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Abstract: In this investigation, we reported the production of prototype breads from the processed 

flours of three specific Triticum turgidum wheat genotypes that were selected in our previous 

investigation for their potential low toxic/immunogenic activity for celiac disease (CD) patients. The 

flours were subjected to sourdough fermentation with a mixture of selected Lactobacillus strains, and 

in presence of fungal endoproteases. The breads were characterized by R5 competitive enzyme 

linked immunosorbent assay in order to quantify the residual gluten, and the differential efficacy in 

gluten degradation was assessed. In particular, two of them were classified as gluten-free (<20 ppm) 

and very low-gluten content (<100 ppm) breads, respectively, whereas the third monovarietal 

prototype retained a gluten content that was well above the safety threshold prescribed for direct 

consumption by CD patients. In order to investigate such a genotype-dependent efficiency of the 

detoxification method applied, an advanced proteomic characterization by high-resolution tandem 

mass spectrometry was performed. Notably, to the best of our knowledge, this is the first proteomic 

investigation which benefitted, for protein identification, from the full sequencing of the Triticum 

turgidum ssp durum genome. The differences of the proteins’ primary structures affecting their 

susceptibility to hydrolysis were investigated. As a confirmation of the previous immunoassay-

based results, two out of the three breads made with the processed flours presented an exhaustive 

degradation of the epitopic sequences that are relevant for CD immune stimulatory activity. The list 

of the detected epitopes was analyzed and critically discussed in light of their susceptibility to the 

detoxification strategy applied. Finally, in-vitro experiments of human gastroduodenal digestion 

were carried out in order to assess, in-silico, the toxicity risk of the prototype breads under 

investigation for direct consumption by CD patients. This approach allowed us to confirm the total 

degradation of the epitopic sequences upon gastro-duodenal digestion. 
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1. Introduction 

The wheat varietal selection undertaken by breeders in the last decades was tailored mainly to 

improve its technological and productivity-related traits; however, the latter resulted in a 

considerable impoverishment of the genetic diversity of wheat-based products available on the 

market. A recent debate supported the idea that such phenotype-based selection might have led to a 

greater immunogenicity of modern varieties, causing the increasing prevalence of celiac disease (CD) 

and other gluten-related disorders [1]. In line with this perspective, researchers focused on the natural 

diversity in the proteomic profile of cultivated and non-cultivated wheat genotypes, disclosing the 

correlations with their differential toxic potentials. Different analytical approaches and genotypes 

were investigated by independent working groups, all confirming similar key points [2–8]. First, it 

was assessed that there is a great variability in the immunogenic level of wheat genotypes and, 

although none of them can be considered safe for direct consumption by CD patients, there is an 

undeniable potential to select lines with lower toxicity for newly-tailored breeding programs [9–11]. 

Interestingly, such variability was investigated in old, landraces, and modern genotypes, reporting 

no correlation with the year of release, meaning that the past breeding programs did not cause an 

increase for immunostimulatory epitopes, as was originally speculated [1]. Indeed, the genetic 

improvement of wheat by breeders was mostly focused on the glutenin fraction, which is the main 

factor that is responsible for the dough’s strength and baking characteristics [12,13]. 

Consequently, the comprehensive proteomic characterization of wheat genotypes played a key 

role in providing new insight into gluten protein expression, not only supporting the drive to scout 

genotypes combining lower toxicity with satisfactory technological properties, but also posing 

convenient bases for the development of new detoxification strategies [10,14]. All of these efforts 

chase the long-term common objective to improve the dietary habits of people affected by CD. 

The current detoxification technologies mainly rely on enzymatic-based protein hydrolysis 

treatment [15] or modification and sourdough-based fermentation [16,17]. Enzymes obtained from 

various sources (either fungi or bacteria) have been used to modify the immunogenic fraction of 

gluten proteins [17–19]. In particular, endopeptidases exhibit post-proline and/or post glutamine 

cleavage activity and, as such, can specifically degrade the epitopic sequences and minimize the CD-

induced immunoreactivity of gluten proteins [20]. Microbial transglutaminases, which are typically 

used as texturizing agents in food products, have been used for gluten detoxification by the 

transamidation of lysine residues, which in turn reduces the binding ability of human leucocyte 

antigen (HLA) DQ2/8 [18]. The sourdough technology provides the fermentation of the wheat flour 

with naturally occurring lactic acid bacteria and yeasts. Previous studies have shown that specific 

lactobacillus strains can produce peptidases that are able to proteolytically cleave the gliadin fraction 

of wheat gluten [21–24]; however, the glutenin fraction was proved to be more resistant to microbial 

proteolysis [23,24]. 

Recently, we presented the detailed characterization of a Triticum turgidum wheat collection 

through a multidisciplinary approach [3], and we deepened the knowledge about the proteomic 

profile of some of the genotypes that appeared particularly promising for their gluten composition 

[25]. These latter were assessed in order to encrypt a reduced number of toxic/immunogenic epitopes 

for CD, whilst still providing the satisfactory rheological properties required for their perspective 

usability in bread or pasta. 

In this investigation, three selected materials were used for the preparation of prototype breads 

from processed flours produced by the combination of sourdough fermentation (selected Lactobacillus 

strains) and enzymatic proteolysis by fungal endoproteases. The gluten content of all three genotypes 

was assessed by R5-competitive enzyme linked immunosorbent assay (ELISA), and a variable 

hydrolysis degree was accomplished for each flour. In order to increase the understanding of this 

experimental evidence, we carried out a detailed proteomic characterization by high resolution mass 

spectrometry (HR-MS). In particular, the total proteins were extracted by a strongly denaturing and 

reducing buffer solution that was previously optimized [26], and the discovery HR-MS analysis was 

carried out on both the high and low molecular weight fractions in order to disclose the amino acid 

sequence of the hydrolyzed and resistant peptides. Finally, the occurrence of intact CD epitopes was 
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investigated in-silico by querying on-line databases containing all of the known CD epitopes [27]. 

Interestingly, for the first time, a proteomic characterization benefited from the full sequencing of the 

Triticum turgidum ssp. durum genome [28], providing new insights and discussions. 

2. Materials and Methods 

2.1.  Plant Materials and Proteolytic Mixture 

Three wheat genotypes were selected for the present investigation: (1) Colosseo (Triticum 

turgidum ssp. durum), (2) Neolatino (Triticum turgidum ssp. durum), and (3) PI 56263 (Triticum turgidum 

ssp. turgidum). The wheat genotypes were grown in the experimental field “A. Martucci” of the 

Department of Soil, Plant and Food Sciences at Valenzano (Bari, Italy) in 2017, in a randomized 

complete block design. The full details of the agronomic practices are described elsewhere [3]. 

Three lactic acid bacteria (LAB) strains belonging to the Culture Collection of the Department of 

Soil, Plant and Food Science were selected for the present investigation, according to their specific 

proteolytic activity: Lactobacillus sanfranciscensis GF1, Lactobacillus plantarum GF2, and Lactobacillus 

casei GF3. The LAB strains were cultivated for 24 h at 30 °C on MRS (de Man, Rogosa & Sharpe broth) 

in addition to maltose and yeast, both at 5 g/L. Commercial proteases from Aspergillus oryzae (500,000 

hemoglobin units on the tyrosine basis/g; enzyme 1 [E1]) and Aspergillus niger (3000 

spectrophotometric acid protease units/g; enzyme 2 [E2]), which are routinely used for bakery 

applications, were supplied by BIO-CAT Inc. (Troy, VA). The fungal protease Veron PS (25 g/100 kg 

of flour) and the protease Veron HPP (from Bacillus subtilis) (10 g/100 kg of flour) were supplied by 

AB Enzymes. 

