual Singapore,
which provides capabilities from virtual experimentations, test-bedding, and decision-
making up to research and development [11].

Moreover, a relevant experience is carried out by the Centre for Digital Built Britain
(CDBB) delivering a “smart digital economy for infrastructure and construction”, as a
transformation of the UK AEC (architecture engineering and construction) industry’s
approach about planning, building, maintenance and utilization of social and economic
infrastructures [12].

In addition, the ongoing project for the city digital twin of Atlanta creates a virtual reality
(VR)-based platform (built basing on the unity interactive and data-driven cross-platform
game engine) which contains a three-dimensional fully modeled city of Atlanta, reproducing
the entire city into a virtual space, facilitating spatial-temporal feedbacks and interactions
between the human/infrastructure systems and their virtual representations [13].

Focusing on the energy implementations, three significant experiences related to DT
developments integrated with Al systems can be mentioned, in order to define a systemic
approach for the present study, aiming at integrating the objectives of the single
experiences reported below.

The first concerns a microclimatic study on urban scale carried out in the Kalasatama
district by the Municipality of Helsinki, in which it is important to highlight the “Energy
and Climate Atlas”, defined as a city information model for studying and developing
strategies for the mitigation of climate changes and improving energy efficiency. The atlas
includes a number of specific information about the buildings, such as heating systems,
energy certification, electricity consumption, district heating, and water distribution. As
configured, the model helps to analyze a series of technological scenarios, allowing users to
define the solar energy potential of buildings, evaluating the possibility for reducing carbon
dioxide emissions or outlining cost-impact scenarios for different interventions [14].

In addition, it is important to investigate the behavior of energy-smart-grid systems
serving differentiated users managed by ML. As known, the main issue to be resolved
concerns the need to implement storage systems due to the characteristics of discontinuity
of renewable energy production.
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The ESS (energy storage system) management realized through a DT integrated with
ML systems can bring significant improvements leading to consequent bill savings, if
compared with the current systems based on predefined control systems of the electrical
power supply from the batteries.

In addition, the development of an energy management system (EMS) is
fundamental. As reported by Park, Byeon et al. [15] “an EMS reinforces operational
functions such as adjusting the amount and schedule of charging and discharging through
the efficient control of the ESS and power conditioning system (PCS) and manages the
overall power flow”. Moreover, it is connected with sensors and measurement equipment
able to analyze and monitor consumption patterns, managing information about power
activities and optimizing the overall efficiency.

Another extremely significant energy application of DT is the simulation and testing
of scenarios for energy-efficiency interventions aiming to achieve nZEB (near zero energy
buildings) requirements on buildings. Since most buildings today are already built, it is
necessary to underline the essential application of nZEB parameters on existing built
environments through the use of BIM-oriented 5D and 6D digital approaches [16].

The fifth and sixth dimensions of BIM are used and developed to promote
stakeholder’s collaboration, visualizing and evaluating different options with the
configuration of nZEBs, in terms of sustainability and energy efficiency parameters (6D),
estimating associated costs (5D) and technical issues [16].

From there, the advances in building data interoperability both at a technical and
organizational level enable relevant innovation in end-user energy delivery and
optimization [17] beside to open data availability, leveraging on technologies [18] such as
the IoT and cyber—physical systems.

3. Material and Methods

The case study of the present research analyzes digital ICT-based energy
management techniques applied to a 16 eight-floor buildings residential district called
Rione Rinascimento III, located in Rome, which represents the most significant Italian
residential implementation of a geothermal source heat pump (GSHP) system, that is
currently the largest in Europe.

3.1. The Urban Context

Rinascimento III (Figure 2) is configured as a building intervention characterizing an
energetically self-sufficient new portion of the city, integrated as much as possible with
the surrounding areas in terms of urban planning and services, and it is considered of
relevant significance since it is powered by a still not-commonly-deployed kind of
renewable energy system.
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Casal Boccone

Parco Talenti

Figure 2. Master plan of the considered area (Rinascimento IIT) in Rome.

In the urban planning agreement between the Municipality of Rome and the private
owner, primary and secondary public works were planned, as well as the completion of
the Talenti Park area in front of the district. According to the Italian regulations, the new
district is included in the category of bioenergetic improvement interventions, which aim
at improving the bioclimatic performance of the settlement.

Moreover, the introduced Italian energy policies (such as Decree Law no. 63 of 4 June
2013) aim at a partial refunding up to 65% of the amount for energy requalification expenses,
consistently improving the use of renewable sources such as the geothermal one.

The geological characteristics of the Italian territory are particularly favorable for the
development of geothermal energy systems and could allow one to exploit low-enthalpy
resources at different depths and in numerous areas of the country.

According to the above mentioned, a research activity was developed by the CNR
(National Centre for Research) with a pilot project promoted in four Italian regions
(Calabria, Campania, Apulia, and Sicily), contributing to the increase of knowledge about
the use of geothermal resources, with the aim of providing useful information to start
activities of exploration for the improvement of geothermal energy uses in the south of
Italy [19].

3.2. Linking Virtual to Physical

The concept of Construction 4.0 defines a framework where data-driven systems are
able to manage physical processes by configuring a virtual replica of the physical world
and achieving decentralized decision-making processes based on self-learning
mechanisms [20].

Therefore, BIM models containing data and information useful for processing
assessments become able to communicate with the real systems using data from sensors,
developing learning capabilities, and being able to process the received information.

