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Simple Summary: For patients with newly diagnosed prostate cancer, it is important to detect tumor
growth beyond the prostate, as this can affect a patient’s prognosis, influence management decisions,
and alter treatment strategies. It is recognized that on prostate MRI, some instances of extraprostatic
tumor growth can be missed. In this study, we merged patient data from multiple hospitals in
different countries and developed a type of mathematical formula called “nomogram” that combines
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MRI findings with other available patient data. The results of our study allow physicians to more
accurately diagnose extraprostatic tumor growth by combining clinical, biopsy, and MRI-derived
information according to their relative statistical importance.

Abstract: Background: To develop an international, multi-site nomogram for side-specific prediction
of extraprostatic extension (EPE) of prostate cancer based on clinical, biopsy, and magnetic resonance
imaging- (MRI) derived data. Methods: Ten institutions from the USA and Europe contributed clinical
and side-specific biopsy and MRI variables of consecutive patients who underwent prostatectomy.
A logistic regression model was used to develop a nomogram for predicting side-specific EPE on
prostatectomy specimens. The performance of the statistical model was evaluated by bootstrap
resampling and cross validation and compared with the performance of benchmark models that
do not incorporate MRI findings. Results: Data from 840 patients were analyzed; pathologic EPE
was found in 320/840 (31.8%). The nomogram model included patient age, prostate-specific antigen
density, side-specific biopsy data (i.e., Gleason grade group, percent positive cores, tumor extent),
and side-specific MRI features (i.e., presence of a PI-RADSv2 4 or 5 lesion, level of suspicion for EPE,
length of capsular contact). The area under the receiver operating characteristic curve of the new,
MRI-inclusive model (0.828, 95% confidence limits: 0.805, 0.852) was significantly higher than that of
any of the benchmark models (p < 0.001 for all). Conclusions: In an international, multi-site study,
we developed an MRI-inclusive nomogram for the side-specific prediction of EPE of prostate cancer
that demonstrated significantly greater accuracy than clinical benchmark models.

Keywords: prostate cancer; clinical staging; extraprostatic tumor extension; magnetic resonance
imaging; nomogram

1. Introduction

The diverse natural history of localized prostate cancer makes accurate risk strati-
fication a challenging but indispensable requirement for selecting the most appropriate
management strategy for any individual patient. Along with other clinical, blood- and
biopsy-derived biomarkers, clinical cancer stage on digital rectal examination, which takes
into account the presence or absence of extraprostatic disease extension, plays an inte-
gral part in risk stratification. While multiple prospective studies and meta-analyses have
shown that magnetic resonance imaging (MRI) reliably detects clinically significant prostate
cancer [1,2], it lacks sensitivity for diagnosing extraprostatic disease extension (EPE) [3].
For example, a recent meta-analysis pooling data from 9796 patients yielded a sensitivity
of just 57% [4]. It must be noted, however, that for most patients in this analysis only
a limited MRI protocol was acquired (i.e., T2-weighted sequences only) and that recent
‘multiparametric’ MRI protocols yielded higher pooled sensitivities for EPE in subgroup
analyses [4]. A lack of awareness of this limited diagnostic precision may even result in
adverse clinical outcomes, as was suggested by studies conducted earlier in the history
of clinical prostate MRI, where the acquisition of pre-operative MRI was associated with
a higher rate of positive surgical margins [5,6]. Although subsequent prospective stud-
ies [7,8] and a meta-analysis [9] have since contradicted those unfavorable findings, MRI
alone cannot be used to reliably exclude or diagnose EPE. Nevertheless, MRI does offer
high specificity for EPE (e.g., 91% in the above-mentioned meta-analysis [4]). Integrating
MRI-derived information with clinical information might therefore result in more precise
clinical staging, as demonstrated in multiple single-institution studies of American [10–13],
European [14–16], and Asian [17] populations, as summarized in Table 1. The single-center
methodology of all these prior studies, however, limits their generalizability. This is so not
only because radiologists from different institutions might recognize and interpret MRI
findings differently [18], but also because patient selection and management may differ
between institutions. In fact, the encouraging results found in the single-institution studies
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cited above [10–17] failed to be reproduced [19,20] or were only partially reproduced [21]
by other research groups (Table 1).

Table 1. Summary of previously published single-center studies investigating whether the addition of MRI information to
established clinical/biopsy predictors of EPE could increase predictive accuracy.

Authors Country No. Whole Gland vs.
Side-Specific MRI Variables Benchmark Models/

Benchmark Clinical Data Main Finding

Rayn et al. [10] USA 532 Whole gland
NIH suspicion score
EPE: present vs. absent
Largest lesion diameter

MSKCC nomogram
Partin tables

MRI in addition to
clinical nomograms
increases predictive
ability.

Martini et al. [11] USA 561 Side-specific EPE: absent vs. present PSA, Bx Gleason grade
group, % cancer in Bx cores

MRI-inclusive model for
the side-specific
prediction of EPE.

Morlacco et al. [12] USA 501 Whole gland EPE: absent vs. present Partin tables
CAPRA score

MRI-inclusive models
outperform
clinical-based models
alone.

Feng et al. [13] USA 112 Whole gland EPE: absent vs. present MSKCC nomogram
Partin tables

MRI improved accuracy
of existing clinical
nomograms.

