
nutrients

Article

Executive Functions and Body Weight at Different Ages:
A Preliminary Study

Francesca Favieri 1,* , Eunice Chen 2 and Maria Casagrande 3,*

����������
�������

Citation: Favieri, F.; Chen, E.;

Casagrande, M. Executive Functions

and Body Weight at Different Ages: A

Preliminary Study. Nutrients 2021, 13,

1174. https://doi.org/10.3390/nu

13041174

Academic Editor: Margaret

Allman-Farinelli

Received: 24 February 2021

Accepted: 30 March 2021

Published: 2 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
2 Department of Psychology, Temple University, Filadelfia, PA 19122, USA; Eunice.Chen@temple.edu
3 Department of Dynamic and Clinical Psychology and Health Studies, “Sapienza” University of Rome,

00185 Rome, Italy
* Correspondence: francesca.favieri@uniroma1.it (F.F.); maria.casagrande@uniroma1.it (M.C.)

Abstract: Recently, researchers have focused their attention on the role of cognitive processes on
eating habits and body weight changes. Few studies have examined the relationship between the first
stages of overweight and executive functions (EFs), excluding obesity conditions. This study is aimed
to detect the involvement of the EFs and their predictive role on body mass index (BMI) in a sample of
healthy individuals from childhood to young adulthood with a cross-sectional design. One-hundred
and sixty-six healthy students were recruited from different Italian public schools: 46 children (age
range: 7–11), 50 adolescents (age range: 15–18), 70 young adults (age range: 19–30). BMI was used
to evaluate body weight and different EFs tasks were used to assess the EFs domains of inhibition,
updating and shifting. After adjusting BMI for age, a hierarchical multiple linear regression was
carried out for each EFs task. Pearson’s r correlations were reported for each of the age subgroups.
Motor disinhibition was associated with greater BMI in the overall sample. Higher BMI was related
to poorer set-shifting in adolescence and poorer motor inhibition in young adulthood, but higher
BMI was not associated with EFs in childhood. Differences in the development of EFs over time may
influence weight changes over time through different responses to food and eating behavior.

Keywords: overweight; executive functions; development; body weight

1. Introduction

Obesity is an important public health problem that increases the risk of chronic dis-
eases (e.g., cardiovascular pathologies, type-2 diabetes, hypertension, fibromyalgia) and
psychological problems (i.e., depression, anxiety, psychopathological symptomatology) [1].
Moreover, much data suggest that obesity is a risk factor for the development of neurocog-
nitive decline, independently of age, education, general cognitive condition and other
lifestyles or health variables [2–6].

The most recent European prevalence data reported that about 58 percent of the
population over 18 years is affected by overweight, with a range between 45 (Tajikistan)
and 67 percent (Turkey) [7]. This percentage is confirmed in Italy, where 58 percent of the
population over 18 years report high body fat levels. The prevalence of overweight and
obesity has also increased in younger people (i.e., children and adolescents) in Europe [8].

Usually, excessive body weight is strictly linked to a sedentary lifestyle and unhealthy
eating habits [9]. However, obesity is multifactorial in terms of etiology. Many biological
(e.g., genetics, prenatal and perinatal aspects, neuroendocrine and physical conditions,
autonomic and neurological characteristics), environmental (e.g., socioeconomic status, cul-
tural and social biases, food availability) and behavioral (eating pattern, sedentary lifestyles,
caloric intake, daily activities) factors concur to determine obesity [10], from childhood [11]
to the whole life span [12]. Recently researchers have focused their attention on the role
of cognitive processes in eating habits and related body weight changes [6,13–15]. Some
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findings suggest that EFs (including inhibitory control, set-shifting and working mem-
ory; [16,17] may moderate the relationship between the intention and the act of eating,
influencing the intake of food [2,18]. Many studies report an association between cognitive
deficits (involving memory, learning, attention and executive functions) and excessive
body weight, considering both overweight and obesity [13,14,19]. Different authors have
developed preliminary conceptual models [2,20] to define the relationship between EFs
and obesity. Some researchers argue that this association supports the idea that there is
a genetic vulnerability to overweight expressed in cognitive functioning and alteration
in brain morphology [21]. Other authors underlined a strong bidirectional relationship
between cognitive impairment and increased body weight with an important role played
by the executive functions (EFs; [2,22,23]). This last association is confirmed in people
of different ages [22]. However, as highlighted by a recent systematic review and meta-
analysis [24], this relationship is still unclear due to the limited number of studies that
considered the different overweight stages separately.

