
Single-mode spatiotemporal soliton attractor in
multimode GRIN fibers
M. ZITELLI,1,* M. FERRARO,1 F. MANGINI,2 AND S. WABNITZ1,3

1Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, 00184 Rome, Italy
2Department of Information Engineering (DII), University of Brescia, 25123 Brescia, Italy
3Novosibirsk State University, Novosibirsk 630090, Russia
*Corresponding author: mario.zitelli@uniroma1.it

Received 6 January 2021; revised 23 February 2021; accepted 23 February 2021; posted 23 February 2021 (Doc. ID 419235);
published 26 April 2021

Experimental and numerical studies of spatiotemporal femtosecond soliton propagation over up to 1 km spans of
parabolic graded-index fibers reveal that initial multimode soliton pulses naturally and irreversibly evolve into a
single-mode soliton. This is carried by the fundamental mode of the fiber, which acts as a dynamical attractor of
the multimode system for up to the record value (for multimode fibers) of 5600 chromatic dispersion distances.
This experimental evidence invalidates the use of variational approaches, which intrinsically require that the
initial multimode propagation of a self-imaging soliton is indefinitely maintained. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.419235

1. INTRODUCTION

Optical solitons in fibers have been extensively and successfully
studied over the past 50 years, leading to significant progress in
long-distance optical communications and mode-locked lasers
[1,2]. Although nearly all of these investigations involved the
generation and propagation of single-mode fiber solitons, op-
tical solitons can be supported by multimode optical fibers
(MMFs) as well [3–6].

Interest in MMFs has been motivated by their potential for
increasing the transmission capacity of long-distance optical
links via the technique of mode-division multiplexing (MDM),
exploiting the multiple transverse modes of the fiber as infor-
mation carriers [7]. In this context, it has been predicted that,
in the presence of random mode coupling and nonlinearity,
MMFs can support the stable propagation of Manakov solitons,
leading to a nonlinear compensation of modal dispersion [8,9].
The possibility of overcoming modal dispersion is also of great
interest for high-speed local area networks, where MMFs are
extensively employed [10]. In addition, there is a significant
industrial interest in the use of large-area fibers for up-scaling
the power of fiber lasers, for high-power beam delivery, and for
biomedical imaging applications. In these applications, it is very
important to maintain the high beam quality of single-mode
fibers even when transporting a beam via an MMF [11,12].

When compared with single-mode fiber solitons, experi-
mental studies of optical solitons in MMFs remain relatively
scarce. The analysis of the propagation of femtosecond pulses
undergoing soliton self-frequency shift (SSFS) in graded-index
(GRIN) MMFs has revealed that multiple transverse modes are
effectively mutually trapped by cross-phase modulation, in

spite of their strong linear temporal walk-off due to modal
dispersion [13–17].

To date, the dynamics and stability of MMF solitons
remain yet to be assessed. Theoretical treatments of spatiotem-
poral soliton propagation in MMFs mostly rely on the varia-
tional approach (VA) [18,19]. When neglecting the temporal
dimension, the variational method permits to include the Kerr
effect in the description of the periodic spatial self-imaging
(SSI) which occurs in GRIN MMFs [20]. Based on this
VA, and by adding group-velocity dispersion, it has been pro-
posed that soliton propagation in MMFs can be theoretically
described in terms of a reduced one-dimensional generalized
nonlinear Schrödinger equation with a spatially varying effec-
tive mode area [21–23]. The validity of the VA is based on the
assumption that the initial beam shape is maintained un-
changed upon propagation, except for a limited set of slowly
varying parameters (e.g., the beam amplitude and width).

