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Abstract. Peer Assessment is a powerful strategy to support educa-
tional activities and the consequent learners’ success. Learning perfor-
mance of participating is often estimated in a peer assessment setting
using Item Response Theory. In this paper, a feasibility of estimating
individual performance is examined for a simulated data set represent-
ing a MOOC environment, where one thousand students are supposed
to perform a Peer Assessment session, where each peer assesses three
other peers’ work. For each student the modeling traits “ability”, “con-
sistency”, and “strictness” are evaluated using Generalized Partial Credit
Model, and the validity of such calculation is confirmed. While taking
into consideration the limits of the synthetic sample production, this
experiment provides an evidence of the possibility to predict learning
performance in the large scale learning conditions of a MOOC.
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1 Introduction

Massive Open Online Courses (MOOCs) have been developing for several years,
with the aim of delivering learning contents to a numerous and worldwide au-
dience [6]. They have well known and long studied problems with the dropout
rates, which are in part due to the nature itself of these courses (still quite usually
easy to enrol in and inexpensive), and in part for issues related to maintaining
motivation and continuing engagement.

Peer Assessment (PA) is a powerful strategy to support educational activities
and the consequent learners’ success. With PA the learners can be exposed to
different cognitive experiences: on the one hand they answer to a request (such
as a question, or a task to be performed); on the other hand they are requested to
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assess other learners’ work, being then involved in cognitive activities of higher
level [3].

To encourage participant’s learning activity, PA has been sometimes intro-
duced in a MOOC [17] [1], although the reliability of the assessments, and in
general the applicability of the strategy are still under verification.

PA has been proven reliable in applications where the teacher mediation and
participation in the grading process are supported. In this approach the teacher
grades a fraction of the learners’ answers, and all the remaining answers have
automated grading, based on the learners’ models calibrated by the PA activity
and by the available teacher’s grades.

In particular, the learners modeling, deemed to represent the ability of the
learner to answer a question, and the different ability to assess others’ answers,
has been studied in several research work. In [4] a Bayesian Network based
modeling is defined, for the two learner’s traits mentioned above, and a teacher
mediated approach to PA is described. For this approach, involving a certain
amount of teacher’s grading (although just a fraction of the whole class of learn-
ers), an alternative has been proposed in [15], based on a modified version of
K-NN algorithm [12], that is expected to be lighter from the computational point
of view. This kind of teacher activity, though, is difficult to be granted if the
number of students goes into the thousands, as is the case of MOOCs.

In [19] Item Response Theory (IRT) has been studied for similar purposes,
conducting to a modeling of the learner’s ability to assess. This method allows
for a lighter computational cost of the process of modeling and automated as-
sessment, but has the limit of having been experimented in too limited contexts
(as far as the number of students is concerned).

The problem of having these approaches experimented on limited numbers
of students is general, and in this paper we try and show a way of overcoming it,
by the production of a “simulated MOOC” (i.e. a set of, say, 1000 simulated stu-
dents, representing learners respecting a statistical distribution of their models’
features).

This paper confirms the feasibility of determining the individual ability by
using the IRT modelling technique applied to a huge PA data-set, based on the
above simulation.

The remainder of the paper is structured as follows. In Section 2 the process
of validation is shown, while in Section 3 the PA data-set building process is
depicted. IRT is showed in Section 4. Our experimental results are in Section 5
while in Section 6 conclusions and future works are illustrated.

2 Process of validation for the IRT approach to PA

Basically, in the application of PA we are dealing with in this paper, we imagine
that the PA system (PAS) will manage the data coming from a session of PA,
and the grades provided by the teacher, to produce automated grading of the
non-teacher-graded answers.
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Fig. 1. Histogram of mean rating
scores.
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Fig. 2. Histogram of mean peer’s rat-
ings.

In a PAS there are three main data-sets of interest, described in the follow-
ing paragraphs: the result of an experiment is in evaluating how well they are
correlated, that is how well the PAS is able to compute valid learner’s models
and correct grading.

First there is the set of all the learners’ models, describing the actual skills
of the MOOC’s members. We call this set Real (learners’) Models (RMs). These
data are generated according to a statistical distribution underlining them, and
will be used to estimate the good behavior of the PAS.

Then there is the set of data coming from the PA activity (PA data-set).
From the point of view of the data originated by a PA session, we can imagine
that mainly two data-set are produced by Gaussian simulation, as follows: 1)
the grades given by the learners to their peers (e.g. 3 grades for each peer, given
and received); 2) the teacher’s grade for each student’s work. Notice that in real
applications the data-set in 2) would contain only a fraction of the whole set of
grades, whereas in our (simulated) experiments it covers the whole class (this is
obtained by simulating a Gaussian distribution of the teacher’s grades, so not
involving real work from a real teacher).

Based on the PA data-Set, the PAS produces a new set of learners’ grades.
(Computed Models CMs). If the PAS is doing a good job, the new grades in CMs
will be close to the ones in RMs. A more formal definition of the experiment we
are going to present is as follows.

