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Abstract

Critical care medicine has been a field for Bayesian networks (BNs) application for investi-

gating relationships among failing organs. Criticisms have been raised on using mortality as

the only outcome to determine the treatment efficacy. We aimed to develop a dynamic BN

model for detecting interrelationships among failing organs and their progression, not prede-

fining outcomes and omitting hierarchization of organ interactions. We collected data from

850 critically ill patients from the national database used in many intensive care units. We

considered as nodes the organ failure assessed by a score as recorded daily. We tested

several possible DBNs and used the best bootstrapping results for calculating the strength

of arcs and directions. The network structure was learned using a hill climbing method. The

parameters of the local distributions were fitted with a maximum of the likelihood algorithm.

The network that best satisfied the accuracy requirements included 15 nodes, correspond-

ing to 5 variables measured at three times: ICU admission, second and seventh day of ICU

stay. From our findings some organ associations had probabilities higher than 50% to arise

at ICU admittance or in the following days persisting over time. Our study provided a net-

work model predicting organ failure associations and their evolution over time. This

approach has the potential advantage of detecting and comparing the effects of treatments

on organ function.

Introduction

Since the early 2000s, Bayesian networks (BNs) have attracted considerable interest in the field

of medicine [1] for their ability to model complex systems by learning the network structure

among variables from observed data, thus providing an interpretation of causal relationships

among variables instead of merely capturing associations [2]. In critical care medicine, BNs

have been applied clinically to investigate the complex relationship among failing organs.

Since the 1990s, many criticisms have been raised regarding the use of mortality to reflect the

efficacy of a treatment, particularly when the disorder under consideration has limited lethality

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250787 April 28, 2021 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: De Blasi RA, Campagna G, Finazzi S

(2021) A dynamic Bayesian network model for

predicting organ failure associations without

predefining outcomes. PLoS ONE 16(4):

e0250787. https://doi.org/10.1371/journal.

pone.0250787

Editor: Moshe Zukerman, City University of Hong

Kong, HONG KONG

Received: October 24, 2020

Accepted: April 13, 2021

Published: April 28, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0250787

Copyright: © 2021 De Blasi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The datasets

generated and/or analyzed during the current study

are anonymously available on the following

https://orcid.org/0000-0002-1069-2544
https://doi.org/10.1371/journal.pone.0250787
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250787&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250787&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250787&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250787&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250787&domain=pdf&date_stamp=2021-04-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250787&domain=pdf&date_stamp=2021-04-28
https://doi.org/10.1371/journal.pone.0250787
https://doi.org/10.1371/journal.pone.0250787
https://doi.org/10.1371/journal.pone.0250787
http://creativecommons.org/licenses/by/4.0/


[3]. Despite these concerns, in most clinical trials resorting to predefined outcomes continues

to be the predominant criterion for evaluating whether a therapeutic action is effective [4].

In this work, we considered the onset of organ failure and used BNs to determine the prob-

abilities of connections among failing organs that could be assumed to reflect the effects of

therapeutic actions.

The use of dynamic Bayesian networks (DBNs) added to BNs is beneficial for investigating

the temporal order and duration of organ failures, helping to predict the most likely progres-

sion during a patient’s stay in the intensive care unit (ICU) [5, 6].

To make DBN prediction reflective of the pathophysiological process of organ failure in

critically ill patients without constraining the network structure with a priori assumptions, we

adopted an approach that differed from the procedures commonly employed for BN applica-

tions in health care. This process normally entails a two stage process to assess conditional

probabilities [7]. The first stage is the identification of possible dependence relationships

between variables. This stage involves manually defining causal relationships represented by

directed arcs between network nodes. The second stage includes the identification of qualita-

tive probabilistic and logical constraints, reducing the number of parameters to be estimated.

On the one hand these procedures have the advantage of making the network robust and clini-

cally interpretable on the basis of existing knowledge. On the other hand, imposing ordering

and constraints on the probabilistic relationships between organs and processes can limit the

ability of the model to reflect the data.

Given that multiple organ dysfunction syndrome (MODS) arises from a widespread septic

or non-septic inflammatory reaction involving tissue microcirculation the associations and

sequences of organ failure events are not shaped by trivial causal relationships or constraints

[8, 9].

