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Abstract—In this paper, we propose continuous-time and
sampled-data output feedback controllers for nonlinear multi-
input multi-output systems with time-varying measurement and
input delays, with no restriction on the bound or serious
limitations on the growth of the nonlinearities. A state prediction
is generated by chains of saturated high-gain observers with
switching error-correction terms and the state prediction is used
to stabilize the system with saturated controls. The observers
reconstruct the unmeasurable states at different delayed time-
instants, which partition the maximal variation interval of the
time-varying delays. These delayed time instant depend both
on the magnitude of the delays and the growth rate of the
nonlinearities. We also design sampled-data stabilizers as zero-
order discretization of a hybrid modification (with continuous-
time states and discrete-time control and innovations) of the
continuous-time stabilizers.

Index Terms—Delay systems, time-varying measurement and
input delays, dynamic state predictors, continuous-time and
sampled-data output feedback controllers.

I. INTRODUCTION

HE problem of reconstructing the unmeasurable state
variables for stabilization by using the delayed output
measurements is long-standing. For stable linear systems the
problem has been solved in [33]. Nonlinear observer has been
proposed in [22] for linearizable by additive output injection
systems. A predictor based on a cascade of observers has been
introduced with LMI techniques in [8]. For globally Lipschitz
continuous invertible observability maps ([12] and [20]) the
proposed observer consists of a chain of dynamic predictors
that reconstruct the unmeasurable state vector at different
delayed time-instants. Also globally Lipschitz conditions on
the system are required in [14]. In all these papers linear
predictors are used. A survey on the predictor-based approach
is extensively surveyed in [21]. Predictor—based results have
been more recently obtained in [18] where a known compact
absorbing set (plus some technical additional assumptions)
is assumed for all the system trajectories. These dynamic
predictors follow the structure of the ones introduced in [12]
and [20].
Predictors, which are not implemented as dynamical filters,
are designed in [16] under the assumption that either a) the
expression of the state trajectories is explicitly known or b) the
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system is globally Lipschitz. In [17] the existence of predictor—
based observers is shown under the hypothesis that the so-
called predictor map is known exactly. The implementation
of predictors containing integral terms (distributed predictors)
may be computationally prohibitive for real-time applications,
and sensitive to uncertainties and modeling errors.

Actually, all the above cited results can be implemented
only if the predictor map is available (this happens for linear
systems, bilinear systems, chains of linear systems with input
nonlinearities), except for [18] where a modified version of
the chained predictors, introduced in [12] and [20], are used.
Numerical and approximate predictors have been proposed
in [15]. State predictors for nonlinear stable systems are
studied in [5], removing globally Lipschitz and compact
absorbing set assumptions by introducing techniques based
on incremental homogeneity properties ([4]). All the above
papers consider constant measurement delays. The case of
time-varying measurement delays has been considered in [34]
although restricted to linear systems with piecewise constant
measurement delays. A Lyapunov-Krasovskii approach is used
in [13] and [36] and exponential error convergence is proved
in [1]. However, applications are limited to small delays. A
Razumichin approach has been used in [12] and in the more
general context of multi-output systems in [9]. In the last two
papers a chain of observer is used to achieve error convergence
when this is not possible with only one observer. On the other
hand, applications are limited to globally Lipschitz systems (as
in [9]) or differentiable delays with additional rate restrictions
(as in [13]). In [5] and [6] these limitations are overcome
and global predictors are designed for systems with bounded
trajectories.

The reconstructed unmeasurable state variables are used for
stabilization in the presence of delayed controls. A solution
is to set to zero the input delay and then searching for
upper bounds on the input delays that the closed-loop system
can tolerate while still realizing the desired goal. This often
involves Lyapunov-Krasovskii functionals (as discussed in
[11] and [26], which often lead to satisfactory results when
the delay is small; see [25]. However, many applications have
long input delays. In general, stabilization under long input
delays needs control designs that use the value of the input
delay, and in many cases, distributed delays are used, meaning
the control uses all values of the state or input along some
interval of past times; see [27].

In [26] a prediction based approach is used to construct
globally asymptotically stabilizing control laws for time-



varying systems using state-feedback. This approach differs
from the classical reduction model approach or the prediction
based approaches introduced by Krstic (as in [7], [21] and
[16]) which also involve distributed terms. Several dynamic
extensions are used, making it possible to obtain a prediction
of the state variable without using distributed terms. Many
contributions, including [3] and [1], use several dynamic
extensions to carry out state prediction, but to the best of our
knowledge, they do not apply to the problem we consider here
and they use distributed terms. Our prediction stabilization
technique applies to nonlinear Lipschitz systems, which is also
the case for many prediction ones, e.g., [16].

Finally, the works [1], and [38] were limited to linear time-
invariant systems under additional eigenvalue conditions and
controllability conditions or bounds on the delays, without
robustness to uncertainty; [12] covered nonlinear systems
under a globally drift-observability condition and [37] was
concerned with time-varying linear systems. Most of the above
papers are focused on the state-feedback problem with globally
Lipschitz or linear dynamics. Only [10], [1] and [3] cover
the output-feedback case with large delays but restricting to
globally Lipschitz dynamics and only [19] covers feedback
linearizable systems but restricting to small delays. In this
paper, we remove globally Lipschitz assumptions or linearity
assumptions on the system by introducing techniques based on
incremental homogeneity properties ([4]) and propose output-
feedback stabilizers for multi-inputs multi-outputs nonlinear
systems with time-varying measurement and input delays, with
no restriction on the bounds. Following the idea of chains of
linear observers ([9], [20]), we generate a state prediction by
chains of nonlinear (high-gain) observers that reconstruct the
unmeasurable state at different delayed time-instants, which
partition the maximal variation interval of the time-varying
delays. The number of observers is in general larger as the
maximum delay is larger. Our remarkable improvement of
this idea relies in the fact that the number of observers, in
the presence of strong nonlinearities, should depend also on
the growth rate of the nonlinearities. Stronger nonlinearities
require a larger number of observers. The state prediction is
used by a nonlinear controller to stabilize the system through
the delayed control input. The novelty of our stabilizer is
the use of a nonlinear (saturated) control law affected by
a chain of nonlinear observers with saturated estimates and
switching error-correction terms. Saturations (or alternatively
rate limiters) take care of the strong nonlinearities of the
system and avoid the peaking phenomenon (well-known for
systems with no delays). Switching error-correction terms take
care of the time-varying delays. Also incremental homogeneity
properties introduce a novel and generalized technique for
rescaling the controller’s and observers’ gains which is even
new with regard to the controllers adopted in [4] for systems
with no delays and has a key role in the stability properties
of the closed-loop system. The nonlinear nature of the closed-
loop system requires a quite technical approach and specific
nonlinear analysis tools, which is another contribution of this
paper. In particular, for the closed-loop stability analysis we
introduce new classes of (logarithmic) Lyapunov-Razumichin
functions which are particularly useful in the presence of

nonlinear dynamics. Robustness and few other extensions
are discussed in section IV-E. We also propose a zero-order
hold discretization of a hybrid version (with continuous-time
states and discrete-time control and innovations) of the above
continuous-time stabilizers to obtain a sampled-data output-
feedback stabilizer (section V). Since the discretized stabilizer
and the hybrid stabilizer produce the same controls and state
estimates at the sampling times, the stability analysis of the
closed-loop system is performed with the hybrid stabilizer,
taking advantage of the results obtained for the continuous-
time stabilizer. Sampled-data predictors and controllers were
studied in [2] and [16] under the above mentioned restrictions
of continuous-time controllers while various other contribu-
tions achieve only practical asymptotic stability (see [32] for
instance). By considering general nonlinearities and achieving
asymptotic stability, our result is another remarkable contri-
bution in the literature of sampled-data output-feedback for
systems with delays. The novelty of our sample-data stabilizer
is the use of a nonlinear (saturated) sampled-data control law
affected by a chain of nonlinear sampled-data observers with
saturated estimates and switching error-correction terms.

II. NOTATION

(N1) R™ (resp. R™*®) is the set of n-dimensional real column
vectors (resp. n x s matrices). R (resp. RZ, R1*®) denotes
the set of non-negative real numbers (resp. vectors in R",
matrices in R™*#, with non-negative real elements). R (resp.
R?) denotes the set of positive real numbers (resp. vectors in
R™ with real positive entries). (R™)* is the dual space of R”
(space of row vectors).

(N2) For any matrix A € RP*"™ we denote by A; ; the (i, j)-th
element of A and for any vector v € R™ (or v € (R™)*) we
denote by v; the i-th element of v. Also, we may write vectors
veR"™ as (vy,...,v,)7T, vectors w e (R™)* as (wy, ..., w,)
and matrices A € R**™ either as A = [vy,...,v,] (ie. by

columns) or A = [wl,... wT]T (i.e. by rows). I, is the
n x n identity matrix. Moreover,
A, 0 - 0
. 0 Ay -+ 0
diag{A4;,...,An} = : : :
0 O Am

where A; is any matrix and the 0 blocks have suitable
dimensions. We retain a similar notation for functions. Also,
|a| denotes the absolute value of a € R, |a| denotes the
euclidean norm of a € R™ with |la|y := VaTMa where
M e R™*™ is a positve definite matrix, |A| denotes the norm
of A € R™*"™ induced from ||- |. For any matrix A (resp. vector
v) (A) denotes the matrix (resp. vector) with (A); ; := [A; |
(resp. with (v), := |v;|).

(N3) We denote by C%(2°, %), 2 < R" and % < R*, the
set of continuous functions « : 2~ — %'. Moreover, Kq de-
notes the set of strictly increasing functions o € C°(Rx,R>),
K denotes the set of functions « € Ky such that a(0) = 0,
K4 denotes the set of functions « € K such that a(s) — +o0
as s — +00. Also, £ denotes the set of strictly decreasing
functions o« € C°(R>,R-) such that a(s) — 0 as s — +o®



and by KL denotes the set of functions o € C°(Rs xR, R>)
such that «(s,-) € £ and «(-,s) € K for each s € R. By
a(s) = o(B(s)) for s — py (where pg € R U {£o0}) we mean
that lim,_, , ggg 0.

(N4) For € € R, the group of dilations G = (€', ¢) is the set
of elements €' := (¢'1,...,¢")T € R", v € R", with group
operation e o = e’ and identity element €%~ :=1,, :=
(1,...,1)T where 0,, := (0,...,0)T.

Also, we define the e*—dilation of v € R™ as the left group
action o on R™ defined as €' o v = (ewvy,---,emw,)T.
Similarly, we define the e*—dilation of w € (R™)* as
the right group action ¢ on (R™)* defined as w ¢ € =
(61w, -+, € wy,).