Now, early experiments of soliton generation in GRIN
MMFs have demonstrated that optical solitons generated by
a highly multimode pump via the mechanism of Raman cas-
cade and SSFS are essentially carried by the fundamental mode
of the fiber [24]. Although the mechanism of spatial beam re-
shaping for soliton pulses remained largely unexplained, it was
attributed to a process of Raman beam clean-up. In recent
years, new experiments revealed that the Kerr effect can also
lead to spatial beam self-cleaning in GRIN MMFs. In this case,
an irreversible transfer of energy toward the fundamental mode
of the fiber is induced by modal four-wave mixing (FWM)
processes, quasi-phase-matched by SSI [25]. The occurrence
of spatial beam self-cleaning has been investigated both in
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the normal [25–27] and anomalous dispersion regimes of
MMFs [28], but only in situations where temporal (chromatic
and modal) dispersion does not play a role.

In this work, we theoretically and experimentally demon-
strate, we believe for the first time, the spatial beam cleaning
of multimode solitons in GRIN MMFs. An initially excited
multimode femtosecond soliton composed by a few low-order
transverse modes, irreversibly decays into a single-mode soliton,
owing to the FWM-induced energy transfer of higher-order
modes into the fundamental mode of the MMF. Once formed,
the single-mode soliton remained stable over the tested fiber
length of 1 km, which corresponds to the record transmission
distance in an MMF of 4600 modal dispersion distances, and
5600 chromatic dispersion lengths. This effect is of particular
importance for technological applications, as it reveals that
nonlinearity can counteract the effects of modal dispersion
and random mode coupling and enable the stable transport of
high spatial quality beams over long distances by means of
large-area MMFs. As a side aspect, our results invalidate theo-
retical predictions based on the VA, since the beam shape sub-
stantially evolves along the fiber, in a way that the initial beam
profile is not maintained.

2. TRANSMISSIONS UP TO 1 km OF GRIN
FIBER

In this section, we provide a detailed description of the spatio-
temporal evolution of multimode femtosecond solitons in long
spans of parabolic GRIN fibers. Experimental characterizations
of the output pulse width, bandwidth, and beam shape are sup-
ported by successful comparisons with extensive numerical
simulations.

A. Model and Simulations
A numerical model suitable for studying the propagation of
multimodal pulses over long spans of GRIN fiber is based
on the coupled-mode equations approach [29], which requires
a preliminary knowledge of the input power distribution
among the fiber modes. The model couples the propagating
mode fields via Kerr and Raman nonlinearities, via FWM terms
of the type QplmnAlAmA�

n ; the coupling coefficients Qplmn are
proportional to the overlap integrals of the transverse modal
field distributions. We modified the standard coupled-mode
generalized nonlinear Schrödinger equations of Poletti and
Horak [29], as implemented by Wright et al. as open-source
MATLAB parallel numerical mode solver [30], in order to in-
clude the wavelength-dependent linear losses of silica. Fiber
dispersion and nonlinearity parameters are estimated to
be β2 � −28.8 ps2∕km at 1550 nm, β3 � 0.142 ps3∕km,
nonlinear index n2 � 2.7 × 10−20 m2∕W, and Raman re-
sponse hr�τ� with typical times of 12.2 and 32 fs [31,32].

When considering a beam entering the fiber with no input
tilt angle, and focused on the entry face with a 30 μm (1∕e2)
diameter, by means of a specific software we calculated the in-
put mode relative power distribution to be 52%, 30%, and
18% for the first three axial-symmetric modes LP01, LP02, and
LP03, respectively; other higher-order modes carry negligible
power. The sums over l, m, and n of the FWM coupling co-
efficients Q1lmn, Q2lmn, and Q3lmn, responsible for feeding the

three modes are 4.67 × 109, 4.17 × 109, and 3.50 × 109 m−2,
respectively; the number of coefficients larger than the mean
value is 37, out of which 16 couple to the mode LP01, 11
to the LP02, and 10 to the LP03. The lack of symmetry between
coupling coefficients is responsible for a slow, but irreversible
transfer of energy from higher-order modes toward the funda-
mental, when pulses carried by different modes are temporally
and spatially overlapping.