The collaboration between 3D information models and IoT devices is highly
necessary for a successful implementation of real-time DT purposes, as well as for energy
management optimizations. However, the implementation of IoT in real-world
environments configuring smart, ubiquitous, and live-interconnected systems (Figure 3)
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is currently still restricted by technical barriers such as device battery life, network
capacity, and maintenance costs.

Data User

Devices Network i
Processing Interface

Figure 3. Block diagram of the IoT system.

The core functionality of IoT devices is to reliably collect and share data (such as flow
rates, temperatures, pressures, physical movements, distance, mass, etc.) from its
designated environment to the virtual world.

The hardware elements consist of a battery-powered sensor, an actuator, and a
network communication system in which the collected data are processed and
consequently sent to remote servers.

In the present application, the connection between the physical and virtual model is
made through sensors [21] able to monitor and communicate electrical power data such
as power energy voltmeter ammeter for lighting and heating, ventilation and air
conditioning (HVAC) systems and smart plugs for electromotive equipment such as
computers, televisions, washing machines, and so forth (Table 1) [22].

Table 1. Review of the implemented IoT devices.

Communication . Technical Real-Time
Functions o
Technology Parameters Monitoring
Communication of the overall profile of energy

Cons.umptlon to A'I systems, in ord’er' to pI‘O.Vlde data 220240 V ~10 A,

learning on every single socket, defining a hierarchy of Power
Smart plugs o . X Max 2300 W

energy priorities to be attributed to the different zones of o . supply

. s . WiFi connection

the apartment in case of deficit in energy production
systems.
110~230 V AC
Functionality as above, the dual relay switch with dual 50Hz~60Hz Power
Energy Power Meter power metering, can be installed into the wall under the 0~10 A. suppl

power socket or a standard light switch. 02300 W PPY

WiFi connection

Temperature and humidity monitoring, WiFi connected 0-60°C
Temperature and wi}t)h other smart deviceZ enablin sr%;art appliances 0-99% RH Temperature
Humidity Monitors e PP QB/WSDJ2401-2019 and humidity
FOUERN app pratiorns. Bluethoot 4.2 BLE

In this case, Al systems allow the DT to develop predictive capabilities, learning from
the events and improving outputs, ultimately taking and implementing autonomous
decisions based on the analysis carried out without human interventions.

Moreover, the Al system achieves a balanced condition between energy consumption
and energy production system’s performance parameters [23], adapting itself to the
environment in order to achieve the predefined objectives.

In other words, the system takes data from sensing devices, and it generates
appropriate and specific actions through reasoning systems, modifying the behavior of
the equipment in order to optimize energy consumptions. Specifically, it takes
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information from IFC-BIM and CityGML-GIS (geographic information systems) models,
constantly updating them with real-time data as described in Figure 4.

Consumer Producer

Thesmal-hygrometrie
conditiens

1 & Indoor air auallty
G

P—
c2 pt p2

Energy
ﬂ Aparments ﬂ HVAC systems. ﬂ production systerms

DATA ACQUISITION

Smart cnorgy grid

DATA PROCESSING

BIM d Gls 4 sensor data

KNOWLEDGE BASE

Reasoning Prediction

Figure 4. Data flow and processing for digital-twin-based energy optimization.

3.3. Data Interoperability

Principles of Industry 4.0 and data interoperability in the AEC sector are extensively
applicable on linking GIS and BIM models, providing data for real-time multiscale object-
oriented simulations of the built environment. As configured, GIS-BIM 3D city
information models and applications require common communication standards
introducing problems related to information integration and data interoperability at
different domains and scales [24].

In the specific case of information management in construction processes based on
BIM methodologies, interoperability consists in exchanging data from models to different
software and application platforms, implemented for different purposes and
functionalities throughout to the whole lifecycle.

The main objective of interoperability is to facilitate the interaction between different
and nonhomogeneous information systems, minimizing errors and aiming at reliability,
effectiveness, and optimization of resources.

For the above mentioned, different levels and approaches on interoperability, are
defined by the Information Technology Vocabulary (ISO/ISO/IEC 2382) [25] as the
“capability to communicate, execute programs, or transfer data among various functional
units in a manner that requires the user to have little or no knowledge of the unique
characteristics of those units” [26,27].

Industry foundation classes (IFC) were defined as a reference standard format for the
building industry to develop different advanced processes based on spatial data relations
between building components of a BIM model.

In the present application, specific processes can be scheduled for different activities,
objectives and domains (Table 2) since objects are connected to data entities and properties
such as name, geometry, identifications, material parameters, etc.
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Table 2. Data domains and collection of the interoperability process.

Domain Coﬁjctfion Software  Interoperability
1. Building information modeling Autodesk Revit
g1 . . MC4 Suite for
1.1 Building e.nergy m.odelmg | B%%bzfocot& Revit IFC Standards
1.2 Compufatlonall fluid dynamics Autodesk CED
(CFD) simulations

2. Geographic information systems BIM/GIS Autodesk IFC/City GML
2.1 City information model objects InfraWorks Standards

In the GIS field, CityGML was developed as a model standard representing
geometric and information relationships between geographic entities, being defined as
the most appropriate territorial modeling standard in different levels of detail. In addition,
IFC and CityGML standard were used, as they are currently the two semantic models
dedicated to the configuration of object-oriented information management systems, even
though research is still focused on information exchanging, linking IFC and CityGML
toward an advanced 3D city information model [28].

