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Abstract: Background: RT-PCR on nasopharyngeal (NPS)/oropharyngeal swabs is the gold standard
for diagnosis of SARS-CoV-2 infection and viral load monitoring. Oral fluid (OF) is an alternate
clinical sample, easy and safer to collect and could be useful for COVID-19 diagnosis, monitoring viral
load and shedding. Methods: Optimal assay conditions and analytical sensitivity were established
for the commercial Simplexa™ COVID-19 Direct assay adapted to OF matrix. The assay was
used to test 337 OF and NPS specimens collected in parallel from 164 hospitalized patients;
50 bronchoalveolar lavage (BAL) specimens from a subgroup of severe COVID-19 cases were
also analysed. Results: Using Simplexa™ COVID-19 Direct on OF matrix, 100% analytical detection
down to 1 TCID50/mL (corresponding to 4 × 103 copies (cp)/mL) was observed. No crossreaction
with other viruses transmitted through the respiratory toute was observed. Parallel testing of 337 OF
and NPS samples showed highly concordant results (κ = 0.831; 95 % CI = 0.771–0.891), and high
correlation of Ct values (r = 0.921; p < 0.0001). High concordance and elevated correlation was
observed also between OF and BAL. Prolonged viral RNA shedding was observed up to 100 days
from symptoms onset (DSO), with 32% and 29% positivity observed in OF and NPS samples,
respectively, collected between 60 and 100 DSO. Conclusions: Simplexa™ COVID-19 Direct assays on
OF have high sensitivity and specificity to detect SARS-CoV-2 RNA and provide an alternative to
NPS for diagnosis and monitoring SARS-CoV-2 shedding.
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1. Introduction

Since the global pandemic spread of SARS-CoV-2 [1–3], a priority focus has been on development
of rapid and sensitive diagnostic assays using easily obtainable clinical samples. Diagnostic testing
for SARS-CoV-2 infection by viral RNA detection in respiratory specimens is required for decision
making for clinical management, infection control or public health measures, triage and isolation in
healthcare facilities. The WHO currently recommends RT-PCR testing using nasopharyngeal (NPS)
and oropharyngeal swabs (OPS) as gold standard for SARS-CoV-2 diagnosis and for monitoring viral
load [4,5]. OF has been suggested as an alternate clinical sample, easy and safer to collect, minimizing
exposure of healthcare workers and could be useful for making a diagnosis and measuring SARS-CoV-2
viral load and viral shedding during the course of the illness and convalescence [6–13]. To et al.,
demonstrated that SARS-CoV-2 was present in OF specimen of 11 out of 12 patients, with viral load
being higher during the first week after symptoms onset and declining thereafter, being detectable until
25 days after symptoms onset (DSO) [14,15]. In another study, SARS-CoV-2 RNA was detected in OF
of one patient for prolonged period, up to 37 DSO [16]. We evaluated the use of commercial Simplexa™
COVID-19 Direct assay on OF samples from hospitalized COVID-19 patients, for identification of
SARS-CoV-2 RNA, duration of viral shedding, and determining the assay specificity and sensitivity on
OF samples compared to NPS and BAL samples.

2. Materials and Methods

2.1. Patients and Clinical Specimens Collection

OF specimens were collected from 164 patients hospitalized at National Institute for Infectious
Diseases “Lazzaro Spallanzani” (INMI) in Rome. The median age of patients was 59 years (IQR: 43–73),
111 males (67.6%) and 53 females (32.3%). A total of 337 of OF samples were collected in parallel with
NPS and results were compared; 50 BAL samples were also collected and analysed concomitantly with
NPS and OF samples from a subgroup of patients attending the Intensive Care Unit, showing more
severe presentation (PaO2/FiO2 < 100), 7 of whom subsequently died. In this study, patients admitted
with suspect of COVID-19 but with definitive diagnosis other than COVID-19, were considered as
negative controls. Number of patients and clinical characteristics are described in Table 1.

Table 1. Patient’s number and characteristics.