By extension, we can define the left e*—dilation of A :=

[w,...,wl]T € R"** as the left group action o on R™**
defined as ¢ o A = [¢"w], ... e»wl]T and the right
e*—dilation of A := [vy,...,v,] € RSX” as the right group
action ¢ on R**" defined as A ¢ €' = [evy, -, €m0y,
The dilation’s properties used in this paper are given in the
appendix.
(NS) on R™ we introduce a partial ordering < as follows: for
any pair of vectors x,y € R™ we write x < y if and only if
z; < y; forall ¢ = 1,...,n. We naturally extend this partial
ordering on R™*#: for any pair of matrices A, B € R"** A <
Bifandonlyif A; ; < B;jforalli=1,...,n,j=1,...,s
Also for any A(z) € R™**, x € R™, and compact C = R™ we
denote by sup, . A(z) any matrix A, such that A(z) < Ay
for all z € C.

On the other hand, for any pair of square matrices A, B we
will write A < B (resp. A < B) if and only if A — B is
negative semidefinite (resp. A — B is negative definite).

(N6) A saturation function o; with saturation levels [ € RZ is a

function o;(z) := (o, (x1),...,01, (zn))T, 2 € R", such that
foreachi=1,...,n and z; e R:
N 2| <1
o1,(2:) = { sign(z;)l; otherwise. M

It is easy to prove the following inequalities:
(ou(x) —ouly)) < 2{ou(x —y)) <2, 2)
(o1(x)) < () 3)
for all z,y € R™ and [ € RZ.

III. THE CLASS OF SYSTEMS AND PROBLEM STATEMENT

We consider continuous-time nonlinear systems with de-
layed measurements y and inputs u

).(t = AXt + Bllt_c + ¢(Xt), t>—c— 2doo, (4)
yi = Cx44q,,t20 &)
with state x; € R”, measurements y; € RP, continuous

measurement delay d; € R, known up to time ¢ and bounded
by a known constant d,, and known constant input delay
c € Rs (see section IV-E2 for time-varying input delay c;).
The assumption that the delays are known is realistic in many
applications. The input u; is set to zero for ¢ < c. We
assume that ¢ is locally Lipschitz (see section IV-E1 for locally

Lipschitz output nonlinearities ¢: y; = Cxy_q, + ¥ (Xi—q,))-

The matrices A, B, C have the form

A = diag{A,,..., Ay}, B =diag{Bi,...,Bn},
C = diag{C4,...,Cy}, (6)

where (A;, B;) are in Brunowski form and C; = (1,0,...,0).

f (A, B,C) are not in this form, we assume that (A, B) is
controllable and (C, A) observable and use the coordinates in
which (A4, B) has the form in (6) (plus additional terms to
be dumped in ¢) to design the controller and the coordinates
in which (C, A) has the form in (6) (plus additional terms
to be dumped in ¢) to design the observer. The problem
we want to solve in this paper is to design continuous-time
stabilizers of (4) using the output information y; and sampled-
data stabilizers using the sampled output information Yy, ,
tp := hT (he N and T € R. the sampling period).

IV. CONTINUOUS-TIME STABILIZERS

The continuous-time stabilizer we propose consists of a
controller together with a certain number of chained observers.
These observers are chained in the sense that each observer in
the chain computes the estimate of the state of the controlled
process, delayed by a sufficiently small relative amount, and
hands over a certain amount of information (like its own
estimate) to the next one in the chain. The approach of using
chained sub-predictors for coping with large delays is not new
([12], [9]). The novelty here is to consider the measurement
and control delays d; and c forming together a large delay
d; + ¢ (from the last received measurement to the first applied
control action) and the partition of the delay interval [—¢, dw]
into an increasing sequence of points {p } —1,...,p» Which
determines the number v of sub-predictors. Another important
novelty is that v depends not only on how large is the delay but
also on the growth rate of the nonlinearities of the controlled
process (tunable chain length v). According to this partition,
each observer of the chain computes an estimate of the delayed
state X,Ej) = X4_pG-1, J = 2,...,v + 1, denoted by )?EJ).
The first element of the observer chain is an observer which
computes the estimate )?EVH) of the (maximally) delayed state

(”+1) := X4—q,, and the last element of the observer chain
is an observer which computes the estimate >Ac£2) of the state
xEQ) = Xy4c (i.e. a c-step prediction). The control action is
defined by processing this last estimate so that, when delayed
by c at the input u,_. of the system, it corresponds to the
estimate of x;. The partition of the interval [—c,dy] into a
sequence of points {p(j )} j=1,...,, is made precise as follows.

Definition 4.1: A real sequence {p(j)}j 1,0 Is a 0-fine
partition of an interval [a,b] = R, § € Rx, if v = [552] + 1,
pU) i=a+ (j—1)dforj=1,...,v—1andp®) := b.
Notice that the number N depends on the refinement J of the
partition and p(”) p=1 < § with p) — pv=1) = § if
and only if & T is integer. In what follows, we consider §-fine
partitions {p()} j=1,...,v of the interval [—c, dy ] including the
point 0 and an aux111ary extra point p*+1) > d,, such that
pt) — p) < § and we assume that p(*®) = 0 for some
vo € {1,...,v} (we will say that the partition is extended and
centered at 0).



A. The observer chain with tunable length

Each observer of the chain, say the j-th observer of the
chain, manipulates a certain amount of information, according
to the relative values of the delay d; with respect to the
partition of [—c¢, dy]: typlcally, when d; is large the observer
will process the estimate xgj *1 handed over by the preceding
observer in the chain, while for small values of d; the observer
will use the available outputs y, and, if necessary, past outputs
ys, § < t. Different data processing of the above type
determine different innovations for each observer to guarantee
convergence of the estimate to the delayed state. As already
stated, we assume that d; is bounded by d., and continuous.
A useful property of continuous delays is the following (see
also [10]). Let y; be the undelayed outputs, i.e. y} 4 =yt

Lemma 4.1: Ifd, is continuous, when for eacht > d., and
A:dy < A<tthereexistst <t:y;r=y} .

In other words, when the delay d; is continuous, past mea-
surements are available for processing continuously in time up
to .

Let’s get into the technical structure of each observer

in the chain. Let {0 € R™, v € R%,¢1® € R. and

diagonal positive definite T'(°) € R"*™ be design parameters.
(J+1)

Moreover, in accordance with the notation x; =Xy ,0)
set uEJ R = u;_,()- The observer chain is described by
A7) ~
Xy = AX (J )+ Bu( )

+ ¢ (U,\w)(e) (xg )>) + P(O)flcTR(o)Zl(tj)’
j=2...,v+1,t>0, )
with  saturation function o)) () and saturation levels
A () := 119)€*, matrices
plo) — (I, — G(o)AT)T
RO = C(e oG oe™)0T, G =
and innovations zg 7)
oforj=v9+1,...,

—2t o (In . G(O)AT),

f(") (o)

oT@ 6 el (8)

defined as follows:
v+1

vio —CRY o ifdye [0,p07Y),
2 =<y Cf‘ii)s(a) if dy e [pU=1,pW], (9)

C(§§j+1) - ’A(ii)sm) if d; e (pU), p ]

(where y,(;) is the past output at t/) € [0, ] such that t&) —
d,;) =t —pU=D: tU) does exist by lemma 4.1) with delay

0 if dy e [0, pU—1),

s =4 d,—pu V) ifd e [puV p0], (10)
pld) —pl=1 ifd, e (p (4) p(V+1)]
oforj=2,...,19
2 = &Y 27 ) )
SEJ) = pl) — pli=1), (12)
Each observer is initialized as follows:
X9 = 0,¥0 € [—c — 2dup, 0] (13)

(this particular initialization is motivated by sake of simplicity,
otherwise we would have a slightly more involved design in
the proof of the main theorem: see step (III) after (92)).The
length v of the chain depends not only on the magnitude of
the delays but also on the nonlinearities of the system and it
is a critical parameter in our design.

Remark 4.7: Notice that when d, € [0,pY~V), j = vy +
1,...,v + 1, the past outputs y,;y (t¢) < t, where tU) =
t+ dtm —plU=1)y is processed for the innovation z”). The
estimate x§7 is not delayed (st = 0). Notice that for the
implementation of this step we need the past outputs y,(
(t(j) < t) and this requires the continuity of d;. This is the
only point for which the continuity of d; is needed. If d,
is not continuous the output y,; may be not available for
processing. In this case we may think to reconstruct the value
Y from the past outputs (exactly or approximately using
for instance sinc-functions). As it appears from (9), (11), the
chained structure is given by the estimate XEJ T of X,Ej 1)
computed by the (j + 1)-th observer in the chain and handed
over to the j-th observer only either when d; € (p{), p(*+1)]
((9)) and for the observers which compute state interpolations
(i.e. past values of the state: (11)) or for the observers which
compute state predictions (i.e. future values of the state: (11)).

Remark 4.2: Notice that each observer (7) is a copy of
the system (4), dela ed by the amount p(j —1) with saturated
estimates o (o) (¢ (X;’ )) and updated by the innovation process
z\"), weighted by the gain matrix P@ " CTR). The gain
matrix is defined as a suitable dilated transformation with
parameter €, which follows very naturally from the incremental
homogeneity assumptions on the process nonlinearities f
which will be introduced in the section IV-C. The importance
of saturating the estimates when trying to reconstruct the state
of a nonlinear system with delay-free measurements has been
pointed out in various works since the late 90’s. Here, we prove
the important fact that also in the presence of measurement
delays we need to process saturated estimates.

B. The controller

Let §*) € R”, 1®) € R. and diagonal positive definite
I'(®) € R™ ™ be design parameters. The controller is defined
as

—R(s )BTP("‘)( — ATq(s ))
x oy (o (I — ATGO) 122

uy =
(14)

with saturation function oy () and saturation levels
A3)(€) := 11)€® (in general # A(°)(€)) and

P = (I, — ATGO) T o e o (1, — ATGE®)) !
R® = BT (o G o ¢")B, G = RS JORYS

Notice how in (14) §<§2) provides an estimate of x§2) = Xittc

and the control, as well as the estimates, are saturated with
different levels A(*)(e) # A9 (e).

