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A FAST ACTIVE SET BLOCK COORDINATE DESCENT

ALGORITHM FOR ℓ1-REGULARIZED LEAST SQUARES

MARIANNA DE SANTIS∗, STEFANO LUCIDI† , AND FRANCESCO RINALDI‡

Abstract. The problem of finding sparse solutions to underdetermined systems of linear equa-
tions arises in several applications (e.g. signal and image processing, compressive sensing, statistical
inference). A standard tool for dealing with sparse recovery is the ℓ1-regularized least-squares ap-
proach that has been recently attracting the attention of many researchers.

In this paper, we describe an active set estimate (i.e. an estimate of the indices of the zero
variables in the optimal solution) for the considered problem that tries to quickly identify as many
active variables as possible at a given point, while guaranteeing that some approximate optimality
conditions are satisfied. A relevant feature of the estimate is that it gives a significant reduction
of the objective function when setting to zero all those variables estimated active. This enables to
easily embed it into a given globally converging algorithmic framework.

In particular, we include our estimate into a block coordinate descent algorithm for ℓ1-regularized
least squares, analyze the convergence properties of this new active set method, and prove that its
basic version converges with linear rate.

Finally, we report some numerical results showing the effectiveness of the approach.
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1. Introduction. The problem of finding sparse solutions to large underdeter-
mined linear systems of equations has received a lot of attention in the last decades.
This is due to the fact that several real-world applications can be formulated as linear
inverse problems. A standard approach is the so called ℓ2-ℓ1 unconstrained optimiza-
tion problem:

(1.1) min
x∈Rn

1

2
‖Ax− b‖2 + τ‖x‖1,

where A ∈ R
m×n, b ∈ R

m, x ∈ R
n (m < n) and τ ∈ R

+. We denote by ‖ · ‖ the
standard ℓ2 norm and by ‖ · ‖1 the ℓ1 norm defined as ‖x‖1 =

∑n
i=1 |xi|.

Several classes of algorithms have been proposed for the solution of Problem (1.1).
Among the others, we would like to remind Iterative Shrinkage/Thresholding (IST)
methods (see e.g. [3, 4, 9, 11, 34]), Augmented Lagrangian Approaches (see e.g. [2]),
Second Order Methods (see e.g. [5, 18]), Sequential Deterministic (see e.g. [32, 33, 39])
and Stochastic (see e.g. [16, 28] and references therein) Block Coordinate Approaches,
Parallel Deterministic (see e.g. [15] and references therein) and Stochastic (see e.g.
[10, 29] and references therein) Block Coordinate Approaches, and Active-set strate-
gies (see e.g. [20, 35, 36]).

The main feature of this class of problems is the fact that the optimal solution
is usually very sparse (i.e. it has many zero components). Then, quickly building
and/or correctly identifying the active set (i.e. the subset of zero components in an
optimal solution) for Problem (1.1) is becoming a crucial task in the context of Big

∗Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dort-
mund, Germany marianna.de.santis@tu-dortmund.de

†Dipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Università di Roma,
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Data Optimization, since it can guarantee relevant savings in terms of CPU time.
As a very straightforward example, we can consider a huge scale problem having a
solution with just a few nonzero components. In this case, both the fast construction
and the correct identification of the active set can considerably reduce the complexity
of the problem, thus also giving us the chance to use more sophisticated optimization
methods than the ones usually adopted.Various attempts have been made in order to
use active set technique in the context of ℓ1-regularized problems.

In [35, 36], Wen et al. proposed a two-stage algorithm, FPC-AS, where an es-
timate of the active variables set is driven by using a first-order iterative shrinkage
method.

In [37], a block-coordinate relaxation approach with proximal linearized subprob-
lems yields convergence to critical points, while identification of the optimal manifold
(under a nondegeneracy condition) allows acceleration techniques to be applied on a
reduced space.

In [23], the authors solve an ℓ1-regularized log determinant program related to
the problem of sparse inverse covariance matrix estimation combining a second-order
approach with a technique to correctly identifying the active set.

An efficient version of the two-block nonlinear constrained Gauss-Seidel algorithm
that at each iteration fixes some variables to zero according to a simple active set rule
has been proposed in [27] for solving ℓ1-regularized least squares.

In a recent paper [5], Nocedal et al. described an interesting family of second
order methods for ℓ1-regularized convex problems. Those methods combine a semi-
smooth Newton approach with a mechanism to identify the active manifold in the
given problem.

In the case one wants to solve very large problems, Block Coordinate Descent
Algorithms (both Sequential and Parallel) represent a very good alternative and,
sometimes, the best possible answer [33]. An interesting Coordinate Descent algo-
rithm combining a Newton steps with a line search technique was described by Yuan
et al. in [38]. In this context, the authors also proposed a shrinking technique (i.e. a
heuristic strategy that tries to fix to zero a subset of variables according to a certain
rule), which can be seen as a way to identify the active variables. In [33], some ideas
on how to speed up their Block Coordinate Descent Algorithm by including an active
set identification strategy are described, but no theoretical analysis is given for the
resulting approach.

What we want to highlight here is that all the approaches listed above, but the
one described in [5], estimate the final active set by using the current active set and
perform subspace minimization on the remaining variables. In [5], the authors define
an estimate that performs multiple changes in the active manifold by also including
variables that are nonzero at a given point and satisfy some specific condition. Since
this active set mechanism, due to the aggressive changes in the index set, can cause
cycling, including the estimate into a globally converging algorithmic framework is
not always straightforward.

In this work, we adapt the active set estimate proposed in [14] for constrained
optimization problems to the ℓ1-regularized least squares case. Our estimate, similarly
to the one proposed in [5], does not only focus on the zero variables of a given point.
Instead it tries to quickly identify as many active variables as possible (including the
nonzero variables of the point), while guaranteeing that some approximate optimality
conditions are satisfied.

The main feature of the proposed active set strategy is that a significant reduction
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of the objective function is obtained when setting to zero all those variables estimated
active. This global property, which is strongly related to the fact that the components
estimated active satisfy an approximate optimality condition, makes easy to use the
estimate into a given globally converging algorithmic framework.

Furthermore, inspired by the papers [33, 38, 39], we describe a new Block Coor-
dinate Descent Algorithm that embeds the considered active set estimate. At each
iteration, the method first sets to zero the active variables, then uses a decomposition
strategy for updating a bunch of the non-active ones. On the one hand, decomposing
the non-active variables enables to handle huge scale problems that other active set
approaches cannot solve in reasonable time. On the other hand, since the subproblems
analyzed at every iteration explicitly take into account the ℓ1-norm, the proposed algo-
rithmic framework does not require a sign identification strategy (for the non-active
variables), which is tipically needed when using other active set methods from the
literature.

The paper is organized as follows. In Section 3, we introduce our active set
strategy. In Section 4, we describe the active set coordinate descent algorithm, and
prove its convergence. We further analyze the convergence rate of the algorithm. In
Section 5, we report some numerical results showing the effectiveness of the approach.
Finally, we draw some conclusions in Section 6.

2. Notation and Preliminary Results. Throughout the paper we denote by
f(x), q(x), g(x) and H the original function in Problem (1.1), the quadratic term of
the objective function in Problem (1.1), the n gradient vector and the n× n Hessian

matrix of
1

2
‖Ax− b‖2 respectively. Explicitly

q(x) =
1

2
‖Ax− b‖2, g(x) = A⊤(Ax − b), H = A⊤A.

Given a matrix Q ∈ R
n×n, we further denote by λmax(Q) and λmin(Q) the maximum

and the minimum eigenvalue of the matrix Q, respectively. Furthermore, with I we
indicate the set of indices I = {1, . . . , n}, and with QIjIj we indicate the submatrix
of Q whose rows and columns indices are in Ij ⊆ I. We also report the optimality
conditions for Problem (1.1):

Proposition 2.1. x⋆ ∈ R
n is an optimal solution of Problem (1.1) if and only

if

(2.1)







x⋆
i > 0, gi(x

⋆) + τ = 0
x⋆
i < 0, gi(x

⋆)− τ = 0
x⋆
i = 0, −τ ≤ gi(x

⋆) ≤ τ.

