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ABSTRACT Human action recognition is one of the most pressing questions in societal emergencies of any
kind. Technology is helping to solve such problems at the cost of stealing human privacy. Several approaches
have considered the relevance of privacy in the pervasive process of observing people. New algorithms have
been proposed to deal with low-resolution images hiding people identity. However, many of these methods
do not consider that social security asks for real-time solutions: active cameras require flexible distributed
systems in sensible areas as airports, hospitals, stations, squares and roads. To conjugate both human privacy
and real-time supervision, we propose a novel deep architecture, the Multi Streams Network. This model
works in real-time and performs action recognition on extremely low-resolution videos, exploiting three
sources of information: RGB images, optical flow and slack mask data. Experiments on two datasets show
that our architecture improves the recognition accuracy compared to the two-streams approach and ensure
real-time execution on Edge TPU (Tensor Processing Unit).

INDEX TERMS Action recognition, activity recognition, deep learning, computer vision, multi-modal, low
resolution.

I. INTRODUCTION
Video acquisition technologies are becoming pervasive in our
daily lives. Powerful digital cameras used in social media,
traffic, security and emergency monitoring are capable of
capturing high-level details of people’s face and body, caus-
ing severe privacy issues [3], [8]. Using data acquired by
these ubiquitous cameras, deep architectures have investi-
gated and faced privacy issues, especially regarding activity
recognition, in [17], [18]. However, these approaches model
deep architectures requiring high computational power, disre-
garding real-time performance and integration into embedded
devices. As a matter of fact, efficiency and privacy are not
jointly faced, so far.

To face these drawbacks we propose to work on both Low
Resolution (LR) and extremely Low Resolution (eLR) data,
using light deep architectures. Our approach’s advantage is
two-fold: it keeps relevant information for security and social
issues, avoiding sensible data acquisition and at the same time
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FIGURE 1. Privacy preservation. The Figure shows how very low resolution
(12×16) suppresses face details, while some details are still visible with
32×32 resolution. Images taken from HMDB51 videos dataset.

it allows real-time recognition and implementation on digital
devices [1]. See both Figure1 and Figure 3.

Our novel architecture, the Multi Stream Network (MSN),
can perform activity recognition tasks on eLR data by exploit-
ing three sources of information: RGB, optical flow, and
slack foreground masks. These three streams are processed in
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FIGURE 2. The MSN architecture. The deep model takes both LR and eLR video-data for training. For inference, it can take only eLR
video-data, being able to acquire videos from smart-lamppost with edge-computing facilities. The input video-data are preprocessed along
three branches: optical flow, taking care of time and motion, slack mask, taking care of the foreground shapes, and spatial features via the
RGB channels. Preprocessed data, along each branch, are passed to 5×5×5 convolutional 3D layers, composed respectively of 32, 64 and
128 filters. The feature maps obtained by the 3D convolution branches are fused, according to methods described in Paragraph III-B. Finally,
the fused features map is elaborated by a three-layer, fully connected dense network leading, via softmax, to activities prediction.

FIGURE 3. Example of a frames sequence from the HMDB51 dataset. The first row shows the RGB sequence at the original
resolution. The second row presents the downsampled LR frames, while the third one contains the same sequence’s optical
flow. Here, we can see the camera motion combined with both the horse-rider and the water motion. Finally, the fourth
row shows the downsampled sequence slack mask.

separate 3D convolutional branches, which are then fused for
the final classification (see Figure 2). Detailed experiments
on an eLR versions of HMDB51 [12] and on Mini-Kinetics
200 [27], validate the power and time performance of the
proposed approach against the methods using just RGB and
optical flow.

II. RELATED WORKS
Action recognition has been deeply studied in the last
years. Simonyan et Al. [19] proposed a two-stream

CNN network to incorporate visual and motion features:
one stream processes RGB frames while the other processes
the optical flow. Several works exploit the multi-source
paradigm, such as [2], [23] integrating also different kinds
of information, from multi-region focus [31] to multiple
sensors [20]. Convolutional 3D (C3D), introduced in [21],
bypassed the need of the optical flow relying on 3D con-
volutional layers to learn high informative spatial-temporal
features. Inception3D (I3D) [5] improved the aforemen-
tioned approaches proposing a novel Two-Stream Inflated
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3D ConvNet. Thereafter, Residual(2+1)D (R(2+1)D) [22]
introduced a new decomposed convolutional network,
which separates spatial-temporal modelling, cutting down
the number of parameters while maintaining comparable
performances.