Zapala et al. [14] Poland 88 Side-specific
Likert score (1–5)
EPE: present vs. absent
Largest lesion diameter

PSA, cT, number and %
positive Bx cores, % cancer
in Bx cores, Bx Gleason
score

Lesion diameter ≥ 15
mm on MRI is an
independent predictor of
EPE.

Nyarangi-Dix et al. [15] Germany 264 Side-specific
EPE: ESUR score (1–5)
Prostate volume
Capsular contact length

MSKCC nomogram
Nomogram by Steuber
et al.

Combining MRI and
clinical parameters
outperformed clinical
nomograms.

Lebacle et al. [16] France 1743 Whole gland EPE: present vs. absent PSA, Gleason score,
prostate weight, cT

MRI-inclusive model is
more accurate than
clinical and biopsy data
alone.

Chen et al. [17] China 706 Side-specific EPE risk score (1–5)

Age, cT, PSA, Bx Gleason
grade groups, % positive
Bx cores, % cancer in bx
cores

MRI-inclusive model is
more accurate than
clinical and biopsy data
alone.

Weaver et al. [19] USA 236 Whole gland PI-RADS score
EPE: present vs. absent MSKCC nomogram

A combined model (MRI
+ MSKCC) provides no
additional benefit over
the MSKCC nomogram
alone.

Jansen et al. [20] Netherlands 430 Whole gland EPE: present vs. absent MSKCC nomogram
Partin tables

The addition of MRI to
the MSKCC and Partin
nomograms did not
increase diagnostic
accuracy.

Zanelli et al. [21] Italy 73 Whole gland PI-RADS score
EPE: ESUR score (1–5)

MSKCC nomogram
CAPRA score

Combination of MRI +
clinical models
outperforms clinical
models for two
radiologists, but not for
a third.

Bx, biopsy; CAPRA, Cancer of the Prostate Risk Assessment; cT, clinical T-stage; EPE, extraprostatic extension; ESUR, European Society of
Urogenital Radiology; MRI, magnetic resonance imaging; MSKCC, Memorial Sloan Kettering Cancer Center; NIH, National Institute of
Health; No, number of patients; PI-RADS, Prostate Imaging Reporting and Data System; PSA, prostate-specific antigen; USA, Unites States
of America.

Inspired by discussions held at the Global Summit for Prostate Cancer (organized by
the AdMeTech Foundation), we compiled an international, multi-site dataset of patients
who had undergone pre-prostatectomy MRI and used this dataset to develop a new
nomogram for the side-specific prediction of EPE based on clinical, biopsy-, and MRI-
derived information. We then compared the performance of this nomogram to that of
established, non-MRI-inclusive models for predicting EPE of prostate cancer.

2. Materials and Methods

This was a multi-site retrospective study of consecutive patients with biopsy-proven
prostate cancer who underwent dedicated multi-parametric MRI before radical prosta-
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tectomy. Each participating institution was invited to provide anonymized data on up
to 100 consecutive patients going backwards in time from 31 December 2017. The study
design and submission of anonymized patient data were approved by the institutional
review boards of all participating institutions. Demographic and clinical variables were
retrospectively extracted from the medical records and included patient age, clinical stage
on digital rectal examination, serum level of prostate-specific antigen (PSA), and PSA
density. Biopsy data was collected separately for the left and right sides and included the
number of cores taken, the number of positive cores, the highest Gleason grade group,
as well as the maximum absolute and relative cancer extent in a single core. MRIs were
acquired and interpreted at the respective institution according to the Prostate Imaging
Reporting and Data system version 2.0 (PI-RADSv2.0), which has been described in detail
previously [22]. The diameter and capsular contact length of the largest and/or most
suspicious MRI-visible lesion was measured by the radiologist. The likelihood of EPE
was scored by the interpreting radiologist on a 5-point Likert scale separately for the left
and right sides of the gland according to previously published criteria [23]. To mitigate
potential inter-site variabilities in the assignment of Likert scores for EPE, we reduced the
original 5-tiered EPE Likert score to a 3-point scale for the statistical analyses as follows:
EPE Likert scores of 1 and 2 were classified as “negative” for EPE on MRI, scores of 3 and 4
as “equivocal,” and scores of 5 as “positive”. Side-specific presence or absence of EPE on
prostatectomy specimens as documented in the pathology reports served as the reference
standard. After anonymization, all data were submitted to the leading institution; no
central MRI or pathology review was performed.

2.1. Statistical Considerations

Multivariate imputation was performed by chained equations for the variables, and a
logistic regression model was used to predict the side-specific presence of EPE on prosta-
tectomy specimens. A series of regression models were run whereby each variable with
missing data was modeled conditional upon the other variables in the data. The mod-
eling process was repeated for a number of cycles, with the imputation being updated
at each cycle. At the end, the final imputations were retained, resulting in one imputed
dataset [24]. All predictors of interest were added in the starting full model before model
selection. A reduced model was created using a stepdown model reduction technique that
identifies the best parsimonious model using the concordance index as a stopping criterion.
Variables for which more than 50% of data points were missing were excluded from the
analysis. Restricted cubic splines were used for PSA. To evaluate the performance of the
proposed model, bootstrap resampling with 1000 repetitions was adopted to assess 95%
confidence interval (CI) of the area under the receiver operating characteristic (AUROC)
curve before the calibration curves and decision analysis curves [25] were assessed. For
cross validation, each time one center was used as validation data and the other centers as
development data.