3.4. 6D BIM for Sustainability and Energy Efficiency

The study focuses on the Rinascimento III district (about 85,000 m?) which is a part
of Rione Rinascimento, consisting of 16 eight-floor buildings hosting about 900 apartment
units with 2500 inhabitants.

A significant part of the energy supplied to the building complex is self-produced
using renewable geothermal sources. For this reason, the following case study is
considered to be extremely relevant for approaching digital methodologies integrating DT
and Al systems for an efficient energy-smart-grid management.

According to the BIM Use Classification System developed by Penn State University
[29] which basically categorizes BIM Uses (Figure 5) as the main purpose to be achieved
when implementing BIM in construction processes, specific purposes and objectives for
BIM models were identified.

[ BIM USE ]

[ Purposes ] [ Characteristics ]

l Gather ” Generate ][ Analyze l [ Facility ] Facility Phase

Comunicate Realize

(o || & |

Figure 5. The components of a BIM use, adapted from ref. [29].

The definition of the main BIM purposes led to the identification of specific
requirements for data implementation and model configuring.

Since the current application is based on the use of BIM and GIS models for energy
management purposes, priority was given to the implementation of specific data such as
well-defined technical parameters of the building envelope, thermal zones, rooms, HVAC
systems, and equipment, as well as specific data about localization, climate [30], boundary
conditions, etc., as information coming directly from the BIM system in the
interoperability process.

Moreover, BIM models can have different level of depth both geometrically and
informatively, depending on the BIM Uses and related objectives. According to the ISO
19650 [31] standard, LODs were defined, gradually moving toward a LOIN (level of
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information need) perspective shifting from a prescriptive to a performance approach,
based on information granularity depending to predetermined specific BIM uses.

As mentioned, the production of the BIM models followed a number of phases
coming from a low degree of definition (LOD 100 [32]), useful in preliminary and outdoor
concept stages, up to a LOD 400 (Figure 4, right), according to the BIMForum, “2013 Level
of Development Specification” (AIA/AGC, 2013), [32] for indoor energy analysis and
simulations purposes as described in Figure 6.

As configured, the so-called sixth BIM dimension (6D) was achieved since the
identified BIM use was connected to energy efficiency and sustainability analyses and
simulations [33]. Developing a BIM-oriented methodology allowed to assess the energy
performance of the building system, providing relevant support to decision-making
processes.

A S
- i
E.E .4y

1. Conceptual configuration 2. Detailed definition (LOD 400)

g ——"
)l
[} I =ty |
\ LR
» | i
¢ i MS T |
\ - oy Lt
| $A | 12518
Nl Sl
¢ ' o
SN A
- L gy

3. Detailed MEP Modeling (LOD 400)

Figure 6. The evolution phases of the BIM model LOD, according to the objective definitions and
energy uses.

In this section, it is necessary to detail the data and boundary conditions necessary to
run the energy analysis through the 6D BIM model [33]. The thermal characteristics of the
building envelope technical systems as well as the related data contained in the BIM
model are reported in Table 3.
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Table 3. Characteristics of the buildings’ thermal envelope in the BIM model.

Building Thickness (mm) Thermal Solar Factor Threshold Value 2021 (W/m?2K)
Envelope Transmittance (W/m?2K) (Italian Regulations)
Facade wall 445 0.29 - 0.32
Roof 480 0.26 - 0.26
Floor structure 300 0.44 - -
Basement floor 300 0.32 - 0.32
Windows 68 1.37 0.35 1.9

In this case, DT reproduces the energy characteristics of the building envelope and
technical plants, which combine a component of renewable energy as described in Section
3.5.In Table 4 the technical components of the main HVAC plants, as well as the controlled
mechanical ventilation system are reported.

Table 4. Building’s thermal system configuration detailed in the BIM model.

Terminal
System Generator Distribution ermina Energy
Equipment

GSHP (COP 3.8

Heating and cooling winter/5.5 summer)

Water Radiant floor Electricity

Ventilation Centrifugal fans Filtered air Air vent Electricity
Hot sanitary water  Boiler (High efficiency) Water - Gas

3.5. Building Energy Model (BEM)

The main objective of the DT-based developed methodology is using data models
across different simulation and monitoring processes [34], combining data from different
sources (BIM, GIS, IoT, etc.) in a three-dimensional model, which is aligned almost in real-
time with the reproduced system [35,36].

In order to create a building energy model (BEM) [37], each component of the
information model was associated with the corresponding products in a BEM software
connected to BIM data (MC4 Suite for Revit), defining different thermal zones and
boundary conditions.

Once the energy model was generated using a specific and authorized software, [38]
it followed the validation phase.

In particular, according to Italian regulation DLgs. 30 May 2008 on “calculation
methodologies and requirements for the execution of energy diagnoses and energy
certification of buildings” if the deviation between the values estimated by the model and
the real consumption does not exceed 5% on average, then the model is validated.

In the pilot project described in the present study, the building complex is supplied
by the largest European residential geothermal plant with GSHP (COP of 3.8 in winter
configuration and 5.5 in summer configuration), equipped with 200 vertical geoprobes,
150 m deep.