Furthermore, we define a continuous function Φi(x) that measures the violation of the
optimality conditions in xi (and is connected to the Gauss-Southwell-r rule proposed
in [33]), that is

(2.2) Φi(x) = −mid

{

gi(x)− τ

Hii

, xi,
gi(x) + τ

Hii

}

,

where mid{a, b, c} indicates the median of a, b, c.
Finally, we recall the concept of strict complementarity.
Definition 2.2. Strict complementarity holds if, for any x⋆

i = 0, we have

(2.3) −τ < gi(x
⋆) < τ.
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3. Active set estimate. All the algorithms that adopt active set strategies
need to estimate a particular subset of components of the optimal solution x⋆. In
nonlinear constrained minimization problems, for example, using an active set strategy
usually means correctly identifying the set of active constraints at the solution. In
our context, we deal with Problem (1.1) and the active set is considered as the subset
of zero-components of x⋆.

Definition 3.1. Let x⋆ ∈ R
n be an optimal solution for Problem (1.1). We

define the active set as follows:

(3.1) Ā(x⋆) =
{

i ∈ I : x⋆
i = 0

}

.

We further define as non-active set the complementary set of Ā(x⋆):

(3.2) N̄ (x⋆) = I \ Ā(x⋆) =
{

i ∈ {1, . . . , n} : x⋆
i 6= 0

}

.

In order to get an estimate of the active set we rewrite Problem (1.1) as a box
constrained programming problem and we use similar ideas to those proposed in [12].

Problem (1.1) can be equivalently rewritten as follows:

(3.3)
min 1

2‖A(u− v)− b‖2 + τ
∑n

i=1(ui + vi)
u ≥ 0
v ≥ 0,

where u, v ∈ R
n. Indeed, we can transform a solution x⋆ ∈ R

n of Problem (1.1) into
a solution (u⋆, v⋆) ∈ R

n × R
n of (3.3) by using the following transformation:

u⋆ = max(0, x⋆), v⋆ = max(0,−x⋆).

Equivalently, we can transform a solution (u⋆, v⋆) ∈ R
n × R

n of (3.3) into a solution
x⋆ ∈ R

n of Problem (1.1) by using the following transformation:

x⋆ = u⋆ − v⋆.

The Lagrangian function associated to (3.3) is

L(u, v, λ, µ) =
1

2
‖A(u− v)− b‖2 + τ

n
∑

i=1

(ui + vi)− λ⊤u− µ⊤v,

with λ, µ ∈ R
n vectors of Lagrangian multipliers. Let (u⋆, v⋆, λ⋆, µ⋆) be an optimal

solution of Problem (3.3). Then, from necessary optimality conditions, we have

(3.4)
λ⋆
i = gi(u

⋆ − v⋆) + τ = gi(x
⋆) + τ ;

µ⋆
i = τ − gi(u

⋆ − v⋆) = τ − gi(x
⋆).

From (3.4), we can introduce the following two multiplier functions

(3.5)
λi(u, v) = gi(u − v) + τ ;

µi(u, v) = τ − gi(u− v).
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By means of the multiplier functions, we can recall the non-active set estimate N (u, v)
and active set estimate A(u, v) proposed in the field of constrained smooth optimiza-
tion (see [14] and references therein):

(3.6) N (u, v) = {i : ui > ǫλi(u, v)} ∪ {i : vi > ǫµi(u, v)},

(3.7) A(u, v) = I \ N (u, v),

where ǫ is a positive scalar.

We draw inspiration from (3.6) and (3.7) to propose the new estimates of active
and non-active set for Problem (1.1). Indeed, by using the relations

u = max(0, x) and v = max(0,−x),

we can give the following definitions.

Definition 3.2. Let x ∈ R
n. We define the following sets as estimate of the

non-active and active variables sets:

(3.8) N (x) = {i : max(0, xi) > ǫ (τ + gi(x))} ∪ {i : max(0,−xi) > ǫ (τ − gi(x))},

(3.9) A(x) = I \ N (x).

In the next Subsections, we first discuss local and global properties of our estimate,
then we compare it with other active set estimates.

3.1. Local properties of the active set estimate. Now, we describe some
local properties (in the sense that those properties only hold into a neighborhood of a
given point) of our active set estimate. In particular, the following theoretical result
states that when the point is sufficiently close to an optimal solution the related active
set estimate is a subset of the active set calculated in the optimal point (and it includes
the optimal active variables that satisfy strict complementarity). Furthermore, when
strict complementarity holds the active set estimate is actually equal to the optimal
active set.

Theorem 3.3. Let x⋆ ∈ R
n be an optimal solution of Problem (1.1). Then, there

exists a neighborhood of x⋆ such that, for each x in this neighborhood, we have

(3.10) Ā+(x⋆) ⊆ A(x) ⊆ Ā(x⋆),

with Ā+(x⋆) = Ā(x⋆) ∩ {i : −τ < gi(x
⋆) < τ}.

Furthermore, if strict complementarity (2.2) holds in x⋆, then there exists a neighbor-
hood of x⋆ such that, for each x in this neighborhood, we have

(3.11) A(x) = Ā(x⋆).

Proof. The proof follows from Theorem 2.1 in [14].
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3.2. A global property of the active set estimate. Here, we analyze a
global property of the active set estimate. In particular, we show that, for a suitably
chosen value of the parameter ǫ appearing in Definition 3.2, by starting from a point
z ∈ R

n and fixing to zero all variables whose indices belong to the active set estimate
A(z), it is possible to obtain a significant decrease of the objective function. This
property, which strongly depends on the specific structure of the problem under anal-
ysis, represents a new interesting theoretical result, since it enables to easily embed
the active set estimate into any globally converging algorithmic framework (in the
next section, we will show how to include it into a specific Block Coordinate Descent
method). Furthermore, the global property cannot be deduced from the theoretical
results already reported in [14].

Assumption 1. Parameter ǫ appearing in Definition 3.2 satisfies the following
condition:

(3.12) 0 < ǫ <
1

λmax(A⊤A)
.

Proposition 3.4. Let Assumption 1 hold. Given a point z ∈ R
n and the related

sets A(z) and N (z), let y be the point defined as

yA(z) = 0, yN (z) = zN (z).

Then,

f(y)− f(z) ≤ −
1

2ǫ
‖y − z‖2.

Proof. see Appendix A.

3.3. Comparison with other active set strategies. Our active set estimate
is somehow related to those proposed respectively by Byrd et al. in [5] and by Yuan
et al. in [38]. It is also connected in some way to the IST Algorithm (ISTA), see e.g.
[3, 11]. Indeed, an ISTA step can be seen as a simple way to set to zero the variables
in the context of ℓ1-regularized least-squares problems.

Here, we would like to point out the similarities and the differences between those
strategies and the one we propose in the present paper.

First of all, we notice that, at a generic iteration k of a given algorithm, if xk is
the related iterate and i ∈ I is an index estimated active by our estimate, that is,

i ∈ A(xk) = {i : max(0, xk
i ) ≤ ǫ (τ + gi(x

k))} ∩ {i : max(0,−xk
i ) ≤ ǫ (τ − gi(x

k))},

this is equivalent to write

(3.13) xk
i ∈ [ǫ(gi(x

k)− τ), ǫ(gi(x
k) + τ)] and − τ ≤ gi(x

k) ≤ τ,

which means that xk
i is sufficiently small and satisfies the optimality condition asso-

ciated with a zero component (see (2.1)). As we will see, the estimate, due to the
way it is defined, tends to be more conservative than other active set strategies (i.e.
it might set to zero slightly smaller sets of variables). On the other hand, the global
property analyzed in the previous section (i.e. decrease of the objective function when
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setting to zero the active variables) seems to indicate that the estimate truly contains
indices related to variables that will be active in the optimal solution. As we will see
later on, this important property does not hold when considering the other active set
strategies analyzed here.

In the block active set algorithm for quadratic ℓ1-regularized problems proposed
in [5], the active set estimate, at a generic iteration k, can be rewritten in the following
way:

Ak
Byrd = {i : xk

i = 0; gi(x
k) ∈ (−τ, τ)}∪{i : xk

i < 0; gi(x
k) = −τ}∪{i : xk

i > 0; gi(x
k) = τ}.