Early association between obesity and EFs impairment was supported [6,25], specifi-
cally with regards to cognitive disinhibition [24], reported in children and adolescents with
obesity. Deterioration in executive functioning from young adulthood and late adulthood
has been reported [6]. However, there is a lack of consensus about the nature of the relation-
ship between EFs and obesity and the evolution over the life span, especially in children
and adolescents [22,26,27]. This limit would be ascribed to the well-known difficulty in
tracing a clear trajectory in the development of EFs, regardless of their relationship to be-
havioral variables [28]. Generally, the studies on EFs reported a not uniform developmental
process, due to the in-progress connections of the prefrontal brain areas during childhood,
with full development in later childhood (e.g., inhibitory control; working memory) or
early adulthood (e.g., shifting) of different EFs (for a review see [28].

To our knowledge, no study has been conducted in a sample that included an age
range from childhood to young adulthood to assess the association between EFs and
weight, considering the early stages of overweight. Most studies have focused on obesity
and a few on the less severe but more frequently occurring problem of overweight in
the absence of medical conditions [29,30]. This limit could be due to the indices adopted
to assess weight status in young and adults. In both clinical and research fields, one of
the most frequently adopted measures is the body mass index [31], which presents some
limits in identifying the risk associated with excessive body weight, specifically in younger
samples [32]. Some authors have attempted to be overcome this limit by adopting reference
charts referring to the general population [33]. However, these limitations have prevented
studies from including populations of children and adolescents.

This study examines the association between weight status and EFs in a sample of
children, adolescents and young adults recruited from the general population, who had a
healthy weight and overweight but did not meet the criteria for obesity or eating disorders.
In line with previous studies, we hypothesized a general association between increased
body weight and worse performance in executive tasks assessing different executive
functions (i.e., inhibition, working memory and shifting), independently of age [22]. This
hypothesis is in line with Miyake’s results on EFs that identify a correlation between
different EFs although they are clearly separable [17].

Moreover, according to developmental models of EFs across the lifespan [34], which
reported a stronger development of EFs in the transition from childhood to adolescence,
with stabilization from middle adolescence to adulthood and a subsequent deterioration in
the elderly [35], we expected different components of EFs could be related to BMI status
when considering children, adolescents and young adults.

2. Materials and Methods
2.1. Participants

One-hundred and sixty-six students (65 males and 101 females; mean age: 17.06 years
SD = 6.55) were recruited from different Italian public schools. Specifically, 46 children were



Nutrients 2021, 13, 1174 3 of 13

from first grade (age range: 7–11; 22 males, 24 females; mean age: 7.98 years SD = 0.88),
50 adolescents from the high school (age range: 15–18; 15 males, 35 females; mean age:
16.64 years SD = 0.75) and 70 young adults from college (age range: 19–30; 31 males,
42 females; mean age: 23.32 years SD = 2.57).

The participants were included in the study if they did not present an eating disor-
ders diagnosis, severe obesity, developmental disorders, chronic medical diseases, or any
psychopathological condition (e.g., anxiety, depression). Because of the tasks administered,
normal or corrected-to-normal vision and the absence of color blindness were required. All
participants were selected on a voluntary basis. In the case of children and adolescents, a
preliminary presentation of the research design was made in schools to both children and
parents and consents were collected for participation in the study. In addition, evaluations
were also carried out to participants who had any of the exclusion criteria included in the
study (respectively, 5 children; 3 adolescents and 1 young adult), but the data were not
included in the data analysis set. This recruitment process was done in accordance with
the guidance of the local ethics committee.

Fifty-nine participants (20 males, 39 females) were included who were in the over-
weight category and 107 participants (49 males, 62 females) who were in the normal
weight category according to WHO weight classification both for children and adolescents
and adults [31].

