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We consider a noncompact lattice formulation of the three-dimensional electrodynamics with N-component
complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge fields. For any N � 2, the
phase diagram shows three phases differing for the behavior of the scalar-field and gauge-field correlations: The
Coulomb phase (short-ranged scalar and long-ranged gauge correlations), the Higgs phase (condensed scalar-
field and gapped gauge correlations), and the molecular phase (condensed scalar-field and long-ranged gauge
correlations). They are separated by three transition lines meeting at a multicritical point. Their nature depends
on the phases they separate, and on the number N of components of the scalar field. In particular, the Coulomb-
to-molecular transition line (where gauge correlations are irrelevant) is associated with the Landau-Ginzburg-
Wilson �4 theory sharing the same SU(N) global symmetry but without explicit gauge fields. On the other hand,
the Coulomb-to-Higgs transition line (where gauge correlations are relevant) turns out to be described by the
continuum Abelian-Higgs field theory with explicit gauge fields. Our numerical study is based on finite-size
scaling analyses of Monte Carlo simulations with C∗ boundary conditions (appropriate for lattice systems with
noncompact gauge variables, unlike periodic boundary conditions), for several values of N , i.e., N = 2, 4, 10, 15,
and 25. The numerical results agree with the renormalization-group predictions of the continuum field theories.
In particular, the Coulomb-to-Higgs transitions are continuous for N � 10, in agreement with the predictions of
the Abelian-Higgs field theory.
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I. INTRODUCTION

Models of scalar fields with U(1) gauge symmetry and
SU(N) global symmetry emerge as effective theories of
superconductors, superfluids, and of quantum SU(N) an-
tiferromagnets [1–8]. In particular, three-dimensional (3D)
classical U(1) gauge models with N = 2 supposedly describe
the transition between the Néel and the valence-bond-solid
state in two-dimensional antiferromagnetic SU(2) quantum
systems [9–16] that represent the paradigmatic models for the
so-called deconfined quantum criticality [17].

This class of quantum models and their classical coun-
terparts have been extensively studied with the purpose of
identifying the nature of their different phases and transitions.
It has been realized that topological aspects, like the Berry
phase, monopoles, or the compact or noncompact nature of
the gauge fields, play a crucial role in determining the na-
ture of the transition. For example, the critical behavior of
the simplest classical model with U(1) gauge symmetry, the
lattice CPN−1 model, drastically depends on the presence or
absence of topological defects [18–20], such as monopoles,
both for large and small values of N , in particular for N = 2.
Analogous differences emerge in the behavior of compact and
noncompact lattice formulations of scalar electrodynamics,
i.e., of the multicomponent Abelian-Higgs (AH) model. In
particular, for N = 2, theoretical and numerical investigations
of classical and quantum transitions, which are expected to
be in the same universality class as those occurring in non-

compact scalar electrodynamics, have provided evidence of
weakly first-order or continuous transitions belonging to a
new universality class (see, e.g., Refs. [7,9–18,21–36]).

Here we present a numerical study of the phase diagram
of the lattice AH model with noncompact gauge fields, for
several values of N , the number of components of the com-
plex scalar field. The noncompact model (in which there
are no monopoles) is indeed the one of interest in many
condensed-matter physics applications, since the presence of
Berry phases in the quantum setting requires to suppress
monopoles (which are directly related to the Berry phases
in the quantum case [37]) (see, e.g., Ref. [6] and references
therein). Our study confirms the existence of important differ-
ences with the compact AH model [38], for both small and
large values of N .

In Fig. 1 we sketch the phase diagram of the noncompact
lattice AH model with unit-length N-component scalar fields.
For any N � 2 the phase diagram is characterized by three
phases. There is a Coulomb phase, in which the global SU(N)
symmetry is unbroken and the electromagnetic correlations
are long ranged. The other two phases are characterized by
the breaking of the SU(N) symmetry. They are distinguished
by the behavior of the gauge modes. In the Higgs phase, elec-
tromagnetic correlations are gapped, while in the molecular
phase the electromagnetic field is ungapped. The Coulomb,
molecular, and Higgs phases are separated by three different
transition lines meeting at one point of the phase diagram.
The nature of the transition lines is different, due to the fact
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FIG. 1. Sketch of the phase diagram of the lattice AH model
with noncompact gauge fields and unit-length N-component com-
plex scalar fields, for generic N � 2. Three transition lines can be
identified: The Coulomb-to-Higgs (CH) line between the Coulomb
and Higgs phases, the Coulomb-to-molecular (CM) line, and the
molecular-to-Higgs (MH) line. They are continuous or of first order
depending on the value of N (see Sec. IV for details). We also report
the models emerging in some limiting cases: The CPN−1 model for
κ = 0, the O(2N) vector model for κ → ∞, and the inverted XY or
O(2) model for J → ∞.

that they separate different phases. Moreover, their nature
crucially depends on the number N of components.

Our numerical study allows us to characterize the nature of
the different transition lines. For large N , the critical behavior
along the Coulomb-to-Higgs (CH) transition line belongs to
the universality class associated with the stable fixed point
(FP) of the multicomponent AH field theory, which predicts a
continuous transition only for a large number of components
(we present numerical evidence of continuous transitions for
N � 10), and in particular in the large-N limit. For small
N , instead, the CH line is characterized by weak first-order
transitions (this is the case for N = 2, 4 that we investigate
numerically). Along the Coulomb-to-molecular (CM) transi-
tion line, gauge correlations do not play any particular role.
Numerical results are consistent with the predictions of the
Landau-Ginzburg-Wilson (LGW) �4 field theory with SU(N)
global symmetry and without explicit gauge fields. Therefore,
for N = 2 CM transitions are continuous and belong to the
O(3) vector universality class, while they are expected to be of
first order for any larger value of N . Finally, the molecular-to-
Higgs (MH) transitions are essentially related to the behavior
of the gauge correlations. They are expected to belong to the
universality class of the inverted XY model, for any N .

The paper is organized as follows. In Sec. II we introduce
the lattice AH model. In Sec. III we discuss the field-
theoretical models that may be relevant for the phase tran-
sitions of the model. In Sec. IV we present the possible
scenarios for the phase diagram and for the nature of the
transition lines, focusing on some limits of the Hamiltonian
parameters. Section V presents our numerical results, for
N = 2, 4, 10, 15, and 25. Finally, we summarize and draw
our conclusions in Sec. VI. In the Appendix we discuss the
pathologies of periodic boundary conditions in systems with
noncompact gauge variables (averages of gauge-invariant
noncompact Polyakov lines are not defined). To overcome this
problem, we consider C∗ boundary conditions [39,40], which

allow us to obtain a rigorous definition of the model in a finite
volume.

II. THREE-DIMENSIONAL LATTICE
ABELIAN-HIGGS MODELS

We consider d-dimensional systems characterized by a
global SU(N) symmetry and a local U(1) gauge symmetry.
A paradigmatic quantum field theory with these symmetries
is the multicomponent scalar electrodynamics, or AH field
theory, in which an N-component complex scalar field �

is minimally coupled to the electromagnetic field Aμ. The
corresponding continuum Lagrangian reads

L = |Dμ�|2 + r �∗� + 1

6
u (�∗�)2 + 1

4g2
F 2

μν, (1)

where Fμν ≡ ∂μAν − ∂νAμ and Dμ ≡ ∂μ + iAμ.
In the following we consider lattice models that are formal

discretizations of the continuum AH model. In particular, one
may consider lattice models that differ on the topological—
compact or noncompact—nature of the gauge fields. We
consider unit-length N-component complex variables zx as-
sociated with each site of a cubic lattice and gauge fields
associated with the lattice links. The lattice Hamiltonian reads

H = Hz + Hg, (2)

with

Hz = −JN
∑
x,μ

2 Re (z̄x · λx,μ zx+μ̂), (3)

where the sum runs over all links of the cubic lattice, and λx,μ

is a complex gauge field with |λx,μ| = 1. In compact formu-
lations the link phase λx,μ is the fundamental gauge variable.
The corresponding simplest gauge Hamiltonian reads

Hg = −κ
∑

x,μ>ν

Re (λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν ), (4)

where the sum is over the lattice plaquettes and κ plays the
role of inverse gauge coupling. The partition function is Z =∑

{z,λ} e−βH .
In noncompact formulations the fundamental gauge vari-

able is the real vector field Ax,μ and

λx,μ = eiAx,μ . (5)

In this case, the gauge Hamiltonian Hg can be straight-
forwardly derived from the continuum theory (1), by re-
placing the tensor field Fμν (x) with its discretized lattice
counterpart, i.e.,

Hg = κ

2

∑
x,μ>ν

(�μ̂Ax,ν − �ν̂Ax,μ)2. (6)

Here the sum runs over all plaquettes, �μ̂ denotes the dis-
cretized derivative along μ̂ (i.e., �μ̂Ax ≡ Ax+μ̂ − Ax), and
κ � 0 corresponds to the inverse gauge coupling 1/g2 of the
continuum theory (1). The partition function reads

Z =
∑
{z,A}

e−βH . (7)

In the following we rescale J and κ by β, thus formally setting
β = 1.
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It is important to note that, at variance with the com-
pact case, the partition function (7) is only formally defined.
Because of gauge invariance, there is an infinite number of
zero modes; therefore, Z = ∞. As discussed in detail in the
Appendix, by an appropriate choice of boundary conditions
and by restricting our attention to gauge-invariant observables,
we can make Z , as well as any gauge-invariant average, well
defined. This is, of course, of crucial importance for the nu-
merical computation. Note that periodic boundary conditions
cannot be used for the noncompact model. Indeed, in this case
the Polyakov loops in terms of the noncompact variables are
not bounded and never thermalize; thus, even gauge-invariant
observables are ill defined.