2.2.  Prototype-breads preparation 

Sourdoughs were produced from each T. turgidum genotype by mixing 30% (w/w) flour with 

70% (w/w) tap water, this latter containing a suspension of the pooled LAB strains (L. sanfranciscensis 

GF1, L. plantarum GF2, L. casei GF3) at the density of 9 log colony forming unit/g (CFU/g). Before the 

sourdough fermentation, a mixture of the commercial enzymatic preparations was added. In 

particular, E1 and E2 were added at 200 ppm, Veron PS was added at 25 g/100 kg of flour, and Veron 

HPP was added at 10 g/100 kg of flour. The doughs were incubated for 48 h at 37 °C, with stirring 

conditions of ca. 200 rpm. 

Gluten-free breads (dough yield (DY) = dough weight × 100/flour weight, of 200) were prepared 

using rice and corn flours (ratio 1:1 of dry matter). The sourdough was added into the final recipe of 

the bread (30% of the total amount of dough). Baker’s yeast was added at the percentage of 2% w/w, 

corresponding to a final cell density of about 9 log CFU/g in all of the breads. The doughs were mixed 

at 60 g for 5 min with an IM 5–8 high-speed mixer (Mecnosud, Flumeri, Italy), and the fermentation 

was carried out at 30 °C for 1.5 h. All of the breads were baked at 220 °C for 30 min (Combo 3, 

Zucchelli, Verona, Italy). The resulting breads were coded as HYD-1 (hydrolysed Colosseo flour), 

HYD-2 (hydrolysed Neolatino flour), and HYD-3 (hydrolysed PI 56263 flour). The control breads 

were prepared using untreated flours (not subjected to sourdough fermentation and without protease 

addition) in the same ratio and according to the same production protocol. The resulting samples 

were coded as CTRL-1 (Colosseo flour), CTRL-2 (Neolatino flour), and CTRL-3 (PI 56263 flour). 

After baking, the breads were manually crumbled, collected in a flat box and left at 37 °C 

overnight for dryness. Afterwards, the crumbles were ground with a laboratory blender (Sterilmixer 

12, VWR International PBI, Milano, Italy) for 30 s at 16,000 rpm (CHECK SPEED 10). The minces were 

carefully mixed in a plastic bag for 5 min for homogeneity, and then manually sieved with a 1 mm 

mesh, aliquoted, sealed under vacuum, and stored at −20°C until their use. Three independent 

batches of sourdoughs and breads were produced and analysed. 

2.3.  Gluten Quantification by Immune-Enzymatic Assay (R5 Competitive ELISA) 

The analysis of the gluten was carried out using the RIDASCREEN® Gliadin competitive (Art. 

No. R7021, R-Biopharm) kit, according to the producer’s instructions. In detail, two protein extracts 
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were prepared for each prototype bread, and each extract was assayed on two different wells of the 

microplate. For the control samples (CTRL-1, CTRL-2, and CTRL-3) and the processed sample (HYD-

2), an additional dilution factor of 1:200 in 60% ethanol was applied in order to allow proper gluten 

quantification within the validated dynamic range. 

2.4.  Proteomic Characterization by High Resolution Tandem Mass Spectrometry (HR-MS/MS) Analysis 

2.4.1. Sample Preparation Protocol 

Two hundred milligrams of the minces from all of the prototype breads were extracted with 5 

mL previously-optimized sample buffer, under strong denaturant and reducing conditions (100 mM 

Tris HCl pH 8.5, 8 M urea and 2% v/v dithiothreitol) [26]. After the buffer’s addition, the mixture was 

shaken with a vortex for 2 min and subjected to a probe-based ultrasound-assisted extraction, as has 

previously been described [29]. Afterwards the samples were centrifuged for 10 min at 3500 g and 

the supernatants were collected. 

The total protein amount of the supernatant was quantified using a commercial kit for 

colorimetric assays (Quick StartTM Bradford protein assay, Bio-rad Laboratories). 

Aliquots of such extracts (0.5 mL) were loaded on 3 kDa cut-off membranes for ultra centrifugal 

filtration (Amicon®, 3 kDa ultra centrifugal filters, Merck), which were properly activated with MilliQ 

water according to the instructions of the provider. The permeate fraction containing the low 

molecular weight compounds (<3 kDa) was labelled and referred to as the LMW fraction of the 

protein extract. 

In addition, a 30 µL aliquot of the extract was diluted 1:10 with chymotrypsin optimized 

digestion buffer (Tris HCl 100 mM, pH 8.0 added with 10 mM of CaCl2), for a final volume of 300 µL. 

Such samples were thermally denaturated (15 min incubation at 95 °C under shaking, 500 rpm), 

chemically reduced (added 30 µL of dithiotreitol 50 mM, 30 min incubation at 60 °C under shaking 

500 rpm), and alkylated (added 60 µL of iodacetamide 100 mM, 30 min incubation at RT, in the dark). 

The enzymatic digestion was then started by the addition of 6 µL chymotrypsin solution, 0.5 µg/µL 

in 1 mM HCl (minimum enzyme/protein ratio of 1:20 for each sample). The digestion was left 

overnight at 37 °C under shaking (500 rpm) and stopped after 15 h by acidification with 5 µL HCl 6 

M. The digests were centrifuged at 13,000 rpm for 10 min. The resulting peptide pool was referred to 

as the high molecular weight (HMW) digests. 

2.4.2. Discovery HR-MS/MS Analysis and Protein/Peptides Identification 

Micro-HPLC-MS/MS analyses were performed on an Ultimate 3000 UHPLC system coupled to 

a hybrid quadrupole-OrbitrapTM mass spectrometer Q-Exactive Plus (Thermo Fisher Scientific, San 

Josè, CA, USA). The chromatographic separation was accomplished with an Acclaim PepMap100, 

C18 column, (3 µm, 100 Å, 1 × 150 mm). The untargeted HR-MS/MS analyses were performed using 

the Full-MS/dd-MS2 analysis mode; all of the instrumental details are described elsewhere [3,25]. The 

raw data were processed by Proteome Discoverer v.2.1 sp1 (Thermo Fisher Scientific) for 

peptide/protein identification. The Sequest HT searching algorithm was applied against a customized 

database including all of the entries related to Triticum taxonomy (https://www.uniprot.org/, 

accessed on 27 February 2020, total of 335,217 accessions including the Triticum turgidum ssp durum 

reference proteome UP000324705). The processing workflow was set as follows: non-specific 

cleavage; mass tolerance on the precursor and fragment ions 10 ppm and 0.02 Da, respectively; 

precursor mass 300–6000 Da; minimum peak count 3; dynamic modifications: methionine-oxidation, 

glutamine/asparagine-deamidation, N-terminal glutamine cyclization to pyroglutamate, N-terminal 

protein acetylation; and static modifications: cysteine-carbamidomethylation (only for the HMW-

fraction). The peptide list obtained as the software output was filtered for the best results reliability 

according to the following criteria: at least 2 peptide-spectrum matches (PSMs) for each sequence, 

and unambiguous PSM only. 