Contrary to previous studies that used DBNs to predict the dynamics of failing organs by

hierarchizing organ interactions and forcing discrete outcomes [6, 10], our study aimed to

develop a model for identifying interrelationships among organs without defining a specific

outcome as a reference and without hierarchizing organ interactions. Since relationships

among failing organs are complex and not completely known, we decided to learn the causal

structure of a short-term DBN from data with Markovian constraints enforced through a

blacklist of temporal relationships. In addition, we built a DBN by learning the associated

structure and estimating parameters connected with conditional probabilities. We initially

included an extensive set of organs and data points and gradually reduced them to a minimum

clinically relevant group.

Materials and methods

We included data retrospectively collected from the “Prosafe” database of the Italian Group

for the Evaluation of Interventions in the Intensive Care Units (https://givitiweb.marionegri.

it). Data collection was approved by the the ethics committee of the Sapienza University of

Rome at the Sant’Andrea University Hospital (Ref. 3408 2014/09.10.2014, Prot. 1244/2014),

and all subjects provided written informed consent. Data were derived from patients admitted

to the adult intensive care units (ICUs) of the Sant’Andrea University Hospital in Rome, the A.

Manzoni Hospital in Lecco and the Di Cristina-Benfratelli Civic Hospital in Palermo, Italy,

from January to September 2013. We collected data from patients with at least two organ fail-

ure events and a hospital stay longer than 48 hours so that the organ interactions and their pro-

gression could be assessed.

For patients who had multiple ICU admissions, we considered only the first admission.

During their ICU stay, patients were treated according to the usual clinical practice of the
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period of data collection and received organ function support when needed (i.e., mechanical

ventilation, hemodialysis and/or vasopressors).

For the DBN construction, we included as nodes the same organs considered for the

Sequential Organ Failure Assessment (SOFA) score [11], and the observation times (t) were

the days of data collection for the included organs and systems: cardiovasculart (CV), respira-

toryt (lung), central nervous system (CNS)t, renalt (kidney), livert (Liver) and coagulationt (C).

The SOFA score was computed using data collected from laboratory tests, cardiovascular

monitoring, vasoactive drug dosages and clinical reports. A failure event for an organ was

defined as a SOFA score greater than or equal to two [12]. For each patient, we collected daily

data recordings for 7 consecutive days after ICU admission through an ad hoc electronic case

report form. This interval was chosen because it approximatively matches the patients’ mean

ICUs stay, as previously reported (https://givitiweb.marionegri.it). A day was defined as a 24 h

period starting at 12.00 a.m. except for the first day (t0), the day of ICU admission. If a patient

was admitted before 12:00 p.m., t0 was defined as the 24 h period already in progress, starting

at 12:00 a.m.; if the time of admission was after 12:00 p.m., the remaining hours until 12:00 a.

m. were pooled with the following day.

Bayesian networks

A Bayesian network is a probabilistic directed acyclic graph depicted as nodes, which represent

random variables, and arcs between nodes, which express the probabilistic dependencies

between variables. The direction of the arc (arrow) between two nodes, A and B, establishes a

“parent” node (A) and a “child” node(B).

DBNs extend BNs by encoding the temporal or spatial evolution of variables expressed by

repeated time series models [13, 14]. Assuming n random variables, X = X1, X2, . . ., Xn, we

constructed a DBN by adding a node (i) for each variable at each time step t ðXi
tÞ. For a

dynamic model, we assumed that the state of the system at t would affect the future state of the

variables at t+1 and would depend on the previous configuration at t-1 [15]. Causal relation-

ships follow the arrow of time: the state of any node at a given instant can influence the states

of nodes in the future but never in the past [16]. Furthermore, we assumed that the Markov

property held true, implying that the stochastic process underlying the onset of organ failure

was memoryless. As a consequence of this assumption, states of nodes in the network at time t
depend exclusively on nodes states at t and t– 1 (but not at t–j, with j> 1) [17].

Dynamic Bayesian network formulation

All computations were performed using R software and the package bnlearn (https://www.

bnlearn.com/releases/bnlearn_latest.tar.gz). The network structure was learned from data

using the hill-climbing algorithm [18] starting from an empty network (a network with no

arcs). We used a blacklist to exclude unreasonable temporal causal relationships (arcs directed

from the future to the past) and enforce the Markovian properties (arcs could link nodes only

at the same time or between time t and t– 1). The score used in the optimization process was

the Bayesian information criterion.

To obtain a more robust model with higher predictive performance [19], we constructed an

averaged network through bootstrapping. We generated 500 realizations of the network struc-

ture through the function bn.boot with the hill climbing algorithm [20]. Arc strength was

computed as the fraction of realizations in which the arc was selected by the hill-climbing algo-

rithm. Arc direction was the fraction of realizations in which the arcs had a given direction.