In the following we study the phase diagram and the tran-
sition lines of the noncompact model (6). Appropriate order
parameters can be defined in terms of the zx and Ax,μ fields. In
our study we focus on the correlations of the gauge-invariant
bilinear operator

Qab
x = z̄a

xzb
x − 1

N
δab, (8)

which is an Hermitian and traceless N × N matrix that
transforms as Qx → U †Qx U under the global SU(N) trans-
formations.

III. FIELD-THEORETICAL APPROACHES

One of the motivations of this work is that of understanding
the relation between the phase diagram of 3D lattice Abelian
gauge models and the renormalization-group (RG) flow of the
continuum AH model (1), which has been studied within the
ε ≡ 4 − d expansion framework [41–43], using the functional
RG approach [44], and in the large-N limit [41,45–48]. One
expects that the 3D RG flow of the continuum AH model
describes some critical transitions occurring in 3D statistical
systems characterized by an Abelian gauge symmetry and a
global SU(N) symmetry. However, as far as we know, the cor-
respondence between the transition lines observed in lattice
systems and the fixed points of the continuum AH model has
not been fully clarified yet.

A. RG flow of the AH field theory

In the ε-expansion framework, the RG flow is determined
by the β functions associated with the renormalized couplings
u and f ≡ g2 appearing in the Lagrangian Eq. (1). One-loop
computations give [41]

βu ≡ μ
∂u

∂μ
= −εu + (N + 4)u2 − 18u f + 54 f 2,

β f ≡ μ
∂ f

∂μ
= −ε f + N f 2, (9)

whew we used rescaled couplings u → u/(24π2) and f →
f /(24π2) to simplify the equations. A stable fixed point is
present only for

N � N4 = 90 + 24
√

15 ≈ 183. (10)

It is located at

u∗ = N + 18 + √
N2 − 180N − 540

2N (N + 4)
ε, f ∗ = ε

N
. (11)

More generally, in generic dimensions d = 4 − ε, a stable
fixed point exists only for N > Nc(ε). This implies that 3D
lattice AH models may undergo a continuous transition asso-
ciated with the AH stable fixed point only if

N > Nc ≡ Nc(1). (12)

The critical number of components, Nc(ε), has been deter-
mined to four loops [43]:

Nc(ε) = N4[1 − 1.752 ε + 0.789 ε2 + 0.362 ε3 + O(ε4)].
(13)

The large coefficients of expansion (13) make a reliable 3D
(i.e., for ε = 1) estimate quite problematic. Nevertheless, by
means of a resummation of the expansion that takes somehow
into account two-dimensional results, Ref. [43] obtained Nc =
12.2(3.9) in three dimensions, which confirms the absence of
a stable fixed point for small values of N .

In the limit κ → ∞, the gauge fields order so that λx,μ = 1.
The lattice AH model becomes equivalent to the symmet-
ric O(2N ) vector theory. Therefore, for large κ , one expects
significant crossover effects, which increase as κ increases,
due to the nearby O(2N ) critical transition. In the continuum
AH model, the crossover is controlled by the RG flow in the
vicinity of the O(2N ) fixed point,

u∗
O(2N ) = 1

N + 4
ε, f = 0. (14)

This fixed point exists for any N and is always unstable. The
analysis of the stability matrix �i j = ∂βi/∂g j shows that it
has a positive eigenvalue λu = ω, where ω > 0 is the exponent
controlling the leading scaling corrections in O(2N ) vector
models [49], and a negative eigenvalue λ f , which makes the
fixed point unstable. Since [38] λ f = −ε to all orders in
perturbation theory, the RG dimension y f = −λ f = ε of the
operator that controls the crossover behavior is one in three
dimensions.

B. The AH field theory in the large-N limit

The existence of a stable fixed point for sufficiently large
values of N and, therefore, of a universality class described
by the AH field theory is confirmed by 1/N calculations
[41,46–48]. Critical exponents have also been computed
[41,46] to order 1/N . For the critical exponent ν associated
with the correlation length, one finds [41]

ν = 1 − 48

π2N
+ O(N−2) (15)

for the three-dimensional model. Also the critical behavior of
the two-point function

G(x, y) = 〈Tr B(x)B(y)〉 (16)

of the gauge-invariant bilinear composite operator

Bab(x) = �a(x)†�b(x) − 1

N
δab|�|2 (17)
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has been considered. Here, Bab(x) is the coarse-grained con-
tinuum counterpart of the lattice operator Qab

x defined in
Eq. (8). At the critical point, G(x, y) has the power-law be-
havior

G(x, y)|J=Jc ∼ 1

|x − y|d−2+ηq
(18)

characterized by the critical exponent ηq. At order 1/N one
finds [46]

ηq = 1 − 32

π2N
+ O(N−2), (19)

in three dimensions.

C. The gauge-invariant LGW framework

A second approach that has been used to predict the critical
behavior of lattice AH models [38,50] is the LGW framework
[49,51,52]. It assumes that the relevant critical modes are
associated with the gauge-invariant local site variable (8). As
discussed in Refs. [38,50,53–55], this is a highly nontrivial
assumption, as it postulates that gauge fields do not play a
relevant role in the effective theory. In this approach, the
order-parameter field is a traceless Hermitian matrix field
�ab(x), which can be formally defined as the average of Qab

x
over a large but finite lattice domain. The LGW field theory is
obtained by considering the most general fourth-order poly-
nomial in � consistent with the SU(N) global symmetry:

HLGW = Tr(∂μ�)2 + r Tr �2

+w tr �3 + u(Tr �2)2 + v Tr �4. (20)

Also in this framework continuous transitions may only arise
if the RG flow in the LGW theory has a stable fixed point.

For N = 2, the cubic term in Eq. (20) vanishes and the two
quartic terms are equivalent. Therefore, one recovers the O(3)-
symmetric vector LGW theory. Thus, for N = 2, continuous
transitions, belonging to the Heisenberg universality class, are
possible. For N � 3, the cubic term is generically present. Its
presence is usually taken as an indication that phase transi-
tions occurring in this class of systems are generally of first
order. Indeed, a straightforward mean-field analysis shows
that the transition is of first order in four dimensions, where
the mean-field approximation is exact. If statistical fluctua-
tions are small—this is the basic assumption—the transition
is of first order also in three dimensions. In this approach,
continuous transitions may still occur, but they require a fine
tuning of the microscopic parameters, leading to the effective
cancellation of the cubic term [56].

It is important to note that the field-theoretical approaches
based on the continuum AH field theory (1) and the effective
LGW field theory (20) are not equivalent, as they make dif-
ferent assumptions on the role of the gauge correlations. They
give different predictions, both for small and large values of
N . For N = 2 the continuum AH model predicts the absence
of continuous transitions, due to the absence of a stable fixed
point. On the other hand, a stable O(3) vector fixed point exists
in the effective LGW theory, leaving open the possibility of
observing continuous transitions.

For large values of N (more precisely, for N > Nc; see
Sec. III A), the continuum AH theory and the effective LGW

approach give again contradictory results. If one trusts the
argument based on the relevance of the cubic term, the LGW
approach predicts a first-order transition unless a fine tuning of
the microscopic parameters is performed. Instead, continuous
transitions are possible without any fine tuning according to
the continuum AH field theory. For intermediate values of
N , that is, for 3 � N < Nc, both approaches predict lattice
models to undergo first-order transitions.