2.5. In Vitro-Simulated Human Gastroduodenal Digestion Experiments 
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The minces of the breads obtained from the processed flours Colosseo (HYD-1) and PI 56263 

(HYD-3) were subjected to additional experiments of in-vitro simulated human gastroduodenal (GD) 

digestion. The standardized static model proposed by Minekus et al. in 2014 [30] was applied to 1 g 

mince for each sample. After the GD digestion, the samples were purified by solid phase extraction 

(SPE) according to protocols reported elsewhere [3,25], with few modifications. In particular, the SPE 

was carried out on C18 disposable cartridges, loading 1 mL sample. After elution with 90% methanol, 

the samples were dried and resuspended in 100 µL of 90:10 water/acetonitrile + 0.1% formic acid to 

achieve a pre-concentration factor of 10 times. 

The samples were analysed in the manner already described in Section 2.4.2, with a few 

modifications related to the software-based data processing. The GD digestion was carried out with 

a complex enzyme mixture; as such, no specificity was expected for the proteolytic cleavage, and the 

‘no enzyme’ option was set for the data analysis. Moreover, the carbamidomethylation of the cysteine 

residues was excluded because the reduction/alkylation step was not included in this protocol. 

3. Results and Discussion 

3.1. Prototype Bread Sample Preparation 

Maize, rice, sorghum, and pseudo-cereal flours, as well as their corresponding fractionated 

starches, are used as the main substitutes of wheat in celiac product formulations [31,32]. Among 

these, rice flour is the most commonly used in gluten-free (GF) bread formulations due to the fact 

that it is widely available and inexpensive, and is characterized by an appreciated sensory profile. It 

is white in colour, bland in taste, easily digested, and hypoallergenic. Despite these advantages, rice 

flour presents technological limitations in bread-making due to the poor functional properties of its 

proteins, as is also observed for all of the other GF cereal flours [33,34]. 

Besides the unavoidable structural and sensory problems related to the use of GF flour instead 

of wheat, the nutritional features of GF products are also widely debated [35]. Indeed, it was reported 

that GF commercial products are often characterized by very low dietary fiber content and excess 

calories [36,37]. Since the scientific community has correlated the unbalanced GF diet to the 

increasing occurrence of chronic degenerative pathologies, the necessity to improve the nutritional 

value of the GF products has already been highlighted [37,38]. From this point of view, sourdough 

fermentation was reported as an effective tool for the improvement of the sensory, technological, and 

especially nutritional and functional properties of GF baked goods [39]. Different research groups 

[39–43] have demonstrated that a biotechnological protocol including the use of selected sourdough 

lactobacilli can lead to a complete hydrolysis of gluten during the long-time fermentation of wheat 

flour [39]. Long-term in vivo trials have confirmed that experimental baked goods that were made 

with detoxified fermented flours were completely safe [41,42], thus leading to the industrialization 

of the process [44]. 

Based on the above-mentioned knowledge, a biotechnological process based on the use of three 

selected LAB and commercial proteases was used in this work in order to detoxify the gluten form 

the flours obtained from three different wheat genotypes. L. sanfranciscensis GF1, L. plantarum GF2, 

and L. casei GF3, previously isolated from wheat sourdoughs, were selected based on their protease 

and peptidase activities (data not shown), and were used as a mixed starter. It is well known that 

LAB possess a very complex peptidase system [45], although this is not a unique strain that may 

possess the entire pattern of peptidases needed for the hydrolysation of all of the peptides in which 

Pro residue are present, such as in gluten sequences. The role of the fungal proteases is retained 

essentially in the primary proteolysis, by releasing various sizes of polypeptides, which are thus 

available for the bacterial degradation. 

As such, sourdoughs were used to make the GF prototype bread including rice and corn flours 

as the main ingredients. As we were aiming for a biochemical investigation, the prototype 

formulation did not include the structuring or flavouring agents commonly required to obtain 

products that are designed for commercial use or consumption [36]. 
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3.2. Gluten Quantitation and Detoxification Efficiency 

The quantitation of gluten in fermented/hydrolysed foods poses analytical challenges in method 

development and validation because the peptide patterns deriving from proteolysis can dramatically 

differ according to the fermentation/hydrolysis processes applied; theoretically, the relevant 

calibrants required for quantitative purposes should change accordingly. In addition, the regulatory 

threshold of 20 ppm was based on studies examining the immunopathogenicity of intact gluten 

[46,47]; whether the immunoreactivity/toxicity potential is the same for gluten peptides produced 

during fermentation is unknown. The protein/peptide profiles generated during the fermentation of 

different foods is dependent on numerous parameters, such as ingredients, time, temperature, and 

selected microrganisms and/or enzymes; therefore, it is an unrealistic goal to generalize the profile of 

different fermented/hydrolysed foods. 

Until now, ELISA kits have routinely been used for the detection and quantitation of gluten in 

food and, in particular, the competitive assays that recognize a single epitope represent the 

preferential choice for the detection of immunoreactive peptides in hydrolysed foods. Competitive 

assays based on R5 (Ridascreen® Gliadin Competitive by R-Biopharm) and G12 (GlutenTox® 

Competitive by Biomedal Diagnostics) monoclonal antibodies are commercially available. The R5 

competitive ELISA kit grounds its specificity on the R5 monoclonal antibody, which was specifically 

raised against the peptide sequences QQPFP, QQQFP, LQPFP, QLPFP, and includes pepsin/trypsin 

enzimatic digested prolamins from wheat, rye, and barley as calibrants. It features the first action 

approval by the association of official analytical chemists (AOAC) for the official method of analysis 

(OMA 2015.05) and as such, it represents the best choice currently available on the market for 

hydrolysed gluten quantification, and for a preliminary estimation of the efficacy in gluten 

detoxification strategies [48]. 

All of the prototypes prepared in this investigation were subjected to R5 immunoassay for 

residual gluten quantification. Gliadin fractions of both the hydrolysed and control samples were 

extracted with 60% ethanol, according to the kit’s instructions. The set dynamic range for the assay 

was between 10 and 270 ng/mL, corresponding to 10–270 ppm of the gluten in the food matrix. Based 

on this, the three CTRL samples expected to contain a gluten concentration above the kit’s upper limit 

were subjected to an additional dilution (1:200) of the protein extract before performing the assay, in 

order to allow a proper quantification within the validity range of the calibration curve. Notably, all 

of the tested samples were properly quantified except for the HYD-2 samples, which generated an 

out of range result ([gluten] > 270 ppm). The assay was repeated for this sample by applying an 

increasing dilution factor of the gliadin extract in order to reach the proper levels for the gluten 

quantification. The averaged results are reported in Table 1. 

Table 1. Overview of R5-competitive enzyme linked immunoassay (ELISA) analysis carried out on 

the prototype breads (n = 2 independent extracts/bread and n = 2 assay replicates/extract). 

Sample Code Gluten [mg/kg] Relative Standard Deviation % Degradation Efficiency 

HYD-1* 11.3 ± 1.3 11% 
99.5% 

CTRL-1* 2490 ± 80 3% 

HYD-2* 7600 ± 700 9% 
22.0% 

CTRL-2* 9700 ± 1100 11% 

HYD-3* 36 ± 7 19% 
99.6% 

CTRL-3* 9800 ±1100 11% 

*HYD: processed bread; CTRL control bread; sample 1: bread produced with Colosseo flour; sample 

2 bread produced with Neolatino flour; sample 3: bread produced with PI 56263 flour. 