Asymptomatic Paucisymptomatic Severe (PaO2/FiO2 < 100) Negative Tot

Patients (N◦) 14 61 12 77 164

Samples (N◦) 18 154 50 115 337

NPS were immediately put into sterile tubes containing 2–3 mL of viral transport media,
like COPAN UTM® Universal Transport Medium; from a subgroup of patients with more severe
manifestations also BAL samples were collected. As far as OF is concerned, most specimens were
collected by passive drooling, spontaneusly produced without external stimuli; for some patients,
to obviate the scarce salivation, sublingual OF was collected using sterile pipettes. All OF were collected
neat, without any type of diluent and at least 30 min after drinking or eating or washing theeth.

2.2. Analytic Sensitivity

The SARS-CoV-2 isolate 2019-nCoV/Italy-INMI1 [17] was propagated in Vero E6 cells (C1008;
African green monkey kidney cells). Cells were maintained in Dulbecco’s minimal essential medium
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(DMEM) containing 10% foetal bovine serum (FBS) and 0·05 mg/mL gentamycin at 37 ◦C with 5% CO2
and FBS concentration was reduced to 2% for viral propagation.

The infectious titre of the viral stock used in the study, performed by Reed and Muench method
on VeroE6 cells, was 107 TCDI50/mL. The evaluation of the corresponding concentration of RNA copies
(cp)/mL in the viral stock preparation was performed as follows: SARS-CoV-2 RNA was extracted from
the isolate and amplified by real-time quantitative RT-PCR (qRT-PCR) in Rotor-GeneQ Real-Time cycler
(Qiagen, Hilden, Germany) using RealStar® SARS-CoV-2 RT-PCR Kit 1.0 (Altona Diagnostic GmbH,
Hamburg, Germany). A standard curve prepared through serial dilutions of Corman’s E-SARS-CoV-2
gene [18], obtained by European Virus Archive – GLOBALEVAg has been used to determine the
concentration of the virus stock, corresponding to 1010 RNA cp/mL.

To establish the analytical sensitivity, SARS-CoV-2 particles from the viral stock were spiked
into a pool of OF coming from 25 healthy donors, mixed together and diluted 1:1 with 0.9% NaCl
isotonic solution. Serial ten-fold dilutions from 107 to 10−3 TCDI50/mL were prepared to be tested in
triplicates. When established the last dilution with 100% of positive results, obtained at 1 TCID50/mL,
five replicates of serial 1:2 dilutions were performed until reaching 0.025 TCID50/mL. The results were
used to obtain the limit of detection (LOD) by Probit analysis.

2.3. Analytic Specificity

To assess analytical specificity, OF from 5 healthy donors were mixed together, diluted 1:1
with 0.9% NaCl isotonic solution, aliquoted in different tubes; each tube was spiked with
different respiratory viruses and loaded on MDX instrument. The following viral stocks were used:
Measles virus, Edmonton strain, Titer 104.53 TCID50/mL; Influenza B virus, B/Shandong/7/97 strain,
HA titer 1:640; Influenza A H3N2 virus, A/Pt. Chalmers/1/73 strain, HA titer 1:320; Adenovirus 5,
Adenoid 75 strain, titer 107.75 TCID50/mL; Human coronavirus OC43, Pt isolate, titer 106.54 TCID50/mL;
Human coronavirus 229E, Pt isolate, titer 105.37 TCID50/mL.

2.4. Simplexa™ COVID-19 Direct Assay

Simplexa™ COVID-19 direct assay is a real-time RT-PCR system that enables the direct
amplification of Coronavirus SARS-CoV-2 RNA from several specimens, without sample processing
like RNA extraction. In the Simplexa™ COVID-19 Direct assay (DiaSorin Molecular LLC, Cypress,
CA 90630, U.S.A.), fluorescent probes are used together with corresponding forward and reverse
primers to amplify two different regions of the SARS-CoV-2 genome: ORF1ab and S gene; an RNA
internal control is used to detect RT-PCR failure and/or inhibition. For testing with the Simplexa™
COVID-19 Direct assay, one vial of Reaction Mix was thawed for each sample followed by loading
50 µL of sample (OF) that was previously diluted 1:1 with 0.9% NaCl and 50 µL of Reaction Mix to their
specific wells on a direct amplification disk (DAD). The DAD was then loaded onto the LIAISON®