Table 1 shows the main characteristics of the participants considering age and weight
classification.

Table 1. Characteristics of participants and performances in the tasks for the assessment of the executive functions.

Children Adolescents Young Adults

Normal
Weight Overweight Normal

Weight Overweight Normal
Weight Overweight F2,160 p ηp

2 *

N (m/f) 31 (17/14) 15 (5/10) 38 (13/25) 12 (2/10) 38 (15/23) 32 (13/19)
Age 8.00

(0.93)
7.93

(0.80)
16.71
(0.77)

16.42
(0.67)

22.39
(2.28)

24.44
(2.47) 8.12 0.001 0.10

Years of Education 2.9
(0.75)

2.93
(0.80)

11.71
(0.77)

11.42
(0.67)

15.89
(1.33)

16.84
(1.22) 5.36 0.01 0.06

Weight (kg) 27.79
(5.35)

38.24
(7.96)

58.10
(7.38)

75.33
(11.36)

61.45
(8.78)

80.03
(15.18) 2.39 0.10 0.03

Height (m) 1.32
(0.08)

1.35
(0.07)

1.68
(0.07)

1.68
(0.11)

1.69
(0.09)

1.70
(0.08) <1 0.59 0.01

BMI 15.83
(1.70)

20.74
(3.00)

20.46
(1.97)

26.74
(3.30)

21.34
(1.74)

27.35
(3.05) <1 0.37 0.01

BMI-to-age ratio 1.99
(0.23)

2.64
(0.43)

1.23
(0.13)

1.63
(0.22)

0.97
(0.13)

1.11
(0.13) 20.78 0.001 0.21

Waist-to-height ratio 0.45
(0.04)

0.50
(0.06)

0.40
(0.08)

0.47
(0.04)

0.43
(0.04)

0.50
(0.10) <1 0.72 0.004

Body Adiposity Index 24.56
(4.52)

29.61
(6.43)

20.48
(8.59)

26.18
(5.67)

21.23
(3.13)

26.82
(9.79) <1 0.97 0.001

Systolic Blood Pressure 108.52
(17.71)

113.65
(7.55)

104.75
(12.36)

111.41
(12.48)

114.42
(10.68)

119.39
(11.46) <1 0.95 0.001

Diastolic Blood Pressure 67.74
(11.14)

76.25
(10.73)

68.16
(7.13)

72.54
(7.74)

69.30
(8.30)

74.70
(6.84) <1 0.61 0.01

Hunger (0–100) 50.80
(33.83)

37.17
(27.05)

40.28
(34.63)

45.83
(31.48)

61.06
(26.65)

45.13
(33.63) 1.40 0.25 0.01

Cognitive Inhibition
Stroop Effect (Stroop Task:

reaction times)
91.96

(81.22)
108.23
(82.46)

66.59
(44.94)

103.61
(63.78)

91.91
(60.18)

98.24
(69.83) <1 0.53 0.01

False Alarms
(Go-No Task) 7.74 (4.15) 8.83

(5.20)
4.66

(3.53)
5.67

(4.08)
3.97

(3.14)
4.55

(2.79) <1 0.92 0.001

Working memory
1-back task accuracy (%) 0.70

(0.28)
0.72

(0.25)
0.93

(0.10)
0.88

(0.13)
0.94

(0.10)
0.93

(0.11) <1 0.60 0.01

2-back task accuracy (%) 0.50
(0.27)

0.51
(0.24)

0.67
(0.22)

0.71
(0.21)

0.79
(0.17)

0.82
(0.21) <1 0.98 0.002

Set-shifting
Global Score (WCST) 33.63

(20.98)
37.47

(16.90)
21.13

(16.62)
25.17

(19.09)
16.63

(16.01)
13.16

(10.85) <1 0.70 0.004

Perseveration (WCST) 10.50
(9.05)

11.93
(10.44)

6.03
(3.74)

7.92
(4.91)

4.87
(4.21)

4.38
(3.59) <1 0.61 0.01

* partial eta square.
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2.2. Apparatus

A digital balance was used to assess each participant’s weight (Kg) and a wall-
mounted anthropometer was used to measure the height (m). These two measures allowed
the body mass index (BMI) to be computed by dividing weight by height (meters squared).
The WHO criteria were adopted, using the growth charts for children and adolescents [31]
and the BMI classification for young adults [31].