The eLR action recognition has been tackled by a
number of methods focusing either on high accuracy or
on light-weight architectures. While both approaches can
remove privacy details, the light-weight ones are less accu-
rate, though real-rime oriented, not resorting to heavy
spatial-temporal models such as I3D or R(2+1)D. We refer
to the two approaches as the heavy and light approaches.
We place our approach among the light ones.
Among the heavy approaches, Purwanto et Al. [15]

introduce a novel spatial-temporal multi-head self-attention
mechanism based on the combination of super-resolution,
knowledge distillation and attention mechanisms to learn
powerful yet general features. Moreover, Purwanto et Al.,
in [14], address the visual degradation problem with an
additional input source, namely the trajectory. This archi-
tecture complements the usual spatial-temporal information
with trajectory patterns capturing features robust to visual
distortion. The work of Xu et Al. [29] can also be placed in the
heavy set, as it introduces a fully-coupled architecture, which
incorporates 3DCNN and RNN to extract enhanced andmore
robust video motion representation. Even if still working with
eLR images, the approaches mentioned above are essentially
built on top of I3D pre-trained on Kinetics [10], exploiting
a massive number of parameters via an up-sampling step.
These methods improve the accuracy at the expense of a
higher computational cost. Ryoo et Al. [17] approach can be
considered heavy too, since it exploits high resolution videos.
It decomposes high-resolution training videos into multiple
low-resolution ones and uses a multi-siamese model to learn
a shared spatial embedded space.

In the light set, we place both [6] and [18], which we
compare with in Section IV. Chen et Al. [6] introduce a
semi-coupled two-stream network exploiting a partial sharing
of the weights to benefit from high resolution videos in train-
ing. Ryoo et Al. [18] propose a method that relies on learning
inverse super-resolution based onMarkov ChainMonte Carlo
(MCMC), and using Histogram of Oriented Gradients (HOG)
features. We show that MSN outperforms both [6] and [18].

The great advantage of the light methods is the possibil-
ity to work efficiently in distributed architectures, working
directly on Edge TPU-equipped remote devices, on the base
of the performance benchmarked by [25], [26].

III. METHOD
MSN is a novel multibranch convolutional network, where
each branch performs a pipeline of 3D convolutional layers
on a different input source. A sequence of K frames is taken
as input: the first branch computes optical flow, the second a
slack foreground mask for each frame, and the last branch
computes spatial features along the RGB channels. Every
branch produces a features map; these are fused to feed a

fully connected (FC) dense three hidden layers network for
the activity classification. The training loss is a standard
categorical cross-entropy. We experimented several types of
features fusion approaches: a brief description is reported
in Paragraph III-B.

Our method attacks the problem of computational cost via
a trade-off between features extraction, pre-processing and
convolutional 3D network computation efficiency. We adopt
a hybrid method to extract information at different levels:
training is performed by alternating eLR and LR data, respec-
tively having 16×12 and 32×32 resolution. This method-
ology enables features transfer learning from LR to eLR
data [6]. Nevertheless, at inference time, only eLR data is used
to perform activity recognition.

All in all, our method differs from the state of the art
algorithms in several aspects:

• It exploits a light model with the number of parame-
ters decreased by an order of magnitude with respect
to traditional, burdensome pre-trained architectures
(see Table 1).

• The 3D convolutional network improves the approaches
based on the combination of 2D convolutions and mean
over predictions (see [6]), with a sensible boost in per-
formance.

• MSN uses the slack mask stream to add further features
information to the other two streams bringing an addi-
tional improvement.

A. ARCHITECTURE DETAILS
Each MSN branch is made of three convolutional 3D layers
of dimension 5×5×5 composed respectively of 32, 64 and
128 filters, interspersed with Batch Normalization and Relu
non-linearities. Despite its large size compared to the input
resolution, this particular kernel proved to give the best accu-
racy, as can be seen in Section (V), Table 7. Each branch’s
feature maps are fused and the resulting map, following a
3D max-pooling, is fed to a fully connected neural network
composed of three hidden layers, with dropout.

B. FEATURES FUSION METHODS
MSN can be modelled with several feature combination
approaches. These methods have been tested with each of
the feature maps FRGB, FOF and FM computed, respectively,
from the RGB, optical flow (OF) andmask (M) streams. Each
feature map can be defined as F ∈ R(nK×ds), with nK the
number of kernels, K the number of considered frames, and
ds = n×n×n the downscaling tensor. A discussion on the
tested methods is then proposed.