MDX instrument (DiaSorin Molecular), which is a compact and expandable thermal cycler with an
extremely small footprint and the capability to connect up to four instruments with a single laptop.
Upon completion of the run, the software automatically calculates and provides easy to understand
results with the ability to check amplification curves after a run. Samples with Ct values < 40 were
considered positive, according to test procedure indications; for statistical calculations, an arbitrary
value of 45 Ct was assigned to negative samples.

2.5. Statistical Analysis

Data management and analyses were performed using IBM SPSS Statistics version 26 (IBM Corp.,
Armonk, NY, USA), STATA version 15 (Stata Corp LP, College Station, TX, USA) or GraphPad
Prism version 8.00 (GraphPad Software, La Jolla, CA, USA). Descriptive analysis was performed to
characterize patients enrolled in the study and above described. Median values and interquartile
ranges (IQR) were used to describe numerical variables, while counts and percentages were employed
for categorical variables. The analytical sensitivity (SARS-Cov-2 copy number and TCDI50 at a 95%
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detection proportion) was calculated by probit analysis, using the MedCalc statistical software
(MedCalc Software Ltd., Ostend, Belgium), on the basis of results obtained by several replicates of
serial dilutions of the 2019-nCoV/Italy-INMI1 spiked into OF matrix. The evaluation of the qualitative
concordance between results was performed using the weighted Cohen Kappa statistics [19] and its
95% confidence interval (CI); agreement was evaluated as: poor (less than 0.50), moderate (0.50–0.74),
substantial (0.75–0.90), and almost perfect if greater than 0.90. Linear regression analysis, adjusted for
gender and age, was used to evaluate the relationship between the two quantitative results. To account
for the possible correlation, that may arise from multiple samples belonging to the same patient, robust
standard errors were computed.

2.6. Ethical statement

This work can be considered exempt from continuous review by an institutional ethical review
board, because it comprises secondary use of completely anonymized specimens.

3. Results

3.1. Analytical Sensitivity and Lower Limit of Detection (LOD)

The analytical sensitivity (i.e., the limit of detection, LOD, corresponding to the concentration
of SARS-CoV-2-RNA detected with response probability of 95% for either S or ORF1ab) was
determined by Probit regression model, and resulted to be 0.48 (CI: 0.27–2.89) TCID50/mL for
S and 0.61 (CI: 0.35–3.01) TCID50/mL for ORF1ab, corresponding to 3.28 (CI 3.03–4.06) logRNA
cp/mL and 3.38 (CI 3.14–4.09) logRNA cp/mL, respectively (Figure 1). Analytical sensitivity was
similar to that obtained for NPS in a previous study from our group, using the same virus
isolate and the same experimental methods, being 0.40 (CI: 0.2–1.5) TCID50/mL for S and 0.40
(CI: 0.2–1.3) TCID50/mL for ORF1ab corresponding to 3.2 (CI: 2.9–3.8) log10 cp/mL and 3.2 log10
(CI: 2.9–3.7) log10 cp/mL for S and ORF1ab, respectively (around 1500 cp/mL) [20]. However, a similar
analytical sensitivity (1200 cp/mL) was also described for NPS in two additional assays widely used
in SARS-CoV-2 molecular diagnosis: RealStar® SARS-CoV-2 RT-PCR Kit 1.0 (Altona Diagnostics,
Hamburg, Germany: https://www.fda.gov/media/137252/download) and CDC COVID-19 RT-PCR
panel assay (IDT, Coralville, IA: https://www.fda.gov/media/134922/download) [21].
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3.2. Analytic Specificity