Figure 1 shows the simulated evolution along the GRIN
fiber of the pulse energy in each of the three propagating modes
(bottom left), and their corresponding center wavelength (bot-
tom right). Here we coupled at the fiber input a Gaussian pulse
with 67 fs duration, 1550 nm wavelength, 30 μm diameter (at
1∕e2 of peak intensity), and 28 kW of peak power, which is
suitable for spatiotemporal soliton generation. The top left in-
set shows the input temporal power profile for each of the three
modes. During propagation over the first 10 m of fiber (see the
wavelength panel in Fig. 1), the three modes separate their
wavelengths, which permits them to experience different chro-
matic dispersions, which leads to a group-velocity difference
that exactly compensates for modal dispersion walk-off. As a
result, the three modes propagate together with the same speed:
a spatiotemporal soliton is formed, which is characterized by
the fact that its constituent modes remain mutually trapped
in time. Remarkably, Fig. 1 reveals that, as a result of nonlinear
coupling between the fundamental mode and the other two
higher-order axial modes, after approximately 120 m of propa-
gation virtually all of the input energy is funneled into the pulse
carried by the fundamental mode, whereas higher-order modes
decay into dispersive waves with negligible power, with a center
wavelength close to the input value. The energy increase of the
fundamental mode at the expense of higher-order modes can be
approximated by an exponential law, specifically, E1�z� �
E in�1 − �1 − f 1�e�−s1z��, with E in the input energy, f 1 � 0.52
the initial power fraction of the fundamental mode, and s1 a
decay rate factor which depends on input pulse energy.
Figure 1 shows that, in the subsequent 880 m of propagation,
a substantially monomodal soliton propagates, experiencing
progressive wavelength redshift caused by Raman SSFS. As

Fig. 1. Simulated energy and wavelength evolution of the three in-
put axial modes. The two upper insets show the pulse power modal
distribution at the input (left), and after 1 km of propagation (right).
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the soliton wavelength increases above 1700 nm, it starts losing
energy because of linear fiber attenuation: as a result, it broad-
ens temporally, in order to adiabatically conserve the monomo-
dal solitonic condition (top right inset). Additional numerical
simulations performed with a larger number of input modes
(not shown), obtained by injecting the input beam off-axis,
confirm a similar behavior: a net energy transfer from all modes
to the fundamental mode is always observed, but at a higher
input power with respect to the case of axial injection.

In our coupled-mode simulations, we did not include the
presence of random linear mode coupling. In Ref. [33], the role
of random mode coupling was investigated in MDM transmis-
sion systems; it was shown that the correlation length Lcm, char-
acterizing random mode coupling, is of the order of tens of
meters for degenerate modes, and hundreds of meters for non-
degenerate modes. In Ref. [34] it was shown that, both in the
case of weak mode coupling (i.e., a random mode coupling cor-
relation length Lcm much longer than the correlation length of
random polarization birefringence Lcp), and in the case of
strong mode coupling (i.e., when Lcm is comparable with
Lcp), pulse propagation may be described in terms of general-
ized Manakov equations. This is justified whenever one may
assume that Lcm and Lcp are both smaller than the nonlinearity
length, LNL.

In Ref. [35] intermodal (IM)-FWM was analyzed in few-
mode fibers, in the presence of both linear random mode cou-
pling and random birefringence. In that work, the random bi-
refringence correlation length Lcp was supposed to range
between a meter and a few tens of meters. It was shown that
the IM-FWM efficiency may be lowered by up to 40 dB if
Lcm ≪ LNL; whereas in the absence of random mode coupling,
the IM-FWM efficiency is maximized under the condition of
phase matching, which generally involves the coupling of
modes at different wavelengths. Moreover, in Ref. [8] it was
shown analytically that, in the case of multimodal transmissions
with Lcm < LNL, nonlinear interactions between degenerate
modes can be averaged, owing to strong linear coupling be-
tween modes within each group. Based on this assumption,
a set of generalized Manakov equations was obtained, that ad-
mit for an exact solution in the form of a vector hyperbolic
secant solitary wave.