2.2. Benchmark Comparisons

The performance of the MRI-inclusive nomogram developed in the present study
was benchmarked against established models for the prediction of EPE that are based
on clinical and biopsy data, i.e., the Memorial Sloan Kettering Cancer Center (MSKCC)
“Pre-Radical Prostatectomy” nomogram, which is derived from the data of 11,552 patients
treated at MSKCC and considers: patient’s age, PSA levels, clinical tumor stage, biopsy
Gleason grades/scores, and the proportion of positive biopsy cores [26]; the updated
Partin tables, which are based on data from 5629 men who underwent surgery at the Johns
Hopkins Hospital and integrate PSA levels, biopsy Gleason score, and clinical stage [27];
a prospectively developed and validated multi-institutional model based on data from
6823 patients collected by the Belgian Cancer Registry which is based on PSA levels, clinical
cancer stage, biopsy Gleason score, and the proportion of positive biopsy cores [28]; and a
side-specific nomogram (PSA, clinical stage, biopsy Gleason sum, percent positive cores,
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percent cancer in biopsy core) developed in Germany with data from 1118 prostatectomy
patients [29]. The first three benchmark models were developed and intended for prediction
of EPE for the whole prostate, and we applied them in our dataset on a whole-gland basis.

3. Results
3.1. Study Population

Data on 848 patients were submitted from 10 institutions (three in the United States
of America; two each in France and Germany; one each in Denmark, Italy, and Spain).
Eight cases were excluded due to incomplete data regarding EPE on prostatectomy spec-
imens, leaving data from 840 individuals for the final analyses. The median time from
prostate biopsy to prostatectomy was 86 (IQR: 63–118) days and the median time from MRI
to prostatectomy was 76 (IQR: 40–113) days. The MRI was performed before biopsy in
393 patients (46.8%; median interval: 26 days, IQR: 10, 45) and after the biopsy in 340 (40.5%;
median interval: 53 days, IQR: 33, 77). One-hundred-and-seven patients (12.7%) under-
went MRI and biopsy on the same day. Systematic transrectal ultrasound-guided prostate
biopsies were performed in 819/840 patients (97.5%) and the median number of systematic
biopsy cores was 12 (IQR: 10–12) per patient and 6 (IQR: 5–6) per prostate side. In 189/840
(22.5%) individuals, targeted biopsies were taken from the right side of the prostate, in
219/840 (26.1%) from the left, and in 98/840 (11.7%) from both sides, the midline prostate,
or an unspecified location. Because the aim of this study was side-specific prediction of
EPE and the side-specific data completeness for targeted biopsies was less than 50%, these
biopsies were not included in the statistical analyses. All MRI scans comprised T1-, T2-,
and diffusion-weighted sequences; additional dynamic contrast-enhanced sequences were
acquired in 687/840 cases (81.8%) and MRI spectroscopy was performed in 96/840 cases
(11.4%). EPE was present in 320/840 prostatectomy specimens (38.1%), and the side-specific
prevalence of EPE on histopathology was 365/1680 (21.7%). Detailed descriptive statistics
on demographic, clinical, biopsy, and MRI data, as well as the proportion of missing data,
are listed in Table 2.

3.2. Inter-Site Variabilities

We observed significantly different distributions of demographic, clinical, and biopsy
parameters between institutions, including patient age, PSA levels, PSA density, and cancer
stage on digital rectal examination, percentage of positive cores, maximum tumor extent in
a single core, and biopsy Gleason grade groups (p < 0.001 for all, Table 2). On MRI, different
institutions reported significantly different distributions of PI-RADSv2 scores, median
lesion size, and lengths of capsular contact (p < 0.001 for all). The proportion of patients
classified as “negative for EPE” on MRI ranged between 25.0% and 78.6%; “equivocal”
findings for EPE were reported in 15.3% to 60.4%; and EPE was thought to be “definitely
present” in 2.5–15.9% of individuals (p < 0.001). This data is detailed for every institution
in Table 2. We did not observe significant inter-institutional differences in the prevalence of
EPE on prostatectomy specimens (range: 29.3–47.7%) or the diagnostic accuracy for EPE
on MRI (AUROC range: 0.65–0.83).
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Table 2. Clinical, biopsy, and MRI-derived data for the entire study cohort and every participating institution. Continuous variables are presented as medians (interquartile range); # for
inter-institutional comparisons; * only data on relative core involvement submitted, # p-values for inter-institutional comparisons.

Parameter Overall
Institution

A B C D E F G H I J p-Value #

Number of Patients 840 100 82 98 96 100 44 100 100 20 100

Clinical Data

Age (years) 64.0
[59.0, 68.0]

60.5
[55.0, 66.0]

66.0
[61.0, 69.0]

59.0
[53.3, 64.0]

66.0
[62.0, 71.0]

65.0
[62.0, 67.3]

65.5
[58.8, 73.3]

65.0
[60.0, 68.0]

63.5
[60.0, 66.0]

65.0
[63.0, 68.0]

63.0
[59.0, 68.0] <0.001

PSA (ng/mL)
Missing: 0.1%

7.1
[5.2, 10.7]

6.1
[4.5, 8.3]

7.9
[5.7, 10.1]

5.4
[4.3, 7.6]

9.0
[6.5, 14.2]

11.8
[7.3, 18.0]

8.3
[5.2, 13.9]

6.0
[5.0, 9.0]

6.4
[5.2, 8.8]