Results obtained for OF spiked with H-CoV229E, H-CoV OC43, ADV, FluA; FluB and MV
confirmed high specificity, and lack cross-reactivity with other viruses transmitted through the
respiratory toute.
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3.3. Performance Evaluation on Clinical Specimens

The first performance evaluation on clinical specimen was done by testing 41 consecutive OF
samples, including 9 samples from SARS-CoV-2-negative patients, with the Simplexa™ COVID-19
Direct assay and comparing results with that obtained using RT-PCR method established by Corman
VM. et al. [18] as reference assay. Analysis showed a substantial concordance in SARS-CoV-2 RNA
detection between the two assays (κ = 0.8; 95% CI = 0.612–0.982). Of the 41 samples, 21 resulted
positive to both tests, 4 resulted positive only using Simplexa and 16 resulted negative to both assays.
Notably, the 4 discordant results positive with Simplexa™ COVID-19 Direct assay but negative with
Corman’s method, came from patients with clinically confirmed COVID-19. The Ct values obtained in
the two assays show good correlation (r = 0.770; p < 0.0001) in linear regression analysis, Figure 2A.
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Figure 2. (A) Correlation between Simplexa™ COVID-19 Direct assay and reference method applied
to OF samples. Ct values obtained on 41 OF samples tested in parallel with Simplexa™ COVID-19
Direct assay and RT-PCR by Corman VM reference method are included in the linear regression
analysis (r = 0.770; p < 0.0001). (B) Correlation between NPS and OF samples. Results obtained from
292 samples tested for the presence of SARS-CoV-2 RNA both in NPS and OF matrices are included in
linear regression adjusted for cluster, sex and age (r = 0.921; p < 0.0001).

The performance of Simplexa™ COVID-19 Direct assays on clinical specimens was further
established by testing in parallel NPS and OF samples for the presence of SARS-CoV-2 RNA.
Concordance analyses performed on 337 samples, showed a total of 309 concordant and 28 discordant
results, with κ = 0.831; 95 % CI = 0.771–0.891. Linear regression analysis adjusted for cluster of repeated
measures, sex and age, performed on 292 samples for which Ct values were available for both matrices,
showed elevated correlation of Ct values among NPS and OF (r = 0.921; p < 0.0001)(Figure 2B). An even
higher correlation was obtained excluding repeated measures and considering only first results from
each patient (r = 0.958 and p < 0.0001), thus confirming high correlation of Ct values among NPS
and OF.

3.4. Frequency and Duration of SARS-CoV-2 Shedding

For 162 samples we were able to analyse the presence of viral RNA both in OF (Figure 3A) and NPS
(Figure 3B) samples, considering the days from symptoms onset (DSO). For asymptomatic individuals,
DSO has been calculated from the time of notification to the surveillance system. Presence of RNA in
both matrices was observed during the first 30 DSO (67% OF; 72% NPS), remaining stable between 30
and 60 DSO with similar frequency (65% OF; 76% NPS) and was still observed until 100 DSO (32% OF;
29% NPS). Among the analysed samples, 50 were from severe patients (red symbols) while the remaing
samples were from paucisymptomatic and asympomatic patients (black symbols).

Moreover, statistical comparison between OF and NPS has been performed, showing no significant
difference (p > 0.05) between median Ct values in OF and NPS, neither in total nor according to different
DSO intervals (Table 2).
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Results obtained from 162 samples tested for the presence of SARS-CoV-2 RNA both in OF (A) and
NPS (B) and expressed as Ct values vs. days from symptoms onset. Red symbols refer to samples
coming from patients with severe COVID-19 disease, while black symbols refer to paucisymptomatic +

asymptomatic patients.

Table 2. Comparison of median Ct values in OF and NPS, total, and according with DSO.

OF: Median Ct Values (Range) NPS: Median Ct Values (Range)

Tot 32.2 (11.0–45) 32.0 (11.9–45)

DSO
0–30 31.0 (11.0–45) 31.0 (11.9–45)

31–60 33.3 (20.4–45) 33.4 (22.6–45)
>60 45.0 (30.0–45) 45.0 (21.3–45)

Results obtained from statistical analysis confirmed a comparable trend in the two matrices
OF and NPS, with Ct median values lower in the first 30 DSO (corresponding to higher viral load)
progressively increasing at 60 and > 60 DSO, as expected.