By comparing the CTRL and HYD samples for each wheat genotype, a reduced amount of gluten 

was assessed to be present in all of the three prototype breads from the hydrolysed flours; the 

reduction was directly ascribed to the proteolytic activity of the enzymatic/microbial mixture 

designed for the current investigation. However, the fermentation process—applied under 

comparable conditions to the three selected wheat flours—provided a variable efficacy in gluten 



Nutrients 2020, 12, 3824 7 of 20 

 

degradation depending on the specific genotype. In particular, the sample prepared by the 

sourdough fermentation of Colosseo flour (HYD-1) resulted in a final prototype bread which can be 

labelled as GF, due to residual gluten content below the 20 ppm threshold limit (11.3 ± 1.3 ppm). The 

prototype bread HYD-3, prepared with PI 56263 flour, presented a residual gluten concentration of 

36 ± 7 ppm, which is referred to as ‘very low gluten content’ (20 ppm < [gluten] < 100 ppm). In both 

cases, the gluten degradation efficiency was assessed to be very high (≥99.5%), and the final prototype 

breads could potentially be included in the diet of CD patients. On the contrary, the HYD-2 sample 

prepared using Neolatino flour maintained a high level of residual gluten (7600 ± 700 ppm), and was 

thus not acceptable for direct consumption by CD patients. Notably, in this investigation, it was 

proven for the first time that the efficiency of gluten detoxification strategies are strictly related to the 

specific protein profile of the wheat flour. Interestingly, the genotype-depending efficiency reported 

here poses specific challenges to food technologists because it constrains the validity of all of the 

previous investigations dealing with gluten hydrolysis by the enzymatic treatment and/or sourdough 

fermentation of the specific flours on which they were developed and validated. In order to increase 

the understanding of this experimental evidence, we carried out a detailed proteomic 

characterization using high resolution tandem mass spectrometry (HR-MS/MS). 

3.3. Proteome Profiling and Resistant Epitope Matching 

For the proteomic characterization of prototype samples, a comprehensive protein extraction 

was carried out under previously optimized conditions [26]. A strong denaturing and reducing 

buffered solution was prepared and applied to all of the bread minces (CTRL and HYD). The total 

protein extracts were quantified using a commercial kit with two analytical replicates and two 

technical replicates. Figure 1 summarizes the averaged results. Notably, all of the extracts derived 

from the processed flours (HYD-1, HYD-2, HYD-3) presented a protein concentration lower than the 

relevant control samples (CTRL-1, CTRL-2, CTRL-3, respectively). The rationale of this experimental 

evidence was found in the working principle of the colorimetric assay. Indeed, as a Coomassie dye-

based assay, the development of colour is associated to the instauration of Van der Waals forces, and 

hydrophobic interactions between the dye and specific side chains of the proteins. Peptides or 

oligopeptides with low molecular weights (<3 kDa) cannot provide such an interaction and do not 

produce colour in reaction to Coomassie dye reagents. Therefore, the results reported in Figure 1 

presented an indirect confirmation of the protein hydrolysis occurring in all of the hydrolysed flours 

at different degrees. 

 

Figure 1. Protein quantification of the model breads by Bradford colorimetric assay carried out on the 

total protein extracts. 
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In order to characterize the low-molecular weight (LMW) fraction resulting from flour 

hydrolysis, the ultrafiltration of the total protein extracts on cut-off membranes was applied, with a 

size limit of 3 kDa. The permeate fraction (LMW) was directly analysed by untargeted HR-MS/MS 

for the sequence identification. For comparison, we applied the same protocol and analysis to both 

the hydrolysed and control breads, notwithstanding the absence in the latter of the 

fermentation/hydrolysis step. 

The HR-MS/MS analysis was carried out in data dependent acquisition mode, and the 

fragmentation spectra were processed via commercial software for sequence identification against a 

customized database containing all of the protein accessions currently assigned to the Triticum 

taxonomy. Notably, such a database was significantly extended compared to our previous 

investigation [25], because it was populated with the whole proteome of Triticum turgidum subsp. 

durum (taxonomy ID 4567), which was made publicly available after the full sequencing of its genome 

[28]. Therefore, we expected, for this investigation, a wide coverage and good reliability in the 

peptide and protein sequence identification, benefitting from the T. turgidum subsp. durum reference 

proteome. Given the high complexity of the proteolysis accounted for by the simultaneous microbial 

and fungal activities, a non-specific cleavage was set for the database indexing. As was expected, very 

few peptides were detected in the LMW fraction of the three control samples, confirming that all of 

the sequences identified in samples HYD-1, HYD-2, and HYD-3 were directly ascribed to the 

detoxification strategy devised and carried out on these samples. In particular, 312, 242 and 384 

peptides were detected in samples HYD-1, HYD-2, and HYD-3, respectively, as is reported in Table 

2. 

Table 2. Summary of the peptides identified by the discovery HR-MS/MS analysis of the model breads 

prepared with monovarietal durum wheat flour and subjected (HYD) or not (CTRL) to sourdough 

and enzymatic fermentation. 

Sample Type Peptides Count 
HYD-

1 

CTRL-

1 

HYD-

2 

CTRL-

2 

HYD-

3 

CTRL-

3 

Low molecular 

weight (LMW) 

fraction, < 3 kDa 

total identified 312 4 242 4 384 7 

hazard peptides with intact 

celiac disease (CD) epitope 
- - 7 - 6 - 

Protein 

distribution of 

hazard peptides 

* 

γ-gliadin - - 7 - 6 - 

ω-gliadin - - 2 - 1 - 

High molecular 

weight (HMW) 

fraction, 

chymotrypsin digest 

total identified 614 1394 1097 1671 663 1599 

hazard peptides with intact 

CD epitope 
- 69 46 83 1 92 

Protein 

distribution of 

hazard peptides 

* 

α-gliadin - 14 11 19 - 23 

γ-gliadin - 22 20 34 - 32 

ω-gliadin - 14 7 14 1 24 

LMW-

glutenin 
- 25 11 21 - 12 

HMW-

glutenin 
- 1 1 1 - 1 

AAI domain 

containing 
- 8 9 11 - 21 

* Several sequences were shared among the different accessions. 

Figure 2 presents an overview of the detected peptides according to their specific features. In 

particular, the size distribution was reported in Figure 2a, expressed as the number of amino acid 
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(AA) residues. For all three samples (HYD-1, HYD-2, HYD-3), most of the identified sequences 

resulted in very short fragments (6–8 AA) that featuring a length below the minimum peptide-

binding register (cut-off 9 AA) did not pose any toxicity risk in CD patients [27]. Notably, the previous 

comments about a differential hydrolysis accounted for by the microbial/enzymatic activity on the 

three monovarietal flours was consistently supported by such a preliminary MS investigation on the 

LMW fraction. Indeed, also in this experiment, the sample HYD-2 results showed that it was less 

affected by protein degradation than the other two samples, resulting in a lower count of identified 

peptides, especially as for the shortest fragments. In Figure 2b, the peptide distribution among the 

different proteins is displayed, with particular attention to the storage proteins that were individually 

counted, whereas all of the metabolic and other water-soluble proteins were listed in the general 

category ‘others’, and all of the accessions that were not directly ascribable to the previous categories 

were labelled as ‘uncharacterized’. 

 

Figure 2. Overview of the peptides identified in the low molecular weight fraction (LMW, <3 kDa) by 

the HR-MS/MS analysis. Panel (a): peptide count according to the sequence length. Panel (b): peptide 

count according to the belonging protein (please consider that several peptides were shared among 

different accessions). 