Let xk ∈ R
n and i ∈ {1, . . . , n} be an index estimated active by our estimate, from

(3.13), we get gi(x
k) ∈ [−τ, τ ].

Then, in the case xk
i = 0, i ∈ Ak

Byrd implies i ∈ A(xk). In fact, let i ∈ Ak
Byrd. If

xk
i = 0 we have gi(x

k) ∈ (−τ, τ) so that i ∈ A(xk). It is easy to see that the other
way around is not true.

Other differences between the two estimates come out when considering indices i
such that xk

i 6= 0. Let i ∈ Ak
Byrd and, in particular, i ∈ {i : xk

i < 0; gi(x
k) = −τ}. If

|xk
i | > ǫ 2τ , then we get

max(0,−xk
i ) = −xk

i > ǫ 2τ = ǫ (τ − gi(x
k)),

so that i 6∈ A(xk). Using the same reasoning we can see that, in the case i ∈ Ak
Byrd

and, in particular, i ∈ {i : xk
i > 0; gi(x

k) = τ}, it can happen

max(0, xk
i ) = xk

i > ǫ 2τ = ǫ (τ + gi(x
k)),

so that i 6∈ A(xk).

In [38], the active set estimate is defined as follows

(3.14) Ak
Y uan =

{

i : xk
i = 0; gi(x

k) ∈ (−τ +Mk−1, τ −Mk−1)
}

,

where Mk−1 is a positive scalar that measures the violation of the optimality condi-
tions. It is easy to see that our active set contains the one proposed in [38]. Further-
more, we have that variables contained in our estimate are not necessarily contained
in the estimate (3.14). In particular, a big difference between our estimate and the
one proposed in [38] is that we can also include variables that are non-zero at the
current iterate.

As a final comparison, we would like to point out the differences between the ISTA
strategy and our estimate. Consider the generic iteration of ISTA with the same ǫ
used in our active set strategy:

(3.15) xk+1 = argmin
x

{

q(xk) + g(xk)⊤(x− xk) + ǫ‖x− xk‖2 + τ‖x‖1

}

.

From the optimality conditions of the inner problem in (3.15), we have that the zero
variables at xk+1 belong to the following set:

(3.16) Ak
ISTA = {i : ǫ(−τ + gi(x

k)) ≤ xk
i ≤ ǫ(τ + gi(x

k))}.
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We can easily see that A(xk) ⊆ Ak
ISTA. The opposite is not always true, apart from

the variables xk
i = 0. As a matter of fact, let us consider xk

i > 0 and i ∈ Ak
ISTA.

Then, we have that

xk
i ≤ ǫ(τ + gi(x

k)) ⇒ i ∈ {i : max(0, xk
i ) ≤ ǫ(τ + gi(x

k))}

xk
i ≥ ǫ(−τ + gi(x

k)) ⇒ −xk
i ≤ ǫ(τ − gi(x

k))

In order to have i ∈ A(xk) it should be

ǫ(τ − gi) ≥ max{0,−xk
i } = 0

that is a tighter requirement with respect to the one within Ak
ISTA. A similar rea-

soning applies also to variables xk
i < 0 with i ∈ Ak

ISTA. We would also like to notice
that the ISTA step might generate unnecessary projections of variables to zero, thus
being not always effective as a tool for identifying the active set.

In this final remark, we show that, when using the active set strategies analyzed
above, a sufficient decrease of the objective function cannot be guaranteed by setting
to zero the variables in the active set (i.e. Proposition 3.4 does not hold). This
fact makes hard, in some cases, to include those active set strategies into a globally
convergent algorithmic framework.

Remark 1. Proposition 3.4 does not hold for the active set strategies described
above. This can be easily seen in the following case.

Let us assume that, at some iteration k, it exists only one index ı̂ ∈ Ak
Byrd, with

xk
ı̂ > 0, Hı̂ı̂ > 0 and gı̂(x

k) = τ . Let z = xk and y be the point defined as yi = xk
i for

all i 6= ı̂, and yı̂ = 0. Then,

f(y) = f(xk) + (gı̂(x
k)− τ)(yı̂ − xk

ı̂ ) +
1

2
(yı̂ − xk

ı̂ )
2Hı̂ı̂.

Since Hı̂ı̂ > 0 and gı̂(x
k) = τ , we have f(y) − f(xk) > 0, so that by setting to zero

the active variable we get an increase of the objective function value.
The same reasoning applies also to the ISTA step, assuming that at some iteration

k, there exists only one index ı̂ such that

ǫ(−τ + gı̂(x
k)) < xk

ı̂ < ǫ(τ + gı̂(x
k))

and gı̂(x
k) = τ .

Finally, it is easy to notice that, at each iteration k, the active set estimate Ak
Y uan

defined in [38] only keeps fixed to zero, at iteration k, some of the variables that are
already zero in xk, thus not changing the objective function value.

4. A Fast Active Set Block Coordinate Descent Algorithm. In this sec-
tion, we describe our Fast Active SeT Block Coordinate Descent Algorithm (FAST-BCDA)
and analyze its theoretical properties. The main idea behind the algorithm is that of
exploiting as much as possible the good properties of our active set estimate, more
specifically:

- the ability to identify, for k sufficiently large, the “strong” active variables
(namely, those variables satisfying the strict complementarity, see Theorem 3.3);

- the ability to obtain, at each iteration, a sufficient decrease of the objective
function, by fixing to zero those variables belonging to the active set estimate
(see Proposition 3.4 of the previous section).



AN ACTIVE SET BCD METHOD FOR ℓ1-REGULARIZED LEAST SQUARES 9

As we have seen in the previous section, the estimate, due to the way it is defined,
tends to be more conservative than other active set strategies (i.e. it might set to zero
a slightly smaller set of variables at each iteration). Anyway, since for each block
we exactly solve an ℓ1-regularized subproblem, we can eventually force to zero some
other variables in the non-active set. Another important consequence of including the
ℓ1-norm in the subproblems is that we do not need any sign identification strategy for
the non-active variables.

At each iteration k, the algorithm defines two sets N k = N (xk), Ak = A(xk) and
executes two steps:

1) it sets to zero all of the active variables;
2) it minimizes only over a subset of the non-active variables, i.e. those which

violate the optimality conditions the most.

More specifically, we consider the measure related to the violation of the optimality
conditions reported in (2.2). We then sort in decreasing order the indices of non-
active variables (i.e. the set of indices N k) with respect to this measure and define
the subset N̄ k

ord ⊆ N k containing the first s sorted indices.

The set N̄ k
ord is then partitioned into q subsets I1, . . . , Iq of cardinality r, such that

s = qr. Then the algorithm performs q subiterations. At the j-th subiteration the
algorithm considers the set Ij ⊆ N̄ k

ord and solves to optimality the subproblem we get
from (1.1), by fixing all the variables but the ones whose indices belong to Ij . Below
we report the scheme of the proposed algorithm (see Algorithm 1).

Algorithm 1 Fast Active SeT Block Coordinate Descent Algorithm (FAST-BCDA)

1 Choose x0 ∈ R
n, Set k = 0.

2 For k = 0, 1 . . .
3 Compute Ak, N k, N̄ k

ord ;

4 Set y0,k
Ak = 0 and y0,k

Nk = xk
Nk ;

5 For j = 1, . . . , q
6 Compute yj,kIj

, with Ij ⊆ N̄ k
ord, solution of problem

min
w∈Rr

gIj (y
j−1,k)⊤(w − yj−1,k

Ij
) +

1

2
(w − yj−1,k

Ij
)⊤HIjIj (w − yj−1,k

Ij
) + τ‖w‖1

7 Set yj,ki = yj−1,k
i if i 6∈ Ij ;

8 End For

9 Set xk+1 = yq,k;
10 End For

The convergence of FAST-BCDA is based on two important results. The first one
is Proposition 3.4, which guarantees a sufficient decrease of the objective function
by setting to zero the variables in the active set. The second one is reported in the
proposition below. It shows that, despite the presence of the nonsmooth term, by
exactly minimizing Problem (1.1) with respect to a subset J of the variables (keeping
all the other variables fixed), it is possible to get a sufficient decrease of the objective
function in case λmin(HJJ ) > 0.