We retained only arcs with directions greater than or equal to 0.5 and with strengths greater
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than an optimal threshold, automatically determined based on the shape of the cumulative dis-

tribution of arc strengths [19].

Once the network structure was determined, the probability matrices representing the

probability of each node, conditional on the value of its parent node were estimated with a

maximum likelihood algorithm using the function bn.fit. We considered 4 possible DBNs with

different number of nodes.

In the first network, we used variables for all organs (6 nodes) for eight days. Given that the

platelet count changes according to the duration and severity of sepsis and mostly cannot be

affected by a specific treatment, node “C” was omitted from the second network. We also

tested a third network including 6 nodes at three time points: t0 = day of ICU admission, t2 =
2nd day and t7 = 7th day. This network was also tested without the platelet count (C node). To

test the model reliability, we applied a k-fold cross-validation analysis to this final network,

with k = 10. We computed the sensitivities and specificities of the child node predictions from

parent nodes.

Results and discussion

Characteristics of patients and networks

We enrolled 850 patients ranging in age from 18.0 to 95.0 years (median: 69.0), with a mean of

65.7 ± 15.9. Of these, 536 (63.1%) were male (mean age 65.6 ± 15.5 years, range 18.0–95.0),

and 314 (36.9%) were female (mean 65.9 ± 16.7 years, range 18.0–93.0). The number of dis-

charged patients was 651 (76.6%), of whom 410 were male (63.0%) and 241 were female

(37.0%). The mean age of the males did not differ significantly from that of the females. The

mean ages of the discharged patients were 64.4 ± 16.2 years (male) and 69.2 ± 14.3 years

(female). There were 199 (23.4%) deaths, of which 126 (63.3%) decedents were male and 73

(36.7%) were female. The mean age of the patients who died was 69.2 ± 14.3.

The type of organ failure at ICU admission were as follows: lung = 44.5%, CV = 36.1%,

CNS = 32.7%, liver = 11.2% and kidney = 7.6%. Anonymous data are available in the reposi-

tory as DATASET SOFA. DANS. https://doi.org/10.17026/dans-zgz-7keg.

Networks. Based on the bootstrap analysis, strength and direction values were robust if

they exceeded the threshold value of 0.47 for strength and we assigned the conventionally

adopted value of 0.5 for direction. The first network (6 nodes for 8 days) had 54 nodes and 74

direct arcs, with average Markov blanket size of 3.33. The 2nd network included 45 nodes and

60 direct arcs, with a Markov blanket size of 3.16. The 3rd network showed 18 nodes and 22

direct arcs, a Markov blanket size of 3.00 and a cutoff value of 0.64 when “C” was included,

whereas without the “C” node, the number of nodes was reduced to 15 and the number of arcs

to 19, with a Markov blanket size of 3.20. The network analysis produced the following find-

ings: after bootstrapping, the structure of the 1st network deviated from the original one and

the strengths of 12 arcs and 15 directions were lower than the cutoff value of 0.49. In the 2nd

network, 2 of 60 arcs deviated from the original structure after bootstrapping, and 9 arcs and

14 directions were below the strength cutoff of 0.48.

In the 3rd network including C, 3 of 22 arcs differed from the original structure after boot-

strapping, and 6 arcs and 8 directions were below the strength cutoff of 0.48. When C was

excluded, the structure of the 3rd network differed from the original in four arcs after boot-

strapping (Fig 1). The final network had 15 nodes, 16 arcs, and an average Markov blanket size

of 2.93.

Among the four tested networks, the fourth one, which included 5 variables measured at t0,

t2 and t7, had a strength of more than 0.67 for all arcs, and the minimum number of time

points still retained relevant clinical information. In Table 1, we included parameters (namely,
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Fig 1. Dynamic Bayesian network excluding the coagulation node. The Dynamic Bayesian network without the

coagulation node (C) at three time points (t0 = the day of ICU admission; t2 = 2nd day and t7 = 7th day) after

bootstrapping.

https://doi.org/10.1371/journal.pone.0250787.g001

Table 1. Arcs strength and direction of the averaged dynamic Bayesian network obtained by 500 bootstrap on five organs at the intensive care unit admission, at

2nd and 7th day.