Concat: concatenates the output feature maps of every
branch along the channel dimension:

ycat = FRGB ⊕ FOF ⊕ FM . (1)

With ⊕ the concatenation symbol. This method has the
advantage of keeping the feature maps extracted from each
branch.
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TABLE 1. The Above Table Compares the Number of Parameters and the Frame Rate of I3D and MSN, Along the Different Fusion Methods we Adopted,
as Described in Paragraph III-B.

Sum: performs the features element-wise addition:

ysum = FRGB + FOF + FM . (2)

Unlike the previous method, the Sum procedure main advan-
tage is to build a fused vector of the same size of the
single-stream output FX , with X ∈ {RGB,OF,M}, in so
avoiding to increase the number of parameters as done by the
concatenation method. Moreover, concerning concatenation,
the Sum method reduces the model overfitting.

Multi Layer: is inspired by the early fusion approach
proposed in [16], which combines the features at multiple
scales. This method allows the three streams interaction from
the early stages. For example, after the i-th convolutional
layer, the streams are fused in the following way:

ŷ(i)ml = F (i)
RGB + F

(i)
OF + F

(i)
M + y

(i−1)
RL

y(i)RL = ReLU (ŷ(i)ml ∗ w
(i)κ1×1×1). (3)

Here F (i)
RGB,F

(i)
OF and F (i)

M are the feature maps computed by
the i-th layer of the RGB, optical flow and mask streams,
respectively, and y(i−1)RL is the outcome of their fusion at the
previous layer, with w(i) denoting the weights of a (1×1×1)
3D convolutional kernel κ , i ≥ 0, with ŷ(0)ml as ysum in eq. (2).

Interpolation: loosely inspired by [15], computes a
weighted sum of the feature maps by applying different
weights to each stream. In this way, the most informative
features gain more importance:

yinter = wRGB � FRGB + wOF � FOF + wM � FM ,

wa = σ ((ycat ∗κI )⊕ Fa)∗κsa ), a∈{RGB,OF,M}. (4)

The weights wa ∈ R(nK×ds) are computed as a function of the
convolutional kernel κI (stream independent) and κsa (stream
specific), which are jointly learned during the MSN train-
ing. The symbol � indicates element-wise product between
matrices.

Self-Supervised Model Adaptation (SSMA) [24] adap-
tively fuses the three branches using a novel reduced block
tailored to work at low resolutions:

yssma = ycat � σ (ycat ∗ wkκ1×1×1) (5)

Here wk denotes the weight of a (1×1×1) 3D convolutional
kernel κ1×1×1.

IV. EXPERIMENTAL SETUP
MSN has been extensively tested on HMDB51, a popular
action recognition dataset. It has been tested on an eLR ver-
sion of Mini-Kinetics 200 too. In the following, we introduce
details on the datasets used, on the preprocessing generating
the three streams input to the three MSN branches, and on the
MSN network hyperparameters.

A. DATASETS
HMDB51 [12] is one of the most widespread benchmark for
activity recognition. It comprises movie clips and YouTube
videos at a different resolution for 51 action categories with
at least 101 videos per class, for 6849 videos. The evaluation
procedure consists of averaging accuracy obtained on the
three train/test splits provided by the dataset authors.

Kinetics [28] is a large-scale YouTube video dataset show-
ing human actions. These cover a broad range of human
activities up to 700 classes and 650K video clips.

Mini-Kinetics 200 is a subset proposed by [27]. It com-
prises 200 of the Kinetics classes containing the highest
amount of samples. MSN has been tested on an eLR version
of this dataset by performing a downscale of each frames
sequence.

B. PREPROCESSING
Video preprocessing is required to keep the deep architecture
tight and agile, and it is computed on downscaled frames to a
size of 32 × 32 to obtain the LR. We use the same standard-
ization introduced by [6] to perform a fair comparison.

The first preprocessing stream is the optical flow, com-
puted according to the dualTV-L1 method of [30]. Opti-
cal flow generates features of the scene about the camera
and people motion, tracking the motion along time. The
OpenCV implementation is quite fast for LR videos, consum-
ing about 2 ms for each pair of frames on CPU. Although
the camera motion is combined with scene motion in most
videos, there are static videos in which the optical flow
contribution is scarce. Therefore the slack mask is beneficial
in particular in these cases.