The field-theoretical predictions have been compared with
numerical results for the lattice CPN−1 and AH models, loop
models, and two-dimensional quantum systems [5–7,57–59].
Simulations of the CP1 model [38,50] confirm the existence
of continuous transitions, belonging to the O(3) vector univer-
sality class, for N = 2. Therefore, the LGW theory provides
the correct description of the large-scale behavior of these
systems. Evidently, gauge correlations are not relevant in the
CP1 model, and the continuum AH model does not predict
the correct behavior. For N = 3 numerical results are not yet
conclusive. Indeed numerical simulations for the lattice CP2

model favor a first-order transition [50], while the results
for the loop model of Refs. [57,58] apparently favor a con-
tinuous transition. The available numerical results for lattice
CPN−1 models for N � 4 are consistent with first-order tran-
sitions [50,58–60], again confirming the LGW predictions.
We note that a continuous transition has been observed in
a monopole-free version of the CPN−1 model [18] for large
values of N , demonstrating the relevance of these topological
defects.

IV. THE PHASE DIAGRAM OF THE NONCOMPACT
LATTICE AH MODEL

A. Transition lines and limiting cases

To sketch the phase diagram of the noncompact lattice AH
model with N-component scalar fields (see Fig. 1), it is useful
to consider some particular cases in which the thermodynamic
behavior is already known. No transitions are expected along
the J = 0 line, while transitions occur along the κ = 0, the
J = ∞, and the κ = ∞ lines.

Phase diagram along the κ = 0 line. For κ = 0 the lattice
AH model is equivalent to a lattice formulation of the CPN−1

models with explicit lattice gauge variables [50]. Its phase
diagram has been recently discussed in Refs. [50,59]. There
are two phases separated by a finite-temperature transition,
where the order parameter is the gauge-invariant matrix de-
fined in Eq. (8). The available estimates of the transition point
Jc are reported in Table I. The phase transition is continuous
for N = 2, belonging to the O(3) vector universality class
[49] (accurate estimates of the O(3) critical exponents can
be found in Refs. [64–68]), and of first order for N � 3. It
is very weak for N = 3 [50], and it becomes stronger and
stronger with increasing N [59]. It is natural to conjecture
that analogous transitions occur along the CM line for small
values of κ . Thus, we expect a line of continuous transitions
belonging to the O(3) universality class for N = 2, and a line
of first-order transitions for N � 3. Note that, for N = 2, this
scenario implies the stability of the O(3) critical behavior
against perturbations due to the noncompact gauge field. We
report numerical evidence that confirms it.
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TABLE I. Estimates of the critical values Jc for κ = 0 and κ →
∞. We also report the nature of the transition: FO and O(n) indicate
a first-order transition and a continuous transition in the O(n) vector
universality class, respectively. The estimates of Jc for κ → ∞ for
7 � N � 20 are obtained by interpolating the results of Ref. [61] for
the lattice O(n) vector model (the uncertainty on these interpolations
is safely below 1 on the last reported digit). For N → ∞, the re-
sults of Ref. [61] allow us to obtain Jc(κ → ∞) = b∞ + b∞,1N−1 +
O(N−2), with b∞ = 0.252731 . . . and b∞,1 ≈ −0.0585.

N Jc (κ = 0) Jc (κ = ∞)

2 0.7102(1) [50] O(3) 0.233965(2) [62] O(4)
3 0.6196(2) [50] FO 0.23813(3) [63] O(6)
4 0.5636(1) [50] FO 0.24084(1) [56] O(8)
7 0.4714(5) [59] FO 0.244 O(14)
10 0.4253(5) [59] FO 0.247 O(20)
15 0.381(1) [59] FO 0.249 O(30)
20 0.353 [59] FO 0.250 O(40)
∞ 0.252731. . . FO 0.252731. . . [61] O(∞)

Phase diagram along the J = ∞ line. For J → ∞ the rel-
evant configurations are those that minimize Hz [cf. Eq. (3)].
There is no frustration, so that we obtain

z̄x · λx,μ zx+μ̂ = 1, (21)

which implies zx = λx,μ zx+μ̂. A repeated use of this relation
along a plaquette implies

λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν = 1 (22)

on each plaquette. Therefore, by an appropriate gauge trans-
formation we obtain Ax,μ = 2πnx,μ, where nx,μ ∈ Z. We thus
obtain a dual loop representation of the 3D XY model, which
is expected to undergo an “inverted” XY transition, i.e., a tran-
sition belonging to the XY universality class but with inverted
high- and low-temperature phases [69]. Such a transition oc-
curs at [70] κc(J = ∞) = 0.076051(2) [we obtained it by
using the estimate βc = 3.00239(6) reported in Ref. [70] and
identifying κc = βc/(4π2)]. The number N of components
does not play any role here and the critical behavior does not
depend on N . Note that the MH line separates two phases
in which the matter field is magnetized, as it is for J = ∞.
Thus, along this line the field z would act as a spectator and,
therefore, it is natural to conjecture that the same inverted XY
behavior holds on the line separating the molecular and Higgs
phases for finite but large J .

Phase diagram along the κ = ∞ line. In the κ → ∞ limit,
we have Ax,μ = 0 apart from gauge transformations. There-
fore, in this limit the N-component AH model can be exactly
mapped onto the standard real 2N-component vector model,
which undergoes a continuous transitions for any N (see
Table I). At finite κ , the RG flow of the continuum AH model
predicts that gauge modes are a relevant perturbation of the
O(2N) fixed point [see Eq. (14) and the subsequent discussion
in Sec. III A]. Therefore, if the CH transitions are continuous,
they do not belong to the O(2N) vector universality class.
However, the O(2N) continuous transition for κ = ∞ may
give rise to crossover phenomena for large values of κ .

On the basis of the above considerations, the most natural
hypothesis of phase diagram is the one reported in Fig. 1,

with three different phases. For small J and any κ there
is a phase (it will be named the Coulomb phase) in which
the z fields are disordered and the gauge modes are in the
inverted XY low-temperature phase; for large J and large κ

(Higgs superconducting phase) there is a phase in which the
z fields are ordered and the gauge modes are in the inverted
XY high-temperature phase; for large J and small κ (mixed
molecular phase) gauge interactions are long ranged, while
the spin degrees of freedom condense. Presumably, for any
N the three transition lines meet at a multicritical point at
(κmc, Jmc ) (see Fig. 1). This phase diagram was proposed for
N = 2 in Refs. [22,23], but it should hold for any N � 2 (see
also Ref. [71]).

For any N , we expect the MH transition line to be contin-
uous, in the XY universality class, for any J > J∗, where J∗
may coincide with the position of the multicritical point, i.e.,
J∗ � Jmc. Along this transition line the spins are expected to
be frozen. They should only act as spectators.

The transitions along the CM line are expected to have
the same nature as the κ = 0 transition, at least for κ < κ∗,
where κ∗ must satisfy κ∗ � κmc. As we said, we do not expect
the addition of Hg for small κ to change the nature of the
transition. Therefore, as it occurs for κ = 0, we expect gauge
modes to be irrelevant. This suggests that these transitions
are controlled by the LGW �4 field theory (20), in which
gauge modes are effectively integrated out. Thus, they should
belong to the O(3) vector universality class for N = 2 and
be of first order for N � 3. Like the transition of the CPN−1

model for κ = 0, the CM transition line is characterized by
the condensation of the gauge-invariant bilinear operator (8).

Finally, along the CH transition line, both scalar and gauge
fields change their long-distance behavior. Therefore, we ex-
pect this transition line to be described by the continuum AH
model (1), whose RG flow predicts that continuous transitions
may be observed only for N > Nc (see Sec. III A). Along the
CH line the gauge-invariant bilinear operator (8) is expected
to be an appropriate order parameter.

B. Nature of the multicritical point for N = 2

As discussed above, the phase diagram of the noncompact
lattice AH model is characterized by three transition lines
meeting at a multicritical point. To discuss its nature within
the field-theory framework, it is crucial to identify the relevant
critical modes. For N = 2, we expect continuous transitions
along the CM line with an O(3) scalar order parameter, first-
order transitions along the CH line, and XY behavior along
the MH line. Thus, the nature of the multicritical point is
determined by the dynamics of two effective order-parameter
fields, a three-component and a two-component scalar field,
which are associated with the two continuous transition lines.
This hypothesis seems quite reasonable, as the two transitions
are associated with different degrees of freedom: Along the
CM line the spin degrees of freedom associated with the
bilinear Qab

x defined in Eq. (8) condense, while gauge degrees
of freedom control the transitions along the MH line.