From To strength direction

Kidneyt0 Kidneyt2 1.00 0.79

Kidneyt0 Lungt2 1.00 1.00

Livert0 Livert2 0.98 0.62

Lungt0 Lungt2 1.00 1.00

Lungt0 Cardiovasculart2 1.00 1.00

Cardiovasculart0 Cardiovasculart2 1.00 1.00

Central Nervous Systemt0 Central Nervous Systemt2 1.00 1.00

Kidneyt2 Kidneyt7 1.00 0.94

Livert2 Livert7 1.00 0.80

Livert2 Cardiovasculart7 1.00 1.00

Lungt2 Lungt7 1.00 1.00

Cardiovasculart2 Central Nervous Systemtt2 0.67 0.91

Cardiovasculart2 Cardiovasculart7 1.00 0.99

Central Nervous Systemt2 Central Nervous Systemt7 1.00 0.98

Cardiovasculart7 Lungt7 0.94 0.79

Cardiovasculart7 Central Nervous Systemt7 0.96 0.85

The day of the intensive care unit admission: t0; the 2ndday of intensive care unit stay: t2; the 7th day of intensive care unit stay: t7.

https://doi.org/10.1371/journal.pone.0250787.t001
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the strength and direction) to estimate the accuracy of the DBN regarding five organs evalu-

ated at t0 and on the 2nd and 7th days.

The reliability of this network prediction was supported by the cross-validation results

which indicated high sensitivity and specificity for almost all nodes (Table 2).

Conditional probabilities. We fitted the conditional probability distributions for the arcs

of the last network with five variables (excluding platelets), and three time periods (admission,

2nd day and 7th day). The resulting probability matrices are reported in S1–S3 Figs.

Kidney and liver failure at the time of admission had a 72% and 51% probability, respec-

tively, of persisting to the 2nd day. The probabilities of these organ failures persisting from the

2nd day to the 7th day were higher, at 86% and 69%, respectively. CV failure had a 70% proba-

bility of persisting to the 2nd day when associated with lung failure on ICU admission, whereas

the probability decreased to 66% in the absence of this association. Similarly, lung failure on

admission had a 69% probability of persisting to the 2nd day when associated with kidney fail-

ure, whereas this probability was only 49% in the absence of this association. CNS failure on

admission had a 71% probability of persisting to the 2nd day, but when associated with CV on

the 2nd day, its probability increased to 75%. The probability of CNS failure persisting from

the 2nd to the 7thday was 60%, but it increased to 86% when CV failure was present on the 7th

day. The probability that CV failure on the 2ndday would persist to the 7thday was 72% in asso-

ciation with liver failure but 62% in the absence of this association. Finally, lung failure on the

2ndday showed a 58%probability of persisting to the 7th day, but the probability increased to

67% when CV failure was also present. In Fig 2, we report the types of organ failure and their

associations with increased probabilities of progression during the observation time of our

study.

Network reliability. Our results demonstrated the feasibility of achieving a sufficiently

reliable DBN model to predict the association of organ failures and their evolution regardless

of a predetermined final outcome. Our previous study focused on predicting sequences of

organ failure but used a node “discharge” in the DBN [6]. The current study overcomes the

limitation of using a predefined outcome and allows the network structure to learn from data.

In addition, we used a learning algorithm strategy to estimate the conditional probabilities.

Defining an optimal network structure that learns its parameters is a complex computa-

tional problem. The number of structures to be tested can be large, and providing a good esti-

mate of probabilities requires a large volume of data to be processed. In order to define the

Table 2. The sensitivity and specificity of the final network prediction tested with the k-fold cross-validation

analysis.

Variable sensitivity specificity

Central Nervous System t2 0.90 0.88

Kidney t2 0.76 0.98

Lung t2 0.70 0.69

Cardiovascular t2 0.79 0.83

Liver t2 0.32 0.96

Central Nervous System t7 0.80 0.89

Kidney t7 0.72 0.98

Lung t7 0.21 0.97

Cardiovascular t7 0.21 0.99

Liver t7 0.70 0.99

The 2ndday of intensive care unit stay: t2; the 7th day of intensive care unit stay: t7.

https://doi.org/10.1371/journal.pone.0250787.t002
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network structure that best describes data and relationships among variables, two different

approaches can be used: a “global” approach [21], which employs search and score algorithms

for data description, and a “local” approach [22, 23], which utilizes conditional independent

tests to evaluate relationships. This latter approach derives the best structure representing

relationships. The search and score methods proceed by creating several network structures

suitable to describe data and assign scores to them with a specific scoring function. After com-

paring scores, a search algorithm identifies the most representative network structure. These

steps are needed to limit the number of networks to be evaluated, reducing the computational

load.