Proposition 4.1. Given a point z ∈ R
n and a set J ⊆ I, let w∗ ∈ R

|J| be the
solution of Problem (1.1), where all variables but the ones whose indices belong to J
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are fixed to zI\J . Let y ∈ R
n be defined as

yJ = w∗, yI\J = zI\J .

Then we have

(4.1) f(y)− f(z) ≤ −
1

2
λmin(HJJ )‖y − z‖2.

Proof. See Appendix B.

Now, we introduce an assumption that will enable us to prove global convergence
of our algorithm.

Assumption 2. The matrix A ∈ R
m×n satisfies the following condition

min
J

λmin((A
⊤A)JJ ) ≥ σ > 0,(4.2)

where J is any subset of {1, . . . , n} such that |J | = r, with r cardinality of the blocks
used in FAST-BCDA.

Remark 2. We notice that even though there are some similarities between
Condition (4.2) and the well-known Restricted Isometry Property (RIP) condition
with fixed order r (see e.g. [6] for further details), Condition (4.2) is weaker than the
RIP condition.

Finally, we are ready to state the main result concerning the global convergence
of FAST-BCDA.

Theorem 4.2. Let Assumption 1 and Assumption 2 hold. Let {xk} be the
sequence produced by Algorithm FAST-BCDA.

Then, either an integer k̄ ≥ 0 exists such that xk̄ is an optimal solution for
Problem (1.1), or the sequence {xk} is infinite and every limit point x⋆ of the sequence
is an optimal point for Problem (1.1).

Proof. see Appendix B.

Now, we discuss Assumptions 1 and 2 that are needed to guarantee convergence
of FAST-BCDA.

4.1. Comments on the assumptions. Assumption 1 requires the evaluation
of λmax(A

⊤A), which is not always easily computable for large scale problems. Hence,
we describe an updating rule for the parameter ǫ, that enables to avoid any “a priori”
assumption on ǫ.

In practice, at each iteration k we need to find the smallest h ∈ N such that the
value ǫ = θhǫ̃ and the corresponding sets Ak, N k give a point

y0,k
Ak = 0 and y0,k

Nk = xk
Nk

satisfying

(4.3) f(y0,k) ≤ f(xk)− γ‖y0,k − xk‖2,

with γ > 0. Then, we can introduce a variation of FAST-BCDA, namely FAST-BCDA-ǫ,
that includes the updating rule for the parameter ǫ in its scheme, and prove its
convergence.
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Theorem 4.3. Let Assumption 2 hold. Let {xk} be the sequence produced by
Algorithm FAST-BCDA-ǫ.

Then, either an integer k̄ ≥ 0 exists such that xk̄ is an optimal solution for
Problem (1.1), or the sequence {xk} is infinite and every limit point x⋆ of the sequence
is an optimal point for Problem (1.1).

Proof. The proof follows by repeating the same arguments of the proof of Theorem
4.2 by replacing the relation (B.10) with (4.3).

Assumption 2, which we need to satisfy in order to guarantee convergence of both
FAST-BCDA and FAST-BCDA-ǫ, is often met in practice if we consider blocks of 1 or 2
variables (i.e. r equal to 1 or 2). Indeed, when solving blocks of 1 variable, we need
to guarantee that any column Aj of matrix A is such that

‖Aj‖
2 ≥ σ > 0.

This is often the case when dealing with overcomplete dictionaries for signal/image
reconstruction (as the columns of matrix A are usually normalized, see e.g. [1]).
When using 2-dimensional blocks, we want no parallel columns in the matrix A. This
is a quite common requirement in the context of overcomplete dictionaries (as it
corresponds to ask that mutual coherence is lower than 1, see e.g. [1]). Furthermore,
the solution of 1-dimensional block subproblems can be determined in closed form by
means of the well-known scalar soft-threshold function (see e.g. [3, 34]). Similarly,
we can express in closed form the solution of 2-dimensional block subproblems.

Summarizing, thanks to the possibility to use an updating rule for ǫ, and due to
the fact that we only use blocks of dimensions 1 or 2 in our algorithm, we have that
Assumptions 1 and 2 are quite reasonable in practice.

4.2. Convergence rate analysis. Here, we report a result related to the con-
vergence rate of FAST-BCDA with 1-dimensional blocks (namely FAST-1CDA). In partic-
ular, we show that it converges at a linear rate. In order to prove the result, we make
an assumption that is common when analyzing the convergence rate of both algo-
rithms for ℓ1-regularized problems (see e.g. [21]) and algorithms for general problems
(see e.g. [25]):

Assumption 3. Let {xk} be the sequence generated by FAST-1CDA. We have that

(4.4) lim
k→∞

xk = x⋆,

where x⋆ is an optimal point of problem (1.1).

Now, we state the theoretical result related to the linear convergence.
Theorem 4.4. Let Assumptions 1, 2 and 3 hold. Let {xk} be the sequence

generated by FAST-1CDA.
Then {f(xk)} converges at least Q-linearly to f⋆, where f⋆ = f(x⋆) . Further-

more, {xk} converges at least R-linearly to x⋆.

Proof. See Appendix C.

5. Numerical Results. In this section, we report the numerical experiments
related to FAST-BCDA. We implemented our method in MATLAB, and considered
four different versions of it in the experiments:

• FAST-1CDA and FAST-2CDA, basic versions of FAST-BCDA where blocks of di-
mension 1 and 2 are respectively considered;
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• FAST-1CDA-E and FAST-2CDA-E, “enhanced” versions of FAST-BCDA where
again blocks of dimension 1 and 2 are respectively considered (see subsec-
tion 5.1 for further details).

We first analyzed the performance of these four versions of our algorithm. Then, we
compared the best one with other algorithms for ℓ1-regularized least squares prob-
lems. Namely, we compared FAST-2CDA-E with ISTA [3, 11], FISTA [3], PSSgb [30],
SpaRSA [34] and FPC AS [35].
All the tests were performed on an Intel Xeon(R) CPU E5-1650 v2 3.50 GHz using
MATLAB R2011b.

We considered two different testing problems of the form (1.1), commonly used for
software benchmarking (see e.g. [35, 18]). In particular, we generated artificial signals
of dimension n = 214, 215, 216, 217, with a number of observations m = n/4 and we set
the number of nonzeros T = round(ρm), with ρ = {0.01, 0.03, 0.05, 0.07, 0.1}. The
two test problems (P1 and P2) differ in the way matrix A is generated:

P1: Considering Ā as the Gaussian matrix whose elements are generated inde-
pendently and identically distributed from the normal distribution N (0, 1),
the matrix A was generated by scaling the columns of Ā.

P2: Considering Ā as the matrix generated by using the MATLAB command

A = sprand(m,n, density),

with density = 0.5, the matrix A was generated by scaling the columns of Ā.
We would like to notice that the Hessian matrices A⊤A related to instances of problem
P1 have most of the mass on the diagonal. Then, those instances are in general easier
to solve than the ones of problem P2.

Once the matrix A was generated, the true signal x⋆ was built as a vector with
T randomly placed ±1 spikes, with zero in the other components. Finally, for all
problems, the vector of observations b was chosen as b = Ax⋆ + η, where η is a
Gaussian white noise vector, with variance 10−3. We set τ = 0.1‖A⊤b‖∞ as in [2, 34].
We produced ten different random instances for each problem, for a total of 400
instances. The comparison of the overall computational effort is carried out by using
the performance profiles proposed by Dolan and Moré in [13], plotting graphs in a
logarithmic scale.

For the value of s (number of non-active variables to be used in N̄ord) we set
s = round(0.8T ) for FAST-1CDA and s = round(0.65T ) for FAST-2CDA (these s values
are the ones that guarantee the best performances among the ones we tried). For what
concerns the choice of the ǫ parameter used in the active set estimate, the easiest choice
is that of setting ǫ to a fixed value. We tested several values and obtained the best
results with ǫ = 10−4 and ǫ = 10−5 for FAST-1CDA and FAST-2CDA respectively. We
further tested an implementation of both FAST-1CDA-ǫ and FAST-2CDA-ǫ. Since there
were no significant improvements in the performance, we decided to keep the ǫ value
fixed.