These latter two classes of proteins were not taken into consideration for further discussion 

because they were not relevant for the CD immunoreactivity perspective. Interestingly, all of the 

storage proteins, namely gliadins (α-, γ-, ω-, δ-type) and glutenin (low molecular weight, LMW and 

high molecular weight, HMW) were affected, to a certain extent, by the microbial/enzymatic 

degradation. Of particular interest was the ability to hydrolyze α- and γ- gliadins, especially in the 

sample HYD-3, as they are mainly responsible for the toxicity level of durum wheat flours towards 

CD patients. In addition, the protein accessions referred to as ‘AAI domain-containing proteins’ were 

counted as an independent category because they featured partial sequence homology with γ-gliadin, 

α-gliadin, and LMW-glutenin accessions, and thus deserved attention for the toxicity risk evaluation. 

Such an evaluation was accounted for by an in-silico assessment of the sequence identity with 

known T-cell epitopes [27] by means of the CELIAC Database v.2 and the relevant tool for protein 

risk assessment (http://www.allergenonline.org/celiacfasta.shtml). All of the peptides detected in the 

LMW fractions were searched for an exact match with the immunostimulatory sequences, and the 
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positive matches were counted in Table 2. Notably, only a few sequences from γ-gliadins (featuring 

partial sequence homology with ω-gliadins) included intact epitopes, and they were detected only in 

sample HYD-2 and HYD-3, whereas no intact epitope was found in sample HYD-1. 

In order to investigate further the protein degradation accounted for by the sourdough 

fermentation with the mixture of L. strains and fungal proteases, the high molecular weight (HMW) 

fraction of the protein extracts was also characterized by untargeted HR-MS/MS analysis. A typical 

workflow for a bottom-up proteomic approach, with chymotrypsin as specific enzyme, was applied 

to both the HYD and CTRL samples, keeping the latter as the internal reference to trace back to the 

susceptible and resistant sequences. Hundreds of sequences ascribed to Triticum taxonomies were 

identified in all of the samples, especially in the protein extract from the CTRL prototype breads (see 

Table 2 for the specific counting). Again, the difference in the number of detected peptides can likely 

be ascribed to the protein degradation occurring during the flours’ fermentation, as this step was the 

only difference in the production of the HYD and CTRL samples. All of the identified peptides were 

screened for an exact match with known T-cell epitopes, as was previously described, after filtering 

out all of the sequences lower than 9 AA in length. As was expected, the three control samples 

encoded for several tens of intact T-cell epitopes, which were differently distributed among the main 

storage proteins (see Table 2). Interestingly, protein accessions generally described as AAI domain-

containing proteins (A0A446IHC0; A0A446IHA8, B6UKQ6, etc.) actually coded for full length 

epitopes; indeed, 8, 11, and 21 hazard peptides were detected in samples CTRL-1, CTRL-2, and CTRL-

3, respectively (see Table 2). Notably, no intact epitope was detected in the HMW-fraction of sample 

HYD-1, and only one hazard peptide was detected in the HMW-fraction of HYD-3, proving that the 

detoxification strategy was very efficient for these two flours, degrading almost completely the 

epitopes coded by each genotype down to concentration levels below the sensitivity of this analytical 

method (see Table 2). On the contrary, a very different result was obtained for the HMW-fraction of 

the HYD-2 sample, in which most of the epitopes detected in the CTRL-2 sample were resistant to 

the proteolytic activity of the selected L. strains and peptidases involved in the fermentation process. 

The untargeted HR-MS/MS analysis that was carried out proved unequivocally that—

notwithstanding that the fermentation was equally applied to all three flours—its efficacy in gluten 

detoxification was dramatically different according to the specific genotype. Since all three genotypes 

were systematically characterized in our previous investigation [25], and were all promising in terms 

of reduced gluten content and potential lower toxicity, such differential behavior upon subjection to 

the fermentation can only find explanation in punctual differences of the protein primary structure 

that affects their susceptibility to hydrolysis by microbial/fungal proteases. According to this 

speculation, we carefully evaluated the list of peptides containing intact epitopes and grouped them 

based on the specific epitope that was coded. In addition, we also disclosed, whenever available, the 

relevant restricted 9 AA core epitope according to the current nomenclature proposed by Sollid et al. 

2020 [49], in order to streamline the reading and understanding of the results. Indeed, most of the 

detected epitopes, which referred to different identification numbers in the CELIAC Database 

actually shared the same core 9 AA epitope, and thus likely presented similar binding efficiency to 

HLA-DQ antigens. Finally, thanks to the parallel analysis carried out on the control samples of each 

genotype, we furtherly deepened the data analysis by classifying the detected epitopes as ‘resistant’ 

or ‘susceptible’ to the fermentation process applied. Namely, the resistant epitopes were the ones 

identified in either the LMW or HMW fraction of the processed breads (HYD), whereas the 

susceptible epitopes were the sequences detected in any of the CTRL samples, but that were missing 

in the relevant HYD sample, thus suggesting its likely hydrolysis by the fermentation. Tables 3 and 

4 present the results of such a data analysis, reporting the susceptible and resistant epitopes, 

respectively. The epitopes were listed according to the identification numbers assigned to them by 

the CD database (http://www.allergenonline.org/celiachome.shtml) and some further information 

about toxicity and the HLA-DQ antigen, as well as the number of peptides per sample encrypting the 

specific epitope. As was already mentioned, the possibility to identify the peptide sequences by 

searching against the reference proteome of durum wheat provided an undeniable advance for the 

current investigation. Browsing the list of the identified epitopes (see Tables 3 and 4), several 
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sequences encrypting the 9AA-cores DQ2.5-glia-α1b, DQ2.5-glia-α2, DQ8-glia-α1,a DQ2.5-glia-γ4b, 

expected to be coded only by the D genome, were detected [50]. Therefore, this proteomic 

investigation represents—to the best of our knowledge—the first experimental evidence that such 

epitopic sequences can also be expressed in tetraploid wheats. 

Assessing whether the detoxification strategy provided the efficient degradation of the specific 

DQ2.5 and/or DQ8 epitopes boasts great relevance from the general perspective, because CD patients 

may express foremost either one. Indeed, approximately 95% of CD patients express HLA-DQ2.5 

antigens, which are then statistically more relevant for the susceptible population, whereas the rest 

are usually either HLA-DQ8 positive, or, to a minor extent, express HLA antigens that contain only 

one of the DQ2.5-chains, e.g., DQ2.2 or DQ7.5 [49,51]. In addition, although polyclonal T-cell 

recognizing multiple epitopes are usually detected in CD patients, specific responses to the DQ2.5-

glia-α1, DQ2.5-glia-α2 epitopes, and homologues thereof (ω-gliadins, hordeins and secalins) are 

dominant in DQ2.5-positive patients, and responses to the DQ8-glia-α1 epitope are most frequently 

found in DQ8-positive patients [27].
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Table 3. List of the CD epitopes identified in the prototype breads (CTRL) that were susceptible to the proteolysis carried out by the selected strains of L. strains 

and fungal enzymes; none of them were detected in the HYD samples. The sequence reported in bold and underlined represents the 9AA core T-cell–activating 

epitope, according to Sollid et al. 2020 [49]. The human leucocyte antigen (HLA) was reported whenever specified. 