The second stream is the slack mask computed as follows.
Let V be an input video of length N , with frames f1, . . ., fN ,
and let G be a Gaussian kernel of size 3×3 with µ = 0 and
σ < 1. We first smooth each frame by convolving it with G,
namely, f ∗i =fi ∗ G, for i∈{1, . . .,N }, with ∗ the convolution
operator, and rescale it to 32×32, padding it to fit to the
original image ratio. Further, we convolve f ∗i with a Sobel
kernel of size 5, in so obtaining f ∗Si . Using the transformed
frames f ∗Si we generate two similar videos V ∗1 and V ∗2 , just
shifted by one frame, namely, V ∗1 is (f ∗S1 , . . ., f ∗SN−1) and V

∗

2
is (f ∗S2 , . . ., f ∗SN ). Then we compute:

An =
1
k

n+k∑
n

g∗Sn ∗ G, for g
∗S
n ∈ {‖V

?
1 − V

?
2 ‖}

N−(k−1)
n=1 . (6)

Here ‖V ?1 − V ?2 ‖ is the absolute difference between the
two frame sequences V ∗1 and V ∗2 , and ∗ is the convolution
operator. A might require an extension with up to k frames
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according to the modulo (N mod k). If (1/N )
∑

n An>τ ,
with τ a threshold fixed to 0.1, then the final mask for Mn
of frame n is the point wise matrix product between An and
the Laplace transform of frame f ∗n :

Mn = An �∇ · ∇f ∗n . (7)

Otherwise, we take simply the Laplace transform of f ?n , com-
puting it with a 3×3 kernel. Here � is the element-wise
matrix product, and we considered k = 3, the size of
the Gaussian kernel. To understand the above formulation’s
simple idea, consider when motion is in the image, then the
transformations leading to Mn highlight regions with
the largest gradient, namely in the foreground, and the
Laplace operator further enhance them. On the other hand,
if (1/N )

∑
n An is less than τ then the video has virtually no

motion; therefore the Laplace operator, on the low-resolution
Gaussian smoothed frames, is enough to return a flat region
on the foreground showing large contours around it. The
obtained results are shown in Figure 3.

C. NETWORK HYPERPARAMETERS
After the preprocessing step, the video frames are downscaled
to 16×12 to generate the eLR data and then upsampled again
to 32×32, matching the network working resolution.

We use a zero-mean Gaussian distribution to initialize the
network weights, assumed i.i.d, with a standard deviation
proportional to the square root of 2 over the number of layer
connections, as suggested in [9]. The training have been
performed with the Adam Optimization algorithm [11]. The
learning rate tuned on grid search [4], [7] starts at a value
of 10−4 and it is scheduled to decrease up to 10−6.
To limit overfitting, we regularize via a weight decay with

λ = 10−4, applying a 0.5 dropout to the first two fully con-
nected layers. For a discussion onweight decay regularization
with Adam optimization see [13]. Furthermore, we randomly
flip the video clips horizontally to increase the training set
variability. Finally, we perform additional augmentation by
extracting a random 28×28 crop from each frame, resizing it
back to ×32×32.

Kernel size is set to 5×5×5 according to grid search
too [4], and results of accuracy with different kernel size are
given in Table 7.
In the following experiments, unless explicitly specified,

the number of input frames K has been set to 32, see Table 7,
for the impact of the number of input frames on the accuracy
prediction.

All the source code, which is publicly available, has been
written in Python, with the deep model implemented using
Tensorflow 1.15 library at https://github.com/alcor-lab/MSN.

V. RESULTS
In this section, we discuss the results of the performed
experiments. The results include a comparative study of
available methodologies, the performance on HMDB-51 and
Mini-Kinetics datasets, a comparative and ablation study on

the proposed fusion methods, hyper-parameter optimization
and, finally, time performances analysis.

Comparative analysis. Table 2 highlights the two classes
of method, the heavy and light ones. Methods exploiting
images in high resolution, obtain greater accuracy, but have
to exploit computationally intensive backbone architectures.
Architectures with a huge amount of parameters are also
exploited by methods using eLr data. Table 1 associates these
models with I3D-type models, showing similar computa-
tional cost and time performances.

TABLE 2. In the Table, Backbone Methods, According to State of the Art,
are Compared to the Data Resolution. The Majority of Methods Exploit
Either Architectures Asking for Massive Computation or Higher Resolution
Input Data, Instead of MSN and a Few Other Algorithms.