A tape measure was adopted to measure waist and hip circumferences, to calculate the
waist-to-height ratio (W/Hr; [36]) and body adiposity index (BAI = ((hip circumference)/
((height)1.5)−18)); [37]). A digital sphygmomanometer was used to measure systolic and
diastolic blood pressure.

2.3. Apparatus

Demographic information
A semi-structured interview was adopted to collect each participant’s main demo-

graphic information (gender, age, level of education) and medical and clinical history. For
children and adolescents under 18 years of age, the interview was conducted by one of
the parents.

Executive functions
According to Diamond’s model [16], executive functions were assessed in all age

groups; standardized tasks previously adopted in childhood, adolescence and adulthood
were used.

Apparatus: computerized versions of the Stroop task, Go/No-go task and n back task
were presented throughout the E-Prime 2.0 software on an Intel Core i5 PC and displayed
on a 17-inch color screen. A standard computer keyboard collected the responses.

Cognitive Inhibition:

- The Stroop task [38] is one of the most adopted instruments for assessing executive
functions, specifically cognitive inhibition and interference control.

Visual Stimuli and procedure: the task provided the administration of target stimuli
consisted of colored words (Font: Courier New; Font size: 60; colors: yellow, red, blue,
green) referred semantically to the colors YELLOW, RED, BLUE, GREEN. Each word could
be presented with the ink color related to its semantic meaning (Congruent Condition,
e.g., RED wrote in red ink) or with another color (Incongruent Condition, e.g., RED
wrote in blue ink). As quickly and accurately as possible, the task required to press the
key corresponding to the ink color (key “A” = red; Key “S” = green; Key “K” = blue;
Key “L” = yellow). The experiment was introduced by a practice block of 15 trials with
feedback about their correct execution. Afterward, a block of 120 randomly presented
trials (60 Congruent and 60 Incongruent) was presented. An initial fixation cross (duration:
400 ms) was presented before each trial. The target stimulus remained on the screen for
3000 ms or until the participant’s response. To ensure good validity of the measures, in
line with the literature on the task, all participants who achieved an accuracy greater than
65 percent were included in the study. Moreover, trials with reaction times over 200 ms
and correct trials were considered to calculate each participant’s mean Reaction Time (RT)
for congruent and incongruent conditions and the Stroop Effect (mean RTs Incongruent
Trials—mean RTs Congruent Trials) was computed. Procedure and stimuli are shown
in Figure 1.
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Figure 1. Example of stimuli and procedure of the Stroop Task.

- The Go/No-Go Task [39] allows assessing motor inhibition, i.e., the ability to control
an inadequate motor response.

Visual Stimuli and procedure: the stimuli included two geometric shapes of 960 ×
720 pixels each, placed in the center of the screen with a black background. The Go
stimulus was a green circle and the No-Go stimulus was a green triangle. The participant
was required to keep his gaze fixed in the center of the screen for the duration of the
experiment. The initial screen with a fixation cross (duration: 500 ms) was followed by the
presentation of target stimuli (Go) and non-target stimuli (No-Go), in a randomized way
considering three, four, or five Go trials for each No-Go trial. Each stimulus remained in
the center of the screen for 750 ms or until the participant’s response. The task required
to press the left mouse key as quickly as possible when the green circle appeared in the
center of the screen. When the green triangle appeared, the participant had to wait for
the disappearance of the stimulus. The task involved a total of 100 trials divided into two
blocks of 50 trials each. A practice block of 12 trials, with feedback on correctness, was
presented at the beginning of the experiment. The inappropriate responses to “no-go”
stimuli were summed to define the numbers of False Alarms, considered the inhibition
motor component. An accuracy greater than 50% was accepted for including the participant
in the analysis. Procedure and stimuli are shown in Figure 2.
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Working Memory:

- The n-back task [40] is largely adopted to assess working memory.