Epitopes Search * N° of Hazard Peptides/Sample ** 

ID Type Toxicity *** HLA-DQ Sequence Core T-Cell Epitope CTRL-1 CTRL-2 CTRL-3 

55 α-gliadin I DQ2 PQPQLPYPQPQLPY DQ2.5-glia-α1b, DQ2.5-glia-α2 0 1 1 

64 α-gliadin I DQ2 PQPQLPYPQPQL DQ2.5-glia-α2 0 1 1 

66 α-gliadin I DQ2 PQPQLPYPQPQ DQ2.5-glia-α2 0 1 1 

68 α-2 gliadin I DQ2.5 PQPQLPYPQ DQ2.5-glia-α2 0 1 1 

72 α-gliadin I DQ2 PQLPYPQPQLPY DQ2.5-glia-α1b 0 1 1 

84 α-3 gliadin I DQ2.5 PYPQPQLPY DQ2.5-glia-α1b 0 1 1 

93 α-20 gliadin I DQ2.5 FRPQQPYPQ DQ2.5-glia-α3 1 1 1 

119 α-gliadin I DQ8 GSFQPSQQNPQAQGS  0 1 0 

140 α-gliadin I DQ8 QLIPCMDVVL  1 0 1 

182 α-gliadin I DQ2 LQPFPQPQPFLPQLPYPQPQ  1 1 1 

188 α-gliadin I DQ2 FPGQQQQFPPQQPYPQPQPF  1 0 1 

221 ω-II gliadin I DQ2 PQPQQPFPW DQ2.5-glia-ω2 0 1 0 

222 ω-gliadin I DQ2 PFPWQPQQPFPQ  1 1 0 

226 ω-gliadin I DQ2 QQPQQPFPQPQLPFPQQSEQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 1 1 0 

231 ω-gliadin I DQ2 PFPQPQQPIPV  1 1 1 

236 ω-gliadin I DQ2 PFPLQPQQPFPQ DQ2.5-glia- γ4e 0 0 1 

463 γ-gliadin I DQ8 (DQ2/8) QQPYPQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 1 1 

501 γ1-gliadin I DQ2 PQQPFPQPQQTFPQQPQLPF  0 0 1 

502 γ1-gliadin I DQ2, DQ8 PFPQPQQTFPQQPQLPFPQQ  0 0 1 

504 γ1-gliadin I DQ2 PQQTFPQQPQLP  0 0 1 

523 γ1-gliadin I DQ2 QQPQQSFPQQQ DQ2.5-glia-γ1/DQ8.5-glia-γ1/DQ8-glia-γ2 1 3 1 

524 γ1-gliadin I DQ2 QPQQSFPQQQ DQ2.5-glia-γ1/DQ8.5-glia-γ1/DQ8-glia-γ2 2 3 1 

530 γ-gliadin I DQ8 (DQ2/8) QFPQTQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 0 1 

536 γ-gliadin I DQ2, DQ8 QQPQLPFPQQPQQPFPQPQQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 1 0 0 

537 γ-gliadin I DQ8 (DQ2/8) QLPFPQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 1 2 0 

573 γ-gliadin I DQ2 FPQPQQQFPQPQ DQ2.5-glia-γ4b 0 0 1 

577 γ-gliadin I DQ2.5 PQPQQQFPQ DQ2.5-glia-γ4b 0 0 1 

583 γ-1 gliadin I DQ2.5/DQ8 PQQSFPQQQ DQ2.5-glia-γ1/DQ8.5-glia-γ1/DQ8-glia-γ2 2 4 2 

611 γ-gliadin I DQ2 (DQ2.5) PHQPQQQVPQPQQPQQPF  0 1 0 

617 γ-gliadin I DQ8 (DQ2/8) PFPQLQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 1 1 0 

640 γ-gliadin I DQ2 QPQQSFPQQQRP DQ2.5-glia-γ1/DQ8.5-glia-γ1/DQ8-glia-γ2 1 0 0 

721 LMW glutenin I DQ2 QQQQPPFSQQQQSPFSQQQQ DQ2.5-glut-L2 1 1 1 

729 LMW glutenin I DQ2 QQPPFSQQQQSPFSQ DQ2.5-glut-L2 2 1 1 

731 LMW glutenin I DQ2 QQPPFSQQQQSP  5 1 2 

733 LMW glutenin I DQ2 QPPFSQQQQSPFSQ DQ2.5-glut-L2 3 2 1 
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734 LMW glutenin I DQ2 PPFSQQQQSPFSQQQ DQ2.5-glut-L2 2 1 1 

736 LMW glutenin I DQ2 PFSQQQQSPFSQQQQ DQ2.5-glut-L2 2 1 1 

738 LMW glutenin I DQ2 PFSQQQQSPF DQ2.5-glut-L2 6 2 2 

747 glut-L2 I DQ2.5 FSQQQQSPF DQ2.5-glut-L2 6 2 2 

835 Hordein I DQ2 QPFPQPQQPFPL DQ2.5-glia-ω1 1 1 1 

867 hor-1 I DQ2.5 PFPQPQQPF DQ2.5-glia-ω1 1 1 4 

878 Hordein I DQ2 QPFPQPQQPFSW DQ2.5-glia-ω1 0 0 1 

886 γ-hordein I DQ2 QQFPQPQQPFPQQP DQ2.5-hor-2 0 0 1 

890 γ-hordein I DQ2 QQFPQPQQPFPQ DQ2.5-hor-2 0 0 1 

891 hor-2 I DQ2.5 PQPQQPFPQ DQ2.5-hor-2 0 1 3 

930 γ-secalin I DQ2 QSIPQPQQPFPQ DQ2.5-hor-2 0 0 1 

950 ω-Secalin I DQ2 QPFPQPQQPIPQ  1 1 0 

973 ω-Secalin I DQ2 IIPQQPQQPFPL  0 1 1 

1040 glia-ω 3 I DQ2.5 PFPQPQQPI  2 2 1 

1042 glia-ω 4 I DQ2.5 PQPQQPIPV  1 1 1 

1044 glia-ω 5 I DQ2.5 LQPQQPFPQ DQ2.5-glia-γ4e 4 1 4 

* http://www.allergenonline.org/celiachome.shtml (Accessed on 1–3 April 2020). In the case of the glutamate residues (E) expected in-vivo by TG2-mediated 

deamidation, the respective sequence with unmodified glutamine (Q) residue was searched. ** The number of peptides reported in brackets refers to the analysis 

of the LMW-fraction, whereas all of the other counts refer to the analysis of the HMW-fraction. *** I: immunogenic; T: toxic.

Table 4. List of CD epitopes identified in the prototype breads from the hydrolyzed flours (HYD) that were resistant to the proteolysis carried out by the selected 

strains of L. strains and fungal enzymes. The sequence reported in bold and underlined represents the 9AA core T-cell activating epitope, according to Sollid et al. 

2020 [49]. 