In our study, we applied the HC heuristic research method, a “local” approach that is

applied when the graph is unknown [18], to improve data fitting despite the large number of

organs (6) and the long examination period (7 days). To obtain the best network fit and

increase its accuracy, we reduced the number of timepoints instead of organs, leaving informa-

tion on organ failure events unchanged.

To reduce the network complexity due to the number of organ, we removed only the “coag-

ulation” metric, as platelet counts during sepsis should ordinary be increased by supportive

actions focused on fully treating the spread of infection than by a specific intervention [24].

Network accuracy. We found several organ failure associations with an increased proba-

bility of occurring and progressing over time. Our model reported only conditional probabili-

ties resulting from arcs between organs. A network with three time points and five organs

proved to be sufficiently accurate for our intended clinical purposes. At the time of ICU admis-

sion, a real connection between organs was unlikely to occur, and there is a low probability of

evidence connecting the failure of these organs. In contrast, the persistence of organ failure

during the ICU stay was more probable when multiple failing organs were associated.

Information derived from our network model provides incentives for clinical reasoning.

Any clinical reasoning should be based on an understanding of the relationships among the

Fig 2. Percentage probabilities of the organ failure progression. The day of the intensive care unit admission: t0; the 2nd day after the intensive care unit

admission: t2; the 7th day after the intensive care unit admission: t7. Percentage numbers: conditioned probability to progress at 2nd and 7 dayth.

https://doi.org/10.1371/journal.pone.0250787.g002
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elements that are relevant to the individual clinical case; thus, the characteristics of the

elements forming the basis of the reasoning assessment become crucial. When BNs associate

probabilities with a single outcome (life or death) or composite outcomes, they furnish infor-

mation similar to what is derived from severity scores, but the Bayesian perspective can supply

other elements, in terms of organ failure, that allow enrichment of clinical reasoning. In fact, it

is likely that the associations and sequences of organ failure in a given population result from

treatments and clinical approaches adopted by clinicians. Avoiding predefined outcomes leads

to other perspectives, such as adopting therapeutic strategies to change the scenario of organ

damage.

Our study has several limitations. We restricted our node to the presence of organ failure,

neglecting its severity. The need to attribute a weight to the organ associations rather than to

the severity of failure has limited the Bayesian model we adopted. Adopting a graded intensity

scale for organ damage could increase the available clinical information in the near future

while not interfering with the ability to detect probabilities of organ relationships. Another fac-

tor that could interfere with the real evaluation of organ failure is external support given to

organ function. This issue is also present for all the predictive scores [25] and leads to the con-

sideration of external organ support as an integral part of organ function evaluation. Finally,

given the size of our dataset, we built a robust network structure using only three time slices

and five organs. More specifics regarding the time course of organ failure may be useful with a

larger number of patients.

Conclusions

In this study, we applied an innovative approach for testing the reliability and accuracy of a

DBN model aimed to avoid imposing predefined outcomes. We realized a network model that

allowed us to predict with satisfactory accuracy several organ failure associations and their evo-

lution in critically ill patients. As the organ failure sequences likely resulted from the clinical

choices adopted, our method has the potential advantage of detecting the effects of treatments

or therapeutic strategies on organ function and comparing these effects on populations treated

differently. Further analysis is needed to test the accuracy of a network model able to assess the

severity of organ dysfunction and determine whether it could add useful knowledge in clinical

settings.

Supporting information

S1 Fig. Percentage conditioned probability of failing organs and organs associations at the

intensive care unit admittance. Horizontal axis: percentage probability. Vertical axis: present

1. Absent 0. Intensive care unit admittance: t0. Organ on the rectangles border: associated

organ.

(TIF)

S2 Fig. Percentage conditioned probability of failing organs and organs associations at the

2nd day of the intensive care stay. Horizontal axis: percentage probability. Vertical axis: pres-

ent 1. Absent 0. Intensive care unit admittance: t0. Organ on the rectangles border: associated

organ.

(TIF)

S3 Fig. Percentage conditioned probability of failing organs and organs associations at the

7th day of the intensive care stay. Horizontal axis: percentage probability. Vertical axis: pres-

ent 1. Absent 0. Intensive care unit admittance: t0. Organ on the rectangles border: associated
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organ.

(TIF)
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