Visual Stimuli and procedure: the stimuli included some alphabetical letters presented
in the middle of the screen (Font: Palatino Linotype; Font size: 30) with a white background.
Two sessions of the task were presented in sequence: the one- and the two-back. A sequence
of stimuli one-by-one (duration: 500 ms), followed by a blank screen (ISI: 2500 ms), was
presented. In the one-back session, the participant evaluated whether each stimulus was
the same as the previous stimulus (Target) or different from the previous stimulus (Non-
Target). In the two-back session, the participant had to indicate whether the stimulus was
the same or different from the stimulus presented in the two previous trials. The responses
were collected by pressing the key “X” for the target stimuli and the key “M” for the
non-target stimuli. The overall task includes 40 trials for the one-back block and 40 trials
for the two-back blocks. In each block the 30% of the trials were Target. The percentage of
accuracy for both one-back and two-back procedures was considered a measure of working
memory. According to Pelegrina et al. [41] who reported heterogeneous results in children
at the n-back tasks but confirmed the validity of using the task from school-age children,
over the 20 percent was adopted as the lowest accuracy. Procedure and stimuli are shown
in Figure 3.
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Set-shifting:

- The Wisconsin Card Sorting Test (WCST, [42]), a computerized version of the WCST
was adopted to assess cognitive flexibility. The test requires the participant to match
some cards according to specific characteristics of four Stimulus Cards.

Visual Stimuli and procedure: two sets of 64 cards were presented. There were four
possible suits in the cards (i.e., stars, crosses, circles, triangles), they can be of four possible
colors (i.e., red, yellow, green, blue) and each card can have a different number of suits,
from 1 to 4. The cards are sorted by reference to four stimulus cards with one red triangle,
two green stars, three yellow crosses and four blue circles. The participant has to place a
single card of the deck in correspondence with one of the four initial stimulus cards. At each
participant’s choice, the experimenter provides feedback on the correctness of the answer to
allow the participant to infer the adopted criterion (i.e., color, shape, number, respectively)
to sort the cards through this feedback ignoring the other criteria. This procedure continues
until the participant makes ten correct choices. Then, the correct answer criterion changes.
The procedure continues until the two decks of cards are completed. Different indices can be
extrapolated from the test. In this study, the global score ([card administered—(completed
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categories*10)] with lower scores as indices of better performance) and perseveration errors
(as an index of difficulty in set-shifting the procedure to complete the task).

2.4. General Procedure

The research was conducted according to the Helsinki Declaration and the Local
Ethics Committee (Department of Dynamic and Clinical Psychology and Health Studies
—“Sapienza” the University of Rome; protocol n. 0000450-15/04/2019) approved it. The
written informed consent was explained and signature was sought before the evalua-
tion, with parents consenting on behalf of their child and both participants and parents
consenting on behalf of adolescents.

Each participant was individually tested in a silent, dimly illuminated room with a
comfortable temperature and the procedure was explained prior to the in-person interview.
Researchers trained in the use of the e-prime software administered the tasks and were
present throughout the experimental procedure. All the evaluators were attending a
doctoral program or had a Ph.D. degree in psychology and cognitive science, which
made them qualified to implement experiments and the administration of cognitive tasks.
Participants indicated their current hunger levels on a visual-analogue scale (0–100 mm)
and then completed the experimental tasks. For each computerized version of the cognitive
tasks, a practice block was included to allow the participant to become familiar with the
task. Finally, weight, height and blood pressure were measured.

2.5. Data Analysis

Data are reported as means and standard deviations for each age group (children,
adolescents and young adults) and the weight condition (normal weight, overweight).
Two-way ANOVAs were carried out to control the differences between groups considering
each variable. Furthermore, a hierarchical multiple linear regression was carried out on
the whole sample to evaluate the role of executive functions on BMI variation, considering
the task assessing the three EFs of Diamond’s model (inhibition, working memory and
shifting) in line with the aim of the study. To control for the greater impact of high BMI in
younger ages, BMI to age ratio was calculated. To control the role of age in the relationship
among variables, age was added as a covariate in the regression model. The 3 steps
assessed in the hierarchical multiple linear regression model were: (1) cognitive inhibition:
including false alarms on the Go/No-Go task and Stroop effect (RT) indices; (2) working
memory: including accuracy at the one and two-back; (3) shifting: including global score
and perseverations on the WCST. To assess the association between weight condition (BMI,
waist-to-height ratio, Body adiposity index) and executive functioning in the different age
groups, sub-groups linear Pearson’s r correlation was calculated and Benjamini–Hochberg
correction for the p-value was included.