The components of the total energy consumption of Rinascimento district are reported
in the following schemes (Figure 7) and divided into four main categories: (1) winter air
conditioning; (2) summer air conditioning; (3) hot water; and (4) electric power supply.
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Total energy Total energy

14% consumption production
0,
9.979 MWhiy 16% 6.305 MWhiy
13%
= Winter AC
Summer AC " Winter AG
31% Hot water 8% BUTEGA
El. Power Hot water

Figure 7. Total primary energy consumption and renewable energy sources (RES) energy
production.

In fact, the energy production coming from renewable energy sources (RES) and
particularly from the geothermal plant could be estimated in about 6305 MWh/y on 9.979
MWh/y consumed, subdivided as shown in Figure 7. Consequently, 63% of the total
energy requirement of primary energy is produced by the geothermal system.

In this case study, the energy diagnosis was conducted on one single building (Figure
8) of about 3648 m?, using the Revit Suite of Mc4 Software through BIM data, for a dynamic
simulation of the building behavior, supplied by a modular portion of the geothermal
plant. Since the highlighted building is currently the only one being fully occupied by
residents (who permitted the implementation of sensing devices for DT configuration), it
was selected for energy modeling and real-time monitoring.

Figure 8. Selected building for the performed energy analysis.

Moreover, since the geometry and spaces subdivision are almost identical for all the
buildings, the modeled building is expected to share similar boundary conditions about
solar radiation (Figure 9) and ventilation with the other five highlighted in Figure 8,
positioned on the outer perimeter of the district without any shading.
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Cumulative Insolation (KWh/m?) ()

08:00 AM

08:00 AM
N

5

0

Project location: Rome, Italy E
Sun study start date time: 21/06/2019 10:00:00 s
Sun study end date time: 21/06/2019 16:00:00

Figure 9. Solar radiation analysis.

The performed simulations led to the evaluation (according to the Italian
classification of Legislative Decree 48, 10 July 2020) [39] of an A2 class with a specific
consumption of 26.8 kWh/m?y; the comparison with the real value building consumptions
coming from an average evaluation of 3 year bills (26.6 kWh/m?y) validated the simulation
model.

The aim of the DT model was also to simulate the increasing of the RES production
percentage, in order to reach the goal for Rinascimento to become a near zero energy
district (nZED). The energy simulation in the model were performed considering new
installation of photovoltaic panels for the production of electricity and solar collectors for
the production of domestic hot water.

In particular, the model was implemented with the integration of 312 kWp of
monocrystalline photovoltaic modules in the building facade able to produce 276,000
kWh/y of electricity; and the realization of an area hosting 405 high-efficiency flat-plane
solar collectors able to produce 410,000 kWh/y.

The simulations outputs lead to a final result of 6991 MWh/y of energy coming from
renewable energy sources (RES) (geothermal+solar), which means about 70% of the district
energy consumption directly produced in place by the RES microgrid of the complex.

However, the obtained results so far were focused on the building as a whole,
specifying some different thermal zones created according to differences in use, occupation
hours, types of HVAC installed, or types of external envelope and sun exposure.

Considering the analysis on a smaller scale, focusing on indoor environmental
quality [40] such as thermal-hygrometric conditions, the BIM model was detailed with
HVAC systems to develop computational fluid dynamics (CFD) analysis [41].

The standard k-¢ model was deployed according to the limited need of calculation
power and time for iterations (less than 300) as well as for the absence of high-pressure
gradients in the rooms.

The following input conditions have been set:

Average outdoor air temperature equal to 5 °C; radiant floor water temperature equal
to 40 °C; underfloor heating surface temperature is between 24 and 29 °C; radiative model
discrete ordinates; and 1 s timestep.

Four control probes were temporary fixed and positioned in the center of each room
in a typical apartment at 1.50 m from the ground, which is the same height of the DT
temperature and humidity monitors fixed in all the apartment rooms (Figure 10).
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Figure 10. Control probes positioning.

Fluid-dynamics analyses were developed from the BIM model to study the
temperature gradient and convective air flows in rooms, triggered by the operation of
radiant floors in winter heating mode in order to evaluate comfort parameters in each
room, experimenting data interoperability from BIM model to CFD analysis (Figure 11).

contour-2 ctor-
Velocity Magnitude Velocity Magnitude

0.00
[mis] [WS]OOO

Figure 11. Temperature gradient and air velocity vectors in different rooms.

3.6. Artificial Intelligence

Machine learning is a form of Al providing systems the capability to learn from data
without the use of explicit programming. ML produces models where there are some kind
of regularity in data [42]. Like human children’s learning processes, it is driven by
“experience” [43].

As a general rule, training a model requires computer resources which are orders of
magnitude bigger than those required to execute the model [44,45].

In this specific case, data are collected and analyzed in order to devise one or more
model for energy-efficiency purposes using Al while allowing normal comfort and living
habits. The general architecture of the system is shown in Figure 12.

The goal was achieved through two phases: (1) design and implementation of the
infrastructure and (2) obtaining data, training, and model testing.
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Processing

Knowledge Base

Figure 12. System architecture.

3.6.1. Design and Implementation of the Infrastructure

Energy data are simple time series of power consumption or production, coming
from real sensors in a given time lapse, each one transmitting data with its own
application programming interface (API); moreover, they are obviously located close to
energy loads or near power sources.

This means that data are not all in the same place at the same time, which is a
necessary condition to perform the analysis that led to the desired algorithms.

The first problem is therefore to plan and deploy a cost-effective IT (information
technology) infrastructure able to provide reliable data to be processed.