Epitopes Search * 
N° of Hazard 

Peptides/Sample ** 

ID Type Toxicity *** HLA-DQ Epitope Sequence Core T-Cell Epitope HYD-1 HYD-2 HYD-3 

1 α-gliadin T Unknown VPVPQLQPQNPSQQQPQEQVPL - 0 1 0 

3 α-gliadin I DQ2 VRVPVPQLQPQNPSQQQPQ - 0 1 0 

5 α-gliadin I DQ2 FPGQQQPFPPQQPYPQPQPF - 0 1 0 

7 α-gliadin I, T HLA-DR PQPQPFPSQQPY - 0 3 0 

14 α-gliadin I DQ2 LQLQPFPQPQLPY DQ2.5-glia-α1a 0 1 0 

24 α-gliadin I DQ2 QLQPFPQPQLPY DQ2.5-glia-α1a 0 1 0 

32 γ-gliadin I DQ2 PQQPFPQQPQQ DQ2.5-glia-γ5 0 0 0 (1) 

36 α-gliadin I DQ2 LQPFPQPQLPY DQ2.5-glia-α1a 0 1 0 

42 α-gliadin I DQ2 QPFPQPQLPY DQ2.5-glia-α1a 0 1 0 

53 α-9 gliadin I DQ2.5 PFPQPQLPY DQ2.5-glia-α1a 0 1 0 

95 α-gliadin I 
DQ8 (DQ2/8, 

DQ1/8) 
QQPQQQYPSGQGSFQPSQQNPQAQG DQ8-glia-α1 0 1 0 

96 α-gliadin I DQ8 QQPQQQYPSGQGSFQPSQQNPQAQ DQ8-glia-α1 0 1 0 
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100 α-gliadin I DQ8 QPQQQYPSGQGSFQPSQQNP DQ8-glia-α1 0 1 0 

101 α-gliadin I 
DQ8 (DQ2/8, 

DQ1/8) 
QQYPSGQGSFQPSQQNPQ DQ8-glia-α1 0 1 0 

102 α-gliadin I DQ8 QYPSGQGSFQPSQQNPQA DQ8-glia-α1 0 1 0 

104 α-gliadin I DQ8 YPSGQGSFQPSQQNP DQ8-glia-α1 0 1 0 

105 α-gliadin I DQ8 (DQ2/8) PSGQGSFQPSQQNPQAQG DQ8-glia-α1 0 1 0 

106 α-gliadin I DQ8 (DQ2/8) PSGQGSFQPSQQ DQ8-glia-α1 0 1 0 

107 α-gliadin I DQ8 (DQ2/8) PSGQGSFQPSQ - 0 1 0 

108 α-gliadin I DQ8 (DQ2/8) SGQGSFQPSQQN DQ8-glia-α1 0 1 0 

113 α-gliadin I DQ8 (DQ2/8) GQGSFQPSQ - 0 1 0 

115 α2 gliadin I DQ8 (DQ2/8) QGSFQPSQQ DQ8-glia-α1 0 1 0 

138 α-gliadin I DQ2 PQQPYPQPQPQ - 0 1 0 

146 α-gliadin I DQ2 QVPLVQQQQFLGQQQPFPPQ - 0 1 0 

149 α-gliadin I, T Unknown LGQQQPFPPQQPYPQPQPFPSQQPY - 0 1 0 

150 α-gliadin I, T 
DQ2 (α1*0501, 

α1*0201) 
LGQQQPFPPQQPYPQPQPF - 0 1 0 

151 α-gliadin I 
DQ2 (α1*0501, 

α1*0201) 
LGQQQPFPPQQPYPQPQ - 0 1 0 

152 α-gliadin I, T HLA-DR LGQQQPFPPQQPY - 0 2 0 

185 α-gliadin I DQ2 QPQPFLPQLPYPQP - 0 1 0 

187 α-gliadin I DQ2 PQPFLPQLPYPQ - 0 1 0 

195 ω-gliadin I DQ2 PQQPFPQQPQQP DQ2.5-glia-γ5 0 2 (2) 0 

227 ω-gliadin I DQ2 QPFPQPQLPFPQ  0 1 0 

229 ω-gliadin I DQ2 PFPQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 3 (1) 0 (1) 

246 
ω5-gliadin/LMW 

glutenin 
I DQ2 QQQQIPQQPQQF - 0 1 0 

252 
ω5-gliadin/LMW 

glutenin 
I DQ2 QIPQQPQQF - 0 2 0 

426 γ-gliadin I DQ2 PQQPFPQQPQQPYPQQP 
DQ2.5-glia-γ3/DQ8-glia-γ1b, 

DQ2.5-glia-γ5 
0 1 0 

427 γ-gliadin I DQ2 PQQPFPQQPQQPY DQ2.5-glia-γ5 0 1 0 

432 γ-gliadin I DQ2 PQQPFPQQPQQ DQ2.5-glia-γ5 0 2 (2) 0 

437 γ-gliadin I DQ2 QQPFPQQPQQPYPQ 
DQ2.5-glia-γ3/DQ8-glia-γ1b, 

DQ2.5-glia-γ5 
0 1 0 

438 γ5 gliadin I DQ2.5 QQPFPQQPQ DQ2.5-glia-γ5 0 4 (2) 0 (1) 

441 γ-gliadin I DQ2 PFPQQPQQPYPQQPQ DQ2.5-glia-γ3/DQ8-glia-γ1b 0 1 0 

445 γ-gliadin I DQ2 PFPQQPQQPYPQ DQ2.5-glia-γ3/DQ8-glia-γ1b 0 1 0 

446 γ-gliadin I DQ8, DQ2 FPQQPQQPYPQQPQQ DQ2.5-glia-γ3/DQ8-glia-γ1b 0 1 0 
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451 γ-gliadin I DQ2 FPQQPQQPYPQQP DQ2.5-glia-γ3/DQ8-glia-γ1b 0 1 0 

454 γ-gliadin I DQ2 FPQQPQQPYPQQ DQ2.5-glia-γ3/DQ8-glia-γ1b 0 1 0 

458 γ1 and γ5 gliadin I DQ2.5/DQ8 QQPQQPYPQ DQ2.5-glia-γ3/DQ8-glia-γ1b 0 2 (1) 0 (1) 

464 γ-gliadin I DQ2 QQPYPQQPQ - 0 1 (1) 0 (1) 

468 γ-gliadin I 
DQ2 (DQ2.2 and 

DQ2.5) 
PYPQQPQQP - 0 1 0 

472 γ-gliadin I DQ2.5/DQ8 QQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 8 (4) 0 (4) 

479 γ1-gliadin I DQ2 QVDPSGQVQWPQ - 0 3 0 

503 γ1-gliadin I DQ2 PFPQPQQTFPQ - 0 1 0 

538 γ-gliadin I DQ2 PFPQQPQQPF - 0 3 (1) 0 (1) 

542 γ-gliadin I DQ2 FPQQPQQPF - 0 4 (1) 0 (1) 

553 γ-gliadin I DQ8 (DQ2/8) PFPQTQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 1 0 

555 γ-gliadin I DQ8 (DQ2/8) PFPQSQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 1 0 