In our work, numerical simulations reveal the presence of a
more complex dynamics that occurs in a different, strongly
nonlinear regime, i.e., whenever the nonlinearity length
LNL � λw2

e ∕�2n2Pp� (here we is the effective beam waist
and Pp is the pulse peak power) is much shorter than the typical
correlation lengths of random linear mode coupling and polari-
zation birefringence. In other terms, in our case nonlinearity
acts over scales that are much shorter than the typical length
scale which can be described in terms of generalized
Manakov equations, so that FWM-induced energy exchange
between nondegenerate modes is not averaged out by linear
modal coupling.

Spatiotemporal solitons, involving the nonlinear coupling of
nondegenerate modes, are generated over distances in the range
of a few nonlinearity lengths, provided that LNL is
comparable with the modal walk-off length. In the example
of Fig. 1 and also in our experiments, after a few meters of

distance a multimode soliton with the initial pulse width of
120 fs is generated. This corresponds to a nonlinearity length
of 18 cm, which is equal to the chromatic dispersion length; the
modal walk-off length is approximately 22 cm, which is also
comparable to LNL. Once the modes are temporally trapped,
the spatiotemporal soliton experiences a Raman-induced wave-
length redshift or SSFS.

As a result of SSFS, the pulse width of the fundamental sol-
iton increases almost linearly with distance, because of the
wavelength increase that leads to experiencing progressively
larger (in absolute value) chromatic dispersions, and the
consequent need to maintain the solitonic energy E1 �
λjβ2�λ�jw2

e ∕�n2T 0�, with T 0 � T FWHM∕1.763. The increase
with distance of the soliton pulse width can be approximated by
the law T 0�z� � T 0�zf ��1� s2�z − zf ��, where s2 is a slope
which depends on input peak power, and zf is the initial
distance of soliton formation.

Simulations of Fig. 1 predict that a slow power transfer from
higher-order modes into the fundamental mode occurs upon
propagation. This process is completed at distance in the range
of hundreds or even thousands of nonlinearity lengths. After
100–150 m of propagation, the resulting soliton is substantially
monomodal. In Refs. [25,36], the phenomenon of spatial beam
self-cleaning was introduced and described as a process of beam
condensation, induced by the combination of the Kerr effect
and spatial self-imaging in a GRIN fiber, that can be accelerated
by the presence of random polarization coupling. In our work,
the slow and irreversible energy transfer into the fundamental
mode is only observed in the anomalous dispersion region of
the fiber, at input powers leading to spatiotemporal Raman sol-
iton formation. Therefore, we attribute the observed effect to
non-phase-matched modal FWM and stimulated Raman scat-
tering (SRS) processes, providing a net energy transfer into the
fundamental mode under the condition for multimode soliton
generation, i.e., when the propagating modes are mutually
temporally trapped, and subject to Raman SSFS.

B. Experimental Evidence over 1 km of GRIN Fiber
In order to experimentally confirm the generation of monomo-
dal solitons over long spans of GRIN multimodal fiber, a
testbed was prepared by using femtosecond pulses propagating
over 1 km of fiber. The experimental setup used for the gen-
eration of MMF solitons consists of an ultrashort laser system,
including a hybrid optical parametric amplifier of white-light
continuum (Lightconversion ORPHEUS-F), pumped by a
femtosecond Yb-based laser (Lightconversion PHAROS-SP-
HP), generating pulses at 100 kHz repetition rate with
Gaussian beam shape (M 2 � 1.3); the pulse temporal shape
at 1550 nm is nearly Gaussian, with 67 fs pulse width. The
laser beam is focused by a 50 mm lens into the fiber with
1∕e2 input diameter of approximately 30 μm. Laser pulses
enter the fiber with peak powers ranging between 100 W
and 500 kW, which is regulated by using an external attenu-
ator. The used fiber is a 1 km span of commercial parabolic
GRIN fiber, with core radius rc � 25 μm, cladding radius
62.5 μm, cladding index nclad � 1.444 at 1550 nm, and rel-
ative index difference Δ � 0.0103. At the GRIN fiber output,
a micro-lens focuses the near field on an InGaAs camera
(Hamamatsu C12741-03); a second lens focuses the beam into
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an optical spectrum analyzer (Yokogawa AQ6370D) with a
wavelength range of 600–1700 nm, and into a real-time
multiple octave spectrum analyzer (Fastlite Mozza), with a
range of 1100–3000 nm. The output pulse temporal shape
is inspected by using an infrared fast photodiode and an
8 GHz digital oscilloscope with 30 ps overall time response
(Teledyne Lecroy WavePro 804HD), and an intensity autocor-
relator (APE pulseCheck 50) with femtosecond resolution.