Note that this description is not expected to be appropriate
for N �= 2 and, in particular, for large values of N . In that
case, the CH transition line should be associated with the
AH FP point, the CM line is of first order, while the MH
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FIG. 2. Sketches of the possible phase diagrams close to a multi-
critical point in the plane of the two relevant variables. Thin lines
represent continuous phase transitions, while thick lines represent
first-order transitions. (a) Phase diagram with a bicritical point.
(b) Phase diagram with a tetracritical point. (c) Phase diagram with a
first-order bicritical point.

transitions belong to the XY universality class. In this case
a correct description of the multicritical point should describe
the interaction of the XY order parameter with the AH fields.
Thus, one should consider an extension of the AH model that
includes an additional two-component order parameter.

For N = 2, assuming that the multicritical behavior ef-
fectively arises from the competition of two different scalar
fields, we may investigate it within a LGW framework. If
φa and ϕa are a three-component and a two-component field,
respectively, the most general �4 theory that is invariant under
O(3)⊕O(2) transformations [72–75] is

H = 1
2

[
(∂μφ)2 + (∂μϕ)2

] + 1
2 (rφφ2 + rϕϕ2)

+ 1
4!

[
uφ (φ2)2 + uϕ (ϕ2)2 + 2wφ2ϕ2

]
, (23)

where φ2 ≡ ∑3
a=1 φ2

a and ϕ2 ≡ ∑2
a=1 ϕ2

a . Such a model ap-
pears in several other contexts; for instance, it is relevant
for the behavior of high-temperature superconductors (see
Ref. [76] and references therein). It has been extensively stud-
ied in Refs. [72–76]. Note that we are assuming here that the
XY transition is associated with a local order parameter. In
our model, this local quantity appears in disguise. Indeed, at
the transition for J = ∞ the order parameter is nonlocal, but,
because of duality, it is dual to a local quantity defined in the
XY model. We assume that the same is true along the MH line,
i.e., that one can define a nonlocal quantity that is related by
duality to a local quantity. The parameter φ is related to this
local order parameter, which is the one that drives the standard
XY critical behavior.

In the mean-field approximation [72–74], two possible
phase diagrams are possible: A phase diagram where two
continuous transition lines meet a first-order transition line
[see Fig. 2(a)]—the corresponding multicritical point is called
bicritical—and a phase diagram where four transition lines
meet [see Fig. 2(b)]—in which case the multicritical point
is called tetracritical. In our case, the multicritical point is

bicritical, the first-order transition line being identified with
the CH transition line. Indeed, the numerical results reported
in Refs. [22,23,30] confirm that the transitions along the CH
line are of first order, at least for κ not too large (they appar-
ently disagree only far from the multicritical point). To clarify
whether the bicritical transition is continuous or of first order,
it is necessary to analyze the RG flow of the multicritical
�4 theory (23): The multicritical transition can be continuous
only if a stable fixed point can be associated with the bicritical
point.

The analysis reported in Refs. [75,76] indicates that the
only stable fixed point is the decoupled fixed point describing
decoupled O(3) and O(2) critical behaviors, which is naturally
associated with a tetracritical point [see Fig. 2(b)]. There is no
stable fixed point that can be associated with a bicritical point.
Indeed, fixed points that can be associated with a bicritical
behavior, for instance, the O(5) fixed point (in this case there
would be an enlargement of the symmetry at the multicrit-
ical point) and the so-called biconical fixed point, are both
unstable [75,76]. In the absence of stable fixed points that may
be associated with a bicritical point, close to the multicritical
point the transitions are expected to be of first order along
all three lines [see Fig. 2(c)]. Therefore, the continuous O(3)
and XY transition lines starting from the κ = 0 and J = ∞
lines are expected to turn into first-order transition lines before
reaching the multicritical point.

The above LGW RG analysis predicts the CH transition
line to be of first order close to the multicritical point. In-
creasing κ along this line, the first-order transition should
become weaker and weaker (the latent decreases) as the O(4)
continuous transition at κ = ∞ is approached, with substan-
tial crossover phenomena occurring for large values of κ .
Alternatively, the first-order transition could turn into a con-
tinuous transition line belonging to a different universality
class already for finite values of κ . We note that the existence
of a corresponding universality class is still controversial (see,
e.g., Refs. [7–10,12,18,19,22,23,36]).

V. NUMERICAL RESULTS FOR THE NONCOMPACT
AH MODELS

A. Simulation details and boundary conditions

We now present a Monte Carlo (MC) study of the phase
diagram of the noncompact lattice AH model, for N = 2, 4,
10, 15, and 25.

As already noted, due to the peculiarities of the non-
compact formulation, we cannot consider finite systems with
periodic boundary conditions. Indeed, in this case there are
gauge-invariant zero modes, that make the model always ill
defined. The zero modes correspond to the so-called noncom-
pact Polyakov lines, the gauge-invariant sum of the fields Ax,μ

along nontrivial paths winding around the lattice. Therefore,
even if a maximal gauge fixing is added, the partition func-
tion is still infinite. Under these conditions, it is not clear
whether finite-size scaling (FSS) methods can be safely used
to investigate the critical behavior of the model. To overcome
this problem, we adopt C∗ boundary conditions [39,40]. They
preserve gauge invariance, providing a rigorous definition
of the partition function in a finite volume. Moreover, they
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essentially preserve translational invariance. A detailed de-
scription is provided in the Appendix.

To update the fields Ax,μ and zx we used a Metropolis
algorithm constructed as follows: The new trial field Ax,μ was
constructed by adding to the old one a random number in
the range [−ε1, ε1], while the trial field zx was obtained by
multiplying the old field by a random unitary matrix having
only a 2 × 2 nontrivial diagonal block (whose distance from
the identity was controlled by a second parameter ε2). The pa-
rameters ε1, ε2 have been fixed in order to have an acceptance
probability around 30%. Since the action is linear in zx, it is
simple to write an overrelaxation algorithm which is just the
complex analogue of the one typically used for O(N) models.

In order to reduce autocorrelations we combined Metropo-
lis and overrelaxation moves in a ratio of 1:5. The estimated
autocorrelation time was at most of the order of 104 updates
for the larger lattices and close to the critical point. In all
the cases, i.e., for all the lattices, simulation points, and ob-
servables, our statistics consisted of 103 or more independent
thermalized samples. Final errors have been estimated using a
standard self-consistent blocking and jackknife procedure.

B. Observables and finite-size scaling analyses

We compute the energy density and the specific heat, de-
fined as

E = 1

V
〈H〉, C = 1

V
(〈H2〉 − 〈H〉2), (24)

where V = L3. We consider the two-point correlation function
of the gauge-invariant operator Qab

x defined in Eq. (8),

G(x − y) = 〈Tr QxQy〉, (25)

where the translation invariance of the system has been taken
into account (note that Qx is periodic also in the presence of
C∗ boundary conditions; see the Appendix). The susceptibility
and the (second-moment) correlation length are defined by the
relations

χ =
∑

x

G(x) = G̃(0), (26)

ξ 2 ≡ 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (27)

where G̃(p) = ∑
x eip·xG(x) is the Fourier transform of G(x),

and pm = (2π/L, 0, 0).
It is convenient to introduce RG-invariant quantities, such

as the Binder parameter

U =
〈
μ2

2

〉
〈μ2〉2

, μ2 = 1

V 2

∑
x,y

Tr QxQy, (28)

and

Rξ = ξ/L. (29)

At continuous phase transitions they are expected to scale as
[49] (we denote by R a generic RG invariant quantity)

R(β, L) ≈ fR(X ), X = (β − βc) L1/ν, (30)

where ν is the critical exponent associated with the correlation
length, and β is the parameter we vary in the system (in

κ

J
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FIG. 3. Phase diagram of the noncompact N = 2 lattice AH
model, as obtained from the data of Refs. [22,23]. Triangles cor-
respond to the transition points obtained in the present work. The
shadowed blob indicates the region where the transition lines meet
and the transitions along the three lines are predicted to be of first
order (see Sec. IV B).

the following sections J will play the role of β). Scaling
corrections decaying as L−ω have been neglected in Eq. (30),
where ω is the exponent associated with the leading irrelevant
operator. The function fR(X ) is universal up to a multiplica-
tive rescaling of its argument. In particular, U ∗ ≡ fU (0) and
R∗

ξ ≡ fRξ
(0) are universal, depending only on the boundary

conditions and the aspect ratio of the lattice. Since Rξ defined
in Eq. (29) is an increasing function of β, we can write

U (β, L) = FU (Rξ ) + O(L−ω ), (31)

where FU now depends on the universality class, boundary
conditions, and lattice shape, without any nonuniversal mul-
tiplicative factor. The scaling relation (31), which does not
involve any nonuniversal parameter, is particularly convenient
to test universality-class predictions and to identify weak first-
order transitions [38,50].