Test on HMDB51 dataset. Our proposed MSN results
are summarized in Table 3 showing the accuracy obtained
on the HMDB51 dataset. These results are compared to
the Semi Coupled Two-Stream Network [6] (SCTS), which
uses a light-weighted two branches approach and a similar
data preprocessing, and Inverse Super Resolution (ISR) [18].
MSN obtains the best performance with three streams (RGB,
optical Flow and slack Mask): this demonstrates the impor-
tance of different perceptive sources to get the best results,
improving the accuracy by 4.45%. Moreover, even with RGB
only, MSN can achieve better results w.r.t. STCS exploiting
an improved and optimized 3D architecture. We report the
per-class accuracy in Figure 4, which shows excellent results
(>60%) on some easy classes, like ride bike and catch, con-
trasting the low accuracies (<20%) on hard categories like
hand-wave and kickball. In Figure 5 we report the confusion
matrix.

TABLE 3. The Table Shows the Performance of MSN on the HMDB51
Dataset, Compared to the Semi Coupled Two-Stream Network and the
Inverse Super Resolution One (ISR). The Reported Values are the
Average Accuracies Over the Three Official Splits.

Mini-Kinetics. We tested the performance of MSN on the
challenging Mini-Kinetics 200 dataset, reported in Table 4.
SCTS fails to converge, reporting a very low accuracy
of 5.8%: as opposed to this failure, MSN is able to effectively
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FIGURE 4. MSN per-class accuracy on the first split of HMDB51 dataset on scale 0-1.

TABLE 4. The Table Shows the Performance of MSN on the Mini-Kinetics
200 Dataset, Compared to the Semi Coupled Two-Stream Network. The
Reported Values are Calculated Over the Official Validation Set.

learn training data features, achieving an accuracy of 26.31%,
despite the difficulty of a 200-categories classification task
conducted on 16× 12 data.

The reported results are obtained with the Sum fusion
method, which provides the best performance, as shown in
the following study.

Furthermore, we develop three sets of experiments for
testing fusion methodologies, streams ablation, kernel size
hyper-parameters search and time performances.

Streams ablation results are reported in Table 6.
As expected, RGB stream is the most relevant source of
information, providing 29.71% of accuracy. The use of opti-
cal flow or mask stream as a single input yields lower per-
formances of ∼(4−5) points. Moreover, the improvement
in accuracy is steady when using two and three streams,
achieving 31.11% and 34.31%, respectively.

Fusion methodologies MSN proves to be a robust net-
work with respect to the features fusion choice, as can be
seen from Table 6. Surprisingly, the fusion method Sum,
despite its simplicity, is the approach which produces the
best performance, with all the others lagging behind of
about 1%.

TABLE 5. Time Performances of MSN and I3D Architectures, Respectively
on a TitanX GPU and a Google Tensor Processing Unit (TPU). The Time
Values Refer to the Model Inference Time Over a Single Sequence
of 32 Frames.

TABLE 6. Ablation Study of Both the Proposed RGB, Optical Flow, and
Mask Streams and the Fusion Strategies Adopted for Merging Them, for
the First Split of HMDB51 Dataset.

Hyper-parameters search [4] is performed on the con-
volutional kernel size and the length of frame sequences K,
the results are shown in Table 7. From the accuracy results
shown in Table 7, the 5×5×5 kernel size obtains the best
accuracy, with respect to other kernel sizes. Changing the
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FIGURE 5. MSN multi-class confusion matrix for HMDB51 dataset. The colour scale on the right indicates the hit rate
or true positive rate (TPR), approximated to two digits, over a total number of 1530 videos.

TABLE 7. Results of the Hyper-Parameters Search Performed on the Split
1 of the HMDB51 Dataset. For all Experiments, the Three-Streams
Architecture Used the Sum Fusion Method: the Kernel Size Parameters
Refer to Each 3D Convolutional Layer.

length K of the input frames barely affects the accuracy
obtained by the 5×5×5 kernel.

Time performances are tested on both GPU and TPU
equipped devices, shown in Table 5. The three streams ver-
sion of MSN can run on TPU at ∼889 fps as opposed to
the ∼8fps provided by I3D. Finally, the frames per second
of MSN when including the preprocessing time is∼333, still
faster than the real-time requirements.

VI. CONCLUSION
We propose the Multi Streams Network to boost activity
recognition performances in an extremely low-resolution set-
ting for real-time performances and sensible information
protection. MSN is a deep model that effectively exploits

three different perceptive sources of information, namely
RGB, the optical flow and the mask streams. Performances
conducted over two publicly available benchmark datasets
demonstrate our approach strengths, which can obtain better
accuracies w.r.t the baseline methods. Further studies will be
made using pretrained networks on Kinetics, to investigate
how these models exploit the three streams of information.
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