Figure 2 shows an example of measured spectra (left col-
umn), photodiode traces (central column), and output near
fields (right column) after 1 km of fiber transmission, for input
pulse peak powers of 2 kW, 6.4 kW, 15 kW, and 110 kW,
respectively. At input peak power levels corresponding to the
linear propagation regime (e.g., 2 kW), the output spectrum
[see Fig. 2(a)] is nearly identical to that of the input pulse,
whereas the output pulse has temporally broadened to
1.2 ns, as a consequence of cumulated chromatic and modal
dispersion. At 6.4 kW of peak power, an intermediate regime
is observed, where self-phase modulation (SPM) nonlinearity
starts counteracting dispersion, but it is not able to form a sol-
iton yet: in the first few meters of propagation, the cumulated
anomalous dispersion interacts with SPM, producing a rapid
bandwidth compression and distortion of the chirped pulse
[see Fig. 2(b)] [37]. At 15 kW of peak power, a spatiotemporal
soliton starts to be formed [see Fig. 2(c)], and it experiences a
Raman-induced SSFS [38]. As it can be seen, the recorded
pulse is temporally narrower, and it is delayed with respect
to the residual dispersive wave. In the soliton regime, the pulse
bandwidth Δν is not as narrow as in the intermediate regime;
instead, it depends on the soliton pulse width as Δν �
0.315∕T FWHM. For input peak powers above 50 kW, the input
pulse undergoes soliton fission, generating multiple spatiotem-
poral solitons with comparable pulse width [17]. The first sol-
iton is the more energetic, and therefore it suffers a larger SSFS
with respect to the others. Figure 2(d) shows two spectra
formed from an input pulse with 110 kW peak power; the pho-
todiode trace gives evidence of two propagating pulses, the right
one being affected by a Raman-induced relative delay. A third

soliton is also observed at higher powers. Each of the generated
solitons shows a behavior similar to that of the first Raman
soliton.

The temporal evolution of the different solitons generated at
the fiber output is better illustrated by the animation in
Visualization 1, where the traces from the fast photodiode have
been represented for increasing values of the input peak power.

With the help of numerical simulations, we predicted the
formation of monomodal solitons after 100–150 m of propa-
gation in a GRIN fiber. The experimental results demonstrate
that more complex multimode soliton dynamics takes place
when the input power grows substantially larger than the
threshold for single soliton formation. Specifically, a train of
monomodal solitons is generated across a wide range of input
powers.

As it is illustrated in Fig. 2, recorded soliton spectra at 1 km
distance are characterized by lobes with a sech shape: we mea-
sured their peak wavelength and bandwidth. The plots in Fig. 3
(top) report the evolution of the output spectra versus input
peak power, and show that, for input powers between
10 kW and 43 kW, a first soliton is generated that experiences
Raman SSFS. Whenever the wavelength of this soliton exceeds
1950 nm, it is absorbed by the fiber because of linear fiber loss.
Numerical simulations (blue empty circles) report data which
are in good agreement with the experiments. Small discrepan-
cies for wavelengths longer than 1900 nm can be attributed to
an over-estimation of the silica attenuation with respect to real
fiber losses. For input peak powers between 60 kW and
190 kW, a second soliton is measured with a similar spectral
shift, until a third soliton appears for input powers above
130 kW. The three solitons coexist in the fiber, but the first
and second solitons are progressively absorbed when their

Fig. 2. Measured output spectra (left column), photodiode traces
(center column), and near-field (right column) at 1 km distance,
for input pulse peak powers of (a) 2 kW, (b) 6.4 kW, (c) 15 kW,
and (d) 110 kW (see Visualization 1).