At first-order transitions the probability distributions of
the energy and of the magnetization are expected to show
a double peak for large values of L. However, in order to
definitely identify a first-order transition, it is necessary
to perform a more careful analysis of the large-L scaling
behavior of the distributions or, equivalently, of the specific
heat and of the Binder cumulants [77–81]. Regarding the
specific heat C, for each lattice size L, there exists a value
βmax,C (L) of β where C takes its maximum value Cmax(L).
For large volumes, we have [77]

Cmax(L) = V

4
�2

h + O(1), (32)

βmax,C (L) − βc ≈ c V −1, (33)

where �h = E+ − E− is the latent heat, and E+ and E− are
the values of the energy corresponding to the two maxima of
the energy-density distribution.

As discussed in Refs. [38,50] the Binder parameter is a
particularly convenient quantity to identify first-order transi-
tions. In this case [78], for each L, U (β, L) has a maximum
Umax(L) at β = βmax,U (L) < βc which scales, for sufficiently
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FIG. 4. Plot of Rξ for N = 2 and κ = 0.04 (along the CM tran-
sition line) for lattice sizes up to L = 64. Top: Rξ versus J; data
show a crossing point at J = Jc = 0.7099(1). Bottom: Rξ versus
(J − Jc )L1/ν using the O(3) critical exponent ν = 0.7117 [64–67].

large values of L, as

Umax ∼ aV + O(1), (34)

βmax,U (L) − βc ≈ bV −1. (35)

This should be contrasted with the behavior at a continuous
transition, where U is always finite. Thus, we can distinguish
first-order from continuous transitions by looking at the be-
havior of U as L increases. In particular, the absence of scaling
when plotting the data of U versus Rξ may be considered as
an evidence in favor of a first-order transition.

Note that FSS also holds at first-order transitions
[80,82–84], although it is more sensitive to the geometry and
to the nature of the boundary conditions [81]; for instance,
FSS differs for boundary conditions that favor or do not fa-
vor the different phases coexisting at the transition [85,86].
In the case of 3D cubic systems with boundary conditions
respecting translation invariance, such as periodic boundary
conditions, FSS is typically characterized by an effective ex-
ponent ν = 1/d = 1/3, so that α/ν = d = 3. Thus, effective
exponents that decrease towards 1/3 as L increases, signal a
discontinuous transition.

0.0 0.2 0.4 0.6 0.8 1.0
Rξ

1.0

1.2

1.4

1.6

U

L=16
L=32
L=64
L=16
L=32
L=64

κ=0

FIG. 5. Plot of U versus Rξ for the noncompact N = 2 lattice AH
model at κ = 0.04 and κ = 0 (along the CM transition line). All data
fall onto a single curve, providing a robust evidence that the transition
belongs to the O(3) universality class.

C. The noncompact lattice AH model at N = 2

The lattice AH model with N = 2 has already been studied
in Refs. [22,23,30], obtaining the phase diagram shown in
Fig. 3. We present a different FSS analysis, using C∗ boundary
conditions, which is not affected by the pathologies of the pe-
riodic boundary conditions (see the Appendix). In particular,
we present results along the CM and CH transition lines (see
Fig. 3).

To begin with, we discuss the critical behavior along the
CM line starting at κ = 0, J = Jc = 0.7102(1). We present a
FSS analysis of MC data taken at fixed κ = 0.04. The data
of Rξ (see Fig. 4) show a crossing point at Jc = 0.7099(1),
which is very close to the critical value at κ = 0. The plot of
the Binder parameter U versus Rξ (see Fig. 5) shows that the
critical behavior is the same for κ = 0 and κ = 0.04. Since
the CP1 transition belongs to the O(3) vector universality
class, the same is expected for the transition at κ = 0.04. The
O(3) scaling is also confirmed by the scaling of Rξ and of
the susceptibility: This is observed when plotting Rξ versus
(J − Jc)L1/ν and the ratio χ/L2−ηq versus Rξ using the O(3)
critical exponents ν ≈ 0.7117 and ηq ≈ 0.0378 [64–67] (see
Figs. 4 and 6).

To investigate the nature of the transitions along the CH
line, we have performed MC simulations at κ = 0.2 and
κ = 0.4. As we will see, in both cases the data clearly favor
a first-order transition. This confirms the analysis reported
in Refs. [23,30]. It disagrees instead with Ref. [22], which
claimed the transition for κ = 0.4 to be continuous. Figure 7
reports the behavior of the Binder parameter U for κ = 0.2
and 0.4: Data indicate the presence of a transition at J =
Jc ≈ 0.472 for κ = 0.2 and at J = Jc ≈ 0.353 for κ = 0.4,
the latter result being in agreement with Ref. [22]. In Fig. 8 we
plot U versus Rξ for both κ = 0.2 and 0.4. Data do not scale,
providing evidence in favor of a weak first-order transition
for both κ = 0.2 and 0.4 (see the discussion in Sec. V B).
Comparing the data, we observe that the first-order transition
becomes weaker with increasing κ , in agreement with the
expectation that the latent heat vanishes in the limit κ → ∞.
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FIG. 6. Plot of χ/L2−ηq at κ = 0.04 versus Rξ along the CM
transition line, using the O(3) value ηq = 0.0378 [64–67]. Results
for the N = 2 AH model.

For comparison we also report data for the O(4) vector model
(for which U and Rξ are obtained from the spin-2 correlation
function of the vector model) with the C∗ boundary con-

0.44 0.46 0.48 0.50
J

1.0

1.2

1.4

1.6

1.8

2.0

U

L=8
L=16
L=32

0.32 0.34 0.36 0.38
J

1.0

1.2

1.4

1.6

1.8

U

L=8
L=16
L=32
L=64

FIG. 7. Binder parameter U for the N = 2 lattice AH model, at
κ = 0.2 and for L � 32 (top) and at κ = 0.4 for L � 64 (bottom).
Both transitions should be along the CH transition line.
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FIG. 8. Estimates of U versus Rξ for the N = 2 AH model at κ =
0.2 (top) and κ = 0.4 (bottom), thus along the CH transition line. For
comparison, O(4) data, corresponding to κ = ∞, are also reported;
the continuous lines are cubic spline interpolations and have the only
purpose of guiding the eye.

ditions, to identify possible crossover effects, which indeed
seem to appear.

D. The noncompact lattice AH model at large N

We now present numerical results for large values of N . As
discussed in Sec. IV, we expect a phase diagram characterized
by three phases also for N > 2. However, for N �= 2, the CM
transition line is expected to be of first order, as for κ = 0.
On the other hand, continuous transitions may appear along
the CH transition line for sufficiently large N , since the RG
flow of the continuum AH theory has a stable fixed point (see
Sec. II).

We first consider the N = 25 model, performing simula-
tions for κ = 0.4. The data of Rξ (see Fig. 9) show a crossing
point for Jc ≈ 0.295, which we identify as a transition point
along the CH line. To understand the order of the transition,
we plot the Binder parameter U versus Rξ (see Fig. 10).
Data scale nicely, strongly suggesting that the transition is
continuous. To determine the critical exponent ν and ob-
tain a more accurate estimate of the critical point, we fit U
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FIG. 9. Estimates of Rξ ≡ ξ/L for the N = 25 lattice AH model
at κ = 0.4, for several lattice sizes up to L = 64. The data show
clearly a crossing point providing an estimate of the critical value
Jc ≈ 0.2955.

and Rξ to

R(J, L) = fR(X ), X = (J − Jc) L1/ν, (36)

using a polynomial approximation for fR(X ). To estimate
the role of the scaling corrections we restrict the fit to
the data satisfying L � Lmin, with Lmin = 16, 32. For Lmin =
16 we obtain ν = 0.789(2), ν = 0.785(1) from the analy-
sis of U and Rξ , respectively. For Lmin = 32, we find ν =
0.782(5), 0.796(2). The variation of the results appears larger
than the statistical errors, indicating that scaling corrections
are significant, at the level of precision of our data. We have
thus performed fits that include scaling corrections, fitting the
data to

R(J, L) = fR(X ) + L−ωgR(X ), (37)

using a polynomial approximation for both scaling functions.
To improve the accuracy of the estimates, we have performed
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FIG. 10. Plot of U versus Rξ for the N = 25 lattice AH model
at κ = 0.4. For comparison we also report data for the O(50) vector
model, corresponding to the κ → ∞ limit.
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FIG. 11. Plot of Rξ ≡ ξ/L versus (J − Jc )L1/ν at at κ = 0.4 for
N = 25. We use Jc = 0.295511 and ν = 0.802.

a combined fit of the two observables. It turns out that our data
are not precise enough to allow us to determine the exponent
ω. The χ2 of the fit takes essentially the same value for any
ω � 0.8. Correspondingly, ν varies between 0.796 and 0.808,
with a statistical error of 0.002 at fixed ω. This analysis allows
us to estimate ν = 0.802(8). The quality of the fit is excellent,
as can be seen from Fig. 11. The estimate of ν is very different
from that corresponding to the O(50) vector model, ν ≈ 0.96
(we use here the large-N expansion of ν), confirming the
instability of the O(50) fixed point in the AH field theory. This
is also confirmed by the comparison of the plots of U versus
Rξ (see Fig. 10), where we report data for the O(50) vector
model, i.e., U and Rξ as obtained from the spin-2 correlation
function in the vector model.