Each apartment was implemented with monitoring sensors, so that every device
energy consumption could be considered to define the control solution of the overall
energy requirement in each apartment.

All the implemented metering sensors produce a huge amount of data requiring
significative computational resources to obtain acceptable analysis performances;
therefore, the best solution for reducing installation expenses would be to control the
system acquiring all the information in a data center or a service in a data center.

This architecture leads to the necessity of setting a local system for interconnecting
IoT sensors and actuators over a geographical network (such as the Internet), executing
sort of local computation and buffering data in case of connection blackout, using the
known “ubiquitous and pervasive computing” [46] techniques to deal with the
computational problems of centralized intelligence.

Following this approach, two distinct problems had to be solved designing the
infrastructure:

e  Have uniform data;
e  Have data where they have to be physically processed.

The first element in the infrastructure is a subsystem able to cope with several
transmission protocols and time frames, whose output is the synchronized power
consumption (or production) of the smart metered devices. This subsystem accepts
instruction from the second element to switch on and off some of the controlled devices.

This element needs to be connected with all sensor networks; therefore, it has to be
physically placed next to them, minimizing transmission problems and monitoring local
environment even in absence of communication with the central control system. This kind
of elements is called “elettra” in the following section.

The second architecture element is another subsystem, composed of a different
“proxy”, and each proxy receives the outputs of the first subsystem as an input. The
proxies deliver the data to the central unit and receive back data from the same device,
taking care of bandwidth problems and unreliability of the network.
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These proxies have to be physically close to the first subsystem while the central unit
can be remote; the central control system is a centralized unit able to store and process data,
operating building digital simulation models and delivering commands back to the proxies.

The logic model of the designed infrastructure is based on three elements, as shown
in Figure 13.

L . ' D T
'
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= = e .

Figure 13. Logic model of the infrastructure.

Following this logic infrastructure, a series of “cheap” small computer or SoC (system
on chip) had to be equipped, containing both the “elettra” and “proxy” subsystems; all
those computers are connected to a high-performing server in a data centre able to run
the software of the central control system. The operative concept of this infrastructure is

exemplified in Figure 14, where only a few energy consumer devices are reported as an
example.

Producer

P1 Solar

(i)

Figure 14. Operative concept.

Elements ey, 2, e3, e4, and es are the cheap computing containing the elettra subsystem
and the proxy, while elements ci to ciw are energy load examples, and Pi, P2 are
photovoltaic panels for electric power production and geothermal plant.

3.6.2. Obtain Data, Train, and Test Models

Once the data are stored in the central control system, they can be analyzed to build
digital numerical models able to simulate and optimize all the main parameters of the
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smart energy grid. All data have a similar form, so that they can be viewed as a series of
{location, date-time, object, value}.

Considering a single location, using ML techniques and rule-based methods such as
association rule learning, it is possible to deduce which device is active at a certain time
for each selected location [46].

In the present application, it was not possible to consider all the locations as
equivalent one to the other, as detailed in Section 4.

A possible general solution is the adoption of best practices, which are hard to define
due to the different final uses (home, office, and mixed use) and layouts; if grouped by
location and similarities parameters, Al becomes able to automatize processes attributing
each location to the most appropriate group or cluster. Therefore, it is necessary to run a ML
technique known as “clustering” to automatically create groups of similar apartments used
for mathematical representation of each unit: to create the feature vector of each unit, each
and every energy consumer and producer was counted and grouped together by type [47].

Given the vector representation of each apartment, we used the well-known
unsupervised technique known as K-means, to automatically extract groups of energy-
similar apartments.

After a period of observation, a sample for each homogeneous group in a single
location was chosen. These local samples were used to extract behavioral rules to be
applied to the others belonging to the sample group.

Analyzing the configuration of each location at a given time, it is possible to compare
any apartment “Ai” with the sample one “As”. As an example, a general association rule
can be expressed as follows: “at time tk, make a comparison of device type dj of flat i (dAij)
with the correspondent device type of the reference one (d As j). If they are in a similar
status, then do nothing; otherwise, switch it on or off, so that it is in the same state of the
reference one’s.”.

An association rule is something in the form X — Y that in a smart grid should
assume the simplified form TheSolarPanel IsOn — TheWashingMachinelsOn. We
achieved this using the “Apriori Algorithm” which is an influential algorithm for mining
frequent item for Boolean association rules. It identifies the frequency of individual items
in the dataset, extending them to larger item sets, according to their appearance in the
dataset [48].

Nevertheless, every automated system can easily fail if the digital representation of
the built environment does not match reality. Assuming that, inevitably during the
lifetime of an apartment, some smart plug will be connected to different devices, affecting
the digital model reliability and accuracy.

In order to keep the digital model continuously up-to-date, Al techniques transform
a power absorption curve of a single device in a sequence of characters named “energy
words of the device” [48], using analytical processes similar to those of text analyses; then,
a supervised learning method named “Naive Bayes classifier” automatically identifies the
type of each energy load, so that the system can detect a mismatch between the digital
representation and what is actually connected to the network.

The dictionary of different energy words exceeded the size of 60,000, with the major
number appearing less than three time in the energy footprint; therefore, we set this
threshold to avoid dimensionality problems. The resulting predictive model elaborated
using the Naive Bayes classifier was validated using both a 66% train 33% test split and a
10-fold cross validation technique, taking advantage of the tool named “Weka”, an open
source ML software (using the class weka.classifier.bayes.NaiveBayes).