7.3
[6.1, 9.6]

7.2
[5.4, 10.4] <0.001

PSA Density (ng/mL2)
Missing: 0.2%

0.2
[0.1, 0.3]

0.2
[0.1, 0.3]

0.1
[0.1, 0.3]

0.2
[0.1, 0.3]

0.2
[0.1, 0.3]

0.3
[0.2, 0.4]

0.2
[0.1, 0.3]

0.1
[0.1, 0.2]

0.2
[0.1, 0.2]

0.2
[0.1, 0.3]

0.2
[0.1, 0.3] <0.001

Systematic
Biopsy Data

Positive Biopsy Cores (%)
Missing: 3.2%

25.0
[12.5, 41.7]

35.9
[21.4, 59.8]

16.7
[8.3, 41.7]

41.7
[25.0, 54.6]

30.0
[18.3, 50.0]

20.0
[10.0, 40.0]

16.7
[9.9, 35.7]

25.0
[8.3, 41.7]

25.0
[10.0, 40.0]

33.3
[31.7, 46.7]

16.7
[8.3, 33.3] <0.001

Highest Gleason Grade Group

1 216 (25.7) 18 (18.0) 17 (20.7) 26 (26.5) 22 (22.9) 36 (36.0) 8 (18.2) 26 (26.0) 33 (33.0) 0 30 (30.0)

<0.001
2 293 (34.9) 45 (45.0) 35 (42.7) 44 (44.9) 20 (20.8) 29 (29.0) 11 (25.0) 40 (40.0) 33 (33.0) 0 36 (36.0)

3 97 (11.5) 12 (12.0) 4 (4.9) 19 (19.4) 6 (6.2) 6 (6.0) 8 (18.2) 11 (11.0) 14 (14.0) 0 17 (17.0)

4 or higher 163 (19.4) 23 (23.0) 21 (25.6) 9 (9.2) 43 (44.8) 16 (16.0) 13 (29.5) 14 (14.0) 9 (9.0) 3 (15.0) 12 (12.0)

Cancer only on targeted biopsy 71 (8.5) 2 (2.0) 5 (6.1) 0 5 (5.2) 13 (13.0) 4 (9.1) 9 (9.0) 11 (11.0) 17 (85.0) 5 (5.0) <0.001

Maximum tumor extent (mm)
Missing: 11.9%

4.0
[1.5, 8.0]

6.0
[3.0, 9.0]

4.0
[1.0, 12.0] Missing * 5.0

[2.0, 8.0]
3.0

[2.0, 8.0]
1.0

[0.0, 5.0]
5.0

[3.0, 9.0]
4.0

[2.0, 7.0]
1.6

[1.6, 1.80]
5.0

[2.0, 7.0] <0.001

Data

Highest PI-RADS score

1 9 (1.1) 0 0 0 0 0 0 5 (5.0) 0 0 4 (4.0)

<0.001

2 31 (3.7) 10 (10.0) 7 (8.5) 4 (4.1) 0 1 (1.0) 0 2 (2.0) 6 (6.0) 0 1 (1.0)

3 83 (9.9) 11 (11.0) 14 (17.1) 9 (9.2) 4 (4.2) 9 (9.0) 6 (13.6) 11 (11.0) 6 (6.0) 2 (10.0) 11 (11.0)

4 339 (40.4) 31 (31.0) 26 (31.7) 55 (56.1) 41 (42.7) 34 (34.0) 17 (38.6) 38 (38.0) 45 (45.0) 13 (65.0) 39 (39.0)

5 378 (45.0) 48 (48.0) 35 (42.7) 30 (30.6) 51 (51.1) 56 (56.0) 21 (47.7) 44 (44.0) 43 (43.0) 5 (25.0) 45 (45.0)

Cases with PI-RADSv2 ≥ 4 717 (85.4) 79 (79.0) 61 (74.4) 85 (86.7) 92 (95.8) 90 (90.0) 38 (86.4) 82 (82.0) 88 (88.0) 18 (90.0) 84 (84.0) 0.005

Maximum Lesion Diameter (cm) 1.5
[1.1, 2.0]

1.6
[1.2, 2.2]

1.4
[1.0, 2.1]

1.3
[1.0, 1.6]

1.6
[1.1, 2.4]

1.6
[1.2, 2.3]

1.5
[1.2, 2.2]

1.3
[1.0, 1.9]

1.6
[1.2, 2.0]

1.2
[1.0, 1.5]

1.4
[1.0, 1.8] <0.001

Length of Capsular Contact (mm) 10.0
[4.0, 17.0]

12.0
[4.0, 23.3]

13.0
[8.0, 20.0]

8.0
[5.0, 12.0]

16.0
[8.8, 25.0]

7.0
[2.0, 13.5]

13.0
[7.8, 22.3]

8.0
[0.0, 14.0]

15.0
[11.0, 20.0]

10.5
[7.8, 14.3]

0.0
[0.0, 12.0] <0.001
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Table 2. Cont.