Definition 1. An experiment of PAS consists of the following steps:

1. The RM data-set creation, based on a given statistical distribution;

2. The creation of the PA data-set, based on a given statistical distribution;

3. The application of the PAS algorithms by managing the creation and update
of the grades in CM;

4. The computation of the grades provided by the PAS on those answers for
which the teacher’s grade in the PA data-set was not used;
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5. Evaluation of the results, whereas the results can be the analysis of the cor-
relation between the real and computed grades, that is between the teacher’s
real grades Vs. those computed by the PAS.

In the following Section we discuss the creation steps of the experiment. In
Section 4 we show the application of IRT with the aim of validating the use of
IRT to a (simulated) MOOC context.

In Section 4 we will use a modeling consistent with the features of IRT,
and in particular with the features of a Generalized Partial Credit Model with
Rater Parameters. By this modeling technique, the learner j is represented by
the following features:

– θj , latent ability of j
– αj , consistency of rater j
– βjk, strictness of the rater j for rating category k

3 The Peer Assessment Data-Set

In this section we briefly report on the process of creation of the RM and PA
data-set, provided by our simulation system [16].

3.1 The Data Generation Procedure

First data to be generated is the PA data-set, based on a specific graphical
interface used by the experimenter (typically a teacher). The interface allows
to generate the grades given by each peer to her/his n peers (in our use of the
simulation system n = 3).

These grades are are not actually given directly by the teacher, rather they
are generated randomly, according to the classic bell-shaped Gauss distribution,
which has proven to be very reliable in representing grades distribution in a
learning context. For such distribution, the parameters µ (the value of the mean),
and σ2 (variance) are set by the experimenter. In our case µ = 5.5 and σ2 = 1.63

The student models are then implicitly defined based on the PA data-set,
as we suppose that each student in the experiment is behaving accordingly to
her/his model.

3.2 The Features of the Generated Data

The simulated data-set consists of 1000 participants, where three of them assess
another participant’s performance using a 10 points scale, i.e. a participant’s
performance i, ri, is computed by the grades given by other three participants
such as i+ 1, i+ 2, i+ 3, here i = 1, . . . , 1000.

Simple statistics of generated data are regulated by the algorithm. Both
means of rating scores and peer’s ratings are summarized in Figures 1 and 2.
Also, the relationship between two means is illustrated in Figure 3.
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Fig. 4. Histogram of calculated ability
of participants.

4 The Item Response Theory

This study attempt to apply IRT [10], a test theory based on mathematical
models, to the PA data. IRT models provide an item response function that
specifies the probability of a response to a given test item as a function of
latent participant’s ability and the item’s characteristics such as difficulty and
discrimination. IRT enables to estimate participant ability while considering item
characteristics.

IRT also has the following advantages: i) participant responses to different
test items can be assessed on the same scale; ii) missing data can be easily
estimated.

IRT has traditionally been applied to test items for which responses can be
scored as correct or incorrect. In recent years, however, there have been attempts
to apply polytomous IRT models to performance assessments, including PA.

4.1 The Generalized Partial Credit Model

A representative polytomous IRT model is the generalized Partial Credit Model
(GPCM) [13]. The GPCM gives the probability that participant j receives score
k for test item i as

Pijk =
exp

∑k
m=1 [αi(θj − βim)]∑K

l=1 exp
∑l

m=1 [αi(θj − βim)]
, (1)

where:
αi is a discrimination parameter for item i, βik is a step difficulty parameter
denoting difficulty of transition between scores k − 1 and k in the item, and θj
is the latent ability of participant j. Here, βi1 = 0 for each i is given for model
identification.



6

4.2 The GPCM with Rater Parameters

As described in the Introduction, this study applies IRT to PA data compris-
ing participants × peer-raters. However, the traditional IRT models introduced
above are not directly applicable to such data. To address this problem, many
IRT models that incorporate rater characteristic parameters have been proposed
[20].

This study introduces a state-of-the-art GPCM model incorporating rater
parameters [21]. This model provides the probability that peer-rater r assigns
score k to participant j’s performance for item (or performance task) i as

Pijrk =
exp

∑k
m=1 [αrαi(θj − βi − βr − βrk)]∑K

l=1 exp
∑l

m=1 [αrαi(θj − βi − βr − βrk)]
, (2)

where, αr reflects the consistency of rater r, βrk is a step difficulty parameter
denoting difficulty of transition between scores k − 1 and k in the rater r. βr is
represents the strictness of rater r, and βi is the difficulty of item i. Here,

∏
i αi =

1,
∑

i βi = 0, dr1 = 0, and
∑K

k=2 drk = 0 are given for model identification.
This study applies this model to the PA data described in Section 3. It is

noteworthy that, in the data, the number of performance tasks is fixed to one.
In this case, αi and βi are ignorable because the model identification constraints
restricts the value of αi=1 = 1 and βi=1 = 0.