The estimate of ν is very close to the estimate obtained
using the 1/N expansion at order 1/N [41,46–48], νln = 0.805
[see Eq. (15)]. The large-N expansion appears to be very
accurate for ν at N = 25. It is interesting to note that the
exponent ω is equal to 1 for N = ∞ and thus we expect it
to be close to 1 also for N = 25. Using this information, we
can verify that the large-N expansion is probably accurate for
the exponent ν at the level of a few per thousand. Indeed, our
combined fits give ν = 0.805(2) and ν = 0.808(2) for ω = 1
and 0.8, respectively.

The analysis also provides estimates of Jc and of the uni-
versal quantities R∗

ξ and U ∗, the last two quantities being
the asymptotic values (L → ∞) of Rξ and U computed for
J = Jc. The results are reported in Table II. We have also
analyzed the susceptibility χ in order to determine the expo-
nent ηq. We have performed fits to χ = L2−ηq fχ (Rξ ), which
has the advantage that neither Jc nor ν appear in the fitting
function. We obtain ηq = 0.923(1) and ηq = 0.901(1), if we
only consider the data with L � 16 and 32, respectively. There
are clearly scaling corrections. We have therefore performed
fits to

χ = L2−ηq [ fχ (Rξ ) + L−ωgχ (Rξ )], (38)

where we use polynomial approximations for fχ (Rξ ) and
gχ (Rξ ). The χ2 of the fit has a shallow minimum for
0.9 � ω � 1.5. As ω varies in this interval, ηq varies from
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TABLE II. We report the estimates of the critical coupling Jc, of the critical exponents ν and ηq, and of the universal critical values R∗
ξ and

U ∗ for C∗ boundary conditions at the continuous transitions observed for N = 10, 15, and 25 along the CH transition line (κ = 0.4). We also
report the estimates νln and ηq,ln obtained from the O(1/N ) approximations reported in Eqs. (15) and (19).

N Jc ν νln ηq ηq,ln R∗
ξ U ∗

25 0.295511(4) 0.802(8) 0.805 0.883(7) 0.870 0.29405(5) 1.0254(1)
15 0.309798(6) 0.721(3) 0.676 0.815(10) 0.784 0.316(1) 1.0433(3)
10 0.32187(3) 0.64(2) 0.514 0.74(2) 0.678 0.341(8) 1.0621(4)

0.880(5) and 0.887(3). We thus end up with the estimate
ηq = 0.883(7). The corresponding scaling plot is shown in
Fig. 12: Data scale quite precisely onto a single curve for
L � 32. Note that the final estimate is essentially consistent
with the large-N result ηq,ln = 0.870 [see Eq. (19)].

We have also observed a transition for N = 15 along the
line κ = 0.4. Indeed, data for Rξ and U show a crossing point
for Jc ≈ 0.31. To identify the order of the transition, we plot
U as a function of Rξ (see Fig. 13). Scaling corrections are
clearly visible, but note that the data for L � 32 lie on top of
each other. The Binder parameter does not increase with the
size, indicating that the transition is continuous. To estimate
the critical exponents, we have repeated the analysis we did
for N = 25. Scaling corrections are significant, as it appears
from Fig. 13. Therefore, they must be taken into account to
obtain reliable estimates. We perform combined fits of Rξ and
U to the ansatz (37). If we only include data with L � 16,
the χ2 of the fit is essentially constant for 1 � ω � 2. In
this range of values of ω, the exponent ν varies between
0.722(2) and 0.720(2), allowing us to obtain the final estimate
0.721(3). Results for Jc and for the critical values R∗

ξ and U
are collected in Table II. The corresponding scaling plot is
reported in Fig. 14: The scaling behavior is excellent. We have
also determined the exponent ηq, fitting χ to Eq. (38). We
obtain ηq = 0.815(10). Again we can compare the results for
ν and ηq with the large-N results. In this case (see Table II),
some discrepancies are observed, indicating that for N = 15
the corrections of order 1/N2 are now significant. It is worth
noting that the deviations are substantially consistent with the

0.0 0.1 0.2 0.3 0.4 0.5
Rξ

0.0

1.0

2.0

3.0

4.0

χLη
q
-2

L=16
L=32
L=64
L=64

FIG. 12. Plot of χLηq−2 versus Rξ for the N = 25 lattice AH
model at κ = 0.4. We use ηq = 0.883.

presence of 1/N2 corrections, with coefficients of the size of
those of the 1/N terms, for both ν and ηq.

E. The noncompact lattice AH model for intermediate
values of N

In the previous sections, we observed that the CH transition
line is of first order for N = 2, while it is continuous for N =
15 and 25. Therefore, there must be an intermediate number
N�, where the nature of the transition changes: For N � N� the
transition is continuous, while for N < N� it is of first order.
An analogous behavior is predicted by the continuum AH field
theory, as discussed in Sec. III A. The results of the previous
sections give 2 < N� < 15. In this section we present some
results for N = 4 and N = 10, that further constrain N�.

In Fig. 15 we plot U versus Rξ for N = 4 along the line
κ = 0.4. As it occurs for N = 2 (see Sec. V C), the data do
not scale. Moreover, the Binder parameter U has a maximum
that increases with L. The data therefore favor a first-order
transition, allowing us to conclude N� > 4. Note that the in-
crease of the maximum of U with the size signals that the
first-order transition is stronger than for N = 2. The transition
is, however, too weak to allow us to reliably estimate the
latent heat using lattice sizes up to L = 64. This is a serious
obstruction to what would be the natural strategy to estimate
N�, i.e., to determine the behavior of the latent heat as a
function of N .

To obtain an upper bound on N�, we performed simulations
for N = 10 at κ = 0.4. Estimates of U against Rξ are shown
in Fig. 15. The maximum of the Binder parameter appears to
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FIG. 13. Plot of U versus Rξ for the N = 15 lattice AH model at
κ = 0.4.
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FIG. 14. Top: Rξ ≡ ξ/L versus (J − Jc )L1/ν for Jc = 0.309798
and ν = 0.721. Bottom: L−2+ηq χ versus Rξ for ηq = 0.815. Results
for the N = 15 lattice AH model at κ = 0.4 for several lattice sizes
up to L = 64.

increase with the size for small values of L, but the results
for L = 64 and L = 48 apparently fall one on top of the
other. Therefore, data suggest that the transition is continuous,
implying the upper bound N� < 10.

To determine the critical exponent ν for N = 10, we per-
form a combined fit of U and Rξ to Eq. (37). In this case
the fit is sensitive to ω and indeed the fit gives ω = 1.05(10)
and ν = 0.642(4). However, the χ2 per degree of freedom
(DOF) is quite large, χ2/DOF ≈ 16. Clearly, there are still
significant scaling corrections that are not taken into account
by the scaling ansatz (37). Therefore, the statistical errors are
not reliable: Systematic errors due to the neglected scaling
corrections are significantly larger. To get a rough idea of the
size of the systematic errors, we can compare the previous
estimate of ν with those obtained by using the simpler ansatz
(36). For Rξ , if we only include the data with L � 32, we
obtain ν = 0.658(1). This suggests that a reliable estimate
for ν might be ν = 0.64(2). Using the same criterion for Jc,
R∗

ξ , and U ∗, we obtain the estimates reported in Table II.
The scaling plot of Rξ is reported in Fig. 16. Scaling devia-
tions are clearly visible for L = 16. We have also determined
the exponent ηq. The susceptibility has been fitted to the
ansatz (38). The χ2 is not very sensitive to ω and is essentially
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FIG. 15. Top: Estimates of U versus Rξ for the N = 4 lattice AH
model at κ = 0.4. Bottom: Estimates of U versus Rξ for the N = 10
lattice AH model at κ = 0.4.

constant for ω � 1.4. Correspondingly, ηq varies between
0.745(4) and 0.759(2). However, note that we expect ω ≈ 1
and thus we have conservatively considered the larger interval
ω � 0.8. Since ηq = 0.727(6) for ω = 0.8, we end up with the
final estimate ηq = 0.74(2). The quality of the fit is excellent
(see Fig. 16).