Parameter Overall
Institution

A B C D E F G H I J p-Value #

Number of Patients 840 100 82 98 96 100 44 100 100 20 100

Presence of ECE

Negative 487 (58.0) 47 (47.0) 50 (61.0) 77 (78.6) 33 (34.4) 55 (55.0) 11 (25.0) 71 (71.0) 63 (63.0) 5 (25.0) 75 (75.0)

<0.001Equivocal 284 (33.8) 42 (42.0) 30 (36.6) 15 (15.3) 58 (60.4) 36 (36.0) 26 (59.1) 18 (18.0) 26 (26.0) 12 (60.0) 21 (21.0)

Positive 69 (8.2) 11 (11.0) 2 (2.5) 6 (6.1) 5 (5.2) 9 (9.0) 7 (15.9) 11 (11.0) 11 (11.0) 3 (15.0) 4 (4.0)

ECE on prostatectomy specimen
(standard of reference) 320 (38.1) 42 (42.0) 24 (29.3) 28 (28.6) 34 (35.4) 35 (35.0) 21 (47.7) 44 (44.0) 43 (43.0) 6 (30.0) 43 (43.0) 0.136
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3.3. Nomogram and Benchmarks

The initial model included patient age, PSA, PSA density, clinical tumor stage, side-
specific biopsy data (i.e., percentage of positive systematic biopsy cores, highest Gleason
grade group, largest tumor extent), and side-specific MRI data (i.e., presence of a PI-RADS
4/5 lesion, lesion diameter, level of suspicion for EPE, length of capsular contact). Clinical
tumor stage, PSA, and lesion diameter on MRI were dropped through stepwise selection;
the resulting nomogram included patient’s age, PSA density, as well as side-specific biopsy
and MRI data, and detailed in Figure 1. Performance analysis yielded an AUROC of 0.828
for this model (bootstrap-validated 95% confidence limits: 0.805–0.852). Cross validation
analyses, where each center was used as validation data and the other nine centers as
development data, resulted in an average AUROC of 0.820 (range: 0.735–0.883). In our
dataset, this new, MRI-inclusive model predicted EPE significantly more accurately than
did any of the benchmark statistical models (p < 0.001 for all), as detailed in Table 3.
Decision curve analyses of the proposed MRI-inclusive nomogram and benchmark models
are displayed in Figure 2, and a calibration plot for all models in Figure 3.
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Table 3. Performance statistics of the MRI-inclusive nomogram and the benchmark models.

Statistical Model Area under the Receiver Operator Characteristics
Curve (95% Confidence Intervals)

MRI-inclusive Nomogram 0.828 (0.805, 0.852)
MSKCC Pre-Radical Prostatectomy Nomogram [26] 0.675 (0.638, 0.712) *

Belgian Cancer Registry Nomogram [28] 0.679 (0.641, 0.716) *
Updated Partin Tables [27] 0.601 (0.563, 0.640) *

Side-Specific Clinical Nomogram [29] 0.650 (0.619, 681) *
* p-value < 0.001 for comparison with the MRI-inclusive nomogram.

To further validate the diagnostic performance of the proposed nomogram, we per-
formed additional analyses by using data from six institutions as training set and data from
the others as validation set. This process was repeated on all 210 possible permutations
and yielded similar results as the bootstrap-validated model (AUROC: 0.821 vs. 0.828)
(Table S1). The analyses were repeated without imputation of missing data and the AUROC
of the MRI-inclusive nomogram was slightly lower compared with the bootstrap-validated
model with imputed data (AUROC 0.799 vs. 0.828) (Table 4).
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refers to how clinicians appraise different outcomes in a given clinical context. A detailed guide for
the interpretation of decision curves can be found in [30].
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more in-depth explanation can be found in [31]).
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Table 4. Validation of the diagnostic performance of the MRI-inclusive and benchmark nomograms by
using data from six institutions as training set and data from the others as validation set. This process
was repeated on all 210 possible permutations, both with and without imputation of missing data.

Nomogram Model
Mean Area under the Receiver Operator Characteristics

Curve (Range)

With Imputation * Without Imputation *

MRI-inclusive Nomogram 0.821 (0.762, 0.880) 0.799 (0.738, 0.857)
MSKCC Pre-Radical Prostatectomy

Nomogram [26] 0.678 (0.605, 0.725) 0.684 (0.587, 0.806)

Belgian Cancer Registry Nomogram [28] 0.681 (0.599, 0.731) 0.684 (0.599, 0.777)
Updated Partin Tables [27] 0.600 (0.533, 0.678) 0.607 (0.536, 0.708)

Side-Specific Clinical Nomogram [29] 0.652 (0.585, 0.727) 0.626 (0.535, 0.727)
* with/without imputation of missing data.

4. Discussion

In this international, multi-site study, we developed an MRI-inclusive nomogram
for the side-specific prediction of EPE of prostate cancer. The nomogram integrates de-
mographic, clinical, biopsy-, and MRI-derived variables and offers two advantages over
established prediction models: First, it provides side-specific information about EPE, which
is particularly useful for surgical or radiation therapy planning. Secondly, it predicts EPE
more accurately than established statistical models and may help clinicians better assess a
given patient’s risk for disease progression.