We would also like to spend a few words about the criterion for choosing the
variables in N̄ k

ord. In some cases, we found more efficient using the following measure:

(5.1)
|gi(xk) + τ | if xk

i > 0;
|gi(xk)− τ | if xk

i < 0;
max{0,−(gi(x

k) + τ), gi(x
k)− τ} if xk

i = 0,

in place of the one reported in (2.2), which we considered for proving the theoretical
results. The main feature of this new measure is that it only takes into account



AN ACTIVE SET BCD METHOD FOR ℓ1-REGULARIZED LEAST SQUARES 13

1 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements
FAST1

FAST2

FAST1-E

FAST2-E

(a) Preliminary experience.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

FAST2-E
ISTA
FISTA
PSSgb
SpaRSA
FPC-AS

(b) Comparison with other solvers.

Fig. 1: Performance profiles on all instances (CPU time)

first order information (while (2.2) considers proximity of the component value to
zero too). Anyway, replacing (2.2) with the new measure is not a big deal, since
convergence can still be proved using (5.1). Furthermore, linear rate can be easily
obtained assuming that strict complementarity holds. Intuitively, considering only
first order information in the choice of the variables should make more sense in our
context, since proximity to zero is already taken into account when using the estimate
to select the active variables.

5.1. Enhanced version of FAST-BCDA. By running our codes, we noticed that
the cardinality of the set related to the non-active variables decreases quickly as the
iterations go by. In general, very few iterations are needed to obtain the real non-
active set. By this evidence, and keeping in mind the theoretical result reported in
Section 3, we decided to develop an “enhanced” version of our algorithms, taking
inspiration by the second stage of FPC-AS algorithm [35]. Once a “good” estimate
N k of N (x⋆) was obtained, we solved the following smooth optimization subproblem

min 1
2‖Ax− b‖2 + τsign(xNk)⊤xNk

s.t. xi = 0 i ∈ Ak.

In practice, we considered an estimate N k “good” if both there are no changes in
the cardinality of the set with respect to the last two iterations, and |N k| is lower or
equal than a certain threshold ξ (we fixed ξ = 0.05n in our experiments).

5.2. Preliminary experiments. In order to pick the best version among the
four we developed, we preliminary compared the performance of FAST-1CDA (FAST1),
FAST-2CDA (FAST2), FAST-1CDA-E (FAST1-E) and FAST-2CDA-E (FAST2-E). In Fig-
ure 1a, we report the performance profiles with respect to the CPU time.

As we can see, even if the four version of FAST-BCDA have similar behaviour,
FAST-2CDA-E is the one that gives the overall best performance. We then choose
FAST-2CDA-E as the algorithm to be compared with the other state-of-the art algo-
rithms for ℓ1-regularized problems.

5.3. Comparison with other algorithms. In this section, we report the nu-
merical experience related to the comparison of FAST-2CDA-E with ISTA [3, 11],
FISTA [3], PSSgb [30], SpaRSA [34] and FPC AS [35].

In our tests, we first ran FAST-2CDA to obtain a target objective function value,
then ran the other algorithms until each of them reached the given target (see e.g.
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[34]). Any run exceeding the limit of 1000 iterations is considered failure. De-
fault values were used for all parameters in SpaRSA [34] and FPC AS [35]. For
PSSgb [30] we considered the two-metric projection method and we set the pa-
rameter options.quadraticInit to 1, since this setting can achieve better per-
formance for problems where backtracking steps are required on each iteration (see
http://www.cs.ubc.ca/~schmidtm/Software/thesis.html). In all codes, we con-
sidered the null vector as starting point and all matrices were stored explicitly. In
Figure 1b, we report the plot of the performance profiles related to the CPU time
for all instances. From these profiles it is clear that FAST-2CDA-E outperforms all
the other algorithms and that SpaRSA and PSSgb are the two best competitors. We
then further compare, in Figure 2, FAST-2CDA-E, SpaRSA and PSSgb reporting the
box plots related to the distribution of the CPU time. On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are plot-
ted individually. In particular, Figure 2 shows the plots related to the distribution of
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Fig. 2: Box plots (CPU time).

the CPU time for all instances, for P1 instances and for P2 instances, respectively.
For what concerns P1 instances, SpaRSA and PSSgb show a similar behavior, while
observing the plot related to P2 instances SpaRSA shows a better performance. For
both classes, FAST-2CDA-E shows the lowest median. As a further comparison among
FAST-2CDA-E, SpaRSA and PSSgb, we report in Figure 3 and in Figure 4, the plots
of the relative error vs. the CPU time for the P1 and the P2 instances respectively.
In each plot, the curves are averaged over the ten runs for fixed ρ and n. Observing
these plots, we notice that FAST-2CDA-E is able to reach better solutions with lower
CPU time.

5.4. Real Examples. In this subsection, we test the efficiency of our algorithm
on realistic image reconstruction problems. We considered six images: a SheppLogan
phantom available through the MATLAB Image Processing Toolbox and five widely
used images downloaded from http://dsp.rice.edu/cscamera (the letter R, the
mandrill, the dice, the ball, the mug). Each image has 128× 128 pixels. We followed
the procedure described in [35] to generate the instances (i.e. matrix A and vector b).
What we want to highlight here is that the optimal solutions are unknown. Hence the
reconstructed images can only be compared by visual inspection. Also in this case,
we first ran FAST-2CDA to obtain a target objective function value, then ran the other
algorithms until each of them reached the given target. The CPU-time needed for
reconstructing the images is reported in Table 1. In Figure 5, we report the images

http://www.cs.ubc.ca/~schmidtm/Software/thesis.html
http://dsp.rice.edu/cscamera
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of the dice and of the mandrill reconstructed by FAST-2CDA-E, PSSgb and SpaRSA.
It is interesting to notice that the quality of the reconstructed images can depend on
the algorithm used. In Table 1, we can easily see that FAST-BCDA was faster in all
problems.
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Fig. 3: Relative error vs. CPU time - P1 instances

6. Conclusions. In this paper, we devised an active set-block coordinate de-
scent method (FAST-BCDA) for solving ℓ1-regularized least squares problems. The way
the active set estimate is calculated guarantees a sufficient decrease in the objective
function at every iteration when setting to zero the variables estimated active. Fur-
thermore, since the subproblems related to the blocks explicitly take into account the
ℓ1-norm, the proposed algorithmic framework does not require a sign identification
strategy for the non-active variables.
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Fig. 4: Relative error vs. CPU time - P2 instances

Global convergence of the method is established. A linear convergence result is
also proved. Numerical results are presented to verify the practical efficiency of the
method, and they indicate that FAST-BCDA compares favorably with other state-of-
the-art techniques.

We further would like to remark that the proposed active set strategy is indepen-
dent from the specific algorithm we have designed and can be easily included into other
algorithms for ℓ1-regularized least squares, both sequential and parallel, to improve
their performance. We finally highlight that the algorithmic scheme we described can
be easily modified in order to work in a parallel fashion. Future work will be devoted
to adapt the presented approach to handle convex ℓ1-regularized problems.
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Fig. 5: Real Examples Experiment. (a) original image - (b) FAST-2CDA-E reconstruc-
tion - (c) PSSgb reconstruction - (d) SpaRSA reconstruction
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Appendix A. Main theoretical result related to the active set estimate.
Here, we prove the main theoretical result related to the active set estimate.

Proof of Proposition 3.4. We first define the sets N = N (z) and A=A(z). By taking
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Fast1 Fast2 Fast1-E Fast2-E ISTA FISTA PSSgb SpaRSA FPC AS
2.18 2.46 2.54 2.02 34.65 9.26 5.01 5.08 10.46
1.65 1.67 1.51 1.95 73.01 16.31 7.77 14.48 12.87
1.86 1.97 1.91 1.65 78.05 18.41 7.90 15.56 14.69
3.52 2.05 2.13 2.32 63.13 12.69 6.51 7.53 9.77
2.29 2.12 1.79 2.16 51.12 13.79 6.36 11.13 9.33
4.12 4.21 4.16 2.41 56.66 12.09 6.69 7.12 9.72

Table 1: Real Examples Experiment - CPU time.

into account the definitions of the sets A and N and the points y and z, we have:

(A.1) f(y) = q(y) + τ
n
∑

i=1

sign(yi) yi = q(y) + τ
∑

i∈N

sign(yi) yi + τ
∑

i∈A

sign(zi) yi.

from which

f(y) = f(z) + (gA(z) + τSAe)⊤(y − z)A +
1

2
(y − z)TAHAA(y − z)A,

where e ∈ R
|A| is the unit vector, and SA is the diagonal matrix defined as

SA = Diag(sign(zA)),

with the function sign(·) intended componentwise.