In conclusion, the numerical results for N = 4 and N = 10
allow us to conclude that

4 < N� < 10. (39)

A more precise determination of N� would require a substan-
tially bigger computational effort, so that we do not pursue
this issue further.

The upper bound on N� provides an upper bound on the
number Nc, the smaller value of N for which the 3D AH field
theory has a stable fixed point, as discussed in Sec. III A.
If we assume that the transitions observed for N � 10 can
all be associated with the field theory stable fixed point—we
provided evidence for that in the previous sections—we can
conclude that

Nc < 10. (40)
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FIG. 16. Top: Plot of Rξ versus (J − Jc )L1/ν ; we use Jc =
0.32187 and ν = 0.64. Bottom: Plot of χLηq−2 versus Rξ ; we use
ηq = 0.74. Results for the N = 10 lattice AH model at κ = 0.4, for
several lattice sizes up to L = 64.

On the other hand, the lower bound on N� cannot be straight-
forwardly extended to Nc. Indeed, the evidence of a first-order
transition for a lattice model does not exclude the possibility
that the corresponding field theory has a stable fixed point,
since the given lattice model might be outside its attraction
domain. We finally note that the bound Eq. (40) is in substan-
tial agreement with the estimate Nc = 12.2(3.9) obtained by
the analysis of the four-loop ε expansion [43], mentioned in
Sec. III A.

VI. CONCLUSIONS

We have investigated the phase diagram and nature of
the phase transitions of the 3D multicomponent lattice AH
model with noncompact gauge fields. Our study confirms
the existence of significant differences with the lattice AH
model with compact gauge fields, both for small and large
values of N [38]. As sketched in Fig. 1, the phase diagram
of the noncompact model with N � 2 is generally charac-
terized by three phases: (i) the Coulomb phase, where the
global SU(N) symmetry is unbroken and the electromagnetic
correlations are long ranged; (ii) the Higgs phase, where the
local bilinear operator Qx [cf. Eq. (8)] condenses, breaking
the global SU(N) symmetry, and electromagnetic correlations

are gapped; and (iii) a mixed molecular phase, where the local
bilinear Qx condenses, but the electromagnetic field remains
ungapped. We recall that the phase diagram of the compact
lattice AH model presents only two phases. They are charac-
terized by the condensation of the bilinear operator Qx, while
gauge fields are always in the confined phase [38].

We have studied in detail the Coulomb-to-Higgs transition
line that ends at the O(2N) transition point for κ = ∞ (i.e.,
for vanishing gauge coupling), and the Coulomb-to-molecular
transition line that ends at the CPN−1 transition. Transitions
along the CH line, if continuous, are expected to be associated
with the stable fixed point of the RG flow of the continuum
AH model (1). On the other hand, transitions along the CM
line should be described by the LGW theory (20), because
gauge correlations do not play a relevant role.

We summarize the behavior along the three transition lines
as follows:

(i) The CH transitions separating the Coulomb and Higgs
phases are weak first-order transitions for N = 2. The same
behavior is expected for sufficiently small N . Indeed, a first-
order transition is observed for N = 4. As N increases, the
transitions become continuous, at least not too close to the
multicritical point. We observe continuous transitions for
N � 10. The corresponding critical behavior turns out to be-
long to the universality class of the stable fixed point of the
continuum AH field theory, which predicts a continuous tran-
sition only for a large number of components, and in particular
in the large-N limit. Our numerical results provide a bound on
the number Nc defined in Sec. III A, which separates the small-
N first-order transition regime from the large-N continuous
transition regime predicted by the 3D AH field theory. We
obtain the upper bound Nc < 10. If we further assume that the
absence of continuous transitions along the CH transition line
of the model considered in this paper corresponds to the ab-
sence of stable fixed points of the continuum AH field theory,
we may speculate that Nc belongs to the interval 4 < Nc < 10.

(ii) For N = 2 the CM transitions separating the Coulomb
and molecular phase are continuous and belong to the O(3)
vector universality class, as predicted by the LGW theory (20),
for sufficiently small values of the inverse gauge coupling
κ . As κ increases along the CM line, the transition should
eventually become of first order, as all transitions are expected
to be of first order close to the point where the three transition
lines meet. For N � 3, the CM transitions are expected to be
of first order, as predicted by the LGW theory.

(iii) The transitions along the MH line are expected to be
continuous, and to belong to the XY universality class, at least
for sufficiently large values of the parameter J . However, we
have not presented results along this transition line.

The identification of the large-N continuous CH transitions
with the universality class of the stable fixed point of the AH
model is strongly supported by the excellent agreement of
the numerical results for the critical exponent ν and η with
the predictions obtained using the 1/N expansion within the
continuum AH model. For instance, for N = 25 we find ν =
0.802(8) and ηq = 0.883(7), to be compared with the large-N
estimates ν = 0.805 and ηq = 0.870. As far as we know, this
is the first quantitative evidence of such a correspondence.

It is worth comparing these results with those reported
in Ref. [18] for a lattice CPN−1 model without monopoles.
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Numerical results for the monopole-free CPN−1 model pro-
vided clear evidence of a continuous transition for N = 25
[59], at variance with what happens in the standard CPN−1,
where the transition is discontinuous for any N � 3. Refer-
ence [18] conjectured that the transition for N = 25 in the
monopole-free model might be associated with the large-N
stable fixed point of the continuum AH field theory. The
results of the present paper rule out this conjecture. The esti-
mate of the critical exponent [18] ν = 0.595(15) for the N =
25 monopole-free model definitely disagrees with the result
ν = 0.802(8) obtained for the N = 25 noncompact lattice AH
model, which is instead in agreement with the large-N expan-
sion of the continuum AH field theory. Thus, we conclude that
transitions of the large-N monopole-free CPN−1 model are not
described by the continuum AH field theory. It is tempting to
conjecture that the reason for the difference is in the nature
of the coexisting phases at the transition. The AH field the-
ory is appropriate to describe transitions between a Coulomb
and a Higgs phase, but it is not appropriate to describe the
transition in the monopole-free CPN−1 model. Indeed, in the
latter case no Higgs phase exists: A disordered monopole-free
high-temperature phase coexists with a molecular phase in
which electromagnetic modes are still ungapped.
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APPENDIX: C∗ BOUNDARY CONDITIONS

We wish now to discuss the role that boundary conditions
play in noncompact formulations. We consider a finite system
of size L in all directions. As already discussed in Sec. II,
the partition function defined in Eq. (7) is ill defined: Z = ∞
for any L, because of gauge invariance. A standard way out
consists in considering only gauge-invariant observables and
in introducing a gauge fixing that eliminates all zero modes.
Let us indicate symbolically with G[Ax,μ] = 0 a maximal
gauge fixing: If {Ax,μ} is a configuration that satisfies the
gauge-fixing condition, there is no gauge transformation such
the gauge-transformed configuration also satisfies the gauge-
fixing condition. Considering a gauge-invariant operator B,
one can hope to obtain a well-defined average value by defin-
ing

〈B〉 =
∑

Az B δ(G) e−βH∑
Az δ(G) e−βH

. (A1)

Unfortunately, in the case of periodic boundary conditions,
also this expression is ill defined.

To clarify this issue, let us first consider the gauge Hamil-
tonian Hg, Eq. (6). It is invariant under the local gauge
transformation

A[α]
r,μ = Ar,μ + α(r + μ̂) − α(r), (A2)

where α(r) is an arbitrary function satisfying periodic bound-
ary conditions. The Hamiltonian Hg, however, is also invariant
under the shift

Ar,μ → Ar,μ + cμ, (A3)

where cμ is a direction-dependent constant. To clarify the role
played by the shift (A3), it is convenient to introduce the
noncompact Polyakov loop along the direction μ, defined by

Pr⊥,μ =
L∑

i=1

A(i,r⊥ ),μ. (A4)

A generic point r is denoted with (i, r⊥) where rμ = i, and r⊥
stands for the components of r different from the μth one. It
is immediate to verify that the noncompact Polyakov loop is
gauge invariant, while

Pr⊥,μ → Pr⊥,μ + Lcμ (A5)

under the transformation (A3). This shows that the shift trans-
formation cannot be rewritten as a gauge transformation. As
a consequence there are three zero modes that cannot be
eliminated by the introduction of a gauge fixing. Therefore, in
the absence of the spin variables, also Eq. (A1) is ill defined.