Remark 4.3: Notice that the controller (14) comes out
from the composition of a linear controller with the saturation
TN (e) (+). The linear controller is characterized by a gain ma-
trix R(*) BT P(s) defined as a suitable dilated transformation

Y (15)



with parameter €, which follows very naturally from the incre-
mental homogeneity assumptions on the process nonlinearities
f which will be introduced in the section IV-C. The impor-
tance of saturating the control when trying to asymptotically
stabilize a delay-free nonlinear system by output feedback
has been pointed out since the late 90’s. Here, we prove the
important fact that also in the presence of delays it is important
to saturate the (delayed) control action.

C. Main assumptions and results

Our assumptions on the system (4) are the following (see a
review of incremental homogeneity in appendix A).
(HO) (forward completeness): the trajectories x; of (4) satisty
the following inequality: there exist ;1 € R~ and continuously
differentiable and proper U : R™ — R and k € K, such that
U(xe)l(ay < pU(x¢) + K([ug—c|) forallt > —c — 2d.,
(H1) (state feedback design): for some degrees f(s) € R™ and
weights v € RZ such that

: ::tj—tj_l—fg.i)l,j:2,...,n, (16)

¢ is homogeneous in the upper bound with quadruples (t,t +
£ §), @) (2)) and lower triangular %) (0),

(H2) (observer design): for some degrees §(°) € R™ and weights
v € RZ such that

2 10 <1
f()

<f 17372 ,

=t -ty — 1L =1 n =1, 9 =9, (7
¢ is incrementally homogeneous in the upper bound with
quadruples (t,t + §© §°), () (2’ ")) and lower triangular
®()(0,0).
(H3) (state feedback performances recovery): fsf) > fgf).
Remark 4.4: Assumptions (H1) and (H2) are enough
general for coping with large classes of nonlinear systems:
the nonlinearities must satisfy some incremental homogeneity
conditions, one for state-feedback design (H1) and one for
observer design (H2). The additional condition (H3) is a fast
recovery condition (through state reconstruction) of the closed-
loop performances achieved by state-feedback and couples
the state-feedback design with the observer design. Output
feedback controllers are obtained from the state-feedback
controllers by processing the state estimates instead of the
true (unknown) values of the state. Notice that ¢ S)( ) (resp.
®(©)(0,0)) is required to be lower triangular, which implies
that ¢, when at least once differentiable, has a lower triangular
linearization at 0. This implies that the linearization of (4) at
0 is controllable. Assumptions based on incremental homo-
geneity similar to (H1)-(H3) have been considered in [4] for
designing controllers for systems with no delays. In this paper,
we consider more general control and observer structures than
the ones introduced in [4] with ad hoc techniques for the
choice of the gain matrices and saturation levels as well as
for the closed-loop stability analysis. It is not difficult to
check for assumptions (H1) and (H2). In general, this kind

of assumptions amount to solve a set of algebraic inequalities
in the unknowns v € RZ and §() € R™. For example the system

. . 2
X1, =Xt + X1ty Xo¢ = —X1¢ + (1 —X7,)%X2¢ + wy_o(18)

satisfies all the assumptions (H1)-(H3) with ¢(x) =
(x1,—x1 + (1 — x)x2)T, v = (1,3)7, fs) (1,1)7T,
§(0) = (4,2)T and suitable ®(*)(z) and ®(°)(z’,2”) (which
we leave to the reader) with lower triangular @(S)(O) and
®()(0,0).

Assumption (HO) is a standard assumption for forward
completeness and it can be relaxed by requiring that the
trajectories of (4) satisfy (HO) only up to time ¢ = ¢ (i.e.
forward completeness for the open-loop system). This kind of
assumption is needed to ensure that in the absence of control
input (up to time ¢ = ~y) the state trajectories do not explode
to infinity. For instance, assumption (HO) holds for (18) with
U(z) = |z|? p =3 and rk = 2.

Remark 4.5: A consequence of (16) and (17) is that the
numbers fgs), j =1,...,n, form a non-decreasing sequence

while the numbers f(o), j =1,...,n, form a non-increasing
sequence and in the overall by (H3) we have

R << <0 << 1 (19)
Since < is a partial ordering on R", the monotone condition
(19) induces also a partial ordering on the group of dilations.

As a matter of fact,

p<tn=¢€" <e" (20)
if € > 1 (i.e. expanding dilations) and v < v = €% < €° if
€ < 1 (i.e. contracting dilations). In this way, for expanding
dilations we have on account of (19)

() (=) () (s) (=)

eh =1 In < el < efn ' ln — fn 1,, 2D
(o) () () () ()

1, = < 77 < T (BT (22)

The first important
following.
Theorem 4.1: Let C < R"™ be a given compact set. Under
assumptions (HO)-(H3) there exist diagonal positive definite
IO eRrmn 1O eR.,le{s 0}, ecR,deRs and ad-fine
partition {p(j) }i=1,.... of [—¢, dy ], extended and centered at 0,
such that the solutions (xt,fc,g])),j =2,...,v+1,0f4), (5,
(7), (14), withx_._sq_, € C, are bounded for allt > —c — 2d
and lim;_, , o, x¢; = 0.
The continuous-time controller (7), (14) guarantees asymptotic
stability of (4) for all initial conditions x_._24,, € C, where C
is an a priori given compact set. In this sense our controller (7),
(14) semi-globally asymptotically stabilizes (4). Boundedness
and convergence are uniform (in the sense of KL functions)
as pointed out at the end of the proof of the theorem.

stabilization result of this paper is the

D. Proof of theorem 4.1

Boundedness analysis. To prove boundedness of trajectories,
we will construct a Lyapunov-Razumichin function for the



closed-loop system. First, some preliminaries. For any v € N

let b), j =2,...,v + 1, be real numbers such that
2> p ) > 1,
1
() —
b(+1)>b >1,7=2,...,v, (23)
and a € (0,1) and k € (1, +00) be such that
1 ,
3 — —— () -
2 —3a b(j+1)>kb (I1+a),j=2,...,v (24)

(such a,k exist by continuity and (23)). Let l( ) , ) and
l( ),F(") be as in lemmas A.4 and A.3 (with a as in (24))
and define

1(0)

i) e 0
|1, + ATT ()|

(25)
with any 19 € (0,152 such that 19 < 1. Let x € Ko, be
as in (HO) and w € K, be such that (recall that fgf' ) > fo ) by
(H3))

(26)
27)

(efglo)*ff)) as € — +o

w(e) =0

Ine = o(w(e)) as € »> +00.
(for instance, w(e) = ¢ =15)/2) Introduce & € £ such that

d(e) = 0(6_5_”5)2“}(6)) as € — +o0, (28)

5(€) = o0 (K(le)) as € = 400,

) ,1(5)2“;(6)
(for instance, 6(€) = “—y—

5(€)-fine partition {p\)(e)};_;1 (e of the interval [—c, d],
extended and centered at 0. The partition {p(j)(€)}j:1,...,u(e)
depends on € in that the number of points v(e) depends on e
and it is finer and finer as larger € is with lim._, 4 d(¢) =0
and lime_, 1 v(€) = 0. By the definition of the delay s(j)
in (10), (12) and since {pU }321,--47 o) is 0(€)-fine,

(29)

if k is superlinear). Choose a

s < 6(e), V=0 (30)

Throughout the proof, for simplicity and if not explicitly
needed, we will omit the argument (¢) of the functions pl9),
v, 5, wand AU, | e {s,0}. In general, time functions will
be denoted in boldface, any other function with greek letters,
matrices with capital letters and numbers with small letters.
The parameter ¢, which determines the gain matrices (15) and
(8), varies in between (1,+00) and will be left free until
properly chosen at the end of the proof to satisfy all the
intermediate conditions. In particular, its minimum guaranteed
value (denoted ey, in the proof) will be increased at certain
key points of the proof to satisfy all the required conditions.

Consider the delayed state equation
% = AxP + Bul?, + o(xV) 31)

fort >
Uy,

0 and notice that, from the definition (14) of the control

uf? = ~ROBTPO (x7, + wi?,) (32)

with exogenous input

wiP (I = ATG) oy o) (1o = ATGO) %)

—(I, — ATG(S))71X§2)}. (33)

The following lemma establishes a bound for the dynamics of
the state x§2) evaluated through a suitable Lyapunov function
V),

Lemma 4.2: Consider the equations (31), (32) and (33):

= (A — BR®BT ps))x(?
— BROBTpe)w® | ¢(X§2))
fort = 0 with P¢®) and R(®) defined i 1n (15) and I'(®) given in

lemma A 4. IfV(‘S (x@) = et 0 8 x| with ) .=
(I, — ATG))~ then fort > 0

(34)

B : ()7, 2§ 1 /() (o (2)
—(1 a)j=q}}§N{Fj,j}e V(%)
e s
e e SOwP R,

+mn ( FICRENS >(S(S)X§2)))

V|54 <

(35)

for suitable function v such that v, (v,v) = 0 for all v € R"
and a € (0,1) introduced in (24).

Proof: Set X := S®)x with ©(*) := (I — ATT())~1
and ) = I, + ATT®) (see also definitions in (122))
and for simplicity we will omit the time subscript ; and the
superscript (?). Using (114) and the group properties of the
dilations together with their inverse (121), commutative (118)
and associative (119) properties given in the appendix, it is
easy to obtain

2t S(s)
(36)

ROBTPO= BT (6 f o TWo " 0 "\ BBT 0 ¢~
= (BT o 1 IO)/(BBT 6 e +17) (),

(BBT by (110) and T'(*) by definition are diagonal). We have
(with operator A defined in (107))

0
ox) T o {5 AsO x

0
o TN (BBT o v+ )i}

(29)

V(S)‘(34) =2 (G_t

— B(BT

-1 -
0 S5 oy (X))

(IIT)

+2 (eft o )Nc)T et

-

+2(e o R) €T SWAG(SE TR, SO 0y ()

(Iv)

.
N
t<>x) e "oBx

Iv)

—;(67

X(BToe”f(”)r(S)(BBT )56 )(37)

We find an upper bound for the terms under graphs in (37).
Let’s begin with the bracketed term (I). On account of (115)



with remark A.1 and the group properties of the dilations to-
gether with commutative (118) and associative (119) properties

1) =2 (e oi)T [ (aps®”
+A+[SY = 1,450 ) o 1
~ BBTOBBT} (e 0%)

=2 (e )T{e*f o (= a4TG 44T
n

—_ In]

+ A+ [S® —1,]A8® " 1) e

_ BBTF(S)BBT} (e—”f(s’ oi) .