Since H = A⊤A we have that the following inequality holds

f(y) ≤ f(z) + (gA(z) + τSAe)⊤(y − z)A +
λmax(A

⊤A)

2
‖(y − z)A‖2.

Recalling (3.12) we obtain:

f(y) ≤ f(z) + (gA(z) + τSAe)⊤(y − z)A +
1

2ǫ
‖(y − z)A‖2.(A.2)

Then, we can write

f(y) ≤ f(z) +
(

gA(z) + τSAe+
1

ǫ
(y − z)A

)⊤

(y − z)A −
1

2ǫ
‖(y − z)A‖2.

In order to prove the proposition, we need to show that

(A.3)
(

gA(z) + τSAe+
1

ǫ
(y − z)A

)⊤

(y − z)A ≤ 0.

Inequality (A.3) follows from the fact that ∀i ∈ A:

(A.4)
(

gi(z) + τsign(zi) +
1

ǫ
(yi − zi)

)⊤

(yi − zi) ≤ 0.

We distinguish two cases:

a) If zi > 0, we have that sign(zi) = 1 and, since yi = 0, (yi − zi) ≤ 0.

Then, from the fact that i ∈ A, we have

yi = 0

zi ≤ ǫ (gi(z) + τ )

(zi − yi) ≤ ǫ (gi(z) + τ )

1

ǫ
(zi − yi) ≤ gi(z) + τ

so that

gi(z) + τ +
1

ǫ
(yi − zi) ≥ 0.

and (A.4) is satisfied.
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b) If zi < 0, we have that sign(zi) = −1 and, since yi = 0, (yi − zi) ≥ 0.

Then, by reasoning as in case a), from the fact that i ∈ A, we can write

yi = 0

−zi ≤ ǫ (τ − gi(z))

(yi − zi) ≤ ǫ (τ − gi(z))

1

ǫ
(yi − zi) ≤ τ − gi(z)

from which we have:

gi(z)− τ +
1

ǫ
(yi − zi) ≤ 0.

Again, we have that (A.4) is satisfied.

✷

Appendix B. Theoretical results related to the convergence analysis.
First, we prove the result that guarantees a sufficent decrease when minimizing with respect
to a given block.

Proof of Proposition (4.1). Let us consider the subproblem obtained by fixing all vari-
ables in I but the ones whose indices belong to J to zI\J . Let w∗ ∈ R

|J| be a solution of
this subproblem.

We consider the set J = {j1, . . . , j|J|} as the union of two sets

J = JE ∪ JD,

where
JE = JE+ ∪ JE− , JD = JD+ ∪ JD−

and

JD+ = {ji ∈ J : sign(w∗
i ) > 0}; JD− = {ji ∈ J : sign(w∗

i ) < 0};

JE+ = {ji ∈ J : w∗
i = 0; sign(zji) > 0}; JE− = {ji ∈ J : w∗

i = 0; sign(zji) < 0}.

Let f̃ : R|J| → R, with w ∈ R
|J|, be the following function:

f̃(w) = q(z) + τ
∑

j∈I\J sign(zj) zj + gJ (z)
⊤(w − zJ ) +

1

2
(w − zJ)

⊤HJJ(w − zJ )

+ τ
∑

ji∈JE
sign(zji)wi + τ

∑

ji∈JD
sign(w∗

i )wi.

Then, w∗ can be equivalently seen as the solution of the following problem

(B.1)

min f̃(w)

s.t. wi ≥ 0 for ji ∈ JD+ ∪ JE+ ,

wi ≤ 0 for ji ∈ JD− ∪ JE− ,

By introducing the diagonal matrix S = Diag(s) ∈ R
|J|×|J|, where s ∈ {−1, 0, 1}|J| is the

vector defined as

si =







sign(w∗
i ) if ji ∈ JD

sign(zji) if ji ∈ JE ,

Problem (B.1) can be written in a more compact form as

(B.2)
min f̃(w)

s.t. Sw ≥ 0.
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From the KKT condition for Problem (B.2) at w∗ we have:

(B.3) gJ (z) +HJJ(w
∗ − zJ ) + τs− Sλ = 0;

where λ ∈ R
|J| is the vector of multipliers with respect to the constraints Sw ≥ 0.

We now analyze (B.3) for each index i ∈ J . We distinguish two cases:

- ji ∈ JD. In this case we have that si = sign(w∗
i ) and λi = 0. Then, from (B.3) we

have

(B.4) gji(z) +Hjiji(w
∗
i − zji) + τsi = 0.

- ji ∈ JE . In this case we have that si = sign(zji) and λi ≥ 0.

Therefore,
gji(z) +Hjiji(w

∗
i − zji) + τsi ≥ 0 if si = sign(zji) ≥ 0,

gji(z) +Hjiji(w
∗
i − zji) + τsi ≤ 0 if si = sign(zji) ≤ 0.

The previous inequalities and the fact that w∗
i = 0 for all ji ∈ JE imply that, whatever is

the sign of zi, we have

(B.5)
(

gji(z) +Hjiji(w
∗
i − zji) + τsi

)

(w∗
i − zji) ≤ 0.

Taking into account (B.4) and (B.5), we have that

(B.6)
(

gJ(z) +HJJ(w
∗ − zJ ) + τs

)⊤

(w∗ − zJ) ≤ 0.

Now, consider the difference between f̃(w∗) and f̃(zJ). We have that

f̃(w∗)− f̃(zJ) = gJ (z)
⊤(w∗ − zJ ) +

1

2
(w∗ − zJ)

⊤HJJ(w
∗ − zJ )

+ τ
∑

ji∈JE

sign(zji)(w
∗
i − zji) + τ

∑

ji∈JD

sign(w∗
i )(w

∗
i − zji),

which can be rewritten as

f̃(w∗)− f̃(zJ) =
(

gJ (z) +HJJ(w
∗ − zJ ) + τs

)⊤

(w∗ − zJ )−
1

2
(w∗ − zJ)

⊤HJJ(w
∗ − zJ).

Recalling (B.6) and the fact that yJ = w∗ we have

(B.7) f̃(w∗)− f̃(zJ ) ≤ −
1

2
(w∗ − zJ)

⊤HJJ(w
∗ − zJ ) ≤ −

1

2
λmin(HJJ)‖y − z‖2.

Since

q(y) = q(z) + gJ (z)
⊤(y − z)J +

1

2
(y − z)⊤J HJJ(y − z)J ,

by definition of f̃ we have that

f(y) = q(y) + τ
n
∑

j=1

sign(yj)yj = q(y) + τ
∑

j∈I\J

sign(zj) zj +(B.8)

+ τ
∑

ji∈JE

sign(zji)w
∗
i + τ

∑

ji∈JD

sign(w∗
i )w

∗
i = f̃(w∗)

and

(B.9) f̃(zJ ) = q(z) + τ
∑

ji∈I\JD

sign(zji)zji + τ
∑

ji∈JD

sign(w∗
i )zji ≤ q(z) + τ‖z‖1 = f(z).

Now (B.7), (B.8) and (B.9) prove the Proposition. ✷
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Then, we prove the main convergence result related to FAST-BCDA.

Proof of Theorem 4.2. We first prove that FAST-BCDA is well defined (in the sense that
xk+1 6= xk iff the point xk is not an optimum). Let xk not be optimum, then by contradiction
we assume that xk+1 = xk. Thus we have that either N (xk) = ∅, or forall i ∈ A(xk), xk

i = 0.
This, in turns, implies that xk = 0 and, by taking into account the definition of A(xk), we
have that xk is optimal, thus getting a contradiction. The proof of the other implication
easily follows from Propositions 3.4 and 4.1.