Our results corroborate findings from prior single-institution studies where the addi-
tion of MRI-derived information to clinical and biopsy data led to more precise predictions
of EPE, both on a side-specific basis [11,14,15,17], as well as for the whole prostate [10,13,16].
However, clinical side-specific nomograms without MRI data were also found to be highly
accurate in external validation cohorts [32], and other single-center studies did not re-
produce the promising results of MRI-inclusive models. For example, in a retrospective
study of 236 patients, the integration of MRI findings did not significantly increase the
precision of the MSKCC pre-radical prostatectomy nomogram [19]. One of the reasons for
the inconsistencies of published data might lie in the well-documented variability of radi-
ologists’ performance levels in identifying EPE on MRI [33], a skill that strongly depends
on dedicated training [34] and the degree of sub-specialization [35]. In fact, a prospective
study including three radiologists showed that while two of them added incremental
precision to clinical prostate cancer staging with their MRI interpretations, the third failed
to do so [21]. Inter-site differences in patient selection and management strategies may also
limit the reproducibility of single-center studies. In the above-cited studies [10–17,19–21],
for example, the proportion of patients with extraprostatic disease extension on digital
rectal examination (i.e., cT3) and on prostatectomy specimens (i.e., pT3a) ranged between
0–21% and 16–55%, respectively, and the percentage of patients with a Gleason score of
8 or higher on biopsy ranged from 2.7% to 44.0%. These data closely resemble data from
our study cohort, where the frequency of cT3 disease ranged between 0% and 10%, and the
proportion of patients with a biopsy Gleason score ≥8 ranged from 9.0% to 44.8% among
institutions. These figures highlight the substantial inter-site differences in patient selection
for prostatectomy. Consequently, single-institution cohorts may lack representativeness,
making statistical models derived from them challenging to reproduce. This challenge
points to the importance of pooling international multi-site data—as was done in the
present study—for creating more comprehensive and representative datasets and thus
increasing the robustness and external applicability of any deduced statistical model.

The performance comparisons between the nomogram developed in this study and
the established benchmark models must be interpreted carefully. The proposed MRI-
inclusive nomogram might be overfitted and its performance might be overestimated
despite bootstrap- and cross-validation. The benchmark models performed similarly or
slightly worse in our study cohort than in their respective training cohorts. While the MSKCC
pre-radical prostatectomy nomogram performed equally well in our study cohort as it did
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in its development cohort (i.e., AUROC 0.675 vs. 0.657), the updated Partin tables model
was slightly less accurate in our cohort than in its development cohort (i.e., AUROC 0.601 vs.
0.702); this might have been due to differences in the two patient cohorts, with the Johns
Hopkins prostatectomy cohort having, on average, lower-risk disease, as exemplified by the
lower prevalence of biopsy Gleason score ≥8 (i.e., 8% vs. 19%) and EPE on prostatectomy
specimens (i.e., 23% vs. 38%) [27]. Similarly, the Belgian Cancer Registry model performed
slightly less well in the present cohort than in its development cohort (AUROC 0.679 vs.
0.773); this model was also developed in a population with lower-risk disease than the
present cohort (e.g., biopsy Gleason score ≥8: 12% vs. 19%; EPE on prostatectomy: 19%
vs. 38%) [28]. The side-specific clinical benchmark model by Steuber et al. performed
less accurately in the current than the original cohort (AUROC: 0.650 vs. 0.840) [29]. Here
again, the risk profile was different between the cohorts, as exemplified by the proportion
of patients with T1c disease (82% vs. 69%) or pathological EPE (27% vs. 38%) [29]. Even
taking all these potential confounders into account, we infer that the separation of the ROC
curves is wide enough to conclude that the MRI-inclusive nomogram presented herein
predicts EPE more accurately than do established clinical prediction models.

The current study corroborates the high specificity and positive predictive value of
prostate MRI for the diagnosis of EPE [3], as reflected by the relative weight of a ‘posi-
tive MRI’ in our nomogram. It also highlights the similar relative importance of clinical
and biopsy-derived metrics, as exemplified by the high statistical weight of PSA den-
sity and biopsy tumor amount in the nomogram. In high-risk patients with unequivocal
EPE on MRI, the nomogram might therefore provide only limited additional information.
However, in less definitive cases, for example those with equivocal MRI findings and/or
low/intermediate risk features, the statistically appropriate integration of multiple data-
points through this nomogram might help to more accurately assess the likelihood of EPE.
The utility of MRI as a component of local staging tools might be further increased by the
extraction of radiomic data in combination with machine learning or artificial intelligence
algorithms, as suggested by recent studies [36–39]. The main limitation of our study is
its retrospective design and the fact that all patients underwent prostatectomy introduces
a selection bias. Although it is possible that the identification and interpretation of MRI
findings differed between institutions [18], our pooled data likely provides a balanced
representation of current radiology practice patterns from multiple countries. The in-
completeness of side-specific data on targeted biopsies is another limitation of this study
as MRI-targeted biopsies increase the detection rate of high-grade cancer [40]; given the
association of high-grade cancer and EPE in our and multiple previously published cohorts,
this higher detection rate would likely translate into a more accurate prediction of EPE. As
discussed above, our statistical model might be overfitted and might perform worse in
external validation cohorts. MRIs and prostatectomy specimens were reviewed by a single
radiologist/pathologist at each institution and we did not assess for inter-reader variability,
which is documented in the literature for radiologists [41,42] and pathologists [43,44].