Using (112), (117) with remark A.1 and the incremental
homogeneity properties given in (i) and (iii) of lemma A.2,
we obtain

(I)<2<e**+f<”<>i>T{—r<S>+A+(2 ATTE)T) A ¢

e O
><<€ o f <>X> = et <>X||272F<s>+N<S>+N(S)T'

Let’s consider the bracketed term (IT) in (37). First of all, no-
tice that on account of the incremental homogeneity property
(iv) given in lemma A.2

<6 & S(S) U)\(s) > < Emv <€ OO \(s ) >

and by the properties (2) of saturation functions (recall that
A& () 1= 109)ev)

()

(38)

(39)

(40)

e (7 0 0 () | < [ZE a1, (41)
It follows straightforwardly that
o) < o)
Il=67‘05(5)7lg>\(s)(§) il;},? (x)

S
lo <= 1 1(2)

(the matrix ®(*) (') is introduced in (HI) and max ®(*)(z')
in the notation section). Using the group properties of the
dilations, the incremental homogeneity properties (40) and (ii)
and (iv) given in lemma A.2, the partial ordering (20) with
f(s) < §(*) (on account of (16)) and the property (3) of the
saturation functions

(ID) < 2¢e T o) <e—t 0 SWG(SW oy (;())>

<2(7 o) na) x
x/:e*TOS(S)flcf)\(s)(;()
% <e*t+f“"> 68 a0 (;c)>
. T
< 2<e’t+f(') <>>~<> () sup ®) (2') x
x/eR™:
o | <= 1 1)
X El(n\)/< —H J,\<s>(>~<)>
. T
< 2<e‘t+f( : <>>N<> () sup ) (') x
z/eR™:

I/ 1< =) 10 11(5)

ORI —e ) o
x El(n\)l< o <>X> = e X3 M a7 (42)

Let’s consider the bracketed term (III) in (37). Using the
group properties of the dilations and Young’s inequality

(M) < 2{e Fo%)" x
x <e <>S<S>A¢(S<S>’1;<,S<s>*lox<s>(>”<)>>
<afe 1 o %2
Ly —emi | g(s) () 1g g7
_|_EH€ o S AY(S X, S aae (X))

= a7 o X|P 4y (x, 59 030 (50%)) (43)

where the function ~; is such that v;(v,v) = 0 for all
v € R™. Eventually, we majorize the bracketed term (IV)
in (37). On account of the group properties of the dilations,
commutative (118) (recall that BBT by (110) and NS by
definition are diagonal) and associative (119) properties and
Young’s inequality

V) < e

Cedf® o )
< e o X[Fe) e o SOwR.

_ ()  ~ _ (s)
it <>XH12“(S)JF”E it OS(S)WH%BTF@)BBT

(44)
After collecting (38)-(44), since I'®) is given according to

lemma A.4 so that (127) holds true and, on account of the
partial ordering (21),

e f O~ () _ s
[T o X[ = €7 o(eT o8 )H%m
> r{un {F(S }ezfl ) (x), (45)
Jj=1,...,
we obtain (35). |

Next, we evaluate an upper bound for the second right-hand

term in (35). To this aim, let S(*) and El(m), be as in lemma

4.2 and set (see also definitions in (122))
S5 = I, —GAT ) .= (1
Lemma 4.3: Fort > 0:

—T@ATY1 (46)

) s). (2

[ o sOw |2,

(O [A min{19%, 2075
2

*tQS(O)(X)EQ) —>A<§2))H }

-1
+"}/2 (Xt, S(S) O \(s) (S(S)Xt))

for some function o such that y2(v,v) = 0 for all v e R™.
Proof: From (33)

w§2)=5<3>‘1{@(3) (S(S <2)) - S<S>x§2>}.

From now on, for simplicity, we will omit the superscript (?),
the subscript ; and set e := x — X. From (48) it follows

@
<S(S)W> < <O'>\(s) (S( ) (x

e)) — O\ (s) (S(S)X)S
(an

< 4n max
Jj=1,....,n

x|=E 5l |2

(47)

(48)

+ <J>\(s) (S(S)X) — S(S)X> 49)
and using the property (2) of saturation functions
I) < 2<0>\(s> (S“)S(")’1 (S<O>e)) > (50)



By the incremental homogeneity property (iv) given in lemma
A.l and (iv) given in lemma A.2, following (50) we have

() = (ora(80 10 512 (441 596)) )

< <J>\(s) (et o N T EEZ)U (€_t+f(0)<> S(O)e)) >
=co <Uz<s>1n (E(S)e’f(o)o 1) (e’””(o)o S(O)e>) > (51)

(recall that \(*)(¢) = 1(*)€%). Using the partial ordering (21) it
follows from (49) and (51) that

(1 6 Sy
< 2ef5f)<01nl<s> (6*50)_“?)2(5)25&1 ( o S(O)e>) >
A, (x, SO 6,0 (S(S)x)) (52)

where the function 52 majorizes (II) in (49) and it is such
that F5(v,v) = 0 for all v € R™. From the inequality
[{oe1, (V))|? < nmin{c?, |v|?) for all v € R" eventually

we get (47). [ |
Set el := x() %) j =2 . . v+1. Consider the observer
chain
2V — 439 4 Bul?, 1 ¢ CER) (53)
+ POTCTROZD j =2 . v+,
for ¢ > 0 and notice that, from the definition (9), (11) of the
innovation z,(fj ).
2! = Clef!) +aq) (54)
with exogenous input
—e eV if d; e [0,pY)],
q’) = b . (55)
—ef!) + eij_)sm —ef™Vif d; € (p), p )]
and delay
‘ 0 if d; € [0,p 1),
st dt.fp(jfl) ifd, e [p(a b, pl], (56)
p@) —pl-b ifd, e (p(a),p(wrl)]
if j=19+1,...,v+1and
qgj) — ( ) +e( ) ) e§3+1)’ (57)
SEJ) _ p(J) _p(J 1) (58)
if j =2,.
Next, con51der the equations for x(j ) j=2,...,v+1:
= Ax” + Bu, + o(x{”) (59)

for ¢ > 0. The following lemma establishes a bound for
the dynamics of the estimation error eij ) evaluated through
a suitable Lyapunov function V(°). To this aim, let S(® and
%) be as in (46) and set () := I, + T(©) AT,

Lemma 4.4: Consider the equations (59), (53):
<A+ Bl o)
37 =420+ Bul) 40 (700 3P
L p@taT R o (egﬂ n qgn)

(60)

fort = 0 with P(°) and R(®) defined in (8) and T'(®) given in
lemma A.3. IfV(©) (e1)) := e * 0 S(?)el?) |2 then forall t > 0

V(O)‘(ﬁo) —a rIlnn {F }€2f5lo)V(°)(e§j))

1 a0 o) (4
_ [2 — 3ab(')] Gz o S )eEJ)H%m (61)

_ (o
# 6D % g 2y 33 (x93

for suitable function 3 such that y3(v,v) = 0 for all v € R"
and a € (0,1) and b € (1,2) introduced in (23), (24).

Proof: For 51mp1101ty, we will omit the subscript ¢, the
superscript /) and set & = S(°)e. Notice that, using (113)
and the group properties of the dilations together with their
commutative (118) and associative (119) properties given in
the appendix,

P(o)flcTR(o) _ S(O)fl(ewrf(og> CTC)P(o)(€7r+f(o<)> CT) (62)

(CTC by (110) and r) by definition are diagonal). We have
(with operator A defined in (107))

@

1

Vg0 = 2(cF08) e o {S<O>AS<°>’ 8
(i)
(e o 0T (T o CT)CS@’Ia}

(ID)

275 08) e 05 A (73000 (), Tt (0 (xS E))
(III)

+2>e %o é)Teft o S(O)Ad’ (x7 J/\(o)(g)(X))
Iv)

—2(e 0 8) e % (1o CT )T (1 00T Cq. (63)

We find an upper bound for the terms under graphs in (63).
Let’s begin with the bracketed term (I). On account of
(115) and the group properties of the dilations together with
commutative (118) and associative (119) properties

1) = 2(e 7% 6)T{e*f*f(°)<> ([5<o>
A ) s CTETOCTE 4
— oo e 1 (—ATAG<0>ATA+A+

—I,JA+ A (64)

+ S(")A[S(O)_l—]n]) o1 cTor© CTC}(G—H—f(")Q 8)

and using (112), (116) and the incremental homogeneity
properties given in (i) and (iii) of lemma A.1.

n—1
<A 0T{ —TO) 4 A4 T4 Y TOATY )}
j=1

X 08y = ey

2T (@) N(©@) 4 N T+ (65)

Let’s consider the bracketed term (II) in (63). By the proper-
ties (2) of saturation functions (recall that A\(°)(¢) = 1(%)¢")

€75 0 opo (V)] < |15l = 0l vv e R™.



It follows straightforwardly that for all x and €

©) (! 2" (0) (M
L T | N U A Cr )
2 —e— Voo (x,s(o)_lg) @ @ eRT:

ale) I I, |2 | <nt(@)

(the matrix ®©) (/. 2”) is introduced in (H2) and
max ®(©) (2, 2") in the notation section). Using the group
properties of the dilations, the property (2) of saturation
functions, the incremental homogeneity properties (ii) and
(iv) given in lemma A.1 and since the linear operator S(°)
commutes with the operator A

I <2{(e*
X <€7t o A(S(0)¢)<G,\<o> (x), oA (X*S(O)_lé)»

T
< 2<e*f+f(”) <>E> () p0)
e=cFor (o) (x—5(0) 7 1g)
o 1
X <eft+f( DS Ady (o) (x,x — 5 e)>

T
<4 <e—r+f(°) o é> (0)

<>E>T X

z’:e*‘OUk(o) (x)

(I)(o) (:E/, x//) «

sup
z',m”eR":
[EAREL RIS
(0) 7t+f(°) S i [t
x E1nv ce )= H e“M(o)_)'_M(o)T (66)

Let’s consider the bracketed term (III) in (63). Using Young’s
inequality and the group properties of the dilations,

(1) < 2 F o) <e_t o A(S© ) (x, 0500 (x))>
o 1 °
< afe T 024~ [0 A(S) (x, 050 (%))

_ (0) ~
= ale o+ <>e\|2+73(x,0>\(o>(x)), (67)

where the function 73 is such that vs(v,v) = 0 for all
v € R"™. Eventually, we majorize the bracketed term (IV)
in (63). On account of the group properties of the dilations,
using the commutative (118) (recall that CT'C and ') are
diagonal) and associative (119) properties with (109) and
Young’s inequality
e

~ _ (o)
b(J e”r( )+ b)) le il QQH%TCF((J)cTc

_ (o) ~ : _ (0)
< WHG 087 + b9 e o qfR) - (68)

Collecting (64)-(68), since INQET given according to lemma
A.3 so that (124) holds true, on account of the partial ordering
2D,
—vf(2) §(e) —t (o) 2
e e o (7" 0 5e)[Fo

i ()3 27 7 (0)
S min {7V (@), (69)

<>9H12~<o> =

A\

we obtain (61). [ |
Mimicking the proof of lemma 4.4 and using the partial
ordering (22) we obtain also the following useful inequality.
Lemma 4.5: Fort > 0
o v+1
(0) >>

<6_t+f(0) o S(O)é§”+1>> < E3f§O)H<6_t oS

+ Y ( ARSI (X§V+1)))

and
(o) i (o) sy
<€—t+f o o S(O)egj)> < €3f1 H[ Z <6—t o S(O)egh)>
h=j
+< T, eV T(J)>] + ,74( €)) NS (XEJ))>

ifj =2,...,v, where

n© 4

mv

I := xn© sup ) (2! 2"

z! ! eR™:
! |, 2" | <n1 (@)

and for suitable function -y, such that y4(v,v) = 0 forall v €
R™.
Next, using lemma 4.5 we compute an upper bound for the
second right-hand term in (61).