Fig. 3. Top: Measured wavelength for the three generated solitons
versus input peak power. Bottom: corresponding soliton bandwidth
evolution.
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wavelengths reach the 1900–2000 nm wavelength region.
From Fig. 3 (bottom), it can be confirmed that a strong reduc-
tion of the pulse bandwidth occurs at input peak powers
immediately below the value for soliton formation, as already
discussed above.

As the soliton propagates through the parabolic GRIN fiber,
its multimodal beam waist undergoes fast self-imaging oscilla-
tions [39,40]. In this regime, the ratio of minimum to maxi-
mum beam effective area can be provided by the variational
approach theory as [20,23] C � λ2r2c ∕�2π2Δn2effw4

e �, with
rc � 25 μm the core radius, Δ � 0.0103 the relative core–
cladding index difference, and neff � 1.459 the effective core
index for the propagating mode. The effective beam waist
we is calculated for the fundamental mode by setting C � 1;
therefore, we1��λ2r2c ∕2π2Δn2eff �1∕4, and equals we1 � 7.7 μm
in our case.

Figure 4 shows the measured output beam waist after 1 km
of propagation, for increasing values of the input peak power;
the beam size is compared with the theoretical monomodal
value (horizontal dashed line). In order to enhance the beam
cleaning effect, we coupled the input beam with different tilt
angles, i.e., of 0°, 2.3°, and 4.6°, respectively.

At a peak power of 15 kW and tilt 0°, when the MMF soli-
tonic pulse is formed and it starts experiencing Raman SSFS,
the beam recorded at 1 km distance shows a strong diameter
reduction down to the value of 8.5 μm, behaving as a substan-
tially self-cleaned, monomodal soliton, as predicted by numeri-
cal simulations. We measured in this condition the beam M 2,
with a calibrated and automated optical system (Gentec
Beamage M 2), obtaining a value of 1.45. For higher powers,
the beam recovers a large waist. However, Fig. 4 shows that
the second and the third solitons also experience a beam width
reduction (at 110 kW and at 190 kW, respectively), although
their spatial compression is limited by the presence of multiple
pulses and dispersive waves.

At an input tilt angle of 2.3°, we calculated that the power
distribution between the modes at the input is 12%, 12%,
12%, 8.6%, and 5.3% for modes LP01, LP11e, LP11o, LP21,
and LP02, respectively, and it also contains smaller proportions
of higher-order modes. At 4.6° input angle, the power distri-

bution is even more uniform. As a consequence, the generation
of a fundamental soliton could still be measured at the fiber
output, but for input powers that were increased by a factor
of 5 with respect to the case of pure axial incidence. Still, a
fundamental soliton was observed at 70–80 kW of input peak
power, with the output beam waist of 8.8 μm, close to the value
of the fundamental mode. It is interesting to note that the sec-
ond and third solitons are still capable to produce virtually
monomodal solitons with 2.3° input angle, demonstrating that
the attraction property into the fundamental mode is not ex-
clusive of the lowest-power soliton.

The insets in Fig. 4 show the recorded output near fields
when the input tilt angle is 2.3°: the formation of a narrow,
cleaned beam at the input power of 72 kW can be clearly seen,
corresponding to the generation of a spatiotemporal fundamen-
tal mode soliton (central inset). This can be compared to the
multimodal output beam which is obtained at low powers
(16 kW, left inset); whereas at higher input energies, the
breakup of the soliton and the generation of dispersive waves
produce wider beams, and in some cases higher-order mode
patterns (230 kW, right inset). At the soliton power, we mea-
sured a beam quality factor M 2 � 1.4, which is close to the
value M 2 � 1.3 of the input laser beam.