5. Conclusions

This study produced a new MRI-inclusive nomogram for side-specific prediction
of EPE of prostate cancer based on data from ten sites in six countries. The nomogram
integrates demographic, clinical, biopsy, and MRI data and outperforms clinical bench-
mark models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13112627/s1, Table S1: Validation of the diagnostic performance of the MRI-inclusive
and benchmark nomograms using data from six institutions as training set and data from the others
as validation set. This process was repeated on all 210 possible permutations, both with and without
imputation of missing data.
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side-specific prostate cancer extracapsular extension: A simple decision rule of PSA, biopsy, and MRI parameters. Int. Urol.
Nephrol. 2019, 51, 1545–1552. [CrossRef]

15. Nyarangi-Dix, J.; Wiesenfarth, M.; Bonekamp, D.; Hitthaler, B.; Schütz, V.; Dieffenbacher, S.; Mueller-Wolf, M.; Roth, W.;
Stenzinger, A.; Duensing, S.; et al. Combined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for the
Prediction of Extraprostatic Disease—A Risk Model for Patient-tailored Risk Stratification When Planning Radical Prostatectomy.
Eur. Urol. Focus 2020, 6, 1205–1212. [CrossRef]

16. Lebacle, C.; Roudot-Thoraval, F.; Moktefi, A.; Bouanane, M.; De La Taille, A.; Salomon, L. Integration of MRI to clinical nomogram
for predicting pathological stage before radical prostatectomy. World J. Urol. 2016, 35, 1409–1415. [CrossRef]

17. Chen, Y.; Yu, W.; Fan, Y.; Zhou, L.; Yang, Y.; Wang, H.; Jiang, Y.; Wang, X.; Wu, S.; Jin, J. Development and comparison of a Chinese
nomogram adding multi-parametric MRI information for predicting extracapsular extension of prostate cancer. Oncotarget 2016,
8, 22095–22103. [CrossRef]

18. Rosenkrantz, A.B.; Ginocchio, L.A.; Cornfeld, D.; Froemming, A.T.; Gupta, R.T.; Turkbey, B.; Westphalen, A.C.; Babb, J.; Margolis,
D.J. Interobserver Reproducibility of the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate Radiologists.
Radiology 2016, 280, 793–804. [CrossRef]

19. Weaver, J.K.; Kim, E.H.; Vetter, J.M.; Shetty, A.; Grubb, R.L.; Strope, S.A.; Andriole, G.L. Prostate Magnetic Resonance Imaging
Provides Limited Incremental Value Over the Memorial Sloan Kettering Cancer Center Preradical Prostatectomy Nomogram.
Urology 2018, 113, 119–128. [CrossRef]

20. Zanelli, E.; Giannarini, G.; Cereser, L.; Zuiani, C.; Como, G.; Pizzolitto, S.; Crestani, A.; Valotto, C.; Ficarra, V.; Girometti, R.
Head-to-head comparison between multiparametric MRI, the partin tables, memorial sloan kettering cancer center nomogram,
and CAPRA score in predicting extraprostatic cancer in patients undergoing radical prostatectomy. J. Magn. Reson. Imaging 2019,
50, 1604–1613. [CrossRef]

21. Jansen, B.H.; Nieuwenhuijzen, J.A.; Oprea-Lager, D.E.; Yska, M.J.; Lont, A.P.; van Moorselaar, R.J.; Vis, A.N. Adding multipara-
metric MRI to the MSKCC and Partin nomograms for primary prostate cancer: Improving local tumor staging? Urol. Oncol.
Semin. Orig. Investig. 2019, 37, 181.e1–181.e6. [CrossRef]

22. Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.J.A.; Schnall, M.D.; Shtern, F.;
Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40.
[CrossRef]

23. Barentsz, J.O.; Richenberg, J.; Clements, R.; Choyke, P.; Verma, S.; Villeirs, G.; Rouviere, O.; Logager, V.; Fütterer, J.J. ESUR prostate
MR guidelines 2012. Eur. Radiol. 2012, 22, 746–757. [CrossRef]

24. Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

25. Vickers, A.J.; Elkin, E.B. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Med. Decis. Mak. 2006, 26,
565–574. [CrossRef]

http://doi.org/10.1016/j.urolonc.2008.04.009
http://www.ncbi.nlm.nih.gov/pubmed/18640062
http://doi.org/10.5489/cuaj.4211
http://www.ncbi.nlm.nih.gov/pubmed/28503230
http://doi.org/10.1148/radiol.11103504
http://www.ncbi.nlm.nih.gov/pubmed/22274837
http://doi.org/10.1016/j.eururo.2015.02.039
http://www.ncbi.nlm.nih.gov/pubmed/25813692
http://doi.org/10.1371/journal.pone.0210194
http://doi.org/10.1016/j.juro.2018.05.094
http://doi.org/10.1111/bju.14353
http://doi.org/10.1016/j.eururo.2016.08.015
http://doi.org/10.1016/j.urology.2015.06.003
http://doi.org/10.1007/s11255-019-02195-1
http://doi.org/10.1016/j.euf.2018.11.004
http://doi.org/10.1007/s00345-016-1981-5
http://doi.org/10.18632/oncotarget.11559
http://doi.org/10.1148/radiol.2016152542
http://doi.org/10.1016/j.urology.2017.10.051
http://doi.org/10.1002/jmri.26743
http://doi.org/10.1016/j.urolonc.2018.10.026
http://doi.org/10.1016/j.eururo.2015.08.052
http://doi.org/10.1007/s00330-011-2377-y
http://doi.org/10.18637/jss.v045.i03
http://doi.org/10.1177/0272989X06295361


Cancers 2021, 13, 2627 14 of 14

26. Memorial_Sloan_Kettering_Cancer_Center. Prediction Tools/Prostate Cancer Nomograms/Pre-Radical Prostatectomy. Available
online: https://www.mskcc.org/nomograms/prostate/pre_op (accessed on 26 September 2019).