Lemma 4.6: Fort > §:

_ (o) v
le 7 o g V2, =0 (70)
and
_ (0>
[ 0 g2,
<1+ a)He“” o 5@ed 2,
Jj+1 )
et s [ D VOef) + Vel ))as
t—0 . 0
h=j
s (xgj),aw(xgj))) =2, v 71)
with

ri=8 (1 + i) max {r(o)}unn2
and suitable function 75 such that vs(v,v) = 0 for all v e R™.
Proof: We begin with g " for which, by its definition
in (55) and since by construction p*) = d., with d; € [0, du]
for all ¢ > 0, we have qgl’H) =0, i.e. (70).
Now, let j = 2 ,N. In this case d; ¢ [0,p")] for all
> 0 so that q i 0 On account of the definition (55) and
(62) with the bound (30) on the delay s\’

(1 oq?)

) o) (j+1
(e o gty

t
f . <e—t+f(°> <>S<0>égj>>ds (72)
25—5):J

IA

for all £ > §. Using lemma 4.5, the Jensen’s inequality

t
f V9d9
t—sy

for any bounded delay function s; such that sup,~s; :=

2
(73)

t
< TJ [vodd|2, ¥t > s,
t—Seo

So0s
the bound (30) on sij ) and Young’s inequality with (109), we
obtain (71). |
Next, we define a candidate Lyapunov-Razumichin function
for the overall system (31), (53) as follows:

1
W) (x? e®) = V) (x@) 4 = In (1+W<0>(e®)) (74)
w



where e® := (e, ...
in (26), (27) and

e+1), w e K has been introduced

v+1
o (0) _z(0) 1 o j
W (e®) := 2" 1) E WV( (e))  (75)
i=2

with k € (1,+c0) introduced in (24). The function T/ (%)
is continuously differentiable, positive definite and proper.
On account of the condition (24) on the numbers a,b?),
7 =2,...,v+1, and lemmas 4.2, 4.4 and 4.6, denoting for
simplicity V) (x{*) with V¥, (0 (x{?) e®) with W
and W) (e®) with WEO), after stralghtforward but lengthy
calculations we obtain for t > ¢

2wl
w 14+ W
1%, 25 1w |

d f(u FROWE+ (= W s

W g1) (55 < — (1~ 0 —a

+4n max {F(S)} ) mln{
Jj=1,....,n
2r 6f(0)
+ ©
1+wW,”) w
+78 (Xt S( 0’)\( )(S( Xt)>

e
+ Z’y ( t c—pli— 1),0')\(0)( t— C,p(jfl)))a

() j =2 ... v+1, are suitable functions
such that vg(v,v) = ’y( )(v v) = 0 for all v € R™ (we used

the fact that X,E 2 tQ_) _p-v)- If we show that for all £ > ¢

(76)

where g and 7

—

such that Wis’o) 1()* we have
ngg) W£S7o)7V9 €[-c—dy,0] = Wt |(31) (53) <
(77)

by a Razumichin-type argument we prove the following
boundedness result on the trajectories of (31), (53):

W< Y0 € [~ —dup, 8] = W< 16 vt > 6 (78)

i.e. the trajectories of (31), (53) are contained for all t > § in
some compact set D as long as they are contained in D for
all t € [—¢ — dw, 6] or which is the same D is invariant for
(31), (53) after ¢ = §. To this aim, first of all, notice that if
xeR": VO (x) < 1? (79)
then by definition of V()
e < §x < )¢t (80)

and, also, by the incremental property (iv) given in lemma A.1
and (25)

2
letox|? = Hg*t<><s(s) (S®x) >H -
o (eroson)
s s 2 ° 2
< JEQIPVE (%) < 85,1707 = 197,
which implies
—1@er < x < (@, 82)

€—>+00

We also notice that

Wiy <W‘“’) <10 Vo e [—c— dyp,0] (83)
=W, <we” wv§5> 4w g e [—e — dup, 0]

With all this in mind, let ¢ > & be such that W79 <
W) < 162 for 0 e [ ¢ = du, 0], From the definition
of W(‘; °) in (74) we have VtJr < 1) for 0 € [—c — dy, 0]
and since by definition 0 < ¢ 4+ pU~—Y < ¢ + dy, for all
7 =2,...,v+1, it follows that

(s) <17

t—c—pi—1) ==

let o S)x

2
t c—pli— 1)“ =

for each j = 2,...,v + 1. On account of the conclusions in

(80) and (82)
1
V8 (XnS( R NS )(S(S)Xt)> =0,

2 2
fyé ) (XE )c pli— 1)’0-)\(0)( E )c—p(jfl))) =0 (84)

for each j = 2,...,v+ 1. From (76) using (30) and (83), we
get (by re-introducing the argument (¢) in w, § and v)

WD < W) v e [—c — du, 0]

t+6
() s w)
= Wt |(31) (53) < —€2f1 I:p(G)VE )+7T(€)7t ©
—x(emin{l®”, aw(”}|
with d := |21 |2

mv
ple):=1—
62(f£f)—f§ )

and

21"66f1) 2f1 52( )( (E))el(s)2w(e)7

m(Q) =g a2 P kv O,
x(€) := 4n max {I‘ )} 219 -1,
j=
Consider the function ¢ : Ry x Ry — R
E(v,w) := p(e)v + m(e) 1 fw - X(e)min{l(s)2,dw}. (85)

As a consequence of definition 4.1

lim &) (k+v(e)) = lim 8(e)

€—>—+00

c+ doy
k 1 do+1
( +[ 5 1+ )<c+ o+
and on account of (H3) and the asymptotic conditions (28),
(26) and (27),

0]
€—>+00 X(G)
and, moreover, x(e) > 0 for all €. so that all the conditions of
lemma A.5 are met. By this lemma there exists e, > 1 such
that for all € = eq: (v, w) = 0 for all v, w € R>. Therefore,
for any € > €, we recover (77) and, therefore, (78). Under

lim p(e)=1—a>0,

=+,
€——+00

this regard we are left to guarantee that for all € > e, (with
possibly larger €,)
W <192 Yo e [—c — dup, 0] (86)

i.e. the trajectories of (31), (53) are contained for all t € [—c—
dw, 0] in some compact set D. We do this in four steps.



(I From (HO) and since uE"H) =0 fort < ¢+ dy and
X_c—2d, € C (as stated in theorem 4.1), we have with L(v) :=
In(1 + U(v)) and for all 6 € [—c — dy, d]

L(Xél/-'rl)) < L(X—C—Qdac) + 5*/“‘L < r;leag( L(X) + (5*,“/7 (87)

where 6* € L is defined as 0* := 0 + 2dy + ¢. Analogously,
for each j =2,...,v and for all § € [—c — d,, J]

(v+1)
—e—pl—D)

(x )+ 8%+ tIgE(fi}g]“(HutH ) (88)

(V+1) (J)

where we used the fact that x> " . |, = x"

on account of (36) and the deﬁmtlon of uy 1n (14)

. Moreover,

Ju[* <19 [BTT BBT ).

sup (89)

te[0,+00)
Using (29), (87)-(89) with the fact that —c — do, < —c —
plU=1 < 0 forall j = 2,...,v + 1, we can increase (if
necessary) €y such that for all € > ey, and for all § € [—c —
doo, 0]

L(X§V+1)) < max L(x) +

xeC

(2do + ¢+ 1)p := aqp,

L(xY) <200, j=2,...,v (90)

(II) Since on account of (iv) of lemma A.2

VEO(x) = |7 o SWx|? < [0 [Pl o x?, vx,

using (90) together with the properness of L, we can always

(if necessary) increase €4, such that for all € > €., and for all

0 €[—c—dy,d]

1?2
2

and therefore, by the conclusions in (82), for all § € [—c —
doo, 0]

V(s)(xéj)) < v+1

Li=2 o1

1O <x) <10t j =2, w41 (92)

(IIT) On account of (iv) of lemma A.1 and the partial ordering
(22)

VO (x) = F 0 §Ox |2 < 21RO 2 o x 2, Vx,

and since )Acé] ) =0forfe [—c—2dy, 0] (by the initialization
(13)), we have V(O)(e((,j)) =V (x (J)) j=2,...,v+1, for
all @ € [—c — dy,0]. Recalling the deﬁnltlon (75) of W)
with Z;‘% k% < % (since £ > 1) and making use of the
asymptotic properties (26) and (27) with (90), we can increase
(if necessary) €, such that for all € > €, and for all 6 €
[—¢ — du, 0]:

1
2z (0) (&®
" In (1 + W' (e )) 93)

1?2

v (X)) S5

< 1 In (1 + Leﬂf(l())*fs’)) max

w k—1 x:L(x)<2a4
(IV) Eventually, it is possible to increase (if necessary) €,
such that (93) holds for all € > ey, and also for all 4 € [0, d].
Indeed, by integration of (61) over [0,d] for j = 2,..., v+ 1
with the definition of d; in (55) and (57), since the function 3

has null contribution by virtue of (92) and moreover quﬂ) =

0, we get for all 0 € [0, J]

VO (el < Vel th), (94)

and, using additionally commutative (118) and associative
(119) properties with the partial ordering (22), we get for all
fel0,6]and j =2,...,v

VO (ed) < VO (ef) + 162"

max {F }>< 95)
j=

.....