C. Experimental Results over 120 m of GRIN Fiber
Numerical simulations in Section 2.A have shown that, at a
distance of approximately 120 m and at the solitonic power,
nearly all of the pulse energy is nonlinearly transferred into
the fundamental mode of the GRIN MMF (see Fig. 1). For
longer distances, the wavelength shifted pulse starts suffering
the effects of linear fiber loss. This observation led us to per-
form a soliton transmission experiment using a 120 m span of
GRIN fiber, in order to observe and characterize the newly gen-
erated monomodal spatiotemporal soliton in the temporal,
spatial, and frequency domains, respectively.

Figure 5 shows the output pulse width of the soliton as it
was measured by autocorrelations: experimental results are
compared to simulations at 120 m. The top insets show auto-

Fig. 5. Measured and simulated FWHM pulse width at 120 m dis-
tance versus input peak power. The top insets are autocorrelation
traces at 21 kW, 28 kW, and 109 kW input power, respectively.

Fig. 4. Measured beam waist at 1 km distance versus input peak
power, when the input beam is coupled with 0°, 2.3°, and 4.6° tilt
angle, as compared with the theoretical fundamental mode waist.
Input beam waist is 15 μm. Insets show measured output beam shapes
at powers indicated by the arrows.
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correlation traces at 21 kW, 28 kW, and 109 kW input power,
respectively. A minimum pulse width soliton was measured at
the input peak power of 25–30 kW, with a temporal duration
of T FWHM � 260 fs, against the simulated duration of 180 fs:
the discrepancy may be attributed to dispersive effects from the
output optics. Experiments and simulations performed with
10 m of fiber (not shown) provided output spatiotemporal sol-
itons with 120 fs pulse width, and dispersion/nonlinearity
length of 18 cm. The pulse width increases with distance or
for higher input powers, because of the soliton wavelength in-
crease induced by SSFS, so that it experiences a larger amount
of anomalous chromatic dispersion. As a result, the pulse du-
ration must grow larger in order to keep the fundamental
soliton condition unchanged.

Figure 6 shows the measured bandwidth of the spectral lobes
corresponding to the first and second solitons, at 120 m dis-
tance; we also included the corresponding simulation results
for the first soliton. At 15–20 kW of input peak power, the
output pulse experiences a bandwidth compression down to
14 nm, before the phase of soliton formation. At 25–30 kW
of input peak power, the first soliton has formed: the corre-
sponding output bandwidth increases up to about 20 nm.
Figure 6 also shows that the bandwidth of the second soliton,

which is generated at input powers around 165 kW, exhibits a
similar behavior.

As far as the measured beam waist at 120 m is concerned,
Fig. 7 shows that, at 27–30 kW of input peak power, a mini-
mum of output beam waist of 8.8 μm is reached, which again is
close to the monomodal value of 7.7 μm. It is noteworthy that
the curve of the output beam waist as a function of input peak
power, in Fig. 7, is narrower with respect to that for the mea-
sured pulse width in Fig. 5. This can be explained with the help
of the numerical results of Fig. 1: as can be seen, the soliton
mostly carried by the fundamental mode suffers a wavelength
shift in the first 120 m, up to 1700 nm and beyond, thus
experiencing linear losses that grow larger with distance. For
input energies right above the optimal soliton value, the total
linear propagation losses suffered by the fundamental mode
may become so high that its output energy becomes compa-
rable to that of the residual higher-order modes, which remain
at the minimum loss wavelength region around 1550 nm. As a
result, at the fiber output the beam appears multimodal, as soon
as the input pulse peak power grows right above the optimal
soliton value.