3. Results
3.1. General Data of the Sample

Table 1 shows the sample’s main characteristics (means and std.dev.) classified accord-
ing to age and weight condition. In addition, the performance of the groups in executive
tasks is shown.

3.2. Regression Analysis

The hierarchical regression model adjusted for age was significant (see Table 2). The
best model considered the inhibition indices (Stroop Effect and False Alarms) (F2,160 = 5.49;
p = 0.005; Adjusted R2 = 0.73). Specifically, considering the predictors of the models, only
False Alarms on the Go/No-Go task were related to increased age-adjusted BMI.
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Table 2. Hierarchical regression model considering the BMI-to-age ratio as dependent variable (adjusted for age).

Models B Standard
Error Beta t Sign.

(p=)
95% CI
Lower

95% CI
Upper

Zero-Order
Correlation

% of
Explenation

1 Stroop Effect 0.00 0.000 0.04 0.99 0.33 0.0 0.001 0.10 72False Alarms 0.01 0.006 0.14 2.94 0.004 0.006 0.03 0.48

2

Stroop Effect 0.0 0.000 0.04 0.93 0.35 0.0 0.001 0.10

73False Alarms 0.02 0.007 0.14 2.94 0.004 0.006 0.03 0.48
1-back task accuracy −0.17 0.145 −0.06 −1.14 0.25 −0.45 0.12 −0.42
2-back task accuracy 0.16 0.115 0.07 1.35 0.18 −0.07 0.38 −0.41

3

Stroop Effect 0.0 0.000 0.04 0.88 0.38 0.0 0.001 0.10

73

False Alarms 0.02 0.007 0.14 2.92 0.004 0.006 0.03 0.48
1-back task accuracy −0.14 0.148 −0.05 −0.96 0.34 −0.43 0.15 −0.42
2-back task accuracy 0.15 0.116 0.07 1.33 0.19 −0.07 0.38 −0.41
Global Score (WCST) 0.002 0.002 0.06 0.91 0.36 −0.002 0.006 0.42
Perseveration (WCST) −0.001 0.01 −0.01 −0.14 0.89 −0.012 0.01 0.36

In bold: significant results.

Table 3 shows intercorrelations of cognitive measures.

Table 3. Intercorrelations of cognitive measures included in the regression model.

Age-Adjusted
BMI Stroop Effect False Alarms 1-Back Task 2-Back Task Global Score

WCST
Perseveration

WCST

Stroop Effect 0.08
p = 0.20 1.00

False
Alarms

0.48
p = 0.0001

0.17
p = 0.01 1.00

1-back task −0.42
p = 0.0001

−0.07
p = 0.15

−0.32
p = 0.0001 1.00

2-back task −0.41
p = 0.0001

−0.03
p = 0.20

−0.32
p = 0.0001

0.54
p = 0.0001 1.00

Global Score
(WCST)

0.42
p = 0.0001

0.06
p = 0.20

0.19
p = 0.01

−0.32
p = 0.0001

−0.27
p = 0.0001 1.00

Perseveration
(WCST)

0.36
p = 0.0001

0.12
p = 0.10

0.13
p = 0.10

−0.25
p = 0.0001

−0.29
p = 0.0001

0.74
p = 0.0001 1.00

3.3. Correlation Analysis

Tables 4–6 reported linear Pearson’s r correlation in the three different age groups
considering the weight indices of BMI, waist-to-height ratio, Body adiposity index and
self-reported hunger before the EF task administration.