The transformation (A3) is also present in compact formu-
lations. It corresponds to λx,μ → λx,μeicμ . However, in this
case the integration domain is compact and, therefore, zero
modes do not make average values ill defined. This is obvi-
ously also the case of gauge transformations and, indeed, in
the compact case no gauge fixing is needed to define rigor-
ously the model.

The shift symmetry is broken when the spin fields zx,μ

are added. However, because the gauge coupling of the spins
is obtained through the fields λx,μ, transformations such that
eicμ = 1 leave the full Hamiltonian invariant. Therefore, the
infinite discrete subgroup of transformations

Ar,μ → Ar,μ + 2πnμ, nμ ∈ Z, (A6)

is an invariance of the model, making expressions like
Eq. (A1) ill defined. An identical problem is encoun-
tered in lattice quantum chromodynamics when studying the
electromagnetic properties of hadrons using a noncompact
formulation for the photon field (see, e.g., Refs. [87,88]).

To solve the problems mentioned above, we now discuss
the C∗ boundary conditions proposed in Ref. [40]. For the
system studied in this work, the C∗ boundary conditions are
defined by the relations

Ar+Lν̂,μ = −Ar,μ, zr+Lν̂ = z̄r. (A7)

For consistency with Eq. (A7), the function α(r) entering local
gauge transformations,

A[α]
r,μ = Ar,μ + α(r + μ̂) − α(r),

z[α]
r = exp[−iα(r)]zr,

(A8)

has to satisfy antiperiodic boundary conditions

α(r + Lν̂) = −α(r). (A9)

Moreover, from the relation zr+Lν̂ = z̄r, it follows that the
global U(1) symmetry is explicitly broken down to its Z2

subgroup:

A[α]
r,μ = Ar,μ, z[α]

r = szr, (A10)

with s = ±1. Note that C∗ boundary conditions do not
break translational invariance, but care should be taken when
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performing Fourier transforms. For instance, the field Qab is
periodic, while the plaquette operator is antiperiodic.

We will now show how to rewrite the previous conditions
using only the fields that belong to the cubic lattice [1, L]3,
changing the form of the Hamiltonian for the sites and links
close to the boundary. This is necessary for the MC implemen-
tation. Let us first consider the gauge transformations: The
transformation law of the scalar fields in Eqs. (A8) does not
require any modification, just like the transformation rule of
the gauge field when r + μ̂ ∈ [1, L]3. The gauge transforma-
tion of the fields Ar,μ on the boundary of the cube can instead
be rewritten, using the antiperiodicity of α(r), in the form

A[α]
1 (L, a, b) = A1(L, a, b) − α(1, a, b) − α(L, a, b),

A[α]
2 (a, L, b) = A2(a, L, b) − α(a, 1, b) − α(a, L, b),

A[α]
3 (a, b, L) = A3(a, b, L) − α(a, b, 1) − α(a, b, L),

(A11)

where a, b ∈ [1, L].
The interaction term Hz in Eq. (3) is written as a sum of

terms which, for sites in the bulk of the lattice, are propor-
tional to

hμ(r) = z̄(r)λμ(r)z(r + μ̂) + c.c. (A12)

For sites on the boundary of the lattice instead, the interactions
can be written as

h1(L, a, b) = z̄(L, a, b)λ1(L, a, b)z̄(1, a, b) + c.c.,

h2(a, L, b) = z̄(a, L, b)λ2(a, L, b)z̄(a, 1, b) + c.c.,

h3(a, b, L) = z̄(a, b, L)λ3(a, b, L)z̄(a, b, 1) + c.c. (A13)

These are the terms that explicitly break the global U(1) in-
variance. They are still gauge invariant, due to the different
gauge transformations that are applied on the field Ar,μ on the
boundary.

The noncompact gauge interaction term Hg in Eq. (6) is
written as a sum of terms involving the noncompact plaquette
operator, which for sites in the bulk of the lattice can be
written as

�μν (r) = [Aμ(r) + Aν (r + μ̂) − Aμ(r + ν̂) − Aν (r)]2.

(A14)
For plaquettes on the boundaries this expression has to be
changed and we provide here explicit expressions for the case
(μ, ν) = (1, 2) (the other two cases are completely analo-
gous). For a ∈ [1, L) and b ∈ [1, L] we have to use

�12(L, a, b) = [A1(L, a, b) − A2(1, a, b)

− A1(L, a + 1, b) − A2(L, a, b)]2,

�12(a, L, b) = [A1(a, L, b) + A2(a + 1, L, b)

+ A1(a, 1, b) − A2(a, L, b)]2,

�12(L, L, b) = [A1(L, L, b) − A2(1, L, b)

+ A1(L, 1, b) − A2(L, L, b)]2 ,

(A15)

which are easily shown to be gauge invariant.
Let us now show that C∗ boundary conditions eliminate the

shift symmetry that makes periodic boundary conditions ill
defined. Indeed, in the C∗ case, Polyakov loops are not gauge
invariant. Using for definiteness the Polyakov loop in the ẑ

direction, i.e.,

P3(x, y) =
L∑

z=1

A3(x, y, z), (A16)

we have

P[α]
3 (x, y) = P3(x, y) − 2α(x, y, 1). (A17)

A simple consequence of this fact is that, by means of
local gauge transformations, we can enforce A3(r) = 0 for
all points, obtaining the maximal temporal gauge (this is
obviously not possible when using periodic boundary condi-
tions, since Polyakov loops are gauge invariant in that case).
The algorithm to implement the maximal temporal gauge is
the following. We first perform a gauge transformation with
α(x, y, 2) = −A3(x, y, 1) and α(x, y, z) = 0 for z �= 2 [this
fixes A3(x, y, 1) = 0]; then we use a gauge transformation
with α(x, y, 3) = −A3(x, y, 2) and α(x, y, z) = 0 for z �= 3
and so on, until we reach the plane z = L. At this point only
A3(x, y, L) is not vanishing and we perform a transformation
with α(x, y, z) = A3(x, y, L)/2 (the same for all z values).

To conclude the proof that C∗ boundary conditions make
the gauge-fixed theory well defined, let us show that, once the
maximal temporal gauge is introduced, there is a unique mini-
mum of the gauge Hamiltonian Hg, confirming the absence of
dangerous zero modes. Starting from

�13(x, y, 1) = [A1(x, y, 1) − A1(x, y, 2)]2, (A18)

by minimization we obtain A1(x, y, 2) = A1(x, y, 1) for all
x, y. If we now consider �13(x, y, 2), we obtain in the same
way A1(x, y, 3) = A1(x, y, 2), and repeating the same proce-
dure for �13(x, y, z) with 1 � z � L − 1, we get A1(x, y, z) =
A1(x, y, 1) for all x, y, z. The minimization of the boundary
plaquette,

�13(x, y, L) = [A1(x, y, 1) + A1(x, y, L)]2

= 4A1(x, y, 1)2,
(A19)

finally implies A1(x, y, 1) = 0; hence A1(x, y, z) = 0 for all
x, y, z. Using �23 instead of �13 the same argument shows
that A2(x, y, z) = 0. We have therefore proved that, at variance
with the case of periodic boundary conditions, when using
C∗ boundary conditions, there is a single configuration (up
to gauge transformations) that minimizes the gauge Hamilto-
nian: No gauge-invariant zero modes are present.

To conclude the Appendix, let us go back to the ques-
tion of the gauge fixing. We have proved that the statistical
averages are well defined provided that C∗ boundary con-
ditions and a maximal gauge fixing are used. However, in
the simulation we have not introduced any gauge fixing. We
wish now to explain why the gauge fixing is irrelevant in
MC calculations of gauge-invariant observables. Let us col-
lectively call φt the fields we have generated at MC time
t . There is obviously a gauge transformation that maps φt

onto new fields φ
[α]
t that satisfy the gauge-fixing condition:

The correspondence between φt and φ
[α]
t is unique. There-

fore, the dynamics φ1 → φ2 → φ3 · · · can be mapped onto
the dynamics φ

[α]
1 → φ

[α]
2 → φ

[α]
3 · · · . Thus, even if we do

not implement the gauge-fixing condition, gauge-invariant
quantities take the same values as if they were obtained in

085104-15



BONATI, PELISSETTO, AND VICARI PHYSICAL REVIEW B 103, 085104 (2021)

a simulation in the gauge-fixed model. This is, of course, not
true for non-gauge-invariant quantities. For instance, the fields

Ax,μ perform a random walk and their absolute values increase
with time: Their averages are not defined.
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