4. Results

As a consequence of the energy efficiency improvement based on the implementation
of renewable energy systems, in winter conditions, the geothermal power plant supplies
every building both with heating and domestic hot water; solar collectors integrate the
system, while the photovoltaic system powers the external lighting system around the
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perimeter of the buildings. In summer conditions, domestic hot water is produced
through solar collectors covering 100% of the actual needs, while the geothermal power
plant only works for the production of chilled water for cooling (through the absorber),
while the photovoltaic system powers the entire lighting system of the complex.

The energy diagnosis conducted on a single building using the BIM model through
the Revit Suite of Mc4 Software led to the transition from an A2 class (with a specific
consumption of 26.8 kWh/m?y) to an A4 class (with a specific consumption of 16.1
kWh/m?y). Moreover, in order to further validate the results and the obtained energy
diagnosis, the calculation was also repeated with two other numerical simulation tools:
(1) Termus BIM, basing on the BIM model and (2) ArchiEnergy, a sesmidynamic software
developed by Sapienza University of Rome (Table 5).

Table 5. Energy diagnosis results (kWh/m?y): software comparison.

Termus MC4 Standard
ArchiE Bill
TCHENCTEY  BIM  Software Deviation (SD)
Ante operam 28.6 249 30.2 2.7 26.6 *
Post operam 16.1 15.7 18.7 1.6 16.3 **

* Average of 3 year consumptions of the district; ** 3 month summer bills of the analyzed building.

Once the results and deviation values were obtained, they were evaluated and
compared to the following chart in Figure 15, which reports results from other energy
diagnosis conducted on similar building systems.

500

4403
450 413.87

400 390.7

350
300
250
200
150

Consumptions [kWh/m?y]

100

ArchiEnergy Termus BIM MC4 Software

= Ante operam SD: 24.82 = Post operam SD: 6.68
Figure 15. Software comparison through energy diagnosis results on similar buildings.

From the analysis, it is shown that the diagnoses made with the energy software led
to similar results with a maximum deviation of 12%, and the difference between the two
BIM-based, Mc4 Suite for Revit and Termus BIMV, is 5% (Table 5).

Moreover, the fluids-dynamic analysis performed in specific rooms of a single
apartment was confirmed by the data coming from sensors, showing that there is no
discomfort in any area due to the configuration of the radiant floor equipment.

In fact, large masses of moving air can be observed as previously shown in Figure 11.
This is mainly due to the temperature difference between the floor and the environment.
Convective motions affecting all the areas are generated; however, the temperature
gradient is fully compliant with the regulation requirements, and the air velocities are
very low, falling within the range of comfort conditions.
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It was also monitored the temperature in each area, where the internal temperature
was initially 5 °C (equal to the external temperature), until the achievement of the internal
comfort temperature of 20 °C. The temperature transient is shown below (Figure 16).

Temperature trend for control probes

Probe 1
——Probe 2
——Probe 3
Probe 4

0 500 1000 1500 2000 2500
Time [s]

Figure 16. Temperature transient.

It can be noticed that the air heating trend is almost the same for all the rooms, and
the comfort temperature is reached in about 1900 s (just over 30 min).

Moreover, another obtained result was the implementation of an intelligent energy
management model, i.e., an automatic ML system capable of modulating loads (mainly
electrical) according to the expected self-production of energy; for this purpose,
information from the European Copernicus [49] earth observation system are acquired in
order to have accurate predictive meteorological data.

In this regard, the energy-smart-grid system realized with solar collectors and
photovoltaic panels needs a set of rules to establish priorities regarding energy production
and consumption loads:

Production: electricity from solar sources, being totally free, must be the first to be
fed into the distribution network, followed by the energy coming from the geothermal
power plant (which needs electricity to power the circulation pumps); as a last option, it
is possible to use energy coming from the public electrical net or use gas.

Consumption: the priority of power supply must be given to the lighting system,
followed by the electromotive force circuit, while the air conditioning systems can be
regulated and modulated in the event of a lack of energy, by lowering or raising the
optimal temperature up to 2 °C.

Therefore, the Al system contributed to reach the goal of increasing the efficiency of
the entire energy system by more than 10%, limiting the dependence of the building
complex from the electricity and gas distribution networks to a maximum of 20% of the
total energy consumed. The system for energy loads forecasting and managing was
created in a single apartment (Figure 17) according to the following two logical steps: (a)
the creation of a synthetic method to group the plants based on the similarity of results in
terms of energy efficiency and (b) metering, evaluation, and analysis of consumption data
of the selected plant.
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Figure 17. Energy loads forecasting and DT managing through AL

The inevitable use mutability of the apartments was also considered, as well as the
variations in energy loads over time; consequently, an algorithm able to automatically
deduce which devices are used in each power outlet was adopted, analyzing the hourly

trend of current absorption.

Some energy sensors (as detailed in Material and Methods) were applied, and data
were collected in a central system. The different typology of energy loads was considered,
and then submetering was performed, as shown in Table 6 and Figure 18.

Table 6. Working day energy metering in a typical apartment (Wh).