Concerning gender, median Ct values in both district were slightly higher in males (median Ct in
OF: 33.5; median Ct in NPS: 32.9) than in females (median Ct in OF: 31,4; median Ct in NPS: 30.5),
despite the differences were not significant. Concerning age, Ct values both in OF and NPS were
significantly lower in patients <60 years (i.e., according to the median value of patient’s age) (Table 3).

Table 3. Comparison of median Ct values in OF and NPS according to age.

Age Significance
(p Value)<60 Years >60 Years

OF: Median Ct values (range) 29.9 (13.5–45) 34.3 (11.0–45) p = 0.0007

NPS: Median Ct values (range) 29.8 (13.0–45) 33.9 (11.9–45) p = 0.0004
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The data obtained in individuals with repeated measures have been separately shown in Figure 4A:
OF and Figure 4B: NPS confirming in both matrices the general trend to progressive decrease of viral
RNA concentration (i.e., increase of Ct values) observed in Figure 3 and in Table 2.
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Figure 4. Shedding of SARS-CoV-2 RNA in (A) OF and (B) NPS samples from individuals with repeated
measures, according to days from symptoms.

3.5. Sub-Group Analyses for OF vs. NPS vs. BAL Samples

Analyses of a subgroup of severe patients for whom repeated parallel NPS, OF and BAL samples
were available (Figure 5) showed 78% positivity (Ct values < 40) in all district during the first
30 DSO; 70% positivity in OF, 74% in NPS and 65% in BAL between 30 and 60 DSO and 33% of
positivity in all matrices > 60 DSO (Figure 5A,C,E). Elevated concordance was observed for virus
detection in the various matrices (NPS vs. OF: κ = 0.848, 95% CI = 0.684–1.00; BAL vs. OF: κ = 0.714,
95% CI = 0.501–0.927; OF vs. BAL: κ = 0.646, 95% CI = 0.489–0.883), and highly significant correlation
between the Ct values obtained on the three matrices (NPS vs. OF: r = 0.810, p < 0.001; BAL vs. OF:
r = 0.797, p < 0.001; NPS vs. BAL: r = 0.732, p < 0.001) (Figure 5B,D,F). Statistical comparison between
OF, NPS and BAL has been performed, showing no significant difference between median Ct values
in the three district, neither in total nor according to different DSO intervals (Table 4). Nevertheless,
when considering the earlier time interval (0–30 DSO), median Ct values in BALwere lower respect to
NPS and OF, although the difference was not statistically significant (p > 0.05).

We re-analyzed data of Figure 5A,C,E only for individual repeated measures, in order to show
interpersonal and intrapersonal variability (Figure 6).
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Table 4. Comparison of median Ct values in OF, NPS and BAL, total and according with DSO.

OF: Median Ct
Values (Range)

NPS: Median Ct
Values (Range)

BAL: Median Ct
Values (Range)

Tot 31.0 (13.1–45) 31.4 (5–45) 32.5 (11.9–45)

DSO
0–30 30.0 (13.1–45) 29.8 (11.9–45) 24.1 (5.0–45)

31–60 32.7 (17.5–45) 33.4 (16.4–45) 33.4 (24.5–45)
>60 45 (31.1–45) 45 (21.3–45) 45 (17.7–45)
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Figure 5. Shedding of SARS-CoV-2 RNA in OF, NPS and BAL samples based on data symptoms
onset and correlation analyses. Results obtained from 50 samples coming from 12 patients with severe
COVID-19 disease in the Intensive Care Unit, showing more severe presentation (PaO2/FiO2 < 100)
tested for the presence of SARS-CoV-2 RNA in OF ((A), round symbol), NPS ((C), triangular symbol) and
BAL ((E), square symbol) and expressed as Ct values vs. days from symptoms onset. Correlation analysis
from Ct values obtained from NPS vs. OF (B), BAL vs. OF (D) and NPS vs. BAL (F).