4.3 The Parameter Estimation

To estimate IRT model parameters, marginal maximum likelihood estimation us-
ing an EM algorithm has been commonly used [2]. However, for complex models
like that used in this study, EAP estimation, a form of Bayesian estimation,
is known to provide more robust estimations [5]. EAP estimates are calculated
as the expected value of the marginal posterior distribution of each parame-
ter. For the EAP estimation, Markov Chain Monte Carlo (MCMC), a random
sampling–based estimation method, is generally used [5, 18].

The Metropolis-Hastings-within-Gibbs sampling algorithm has been used as
a MCMC algorithm for IRT models [14]. The algorithm is simple and easy to
implement, but it requires long times to converge to the target distribution [8].
The Hamiltonian Monte Carlo (HMC) is an alternative MCMC algorithm with
high efficiency. In recent years, the No-U-Turn (NUT) sampler [8], an extension
of HMC that eliminates hand-tuned parameters, has been proposed. Because the
“Stan” software package makes implementation of a NUT-based HMC easy, this
algorithm has recently been used for parameter estimations in various statistical
models, including IRT models [11, 9].

For the aforesaid reasons, we use a NUT-based MCMC algorithm for param-
eter estimations. We calculate EAP estimates as the mean of parameter samples
obtained from 500 to 1,000 periods of three independent MCMC chains. Fur-
thermore, the standard normal distribution is used as the prior distributions.
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Fig. 5. Curves of item category response function (ICRF) for the 4th rater.

5 Results

We estimated the IRT parameters from the PA data described in Section 3.

Table 1. Simple statistics of ratings and estimated parameters.

variable N mean STD

Rating scores 1000 5.50 1.63
Peer’s rating 1000 5.50 1.66

Ability 1000 0.00 0.51
Consistency 1000 0.90 0.46
Strictness 1000 0.00 0.48

Though each rater gave scores to three participants only, such as rates “1”,
“4” and “6”, the MCMC algorithm estimated the IRT parameters. The MCMC
was run using 2.5 GHz 14 core Intel Xeon W processor. The calculation time
was 1628.57 seconds. We confirmed the Gelman–Rubin statistic R̂ [7], which is
generally used as a convergence diagnostic. Values for these statistics were less
than 1.1 for all parameters, indicating that the MCMC runs converged.

Table 1 shows the overall simple statistics for learner’s model features ability,
rater consistency and strictness. Furthermore, as an example, Figure 5 depicts
the curves of item category response function (IRCs) for the 4-th rater. In the
Figure, the horizontal axis represents the latent ability θ, while the vertical axis
shows the response probability for each rating category. The figure indicates a
characteristic of overall rating behaviors.
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Fig. 6. Relationship between mean peer’s ratings and the estimated ability.

To illustrate a validation of estimated ability using our model, the relation-
ship between the ability and means of rater’s ratings is summarized in Figure 6.
The Figure shows a strong correlation, with r = 0.86. In the Figure, a regression
line is overlapped to the scatter-plot. Since rating behaviour affects to estimate
the ability, some deviations for the ability are observed.

In order to examine the rating behaviours, the relationships between rating
score and consistency, and rating score and strictness are summarized in Figure
7 and 8 respectively. The consistency is again deviating over the rating scores
and the behaviour may be controlled by the data generation procedure. The
strictness decreases with rating score, the correlation coefficient is r = −0.89.
The strictness indicates severeness of rating so that there is negative relationship
between them. In addition to the relationship, the data generation may influence
some deviation of the strictness which are observed in the Figure.

6 Conclusions and Future Work

This paper examined a possibility of estimating student’s performance which
was based on a simulated data set using the IRT. The simulated data-set is
generated with 1000 students and with PA based on the requirement of having
3-peer’s grading per each student, where a 1 − 10 point scale is used for the
grades. The performance was estimated by using the GPCM and some detailed
parameters were calculated with EAP estimation and MCMC techniques.

As a result, we had the opportunity to estimate values of ability, consistency
and strictness for each participant, in a learning context characterized by one
thousand students.
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Fig. 8. Relationship between mean rat-
ing scores and the estimated strictness.

We modeled the students by means of the above mentioned parameters, and
the feasibility of the estimation for a large data set was examined, confirming
the validity of the simulated approach for the trial.

In particular, the limited experimentation we presented allowed us to plan a
more extensive use of simulation of PAS in a MOOC context, and the enrichment
of the PAS capabilities by means of IRT. Such future work will have the intent
of checking on PAS aspects, that can have influence on the PAS performance,
and see how their improvements could make the PAS better. By PAS aspects
above, we mean, for instance, the number of peers in the class, the number
of peer assessments required by each peer, the applied rating scale, the tuning
of teacher’s grading, by recommendation of what peer’s work would be more
beneficial to grade by the teacher, in order for the PAS to produce a better
automated grading, and in general the algorithms to actually computing the
automated grading in a PA session.
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