8:30 9:30 10:30 11:30 12:30 13:30 14:30

15:30

16:30 17:30

Boiler 4299 5154 1552 36.61 11238 71.21 69.27

51.65

12.23 111.32

Lights Room 1 16.00 24.15 24.19 2426 2429 24.15 06.12

24.19

2423 24.75

Mini PC 9.89 14.01 1434 872 1311 11.63 11.19

12.22

14.22 12.17

Lights Room 2 90.98 106.17 105.46 103.77 104.77 104.73 104.63

104.94

103.93 104.89




Energies 2021, 14, 2338 20 of 27

@ Measures list

Object Action Power Chart
- Apt. Floor1 500
o g B H Kitchen \‘
= 250 | Office |
2 : ‘
= I
= im
c 16:00 20:00 31. Mar 04:00 ra 9
8 Bedroom 1
» Bathroom 75
O =
2 w0
: | ] ] ]
g | |
2 2 — —t
. |
=
I} [
g 16:00 20:00 31. Mar 04:00 |
S * Boiler
» Living room 400 Lighting
£ |
S |
5 200 ‘
2
i “ [
2 oMl i [
g 16:00 20:00 31. Mar 04:01 [
o Electrical Panel
» Bedroom 1 7§-‘
c
2
=
=3
E
=1
uw
5
o 16:00 20:00 31. Mar 04:00
» Kitchen o7 Kitchen Light
- £ |
R
c
2 [ |
5 025 ] N E- —
£ | |
a 0
S 16:00 20:00 31. Mar 04:00
o * VGA extender
» Office 100
g / Printer
5 50
2 |
£ I
3 0 | | i
g 16:00 20:00 21. Mar 04:0 S

Figure 18. Submetering in a typical apartment.

Energy consumption of each device varies according to its power absorption, as
shown in Table 6 and Figures 18 and 19, which report some controlled measures on a
typical working day, detailing both the apartment and the single rooms.
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Figure 19. Consumption submetering (Wh) in an office room.

The use of these energy sensors led to another result: the so-called “submetering” It
was possible to detect the biggest single load both in the apartment and in a single room.
In this way, the analysis and decision of how to save energy becomes simpler, devising
strategies affecting the most consuming items, effectively contributing to the overall
energy saving.

5. Discussion

The concept of DT is extremely transversal and widely suitable to both microscales
such as apartments and macroscales at the district levels. As the new and future buildings
will be directed to near-zero-energy building standards (nZEB), or even zero-energy
buildings (ZEB), they therefore need tools suitable for the new design requirements, i.e.,
digital systems able to predict and simulate both global energy consumption and internal
behavior [50].

It is quite impossible to define a validation process able to ensure the reliability of the
calculation method by 100%.

For a full comprehension of the model and interoperability process accuracy, it was
necessary to proceed with a comparison methodology based on the overall final outputs,
(kWh/m?y) between three different software (1) Termus BIM by Acca Software, (2)
ArchiEnergy from Sapienza University of Rome, and (3) Mc4 Suite for Revit.

The developed analysis was focused on the comparison of results coming from
different processes basing on both traditional and BIM approaches. On the one hand,
Termus BIM used IFC BIM standards, while in Mc4 Software a plug-in approach was
developed directly connecting the Revit BIM model with Mc4 analysis tools. On the other
hand, the ArchiEnergy software is a traditional system calculating energy consumption
based on inputs by the user about the plant and the building envelope.

Following the validation phase, the DT led to the evaluation of the smart-grid
implementation effects. In particular, in Figure 20, the reduced energy consumption and the
relative reduced CO: consumption coming from the Mc4 Suite for Revit analysis are shown.
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Figure 20. Results of the energy-efficiency interventions.

At the same time, the work carried out highlights how in highly urbanized contexts
characterized, it is very difficult to achieve high performances as required by the nZEB
Italian Decree [51], even if significant energy requalification interventions are developed,
improving both the building envelope and air conditioning systems.

As a consequence, it became necessary to consider building complexes not only as
consumers, but also as energy producers in a local, block, district, or neighborhood smart
grid: the concept of “prosumer”.

By such a logic, the role of Al in smart-grids management and optimization of both
energy production and consumption becomes decisive, being able to make reliable
forecasts on possible scenarios.

Analyzing similar energy efficiency interventions on buildings and residential
complexes, it is shown how efficient technologies are now available, well defined, and
widely known. Therefore, the parameters of selection between different interventions are
essentially (a) climatic parameters, (b) regulatory restrictions and constraints on
interventions, and (c) the availability of government grants for the use of RES,
compensating the payback time, which is still too long for certain technologies.

As previously shown, the use of BIM-based systems [16] for building energy
efficiency drives no substantial improvements in terms of accuracy of results compared
to traditional methodologies [18].

However, the real innovation contribution of DT-enabled systems concerns the
definition of digital technologies able to reduce the gap between the expected
performance of buildings and their real behavior. These goals are mentioned in the
strategies of National and International R&D Programs such as Next Generation EU
(Recovery and Resilience Facilities) [52], Strategic Energy Technology (SET) Plan [53], and
Italian National Integrated Energy and Climate Plan (Dimension 5 Research, Innovation
and Competitiveness) [54].

In this case, DT becomes a key element for research and development on second-
generation smart buildings entirely based on electricity consumption and characterized
by energy autonomy, high flexibility, block chain, and smart contract dialogue systems
with the grid, assisted by digital monitoring methods.

5.1. Artificial Intelligence

Although optimizations on energy consumption have been studied in depth [55],
when dealing with residential compounds or SOHO (small office home office) buildings,
we cannot directly borrow general solutions from research experiences [56,57]. In fact, the
overall consumption in these environments is the sum of small contributions by a
considerable amount and variety of devices [58], while, mostly in industrial
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environments, there are generally few big powers draining that can be controlled one by
one.