8
o j+1 o j o j
< [ e v o) (@ ).
Upon noticing that for § € [—c¢ — dy,0]: V(")(eéj)) =
Vv (xé])) < l(S) by (91) and the initialization (13), the
inequalities (94) and (95) give place to

02
et < %
9 < E + 162 ;ax {I‘(O)} X
<6(rIY 427D 119 G 22w, (96)
where 7'(] ) = maxge[o,s] V(O)(eéj )). Using the asymptotic

properties (27), (28) of §, we can assume €y, (increased if
necessary) such that

3262f(10)5(6> max {F(O)} <q
=

for all € > e, with g € (0, 1) such that
11+g¢q
= < 1. 97
P=51, €0
Eventually from (96) we obtain 7 < (l(s) ) H)) for
j=2,...,v,and T(”H) l( ok . These recursive inequalities

can be solved backwards to glve with (97)

()

; 1
= VOed)y <19 (24 —— 98
Too eren[g)g] (ee ) 1_ (98)
forallj =2,...,v+1 and € > €4. These inequahtles are used

like in step (IIT) to meet (93) for all € > €, (with increased
€o if necessary) and for all 6 € [0, 6]. The steps (I)-(IV) prove
(86) and, as a consequence of (78),

W) <197 v > 0. (99)
In particular, by definition of TW(*°) we have
VE <102 v > 0. (100)

State and estimates asymptotic convergence analysis. Once
the boundedness condition (99) has been obtained, it is easy
to prove asymptotlc convergence to zero of x; (and all the
errors J ). For later use, notice that (99) implies that X(Q)
and e,E]), j = 2,...,v + 1 are bounded for all £ > 0. We
begin with (61) for 7 = v + 1. Recalling that the function
~3 in (61) has null contribution on account of (100) and the
conclusions in (82) form (79) and moreover, qiyﬂ) = 0,
we obtain limy_, 4, V() (eﬁ”“)) = 0. By induction assume

limy 4o V(O)(egﬁl)) = 0 for some j = 2,...,v. Using



(61) with (71) and recalling that the functions 3 in (61)
and, respectively, 5 in (71) have null contribution on account
of (100) and the conclusions in (80), on application of the
Razumichin-type theorem 1 of [35] (in particular formula (32))
with exogenous input V() (e,(fj H)), we obtain the existence
of f© e KL and p(® e KL such that V(O)(egj)) <
BV (ef),t) + ) (supgepo g V) (eff ) for all t >
0. This, upon the induction hypothesis on V'(®) (e,(fj +1)), im-
plies limy_, o0 V(@ (e)) = 0. It follows by induction that
lime 00 V@ (el) = 0 for all j = 2,...,v + 1. Finally,
consider (35) with (47). Recalling that the functions 7; in
(35) and v, in (47) have null contribution on account of
(100) and the conclusions in (80) form (79), we obtain
the existence of 5*) € KL and p(®) e KL such that
V(s)(XEQ)) < ﬁ(s)(v(s)(x((f)),t) + P(8)<SUP9e[o,t] V(O)(e((f)))
for all ¢ > 0. This, with limy_, ., V) (e!”) = 0, implies
limy_, 4o V(‘S)(XEQ)) = 0 and, therefore, lim;_, o x?) =
limy_, 4 o x; = 0. Convergence and boundedness are uniform
by the same theorem 1 of [35].

E. Extensions: output nonlinearities, time-varying input de-
lays, multiple delays and robustness

1) Output nonlinearities: Theorem 4.1 can be extended by
including output nonlinearities in our model (4) as y; :=
Cx¢_d, + ¥(X¢—a,), smooth 1, and at the same time adding
incremental homogeneity assumptions on 9 in (H2) as follows:
(H2b) CT4 is incrementally homogeneous in the upper
bound with quadruples (t,v — §(°) §©) CTT) (2 ")), with
w7 (0,0)0)(0,0) < CTC.

The condition \II(O)T(O,O)‘II(”)(O,O) < CTC is a sector-
condition on the linear approximation of . For instance,
a saturated output y; := 0;(Cx¢_q,) meets (H2b). The

definition of the innovation zgj ) in each observer (7) must be

changed by replacing C’)Acgj) with C)Acgj) + (J)\(o)(e) ()?,E])) )

2) Time-varying input delays: Theorem 4.1 can be also
extended to the case of time-varying delays. In this case, we
assume that c;, the input delay, is continuous and bounded by
some known ¢y, and the functions {d;, c;} known up to time
t. The partition{p(j )} j=1,...» for defining the observer chain
is applied on the interval [—c4,d]. Theorem 4.1 remains
true (but the proof is a slightly more lengthy and tedious)
by replacing ¢ with ¢y, and changing the control law (14) as
follows:

w, = —ROBTPE) (1, — ATG®)) x
X Or e ((In _ ATG(S))—ls\(ngrl)) if —c, e [pW, plith),

Notice that the control u; changes according to the relative
position of —c; with respect to the partition of [—cy, 0]. The
definition of u; depends only on the value of c; at time t.
3) Multiple input and measurement delays: More realisti-
cally, for our MIMO system (4), (5) we may consider multiple
input and measurement delays as follows. The input vector
u;_. is replaced by the vector (W1 4—c,, *, Um.i—c,, )", for
multiple delays ¢y, - - -, ¢, and the measurement vector y; is

replaced by the vector (C1%;—q, ,,- -, CpX¢—a, )", for mul-
tiple delays dy ¢, --,dp+. Theorem 4.1 can be extended by
including multiple delays by simply re-defining each controller
component u;;, j = 1,...,m, as in (14) by using the delay c;
and, similarly, each innovation component z;¢, j = 1,...,p,
in the observer chain as in (9) by using the delay d; ;.

4) Robustness w.r.t. uncertainties and disturbances: The
controller (7), (14), in particular the chain of observers (7),
relies on the perfect knowledge of the nonlinear function ¢(-),
This may cause a lack of robustness. If we adopt a more
general model (inclusive of uncertainties and disturbances)

Axt + But—c + ¢(Xt7wt)a t=2—c— 2d007
OXt—dt + Dwt_dt, t > 0 (101)

Xy =

yt =
where w; is a time-varying disturbance/uncertanty (norm-
bounded by wy), it is possible to robustify the controller (7),
(14) as follows: while (14) remains the same, (7) is modified
by replacing ¢(JA<O>(E)(§<§J))) with rj)(a/\(o)(e)(iij)),O). By
slightly strengthening the incremental homogeneity assump-
tions (H1)-(H2) in such a way to include the effect of the
variable w on ¢(x,w) it is possible to prove a disturbance-to-

state stability result for the closed-loop system resulting from
(101).

F. Example and simulations
For testing our stabilizer we consider the system
(102)

. 2
X2t = —X1¢ T (1 - Xl,t)Xz,t + U1, Yt = X1,¢—d,

X1t = X2t

The measurements are taken over intervals of the form
[1.1h,1.1h + 1] for h = 0,1,... and are supplied at a high
rate during the subsequent time interval [1.1h+1,1.1(h+1)].
Correspondingly, the measurement delay profile is d; as
follows: d; = ¢t — 1.1h if t € [1.1h,1.1h + 1] and d; =
1-10(t—1.1h—1)ifte [1.1h+1,1.1(h+1)], A =0,1,...,
and it is bounded by d,, = 1. Moreover, the input delay
is ¢ = 1. System (102) satisfies assumptions (H0)-(H3) of
theorem 4.1 with t; = 1/8, vy = 3/8, f{¥ = §{* = 1/8,
9 = 1/2 and §) = 1/4. A stabilizer has been designed
according to our procedure and a simulation has been worked
out with initial conditions x_. 24, = (—5,—4)T. With
such state initial conditions (a square initialization region C
with side 10 has been guaranteed) an observer chain with
v = 11 is sufficient for our aims. The interval [—1,1] has
been partitioned into 10 subintervals with equal length 0.2 and
points p; = —14+0.2(j—1), j = 1,..., 12 (with the extra point
p12 := 1.2). The saturation levels of the estimates are set with
1) = 0.05 and 1(® = 0.1, the diagonal elements of ') are
respectively 1 and 10 (see lemma A.4), the diagonal elements
of I'(®) are respectively 10 and 1 (see lemma A.3). The closed-
100;) state trajectories x; together with the prediction errors
e§2 are shown versus time in Fig. 1.

V. SAMPLED-DATA STABILIZERS

The design of continuous-time stabilizer for (4), (5) given in
the previous section suggests naturally the way of designing



Fig. 1. Closed-loop state trajectories x; = (x1,¢,%2,¢)7 and prediction
errors relative to x¢41 = (x1,t+1,x27t+2)T.

a sampled-data stabilizer for (4), (5). This will consist of a
sampled-data controller and a chain of sampled-data observers
with sampling period 7. Sampled-data stabilizers can be
naturally obtained from particular classes of stabilizers with
continuous-time states as follows. Let

u; = Oé()?th),

Re = AR, + BRI yllostdy e [ 4,00, (103)

1 th
h,k € N, k < h, be a stabilizer for (4), (5) with
tn, := hT, locally Lipschitz continuous functions «, /5 and
vt (v, vy, vy, ). Notice that (103) has

continuous-time states X; over [tp,tn41] and discrete-time
control u, (with zero-order hold over [}, t541]) and innova-
tions B(R 0 t) yltorti)y

A sampled-data stabilizer for (4), (5) is obtained from a
zero-order hold discretization of (103), i.e. by discretizing the
continuous-time states:

Uy, = a(ith%

o(toyte)

Ri., = ArRe, + Bro(Xy, yoot) Th e N, (104)

» it

where Ar = 47 and By = SOT e“%ds. The stability analysis
(boundedness and asymptotic convergence) of (4), (5), (104)
is carried out through the stability analysis of (4), (5), (103)
(therefore, following the proof of theorem 4.1) since the
estimate X; given by (103) and the estimate X;, , given by
(104) coincide at the sampling times.

With this in mind, we first design a stabilizer for (4), (5)
having the form (103). From this we obtain a sampled-data
stabilizer for (4), (5) according to the zero-order hold dis-
cretization procedure pointed out in (104). The §-fine partition
{p(j)}j:,__,y of the interval [—c¢,d] is chosen so that each
point pU) (and therefore &) is a multiple of the sampling time
T'. For this reason, exactly as § in the proof of theorem 4.1,
the sampling period 7" will depend on the parameter ¢ and,
therefore, both on the magnitude of the delays and on the
growth rate of the nonlinearities. Let define a stabilizer for (4),
(5) having the form (103). Let P\, RU) G, j e {s,0}, be
as in (8) and (15). The observer part consists of a chain of v
observers:

~(9)
Xy

= A%V 4+ Bu?), (105)

+ 6 (oaog () + POTCTROLD,

j=27..,7V—|—17 te [th7th+1)7

with innovations zgj ) and delays s defined as in 9), (10)
for j =19+ 1,...,v+ 1, where now y,( is the past output
at t¥) := max{t, € [0,t]: tj, —d;, <t—pU~V}, and in (11),
(12) for 7 = 2,..., 1. Each observer is initialized as in (13).
The controller is defined as

w, = —ROBTPE(1, — ATGL)) x (106)
X O\ (e) ((In - ATG(S))_l}’Eg)), t € [th,thi1)-

It is easy to check that (105), (106) has the form (103). The
main result of this section is the following and it is proved
along the lines of the proof of theorem 4.1, taking into account
that the discrete time control and innovations can be seen as
continuous-time signals affected by small time delays.