Specifically, in children, no significant correlations were found (Table 4).
In adolescents, BMI was correlated with worse performance in WCST considering

both global score (r = 0.43; p = 0.02) and perseveration (r = 0.41; p = 0.03). Moreover, positive
linear correlations were reported between self-reported hunger and the false alarms index
(r= 0.55; p = 0.003) and lower accuracy on the 1-back task (r = −0.39; p = 0.05) (Table 5).

In the young adults’ group, the only significant correlation was between BMI and
false alarms in the Go/No-Go task (r = 0.28; p = 0.05) (Table 6).

Table 4. Pearson’s r correlations in children.

Stroop Effect
(Stroop Task)

False Alarms
(Go/No-Go Task)

1-Back
Accuracy

2-Back
Accuracy

Global Score
(WCST)

Perseveration
(WCST)

BMI r 0.07 0.15 0.15 0.21 −0.01 0.02
p 0.60 0.37 0.37 0.20 0.98 0.88

waist-to-
height

r −0.04 −0.05 0.28 0.24 0.04 −0.03
p 0.82 0.75 0.08 0.14 0.83 0.84

BAI r 0.16 0.18 0.24 0.21 −0.10 −0.19
p 0.32 0.27 0.13 0.19 0.55 0.23

Self-reported
hunger

r −0.03 −0.13 −0.17 −0.20 0.13 −0.02
p 0.86 0.42 0.30 0.24 0.41 0.91

Adjusted critical p-value (Benjamini–Hochberg correction) = 0.01.
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Table 5. Pearson’s r correlations in adolescents.

Stroop Effect
(Stroop Task)

False Alarms
(Go-Nogo Task)

1-Back
Accuracy

2-Back
Accuracy

Global Score
(WCST)

Perseveration
(WCST)

BMI r −0.05 −0.28 −0.001 0.11 0.43 0.41
p 0.81 0.16 0.98 0.60 0.02 0.03

waist-to-
height

r 0.06 0.12 −0.08 0.04 0.30 0.29
p 0.75 0.55 0.69 0.86 0.13 0.14

BAI r 0.02 0.12 −0.03 −0.01 0.24 0.22
p 0.90 0.54 0.88 0.94 0.24 0.27

Self-reported
hunger

r 0.18 0.55 −0.39 −0.06 −0.11 −0.13
p 0.38 0.003 0.05 0.76 0.57 0.52

Adjusted critical p-value (Benjamini–Hochberg correction) = 0.03. In bold: significant results.

Table 6. Pearson’s r correlation in young adults.

Stroop Effect
(Stroop Task)

False Alarms
(Go-Nogo Task)

1-Back
Accuracy

2-Back
Accuracy

Global Score
(WCST)

Perseveration
(WCST)

BMI r 0.05 0.28 −0.23 0.14 −0.16 −0.18
p 0.75 0.05 0.10 0.33 0.25 0.20

waist-to-
height

r −0.07 0.13 −0.10 0.05 −0.04 −0.05
p 0.64 0.36 0.48 0.74 0.79 0.73

BAI r 0.04 0.14 −0.15 0.08 0.07 0.03
p 0.79 0.34 0.30 0.58 0.61 0.81

Self-reported
hunger

r 0.01 0.06 −0.12 −0.10 0.13 0.14
p 0.92 0.66 0.41 0.51 0.35 0.33

Adjusted critical p-value (Benjamini–Hochberg correction) = 0.01. In bold: significant results.

4. Discussion

Motor disinhibition was associated with greater BMI in the overall sample. In ado-
lescence, higher BMI was associated with poorer set-shifting, while in young adulthood,
higher BMI was associated with poorer motor inhibition; however, no associations with
higher BMI and EFs were found in childhood.