The data obtained in individuals with repeated measures in the three matrices have been separately
shown in Figure 6A: OF; Figure 6B: NPS; Figure 6C: BAL confirming in both matrices the general trend
to progressive decrease of viral RNA concentration (i.e., increase of Ct values) observed in Figure 5
and in Table 4.
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with repeated measures, according to days from symptoms.

4. Discussion

There are three important findings from our study. First, our results indicate that Simplexa™
COVID-19 Direct assay applied to OF has high analytical sensitivity and specificity, similar to that
observed for NPS; in addition the rate of detection of SARS-CoV-2 in OF by the Simplexa™ COVID-19
Direct assay is similar to that of a standard test, based on Corman’s protocol, and Ct values from both
tests are highly correlated.
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Second, results from testing on paired OF, NPS and BAL samples by Simplexa™ COVID-19
Direct assay showed almost perfect concordance for virus detection, and high correlation of Ct values.
Third, this assay detected prolonged oral shedding of SARS-CoV-2 60 DSO, which continued at least
as long as nasopharyngeal shedding did. Hence, from these results, if appears that the use of this
commercial assay to detect SARS-CoV-2 RNA in OF is of potentially high clinical utility for diagnosis
and virological monitoring purposes.

Key advantages of the Simplexa™ COVID-19 Direct assay are simple operation procedures, with
an all-in-one reagent mix and high-speed of detection in just over an hour, which is significantly faster
than the up to seven hours required by traditional extraction followed by amplification technologies,
currently used to detect SARS-CoV-2 RNA in OF samples [11–16,18]. Moreover, the test does not require
extra-equipment (i.e centrifuges or an extraction system) and technical laboratory infrastructure, being
suitable for the field settings and for near-to-patient diagnosis. The only limitation of the assay is the
small number of samples which can be tested in a run, since each instrument can support a ring of
maximum eight position.

Several recent studies have showed that OF could be an appropriate sample for diagnosis
of SARS-CoV-2 [6,22]. The meta-analysis by Czumbel et al. on the reliability and consistency of
SARS-CoV-2 viral RNA detection in OF specimens found 91% (95%CI = 80%–99%) sensitivity
for OF tests and 98% (95%CI 89%–100%) sensitivity for NPS in previously confirmed COVID-19
infected patients [22].

Diagnostic testing for SARS-COV-2 RNA detection in clinical specimens supports decision making
for clinical, infection control or public health management. SARS-CoV-2 detection is essential for
patient care, triage and isolation in healthcare facilities. OF specimen offers an option for self-sampling,
especially in situations where other specimens are difficult to obtain.

SARS-CoV-2 RNA detection in OF can also be used for screening of close contacts for asymptomatic
infection and disease as part of contact tracing or outbreak investigations, local surveillance programmes
and for screening specific groups like healthcare and social workers. It could also be useful for early
control of viral transmission to vulnerable persons living in closed institutions and long-term care
facilities. Apart from real-time use for medical or public health case management and transmission
control, tests using OF as a specimen for virus detection can be used to surveillance and determining
incidence and prevalence of infection and disease.

In a situation where NPS or other above mentioned specimen is not acceptable, OF could be
considered a valuable alternative specimen. On 8th May, 2020, the U.S. Food and Drug Administration
had authorized the first diagnostic test with the option of using home-collected OF samples for
COVID-19 testing issuing an emergency use authorization (/media/137773/download) (EUA) to
Rutgers Clinical Genomics Laboratory for their COVID-19 laboratory developed test. The Simplexa™
COVID-19 Direct assay on OF to detect SARS-CoV-2 RNA has high sensitivity, and provides an
additional alternative for diagnosis and monitoring SARS-CoV-2 shedding. Further evaluation of the
Simplexa™ COVID-19 Direct assay for home based self-use, surveillance purposes to monitor the
epidemiologic situation in terms of incidence and prevalence of infection and disease in the community
are required.
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