587 γ-gliadin I DQ2 VQGQGIIQPQQPAQL DQ2.5-glia-γ2 0 3 (1) 0 

593 γ-gliadin I DQ2 GIIQPQQPAQL DQ2.5-glia-γ2 0 4 (1) 0 

595 γ-gliadin I DQ2 IIQPQQPAQL DQ2.5-glia-γ2 0 4 (1) 0 

597 γ-gliadin I DQ2 IIQPQQPAQ - 0 6 (1) 0 

599 γ5 gliadin I DQ2.5 IQPQQPAQL DQ2.5-glia-γ2 0 4 (1) 0 

612 γ-gliadin I DQ8 (DQ2/8) QQPFPQQPQQPFPQ 
DQ2.5-glia-γ4c/DQ8-glia-

γ1a, DQ2.5-glia-γ5 
0 3 (1) 0 

650 γ-gliadin I DQ2 QPFPQLQQPQQP - 0 1 0 

659 LMW glutenin I DQ2 QAFPQPQQTFPH - 0 1 0 

701 
γ-gliadin or LMW 

glutenin 
I DQ2 QQPPFSQQQQPVLPQ 

DQ2.5-glut-L1/DQ2.2-glut-

L1 
0 3 0 

706 Glut-L1 I DQ2.2 PFSQQQQPV 
DQ2.5-glut-L1/DQ2.2-glut-

L1 
0 7 0 

720 LMW glutenin I DQ2 QQPPFSQQQQPPFSQ - 0 2 0 

762 LMW glutenin I DQ2 QQPPFSQQQQQPILL - 0 1 0 

763 LMW glutenin I DQ2 QPPFSQQQQQPILL - 0 1 0 

781 HMW-Glutenin I DQ8 (DQ2/8) GQPGYYPTSPQQPGQ - 0 1 0 

903 Secalin I DQ2 PQQSFPQQP - 0 0 1 

926 γ-secalin I DQ2 PQTQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 1 0 

928 γ-secalin I DQ2 PQSQQPQQPFPQ DQ2.5-glia-γ4c/DQ8-glia-γ1a 0 1 0 

* http://www.allergenonline.org/celiachome.shtml (Accessed on 1–3 April 2020). In the case of the glutamate residues (E) expected in-vivo by TG2-mediated 

deamidation, the respective sequence with unmodified glutamine (Q) residue was searched. ** The number of peptides reported in brackets refers to the analysis 

of the LMW-fraction, whereas all of the other counts refer to the analysis of the HMW-fraction. *** I: immunogenic; T: toxic.
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Notably, the current investigation proved that the devised protocol for gluten detoxification 

enabled the efficient degradation of the main core epitopes DQ2.5-glia-α1b, DQ2.5-glia-α2, DQ2.5-

glia-α3, DQ2.5-glia-ω1, DQ2.5-glia-ω2, and DQ2.5-hor-2, which are differently expressed in the three 

genotypes under investigation (see Table 3); moreover, under the same fermentation conditions, the 

core epitopes DQ2.5-glia-γ1/DQ8.5-glia-γ1, DQ2.5-glia-γ4b, and DQ2.5-glut-L2 were completely 

hydrolysed. In addition, from a further analysis of the list reported in Table 3, it was found that also 

the DQ2 epitopes with ID numbers 182, 188, 222, 231, 236, 501, 502, 504, 611, 731, 950, 973, 1040, 1042, 

and 1044, and the DQ8 epitopes with ID numbers 119, 140, 502, and 611 were all completely 

susceptible to the detoxification applied. On the contrary, the epitopes containing the core sequences 

DQ2.5-glia-γ4c/DQ8-glia-γ1a (shared sequence) presented only a partial susceptibility to the 

hydrolysis, depending on the specific ID number (see Tables 3 and 4). Finally, in Table 4, all of the 

alternative full-length epitopes that survived the fermentation process, which were still detectable in 

the hydrolysed sample, were reported. Most of these resistant epitopes were actually found only in 

the HYD-2 sample, since, as was already mentioned, no T-cell activating sequence was detected in 

the HYD-1 protein sample (neither in the LMW nor in the HMW fractions), and only few peptides 

were found in the HYD-3 sample. In particular, the epitopes containing the cores DQ2.5-glia-α1a, 

DQ8-glia-α1, DQ2.5-glia-γ2, DQ2.5-glia-γ3/DQ8-glia-γ1b, DQ2.5-glia-γ5, and DQ2.5-glut-L1 were 

proven to be resistant to the hydrolysis, together with several other epitopic sequences belonging 

mainly to α-gliadins, and less so to γ-gliadin, ω-gliadin, and glutenin (see Table 4 for the full list). 

3.4. In Vitro-Simulated Human Gastroduodenal Digestion Experiments and In-Silico Evaluation of the 

Toxicity Risk for Celiac Disease Patients 

As a final step, the two prototype breads of main interest, HYD-1 and HYD-3, which were shown 

to be GF and low-gluten content, respectively, by immunoassays, were subjected to in-vitro 

simulated human gastroduodenal (GD) digestion experiments. The aim was to evaluate the 

digestibility and toxicity risk for CD patients of the hydrolyzed gluten proteins in such processed 

samples, in experimental conditions, which simulate the human GD digestion process. The 

standardized static protocol applied [30] provided all of the technical details required simulating in-

vitro the three main steps of the physiological process, namely the oral, gastric and duodenal phases. 

The protein digestion was assessed only at the end point of the whole process; after the 2 h incubation 

occurring in the duodenal phase, the procedure was stopped with phenylmethyl sulfonyl fluoride, 

and the peptide pools were purified by solid phase extraction on disposable cartridges. The resulting 

purified samples were characterized by untargeted HR MS/MS analysis, as described in the 

experimental section. The software-based identification was performed with the same database 

applied to the previous proteomic investigation by setting an unspecific cleavage for the peptide 

sequence assignments, due to the high complexity of the enzyme mixtures involved into the human 

GD process. 

Notably, the final lists of peptide sequences assigned to triticum-belonging proteins was quite 

short; only 291 peptides for the GD digest of bread HYD-1, and 227 peptides for the GD digest of 

bread HYD-3. This proved that the extensive hydrolysis affected the wheat proteins after the 

combined effect of the detoxifying strategy and the GD digestion process. Moreover, an in-depth 

analysis of the data acquired showed that, in both cases, most of the peptides detected were below 

the 9 AA length cut-off, and thus do not pose a risk to elicit any immune-response in CD patients. In 

particular, only 79 peptides out of the 291 detected for the HYD-1 bread were greater than or equal 

to 9 AA in length. Similarly, only 71 peptides out of the 227 detected were greater than or equal to 9 

AA in length for the HYD-3 bread. 

These short lists of sequences were screened against the CELIAC Database, as previously 

described, in order to disclose the presence of epitopic sequences that were resistant to the 

detoxification process applied and survived the GD digestion, as well. Notably, no epitope was 

detected in the GD digests of both the HYD-1 and HYD-3 breads. This experimental evidence 

confirmed that the detoxification strategy applied to these two prototype samples was successful in 
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hydrolyzing the toxic/immunogenic sequences expressed in the relevant monovarietal flours down 

to concentration levels thar become not detectable in the in-vitro simulated human GD digests. 

4. Conclusions 

In this investigation, we reported the production of prototype GF breads from processed flours 

of specific Triticum turgidum wheat genotypes, which were subjected to sourdough fermentation with 

a mixture of selected Lactobacillus strains and fungal endoproteases. The immunoassay-based 

characterization suggested a differential efficiency in the gluten degradation according to the specific 

monovarietal flour, which was investigated in-depth by HR mass spectrometry and in-silico epitope 

mapping. The in-vitro simulated human GD experiments also proved the absence of 

toxic/immunogenic epitopes that are relevant for CD patients in the prototype breads produced, 

confirming the relevance of this investigation for the improvement of the dietary habits of vulnerable 

individuals. Notably, the advanced proteomic analysis provided new insight for the development of 

detoxification strategies assessing a genotype-depending efficiency of the proteolytic activity strictly 

related to the punctual differences of the primary protein structure. Taking advantage of the full 

sequencing of the durum wheat genome, a detailed list of the susceptible and resistant epitopic 

sequences was achieved in the current investigation, suggesting the need to constrain the validity of 

any detoxification strategy to the specific flours on which they are developed. 
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