Theorem 5.1: Let C < R™ be a given compact set. Under

assumptions (HO0)-(H3) there exist diagonal positive definite
It e R**" 1U) e R., j € {s,0},¢,6,T € R. and a §-fine
partition {p(j)}j:_lyn_w of [—c,dy], extended and centered
at 0, such that the solutions (xt,fcgj)), j=2...,v+1,of
4), (5), (105), (106), with x_._24,, € C, are bounded for all
t> —c—2dy and lim;_, 1 oo X; = 0.
The controller (105), (106) semi-globally asymptotically sta-
bilizes (4). Also in this case boundedness and convergence re-
sults are uniform (in the sense of KL functions). The sampled-
data stabilizer, obtained from a zero-order hold discretization
of (105), (106) as pointed out in (104), semi-globally asymp-
totically stabilizes (4) as well, since the estimate X; given
by (105) and the estimate X;, given by its zero-order hold
discretization coincide at the sampling times.

The problem can be studied in the framework of non-
uniform sampling and the sampling period 7" may be variable.
The only additional hypothesis to be taken into account is a
positive lower bound for 7' (no Zeno phenomena) while the
upper bound for T is determined as in theorem 5.1.

VI. CONCLUSIONS

We proposed semi globally stabilizing continuous-time and
sampled-data controllers for nonlinear systems with input and
measurement delays. This controllers consists of a chains of
nonlinear (high-gain) observers that reconstruct the unmeasur-
able state at different delayed time-instants, which partition
the maximal variation interval of the time-varying delays. The
number of observers is in general larger as the maximum
delay is larger and also depends on the growth rate of the
nonlinearities. Stronger nonlinearities require a larger number
of observers. The state prediction is used by a nonlinear
controller to stabilize the system through the delayed control
input. Saturations (or alternatively rate limiters) take care of
the strong nonlinearities of the system and avoid the peak-
ing phenomenon (well-known for systems with no delays).
Switching error-correction terms take care of the time-varying
delays. Further study will be devoted to global controllers.

APPENDIX

The notion of (incremental) homogeneity in a generalized
sense has been introduced in [4] in the context of (semi-)global



stabilization and observer design problems. Here we recall this
notion in a slightly more general form. Let

(Ag)(a',2") := (o) — p(a")

and if ¢ is the identity function we simply write A(z’, 2”) :=
a —a”.

Definition A.1: A parametric function ¢(¢) € C°(R" R!),

€ € R., is said to be incrementally homogeneous (in the
generalized sense: g.i.h.) with quadruple (t,9,b, ®(a’,2")) if
there existd € R! h € R", v € R and ® € C°(R™ x R", R*"™)
such that for all e € R~ and x',z” € R"
(Ag(e))(€ o', e 0a”) = o (B(2/,2")A(" 0 2/, " 0 2”))
When the variation A of ¢(¢) is computed in between the
dilated points 2’/ := 2 € R™ and 2” := 0, with ¢(¢)(0) = 0,
we say ¢(€) is homogeneous (in the generalized sense: g.h.)
with quadruple (¢,0,b, ®'(x)) with ®'(x) := ®(z,0).

Example A.I: The parametric function ¢(€) x €
R? — (ex$ — €%x3 emy + €%x2)T is gih. with quadruple

(107)

(1o, (1, -1)7,(3,4)T, ®(2',2")) where

B(a,7") = (($3)2+$’1$’1’+($’1)2 ($§)2+$'2$i’+($’2)2)
’ ' 1 1 '

It is also g.h. with quadruple (1o, (1,—1)7,(3,4)T, ®(z')

where ®(x) := ®(z,0).

There are functions, like sin x, which are not g.i.h. but behaves
in the upper bound as an g.i.h. function. This motivates the
following definition.

Definition A.2: A parametric function ¢(¢) € C°(R" R!),
€ € R, is said to be incrementally homogeneous in the upper
bound (in the generalized sense: g.i.h.u.b.) with quadruple
(t,0,b,®(z',2")) if there exist 0 € R.h € R”, v € R,
® e CO(R™ x R",RL™) such that for all € € (1,+0) and
x/’ " e R

{(Ag(e)) ("0’ e 0 a”))

<o (), 2") (A(" 02/, € 0 2")))

Notice that, in the case of g.i.h.u.b., expanding dilations (i.e.
€ (1,400)) are considered. When the variation A of ¢(e)
is computed in between the dilated points x’ := x € R™ and
" := 0, with ¢(€)(0) = 0, we say ¢(¢) is homogeneous in the
upper bound (in the generalized sense: g.h.u.b.) with quadruple
(v,0,h,9'(z)) with ®'(z) = ®(x,0). Some properties of
incremental homogeneity can be found in [4].

A. Properties of (C, A, B)

For each matrix W, let Im{W} be the span of the columns
of W. For any diagonal G € R"*" the matrices A, B and C
in (4) have the following properties:

cAT =0, cCc” =1, B"A=0, BTB=1,, (108)
CTC = diag{C{ C1,...,CJCp} < I, (109)
BBT = diag{B,BT,...,B,,BL} < I (110)

(since Im{CT'} and Im{A”'} are orthogonal subspaces of R"
and C7T is an orthonormal base of Im{C7'}, use duality with
C < BT and A = A7),

(GATY =0, ¥j = n, (111)

(since AT is a left-shift operator when acting on the right and,
moreover, G is lower triangular),

(I, — GAT)~ (112)

2 GAT)I

(noticing that I,, —G A” is nonsingular, this follows from (111)
and the expansion (I,, — X)~' = 3° ) X7 for all square
matrices X such that X" = 0 and I, — X is nonsingular),
CGAT =0, C(I, — GATY' = C(I, - GAT) = C, (113)
BTGA =0, (I, - GAT)'B = (I, - A"G)B = B (114)
(since G is diagonal, G AT is in the span of AT and on account

of (108), (112) and duality) and finally (since A” A and CTC
all orthogonal projections and duality)

GATA = ATAG = ATAGAT 4, | (115)
CTC =1,-ATA, ATA(I, — ATA) =0, (116)
BBT = I, — AAT AAT(I, — AAT) = 0. 117)

Remark A./: It is important to notice that, since AT is
a down-shift operator when acting on the left, all the above
formulas hold true with the following changes: GAT < ATG
and ATA < AAT.

B. Properties of the the left- and right-action ¢
For any diagonal matrix D: (commutative property of ©)

Doe* =¢c"oD. (118)

For any matrices R, S with suitable dimensions: (associative
property of ¢ and the matrix product -)

(RS)o€e" =R(So€'), € o(RS)=(eoR)S (119)
(commutative property of ¢ and the matrix product -)
(Ro€)S=R(e°0S), S(e"oR)=(Soe)R.  (120)

Moreover, (R €")? = ¢* o RT and any invertible matrix R:

(Roe ) ' =¢"oR™ (foR)™'=R11oec™ (121)

C. Auxiliary lemmas

The following two lemmas can be proved by using exten-
sively the definition and properties of incremental homogene-
ity (the proof is omitted for lack of space). Let

S =1, - GDAT, 8 = (I, - ATG®)~?
2O = 1, $ T@AT 50 (1, —T@AT)"1,

20) = (I, — AT~ 2 1, 4 ATTO),

muv

(122)

Extensively, we say that a matrix F' is g.i.h. or g.i.h.u.b. if the
associated linear function F'z is g.i.h. or g.i.h.u.b., respectively.
Lemma A./: Assume (H2) and let G©) and T pe as in (8).

() ATAG@WATA is gih
t, v+ 0 §0) AT AT () AT A),

i) S©f (resp. f) is gihub. with quadruple (v,v +
f(O)’ f(0)7 Z(O)¢(O) (1'/7 x”) (resp (t7 v + f(O)’ f(0)7 @(0) (x/, ‘T”))’

with  quadruple (



(iii) A + SOAY (GO AT s g.ihu.b. with quadruple
(r,v + f("),l F), A+ £ AT AT)),

@iv) S© " (resp. S©)) is g.i.h.ub. with quadruple (t,v —
§0) §0) 5309y (resp. (r, v — (), §0), n@)),

Lemma A.2: Assume (H1) and let G and T'®) be as in
(15).

(i) AATGWAAT is gih. with quadruple (v,v +
jo), (), AATD() AAT),
) S®¢ is gihuwb. with quadruple (v,v —

f(S)j(S)’ SEOBE) (1)),
(i) A+ Y17 (ATG®) AS®) ™" is g.ih.u.b. with quadruple
(0,04 19, A + 1 ATTO) AR,
(v) S (resp. S(S)il) is g.i.h.u.b. with quadruple (¢, t,0,%(%)
(resp. (t,t,0,%%) ).
In what follows, we give a sketchy proof (simple but lengthy
matrix algebra is needed) of a couple of auxiliary results which
we need to prove theorem 4.1. Recall that A < B, A,B €
R™*! means Ajj < Byjforalli =1,...n, j = 1,...,1,
and supyc A(6), A(0) € R™*! for each § € R™ and compact
N < R™, represents any matrix M such that A(f) < M for
all 0 € N. If {N(c)}cerr is a family of compact sets N (c)
R™ continuously depending on ¢ and such that N'(c) — {0}
as ¢ — 0 then supgepr() A(f) is assumed to be such that
SuPgepr () A(0) — ©(0) as ¢ — 0.