This study examined associations between weight and executive functioning, accord-
ing to Diamond’s tripartite model [16], which organized the EFs in three main domains:
working memory updating, set-shifting and cognitive inhibition. Moreover, according to
Miyake’s study [17], a correlation between the domains and a possibility for them to be
evaluated independently, the role of the EFs was interpreted in their association with body
weight change. In the whole sample, more False Alarms on the Go/No-Go task were related
to increased age-adjusted BMI, suggesting greater motor disinhibition is associated with
greater BMI, independently from age. Other studies have shown that higher age-adjusted
BMI is related to poorer performance on a task aimed to assess motor inhibitory control [43],
with similar results seen in a child sample in the overweight range [44]. Other studies have
shown a relationship between obesity and motor disinhibition in adolescents [45,46]. We
did not find evidence of an association between age-adjusted BMI and performance on
the Stroop task that assesses cognitive inhibition. The discrepancy in findings between
the two inhibitory control measures may be explained by different neural networks being
implicated in motor and cognitive inhibition [47]. Furthermore, it fits with a meta-analysis
showing that greater BMI is associated with supplementary motor area differences in
response to palatable food consumption [48]. Dissociation of whether motor inhibitory
control is due to overweight status or difficulties inhibiting behavior that predates weight
gain is needed.

Different patterns between weight status and EFs emerged across the three different
age groups. In the current study, there were no associations between EFs and higher BMI
in children, which may reflect the fact that the neural structures associated with EF develop
later [28,49]. This assumption could be supported by the general lower performance re-
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ported in the children’s group in the cognitive tasks. In adolescents in the current study,
poorer set-shifting, as assessed by WCST, was associated with higher BMI. While these find-
ings fit with previous studies of adolescents with obesity [50] and eating disorders [51,52]
who showed worse cognitive flexibility and set-shifting compared to adolescents with a
healthy weight, it did not agree with a previous study with overweight adolescents [53]. In
the current study, in young adults, higher BMI was associated with poorer motor inhibition,
as in the broader findings that considered obesity conditions [54,55], confirming a similar
pattern also in less severe overweight.

These results should be considered preliminary. The current study was cross-sectional
and not longitudinal and future studies are needed to examine the relationship between EFs
and BMI across the lifespan in the same individuals. This would control the limitations of an
independent-group comparison to test the hypotheses of interest in the study. In addition, a
longitudinal design could allow, despite the difficulties in its application, us to understand
the interaction of variables during the development. Moreover, this appears relevant
considering the evolution of the relationship of BMI–age, which can be characterized by
a more or less significant increase or decrease, especially in mild overweight. Therefore,
from this perspective, the study is a starting point to methodologically set up future studies
aimed at assessing the association between executive functions and body weight at different
stages of life. As previously reported, this study, like all others on the topic, is characterized
by the limit of the BMI adoption, because it is an indirect measure of body fat and may
not reflect and differentiate changes in body fat and muscle mass [56]. This may not have
shown a strong association between executive functions and body condition, as the same
index could be reported for individuals with different body shapes associated with healthy
or maladaptive lifestyle habits. The sample size was small and future studies are needed
that include a group of middle-aged adults. Moreover, these preliminary results should be
deepened through other approaches, including statistical approaches, to control how age
acts as a moderator of the relationship, at different developmental stages. The replicability
of this study is also important to show that these results were not due to random chance
or the characteristics of the tasks generally easier for young adults than others group and
characterized in some cases by low accuracy in younger. Moreover, the absence of cut-off
did not allow to verify a claimed executive impairment. Even a possible selection bias,
which depended on voluntary participation in the study and the recruitment only in some
schools located in the Roman territory and the limited sample size represent a limitation
for the generalizability of the results.

Nonetheless, the current study extends existent findings by examining the effect of
overweight, rather than obesity, in different age groups including children in a physically
healthy sample. The current study also examined a range of EFs typically not examined in
studies of children.

5. Conclusions

This study supports the association between increased BMI and EFs in adolescence
and young adulthood in a sample ranging from a healthy weight to overweight, who were
physically healthy. Higher BMI was associated with poorer set-shifting in adolescence
and poorer motor inhibition in young adulthood. Motor disinhibition was associated with
greater BMI in the overall sample. However, we cannot speak of executive impairment,
but rather of an association between better (or higher) and worse (or lower) functioning
and body weight changes. While this is a preliminary cross-sectional study, it suggests
that executive functioning problems are associated with greater BMI in adolescence and
young adulthood even in a healthy sample in the healthy weight to the overweight range,
representing the majority of the population in this age-group. Longitudinal investigations
of executive functioning and their relationship with weight and related indices in the same
individuals are needed from childhood through adulthood.
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