Let {yh,k}, with h = 0, . . . , q be the sequence of points produced by Algorithm FAST-BCDA.
By setting y = y0,k and z = xk in Proposition 3.4, we have:

f(y0,k) ≤ f(xk)−
1

2ǫ
‖y0,k − xk‖2.(B.10)

By setting y = yh+1,k and z = yh,k, for h = 0, . . . , q − 1 in Proposition 4.1, we have:

f(yh+1,k) ≤ f(yh,k)−
σ

2
‖yh+1,k − yh,k‖2.(B.11)

By using (B.10) and (B.11), we can write

f(xk+1) ≤ f(yq−1,k) ≤ · · · ≤ f(y0,k) ≤ f(xk),(B.12)

from which we have:

xk ∈ L0 = {x ∈ R
n : f(x) ≤ f(x0)}.

From the coercivity of the objective function of Problem (1.1) we have that the level set L0

is compact. Hence, the sequence {xk} has at least a limit point and

lim
k→∞

(

f(xk+1)− f(xk)
)

= 0.(B.13)

Now, let x⋆ be any limit point of the sequence {xk} and {xk}K be the subsequence such that

lim
k→∞,k∈K

xk = x⋆.(B.14)

Let us assume, by contradiction, that x⋆ is not an optimal point of Problem (1.1). By taking
into account that inequality ‖

∑l

i=1
ai‖ ≤ l

∑l

i=1
‖ai‖

2 holds for the squared norm of sums
of l vectors ai, and by recalling (B.10), (B.11) and (B.12), we have

f(xk+1) ≤ f(y0,k) ≤ f(xk)−
1

2ǫ
‖y0,k − xk‖2,(B.15)

f(xk+1) ≤ f(yh,k) ≤ f(xk)−
σ

2
‖yh,k − xk‖2.(B.16)

with h = 1, . . . , q.
Now, (B.13), (B.14), (B.15) and (B.16) imply

lim
k→∞,k∈K

yh,k = x⋆,(B.17)

for h = 0, . . . , q.
For every index j ∈ Ak, we can define the point ỹj,k as follows:

(B.18) ỹj,k
i =

{

0 if i = j
xk
i otherwise

Recalling the definition of points ỹj,k and y0,k, we have

‖ỹj,k − xk‖2 = (ỹj,k − xk)2j = (y0,k − xk)2j ≤ (y0,k − xk)2j +
∑

i∈Ak,i6=j

(xk
i )

2 = ‖y0,k − xk‖2.



22 M. DE SANTIS, S. LUCIDI, F. RINALDI

From the last inequality and (B.17) we obtain

lim
k→∞,k∈K

ỹj,k = x⋆,(B.19)

for all j ∈ Ak.
To conclude the proof, we consider the function Φi(x), defined in (2.2), that measures

the violation of the optimality conditions for a variable xi.
Since, by contradiction, we assume that x⋆ is not an optimal point there must exists an

index ı̂ such that

(B.20) |Φı̂(x
⋆)| > 0.

Taking into account that the number of possible different choices of Ak and N k is finite,
we can find a subset K̂ ⊆ K ⊆ {1, 2, 3, . . . } such that Ak = Â and N k = N̂ for all k ∈ K̂.
We can have two different cases: either ı̂ ∈ Â or ı̂ ∈ N̂ for k sufficiently large.

Suppose first that ı̂ ∈ Â for k sufficiently large. Then, by Definition 3.1, we have for all
k ∈ K̂:

max{0, xk
ı̂ } ≤ ǫ (gı̂(x

k) + τ ) and max{0,−xk
ı̂ } ≤ ǫ (τ − gı̂(x

k)).

For all k ∈ K̂, let ỹı̂,k be the point defined as in (B.18). By construction we have that

ỹı̂,k

ı̂ = 0.(B.21)

Now we consider three different subcases:

i) xk
ı̂ > 0. In this case, (B.18) and (B.21) imply

(B.22) (ỹı̂,k

ı̂ − xk
ı̂ ) ≤ 0.

Recalling (3.12) in Assumption 1, there exists ρ ≥ 0, such that

ǫ ≤
1

Hı̂ı̂ + ρ
.

Furthermore, since ı̂ ∈ Â, we can write

xk
ı̂ ≤ ǫ (gı̂(x

k) + τ )

xk
ı̂ − ỹı̂,k

ı̂ ≤ ǫ (gı̂(x
k) + τ )

xk
ı̂ − ỹı̂,k

ı̂ ≤
1

Hı̂ı̂ + ρ
(gı̂(x

k) + τ )

Then we have:
(Hı̂ı̂ + ρ)(xk

ı̂ − ỹı̂,k

ı̂ ) ≤ gı̂(x
k) + τ,

which can be rewritten as follows

gı̂(x
k) +Hı̂ı̂(ỹ

ı̂,k

ı̂ − xk
ı̂ ) + τ ≥ ρ(xk

ı̂ − ỹı̂,k

ı̂ ) ≥ 0,

that is

(B.23) gı̂(ỹ
ı̂,k) + τ ≥ 0.

On the other hand, since

0 ≤ max{0,−xk
ı̂ } ≤ ǫ (τ − gı̂(x

k))

we have that gı̂(x
k)− τ ≤ 0 and, as Hı̂ı̂ ≥ 0 and (B.22) holds, we get

(B.24) gı̂(ỹ
ı̂,k)− τ = gı̂(x

k) +Hı̂ı̂(ỹ
ı̂,k

ı̂ − xk
ı̂ )− τ ≤ 0.
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By (B.21), (B.23) and (B.24), we have that

|Φı̂(ỹ
ı̂,k)| = 0.

Furthermore, by (B.19) and the continuity of Φ, we can write

|Φı̂(x
⋆)| = 0.

Thus we get a contradiction with (B.20).

ii) xk
ı̂ < 0. It is a verbatim repetition of the previous case.

iii) xk
ı̂ = 0. Since ı̂ ∈ Â we have

gı̂(x
k) + τ ≥ 0 and − (gı̂(x

k)− τ ) ≥ 0,

which imply that

|Φı̂(x
k)| = 0.

By the continuity of Φ(·) and the fact that

lim
k→∞,k∈K̂

xk = x⋆,

we get a contradiction with (B.20).

Suppose now that ı̂ ∈ N̂ for k sufficiently large. We can choose a further subsequence
{xk}K̃ with K̃ ⊆ K̂ such that

|Φı̄(x
k)| = max

i∈N̂
|Φi(x

k)|, ∀ k ∈ K̃.

Hence,

(B.25) |Φı̄(x
k)| ≥ |Φı̂(x

k)|, ∀ k ∈ K̃,

which, by continuity of Φ(·), implies

(B.26) |Φı̄(x
⋆)| ≥ |Φı̂(x

⋆)|.

Furthermore, the instructions of Algorithm FAST-BCDA guarantee that, for all k ∈ K̃, a set
of indices Ihk

exists such that

ı̄ ∈ Ihk
⊆ N̄ k

ord.

For all k ∈ K̃, Algorithm FAST-BCDA produces a vector yhk,k by minimizing Problem (1.1)
with respect to all the variables whose indices belong to Ihk

. Therefore, the point yhk,k

satisfies

|Φı̄(y
hk,k)| = 0.

Furthermore, by (B.17), the continuity of Φ(·), and taking into account (B.26), we can write

0 = |Φı̄(x
⋆)| ≥ |Φı̂(x

⋆)|,

which contradicts (B.20). ✷

Appendix C. Theoretical results related to the convergence rate anal-
ysis. Here, following the ideas in [24], we prove that the convergence rate of FAST-BCDA

with 1-dimensional blocks (namely FAST-1CDA) is linear. First, we try to better analyze the
indices in the set N (x) by introducing the following two sets:

(C.1) N+(x) = {i ∈ N (x) : gi(x) ≤ 0}, and N−(x) = {i ∈ N (x) : gi(x) > 0}.
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We further introduce the sets:

(C.2) E+(x⋆) = {i : x⋆
i ≥ 0, gi(x

⋆) = −τ}, and E−(x⋆) = {i : x⋆
i ≤ 0, gi(x

⋆) = τ},

which satisfy the following equality:

E(x⋆) = E+(x⋆) ∪ E−(x⋆) = N̄ (x⋆) ∪ {i : x⋆
i = 0, |gi(x

⋆)| = τ}.