Lemma A.3: Let ®(©) (2, 2") be as in (H2). For each 1°) €
R~ and positive definite diagonal I'(®) € R"*™ define

n—1
N© = A+ 54 ) (1 AT)

j=1

M©) = 25 pInl©) - plo) .-

e sup DO (2, 2")(123)

2!z R
I/ 11,12 | <nt(©)

For each a € (0,1) there exist 19 € R. and T© such that
for all 1©) < 1%

K©:=al, + N© 4 M© 4+ N7y 110" 9410) < 0.(124)

Proof: (Sketch). Recall that
Supz’,m”eN(l(o))CI)(O)(x,vl'”) - @(O)(O,O) as 1) — 0,
with N((?) = {z e R» |z < ni(®} so that
FO|joy_g = ®)(0,0). Using assumption (H2) for which
®(°)(0,0) is lower triangular, for each a € (0, 1) find positive
definite diagonal T'(®) € R™*" such that K(©)|;)_q < —1I,.
Finally, pick lgg) € R. (sufficiently small) such that
K(O)‘z(w:zgg) — K©)|y_o < I, taking into account that
Fl) < F(O)|l<o>:z§g> (and therefore M(©) < M(O)|z<o>:lgg))

for all 1(©) < 152, n
The following lemma is dual to lemma A.4 and the proof goes
exactly in the same way.

Lemma A.4: Let &) be as in (H1). For each[®) € R.. and
positive definite diagonal T'(*) € R"*" define

n—1

N = A+ (ATT®)]AR) (125)
j=1
M®) = SO FERE Cpe) . qup d). (126)
/R :

o | <) 1 112

For each a € (0,1) there exist 1) € Ro and T®) such that for
all 19 < 1§

)T

K :—al, +N® 4 M £ NOT 0" _or < 0. 127)

Lemma A.5: Consider the function ¢ : Ry x Ry — R
defined in (85) withd e R-, p,m : Ry - Randx : Ry — R
such that
(e

lim = 400.
€——+0 X(e

~—

lim p(e) = peo > 0,

€——+00

(128)

~—

There exists €5, > 0 such that for all € = €x: &(v,w) = 0 for
allv,we R>.
2

Proof: We distinguish two cases. If 0 < w < 1(®)”/d:
w(e) 1
x(€) d 4 16)°
From (128) and since x(e) > 0 for all € = 0, it follows the
existence of ey > 1 such that for all € > ex: (v, w) = 0

2

< 1¢)”/d. On the other hand, if w >

(v, w) = ple)v + X(e)[ - 1]dv.(129)

forall v,iwe Ry :'w
1% /d:

m(e) 1
X(€) d+ 17
From (128) it follows the existence of €5, > 1 (possibly larger)
such that for all € > €,,: £(v,w) = 0forall v, we Ry : w >
Ok /d. The above facts prove the claim of the lemma. ]

£(v,w) = ple)v + X(e)[ - 1]z<s>2. (130)

REFERENCES

[1] T. Ahmed-Alj, E. Cherrier, F. Lamnabhi-Lagarrigue, Cas-
cade high-gain predictor for a class of nonlinear systems,
IEEE Trans. Autom. Contr., bf 57, 2012, pp. 221-226

[2] T. Ahmed-Ali , F. Lamnabhi-Lagarrigue, Global expo-
nential sampled-data observers for nonlinear systems
with delayed measurements, Syst. Control Lett., 67, no.
7, 2013, pp. 539-549.

[3] T. Ahmed-Ali, I. Karafyllis, M. Krstic, F. Lamnabhi-
Lagarrigue, Robust stabilization of nonlinear globally
Lipschitz delay systems, Advances in Delays and Dynam-
ics, 4, New York: Springer, 2016, pp. 43-60.

[4] S. Battilotti, Incremental generalized homogeneity, ob-
server design and semiglobal stabilization, Asian Journ.
Contr., 16, 2014, pp. 498-508.

[5] S. Battilotti, Nonlinear predictors for systems with
bounded trajectories and delayed measurements, Auto-
matica, 59, 2015, pp. 127-138.

[6] S. Battilotti, Multilayer state predictors for nonlinear
systems with time-varying measurement delays, SIAM
Journ. Contr. and Optim., 57, 3, 2019, pp. 15411566.

[7] D. Bresch-Pietri, N. Petit, Robust compensation of a
chattering time-varying input delay, in Proc. IEEE Conf.
Decision and Control, 2014, pp. 457-462, Los Angeles,
CA.

[8] G. Besancon, D. Georges, Z. Benayache, Asymptotic
state prediction for continuous-time systems with delayed
input output and application to control, Europ. Contr.
Conf., 2007, pp. 552-557.



[9] E. Cacace, A. Germani, C. Manes, A chain observer for
nonlinear systems with multiple time varying measure-
ment delays, SIAM Journ. Contr. and Optim., 52, 2014,
pp. 1862-1885.

[10] F. Cacace, A. Germani, C. Manes, Predictor-based con-
trol of linear systems with large and variable measure-
ment delays, Int. J. Control, 87, no. 4, 2014, pp. 704-714.

[11] E. Fridman and S.-I. Niculescu, On complete Lyapunov-
Krasovskii functional techniques for uncertain systems
with fast-varying delays, Int. J. Robust and Nonlin. Con-
trol, 18, no. 3, 2008, pp. 364-374, .

[12] A. Germani, C. Manes, P. Pepe, A new approach to state
observation of nonlinear systems with delayed output,
IEEE Trans. Autom. Control, 47, no. 1, pp. 2002, pp.
96-101.

[13] M. Ghanes, J. De Leon, J.-P. Barbot, Observer design for

nonlinear systems observer design for nonlinear systems

under unknown time-varying delays, IEEE Trans. Autom.

Contr., 58, 2013, pp. 1529-1534.

S. Ibrir, Observer based control of a class of time delay

nonlinear systems, Automatica, 47, 2011, pp. 388-394.

[15] I. Karafyllis, Stabilization by means of approximate
predictors for systems with delayed input, SIAM Journ.
Contr. and Optim., 49, 2012, pp. 1141-1154.

[16] 1. Karafyllis, M. Krstic, Nonlinear stabilization under
sampled and delayed measurements and with inputs
subject to delay and zero-order hold, IEEE Trans. Autom.
Contr. 57, 2012, pp. 1141-1154.

[17] 1. Karafyllis, M. Krstic, Predictor-based output feedback
for nonlinear delay systems, arXiv:1108.4499.

[18] I. Karafyllis, M. Krstic, T. Ahmed-Ali, F. Lamnabhi-
Lagarrigue, Global stabilization of nonlinear delay sys-
tems with a compact absorbing set, Int. Journ. Contr., 87,
2013, pp. 1010-1027.

[19] J. Lei, H. K. Khalil, High-gain-predictor-based output
feedback control for time-delay nonlinear systems, Au-
tomatica, 71, 2016, pp. 324-333.

[20] N. Kazantzis, R. A. Wright, Nonlinear observer design
in the presence of delayed output measurements, Syst.
Contr. Lett., 54, 2001, pp. 1100-1123.

[21] M. Kirstic, Delay compensation for nonlinear adaptive and
PDE systems, Birkhauser, Boston, 2009.

[22] L. Marquez-Martinez, C. Moog, M. Velasco-Villa, Ob-
servability and observers with time-delay, 2nd IFAC
Workshop Time Delay Syst., 2000, pp. 52-57.

[23] F. Mazenc, M. Malisoff, Local stabilization of nonlinear
systems through the reduction model approach, IEEE
Trans. Autom. Control, 59, no. 11, 2014, pp. 3033-3039.

[24] F. Mazenc, M. Malisoff, Stabilization and robustness
analysis for time-varying systems with time-varying de-
lays using a sequential subpredictors approach, 82, 2017,
pp- 118-127.

[25] F. Mazenc, M. Malisoff, T. Dinh, Robustness of nonlin-
ear systems with respect to delay and sampling of the
controls, Automatica, 49, no. 6, 2013, pp. 1925-1931.

[26] F. Mazenc, M. Malisoff, Z. Lin, Further results on
input-to-state stability for nonlinear systems with delayed
feedbacks, Automatica, 44, no. 9, 2008, pp. 2415-2421.

[14]

[27] F. Mazenc, S.-I. Niculescu, M. Krstic, Lyapunov-
Krasovskii functionals and application to input delay
compensation for linear time invariant systems, Automat-
ica, 48, no. 7, 2012, pp. 1317-1323.

[28] F. Mazenc, M. Malisoff, S.-I. Niculescu, Stabilization
of Nonlinear Time-Varying Systems Through a New
Prediction Based Approach, IEEE Trans. Autom. Control,
62, no. 8, 2017, pp. 2908-2915.

[29] W. Michiels, S.-I. Niculescu, Stability and Stabilization
of Time-Delay Systems, Philadelphia, PA: SIAM, 2007.

[30] M. Najafi, S. Hosseinnia, F. Sheikholeslam, M. Kari-

madin, Closed-loop control of dead time systems via

sequential sub-predictors, Int. J. Control, 86, no. 4, 2013,

pp- 599-609.

H. Omran, L. Hetel, J.-P. Richard, and F. Lamnabhi-

Lagarrigue, Stability analysis of bilinear systems under

aperiodic sampled-data control, Automatica, 50, no. 4,

2014, pp. 1288-1295.

H. Shim, A. R. Teel, Asymptotic controllability and ob-

servability imply semiglobal practical asymptotic stabi-

lizability by sampled-data output feedback, Automatica,

39, 2003, pp. 441-453.

H. Smith, An introduction to delay differential equations,

vol. 57, Springer, 2011.

K. Subbarao and P. Muralidhar, State observer for lin-

ear systems with piecewise constant output delays, IET

Contr. Theory and Appl., 2009, pp. 1017-1022.

C. Ning, Y. He, M. Wu, J. She, Improved Razumichin-

Type Theorem for Input-To-State Stability of Nonlinear

Time-Delay Systems, IEEE Trans. Autom. Contr., 59,

2014, pp. 1983-1988.

V. Van Assche, T. Ahmed-Ali, C. Hann, F. Lamnahbi-

Lagarrigue, High gain observer design for nonlinear

systemswith time varying delayed mea- surement, 18th

IFAC World Congr., 2011, pp. 692-696.

B. Zhou, Pseudo-predictor feedback stabilization of lin-

ear systems with time-varying input delays, Automatica,

50, 2014, pp. 2861-2871.

B. Zhou, Z. Lin, G.-R. Duan, Truncated predictor feed-

back for linear systems with long time-varying input

delays, Automatica, 48, 2012, pp. 2387-2399.

Stefano Battilotti was born in Rome, Italy, in 1962.
In 1992 he joined the Dipartimento di Ingegneria
Informatica, Automatica e Gestionale Antonio Ru-
berti (DIAG) of Sapienza in Rome (Italy), where
since 2005 he is a Professor of Automatic Control.
He authored more than 50 journal papers and the
monograph “Noninteracting control with stability
for nonlinear systems”, LNCIS Springer series. His
research interests are currently focused on state
estimation and control of nonlinear systems and
networked systems.