In Fig. 8, the recorded autocorrelation traces are given
alongside with the corresponding near-field of the beam, for

Fig. 7. Near-field beam waist versus input peak power, for the first
soliton at 120 m of GRIN fiber length.

Fig. 8. Recorded autocorrelation traces (left column) and near-field
beams (right column) from 120 m of GRIN fiber, for input peak
powers: (a) 22 kW, (b) 29 kW, (c) 37 kW, and (d) 109 kW.

Fig. 6. Measured bandwidth versus input peak power, for the two
solitons observed after 120 m of GRIN fiber.
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the input peak powers: 22 kW, 29 kW, 37 kW, and 109 kW,
respectively. As it can be seen, in the stage preceding soliton
formation, at 22 kW of input peak power, the output beam
is still relatively wide, while the pulse bandwidth reaches its
minimum value (see Fig. 6). At the power of 29 kW, a spatio-
temporal fundamental soliton is generated: pulse duration and
beam waist simultaneously reach their minima, i.e., 260 fs and
8.8 μm, respectively, whereas the pulse bandwidth starts to in-
crease. At 37 kW of input peak power, the output pulse width is
still limited to 280 fs. To the contrary, the beam is no longer
confined to a single mode, and the waist has more than the
doubled with respect to the fundamental soliton case; still,
we may talk of a multimodal, spatiotemporal soliton in this
case. For higher powers (109 kW) the pulse starts
broadening in time, and the multimodal soliton condition is
gradually lost.

Finally, from the simulated and measured data we can cal-
culate the soliton order at both 120 m and 1 km of GRIN fiber
length, by using the formula N � fn2T 0E1∕�λjβ2�λ�jw2

e �g1∕2.
By using the fiber dispersion value at the soliton wavelength,
the simulated output energy and pulse width, and the effective
waist we1 � 7.7 μm obtained from the variational theory, we
obtain that, for a solitonic input peak power of 28 kW, the
order is N � 1.17 at 120 m and N � 1.03 at 1 km. Those
results indicate that, in spite of the linear losses, a fundamental
soliton of order 1 was reached at 1 km distance. At 120 m the
effective waist to be used in the formula to obtain N � 1 is
we � 8.8 μm, which is exactly the value of the measured beam
waist (see Fig. 7).

3. CONCLUSION

Spatiotemporal soliton evolution in parabolic GRIN fibers was
previously described, by using the variational approach, as a sta-
ble propagation of a self-imaging beam; in this picture, the
several modes formed at the input trap each other and
indefinitely preserve their temporal shape. In this work we dem-
onstrated, both experimentally and numerically, that the spatio-
temporal soliton evolution over long spans of fiber is far more
complex: a pump pulse feeds a spatiotemporal soliton at proper
input energy when the nonlinearity length of the forming soliton
is comparable to the modal walk-off length. The modes effec-
tively trap each other in time but, in the range of hundreds
of nonlinearity lengths, a slow and irreversible energy transfer
is observed from higher-order modes into the fundamental mode
of the fiber, which acts as a dynamical attractor of the multimode
system. The spatiotemporal soliton thus naturally evolves into a
single-mode soliton, and it permanently maintains this state. The
optimal energy where the single-mode, minimum waist beam is
observed at the fiber output corresponds to that of minimum
output pulse width. The pulse bandwidth suffers a bandwidth
reduction previous to the optimal solitonic power and increases
to the solitonic value at optimal energy. The output soliton order
results are unitary if the effective beam waist is considered equal
to the single-mode value.

To place our findings in a broader perspective, we anticipate
that our results will be of general fundamental interest, because
they provide the first example of fully spatiotemporal beam
condensation in classical nonlinear wave systems [41]. From

the point of view of technological applications, the generation
of a robust ultrashort soliton attractor in a nonlinear multimode
fiber is of significance for the delivery of high-energy laser
beams in a variety of industrial applications, for high-power
spatiotemporal mode-locked multimode fiber lasers [42],
and for the use of multimode fibers in high-bit-rate fiber optic
networks.
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