Moreover, these small consumers are operated by people which do not follow any
procedure, since they have their personal habits: dealing with both technical and human
factors through data analysis techniques becomes a fundamental strategy [59].

DT was coupled with Al to investigate building behaviors as a whole, and supervised
learning techniques are used to produce an efficient and intelligent storage system
management in the whole complex.

The problem of energy savings in buildings is strictly connected to the need of
measuring and controlling energy loads in an efficient way, which can evolve complex
scenarios. For instance, if nobody is at home and it is already late morning, both the coffee
machine in the kitchen and the air conditioning are wasting energy if they are still
switched on, while if someone is still there then both appliances should be still
operational. Consequently, several sensors and actuators can be involved and their data
should be interconnected so that an ad hoc algorithm derives the correct energy saving
policy (e.g., a motion sensor shares data with electrical relays able to switch on/off the
correct devices).

Real-time building management system incorporate model-based control through
ML [60] to extend the use of mathematical models even to the management of human-
related factors. In fact, thermal, humidity, acoustical comfort, and occupants model are
combined and connected to ML.

While the first model depend on facts, the latter depend on humans: the behavioral
model is a probabilistic one [60]: the probability that an occupant takes specific behavioral
decisions or actions is defined as a function of the occupant’s characteristic and the current
environmental conditions, and “predicting the residents” actions toward a specific
situation is not easy”.

Considering the apartment microscale, instead of the whole building, our approach
was to envision the automatic definition of best practices [61]; if grouped by location and
similarities parameters, thanks to unsupervised learning techniques, it was possible to
automatize the processes of attributing each location to the most appropriate group or
cluster. In our approach, the most efficient and performing apartment for each group or
cluster was found considering the energy bill over a few months, confirmed by the energy
data collected over a given period [62].

Given these “sample” location, personal actions in apartments can be modeled with
behavioral rules [63]: the definition of rules was given using a formal logic that allows
exceptions [48] through Al, using Apriori algorithm to automatically learn the rules.

The automatic update of the BIM model to ensure the validity of the DT, based on an
up-to-date information model, was dealt with by using web services [64]. Specifically, it
was necessary to ensure that information about energy loads coming from smart plugs
were up-to-date in the model. A supervised learning technique (named “Naive Bayes
classifier”) combined with a novel energy load information coding [65] was used to
achieve the goal.

6. Conclusions and Further Developments

The configured DT methodology gives buildings the capability of improving and
enriching their knowledge and available data, receiving input and signals from sensors
that constantly monitor them, developing self-learning capabilities and predictivity
through the integration with Al systems.

Moreover, the paper focuses on how the concept of DT is extremely transversal and
applicable both to macroscopic and microscopic scales (from district to apartment), as
demonstrated for the use of energy management systems. It can be related, for example,
to specific components of technological systems, to the digitalization of infrastructures
and real estate assets, to technological systems, or networks of technological systems, etc.



Energies 2021, 14, 2338

24 of 27

The objective of the research was to exploit ML systems to manage and to
simultaneously integrate self-production and supply system in an energy smart grid, in
terms of both thermal and electrical loads.

The results of the DT-based real-time monitoring are able to reduce the gap between
the energy performance of the buildings (simulated through energy diagnosis) and the
real building performance. This is possible thanks to data analysis, which allows one to
get more refined energy management strategies, even highlighting inadequate users’
behaviors and policies.

As far as load forecasting is concerned, the configured DT is able to calculate thermal
loads on a daily basis [60], integrating them with algorithms capable to calculate in
advance building consumption based on historical data transmitted by sensors; in this
way the system, on the one hand, acquires real-time data from smart metering [61] and
environmental quality sensors; on the other hand, it integrates historical data (bills,
consumption, etc.) and IoT with a real-time simulation approach [62]. The purpose is
aimed at updating and refining the database, tailoring the energy profile of consumption
on real users

These intelligent systems implemented also provide an active control on the energy
balance; in fact, once the system becomes sufficiently confident, it takes control itself of
the energy production systems, as well as of the loads modulation and regulation in order
to optimize the energy balance system, limiting nonessential loads in case of production
deficit.

Even the optimization of thermo-hygrometric wellbeing parameters in the indoor
environment is considered as fundamental. In fact, through the analysis of data from
environmental quality sensors and after an appropriate self-learning period, the DT
becomes able even to set operations times and levels of the systems to optimize the
thermo-hygrometric wellbeing of users.

Moreover, spreading the proposed research to an urban approach, developments in
the BIM-GIS synergy, as both large- and small-scale digital information system
configuration, would allow for the integration of each urban energy cell with the national
power distribution grid, with particular focus on electric mobility and storage systems of
smart grids, urban metabolism, etc. Predictions about the impacts on neighboring areas
and profiling functional integrations would be performed, providing essential digital
tools for the implementation and real-time monitoring of municipal and district energy
plans.

In addition, in this regard, further developments of the present research would reach
the optimization of the operations using a data model as a process core, replicating reality
in real time, limiting or even eliminating system malfunctioning, grid unbalance, or even
power breakdowns. With the aim of reducing malfunctions and breakdowns on energy
services, the proposed methodology would be applied even to the facility management of
HVAC and electrical plants toward configuring predictive maintenance systems.
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