27. Eifler, J.B.; Feng, Z.; Lin, B.M.; Partin, M.T.; Humphreys, E.B.; Han, M.; Epstein, J.I.; Walsh, P.C.; Trock, B.J.; Partin, A.W. An
updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013, 111, 22–29. [CrossRef]

28. Tosco, L.; De Coster, G.; Roumeguère, T.; Everaerts, W.; Quackels, T.; Dekuyper, P.; Van Cleynenbreugel, B.; Van Damme, N.; Van
Eycken, E.; Ameye, F.; et al. Development and External Validation of Nomograms To Predict Adverse Pathological Characteristics
After Robotic Prostatectomy: Results of a Prospective, Multi-institutional, Nationwide series. Eur. Urol. Oncol. 2018, 1, 338–345.
[CrossRef]

29. Steuber, T.; Graefen, M.; Haese, A.; Erbersdobler, A.; Chun, F.K.-H.; Schlom, T.; Perrotte, P.; Huland, H.; Karakiewicz, P.I.
Validation of a Nomogram for Prediction of Side Specific Extracapsular Extension at Radical Prostatectomy. J. Urol. 2006, 175,
939–944. [CrossRef]

30. Vickers, A.J.; Van Calster, B.; Steyerberg, E.W. A simple, step-by-step guide to interpreting decision curve analysis. Diagn. Progn.
Res. 2019, 3, 1–8. [CrossRef]

31. Vickers, A.J.; Cronin, A.M. Everything You Always Wanted to Know About Evaluating Prediction Models (But Were Too Afraid
to Ask). Urology 2010, 76, 1298–1301. [CrossRef]

32. Zorn, K.C.; Gallina, A.; Hutterer, G.C.; Walz, J.; Shalhav, A.L.; Zagaja, G.P.; Valiquette, L.; Gofrit, O.N.; Orvieto, M.A.; Taxy, J.B.;
et al. External Validation of a Nomogram for Prediction of Side-Specific Extracapsular Extension at Robotic Radical Prostatectomy.
J. Endourol. 2007, 21, 1345–1352. [CrossRef]

33. Fütterer, J.J.; Heijmink, S.W.T.P.J.; Scheenen, T.W.J.; Jager, G.J.; De Kaa, C.A.H.; Witjes, J.A.; Barentsz, J.O. Prostate Cancer: Local
Staging at 3-T Endorectal MR Imaging—Early Experience. Radiology 2006, 238, 184–191. [CrossRef]

34. Akin, O.; Riedl, C.C.; Ishill, N.M.; Moskowitz, C.S.; Zhang, J.; Hricak, H. Interactive dedicated training curriculum improves
accuracy in the interpretation of MR imaging of prostate cancer. Eur. Radiol. 2010, 20, 995–1002. [CrossRef]

35. Wibmer, A.; Vargas, H.A.; Donahue, T.F.; Zheng, J.; Moskowitz, C.; Eastham, J.; Sala, E.; Hricak, H. Diagnosis of Extracapsular
Extension of Prostate Cancer on Prostate MRI: Impact of Second-Opinion Readings by Subspecialized Genitourinary Oncologic
Radiologists. Am. J. Roentgenol. 2015, 205, W73–W78. [CrossRef]

36. Xu, L.; Zhang, G.; Zhao, L.; Mao, L.; Li, X.; Yan, W.; Xiao, Y.; Lei, J.; Sun, H.; Jin, Z. Radiomics Based on Multiparametric Magnetic
Resonance Imaging to Predict Extraprostatic Extension of Prostate Cancer. Front. Oncol. 2020, 10, 940. [CrossRef]

37. Losnegård, A.; Reisæter, L.A.R.; Halvorsen, O.J.; Jurek, J.; Assmus, J.; Arnes, J.B.; Honoré, A.; Monssen, J.A.; Andersen, E.;
Haldorsen, I.S.; et al. Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediate- and
high-risk prostate cancer patients. Acta Radiol. 2020, 61, 1570–1579. [CrossRef]

38. Cuocolo, R.; Stanzione, A.; Faletti, R.; Gatti, M.; Calleris, G.; Fornari, A.; Gentile, F.; Motta, A.; Dell’Aversana, S.; Creta, M.; et al.
MRI index lesion radiomics and machine learning for detection of extraprostatic extension of disease: A multicenter study. Eur.
Radiol. 2021, 1–9. [CrossRef]

39. Stanzione, A.; Cuocolo, R.; Cocozza, S.; Romeo, V.; Persico, F.; Fusco, F.; Longo, N.; Brunetti, A.; Imbriaco, M. Detection of
Extraprostatic Extension of Cancer on Biparametric MRI Combining Texture Analysis and Machine Learning: Preliminary Results.
Acad. Radiol. 2019, 26, 1338–1344. [CrossRef] [PubMed]

40. Goldberg, H.; Ahmad, A.E.; Chandrasekar, T.; Klotz, L.; Emberton, M.; Haider, M.A.; Taneja, S.S.; Arora, K.; Fleshner, N.; Finelli,
A.; et al. Comparison of Magnetic Resonance Imaging and Transrectal Ultrasound Informed Prostate Biopsy for Prostate Cancer
Diagnosis in Biopsy Naïve Men: A Systematic Review and Meta-Analysis. J. Urol. 2020, 203, 1085–1093. [CrossRef]
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