We further notice that

(C.3) I = Ā+(x⋆) ∪ E+(x⋆) ∪ E−(x⋆).

We can finally prove a result that will be used in the convergence analysis:
Theorem C.1. Let x⋆ ∈ R

n be a solution of Problem (1.1). Then, there exists a
neighborhood of x⋆ such that, for each x in this neighborhood, we have

N+(x) ⊆ E+(x⋆),(C.4)

N−(x) ⊆ E−(x⋆).(C.5)

Proof. Let us assume there exists a sequence {ǫk}, ǫk → 0, a related sequence of
neighborhoods {B(x⋆, ǫk)} and a sequence of points {xk} such that xk ∈ B(x⋆, ǫk) for all k,
satisfying the following:

N+(xk) 6⊆ E+(x⋆).

Then, since the number of indices is finite, there exist subseqences {ǫk}K and {B(x⋆, ǫk)}K
such that an index ı̂ can be found, satisfying the following:

ı̂ ∈ N+(xk), ı̂ /∈ E+(x⋆).

From Theorem 3.3, for k sufficiently large,

N (xk) ⊆ E+(x⋆) ∪ E−(x⋆).

Therefore, we have that

ı̂ ∈ E−(x⋆) and gı̂(x
⋆) = τ.

By continuity of the gradient, gı̂(x
k) > 0 for k sufficiently large. On the other hand, since

ı̂ ∈ N+(xk), we have gı̂(x
k) ≤ 0. This gives a contradiction, and proves (C.4). A similar

reasoning can be used for proving (C.5).

Finally, we report another theoretical result that is used in the convergence rate analysis.
Proposition C.2. Let Assumption 3 hold. Then, there exists a k̄ such that

a) xk
i = 0, i ∈ Ā+(x⋆);

b) −sign(gi(x
⋆)) xk

i ≥ 0, i ∈ E(x⋆);

for all k ≥ k̄.

Proof. a). Recalling (3.10), for k sufficently large, we have

Ā+(x⋆) ⊆ Ak.

Therefore, by taking into account the steps of FAST-1CDA Algorithm, we have

(C.6) xk+1

i = 0, i ∈ Ā+(x⋆).
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Furthermore, by continuity of g and (4.4), we obtain

(C.7) τ + gi(x
k+1) > 0, and τ − gi(x

k+1) > 0,

and we can write

i ∈ Ak+1.

Hence, (C.6) and (C.7) still hold for xk+2, and so on.

b). Let us consider an index i ∈ E(x⋆). By contradiction, we assume that there exists a
subsequence K = {k1, k2, . . . } such that

(C.8) −sign(gi(x
⋆)) xk

i < 0,

for all k ∈ K. Without any loss of generality, we can consider another subsequence K̂ =
{k̄1, k̄2, . . . } related to K, such that i ∈ N k̄j and

(C.9) x
kj

i = −sign
(

gi(x
k̄j )−Hiix

k̄j

i

) max
{∣

∣

∣
gi(x

k̄j )−Hiix
k̄j

i

∣

∣

∣
− τ, 0

}

Hii

,

for all kj ∈ K and k̄j ∈ K̂.

If i ∈ E(x⋆) \ N̄ (x⋆), when j is sufficiently large, we have by continuity of g, (4.4) and
(C.9)

−sign(gi(x
⋆)) x

kj

i ≥ 0,

which contradicts (C.8).

If i ∈ N̄ (x⋆), when j is sufficiently large, we have by continuity of g, (3.8) and (4.4)

−sign(gi(x
⋆)) x

kj

i ≥ 0,

and again we get a contradiction with (C.8).

Now, we prove that the algorithm converges at linear rate.

Proof of Theorem 4.4.First of all, for ease of notation we set Ā+ = Ā+(x⋆), and E =
E(x⋆). Without any loss of generality, we can assume |N̄ k

ord| = 1 for all k. We then notice
that the objective function f(x) can be rewritten as follows:

f(x) = q(x) + τ
∑

i∈Ā+

sign(xi)xi + τ
∑

i∈E

sign(xi)xi.

We further introduce the function

F (x) = q(x)−
∑

i∈E

sign(gi(x
⋆))xi.

By taking into account Proposition C.2, we have, for k sufficiently large,

(C.10) f(xk) = F (xk), and f(x⋆) = F (x⋆).

Furthermore, when k is sufficiently large, by definition of Ā+ and E , and recalling again
Proposition C.2, we can write

(C.11) xk
Ā+ = x⋆

Ā+ ,

(C.12) ∇iF (x⋆) = 0, ∀ i ∈ E .
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Then, by considering (C.3), (C.11) and (C.12), it follows

F (xk)− F (x⋆) = ∇F (x⋆)⊤(xk − x⋆) +
1

2
(xk − x⋆)⊤∇2F (x⋆)(xk − x⋆)

=
1

2
(xk − x⋆)⊤∇2F (x⋆)(xk − x⋆) ≤

λmax(∇
2F (x⋆))

2
‖xk − x⋆‖2,

and, taking into account (C.10), we can write

(C.13) f(xk)− f(x⋆) ≤ ρ‖xk − x⋆‖2,

with ρ > 0. Then, recalling Theorem 3.3 and C.1, for k sufficiently large the problem we
actually solve is

(C.14)
min F̃ (x) =

1

2
‖Ax− b‖2 − τ sign(gNk(x

k))⊤xNk

xAk = 0
−sign(gi(x

k)) xi ≥ 0 i ∈ N k.

Now, let y0,k be the point obtained at Step 4 of Algorithm 1 (i.e. after fixing to zero the active
variables) and y0,k

s the component that most violates condition (2.2) in the non-active set.
We notice that finding the most violating variable according to condition (2.2) is equivalent,
when considering Problem (C.14), to get the component that most violates the following
condition

|xi − [xi −∇iF̃ (x)]+|,

see [24] for further details. Thus, we can write

1
√

|N k|
‖y0,k − [y0,k −∇F̃ (y0,k)]+‖ ≤ |y0,k

s − [y0,k
s −∇sF̃ (y0,k)]+|

= |y0,k
s − [y0,k

s −∇sF̃ (y0,k)]+ − xk+1
s + [xk+1

s −∇sF̃ (xk+1)]+|

≤ 2|y0,k
s − xk+1

s |+ |∇sF̃ (y0,k)−∇sF̃ (xk+1)|

≤ 2‖y0,k − xk+1‖+ ‖∇F̃ (y0,k)−∇F̃ (xk+1)‖

≤ M‖y0,k − xk+1‖ = M‖xk − xk+1‖Nk ,(C.15)

where [·]+ is the projection on the set of inequalities in Problem (C.14), and M = max{2, L},
with L Lipschitz constant of ∇F̃ . By using Propositions 3.4 and 4.1, we can also write:

f(xk)− f(xk+1) ≥ δ‖xk+1 − xk‖2(C.16)

with δ > 0. By taking into account inequality (C.15) and the definition of y0,k, we can write,
for k sufficiently large,

‖xk+1 − xk‖2 = ‖xk − x⋆‖2Ak + ‖y0,k − xk+1‖2Nk

≥ ‖xk − x⋆‖2Ak +
1

M
√

|N k|
‖y0,k − [y0,k −∇F̃ (y0,k)]+‖

2.(C.17)

Now, considering Theorem 2.1 in [24] we have, for k sufficiently large,

σ‖y0,k − [y0,k −∇F̃ (y0,k)]+‖ ≥ ‖y0,k − x⋆‖ = ‖xk − x⋆‖Nk ,

with σ > 0. Therefore, by taking into account inequality (C.17), we can write

(C.18) ‖xk+1 − xk‖2 ≥ ‖xk − x⋆‖2Ak + γ‖xk − x⋆‖2Nk ≥ γ̃‖xk − x⋆‖2,

with γ̃ > 0. By combining inequalities (C.13), (C.16) and (C.18), we can write

(C.19) f(xk)− f(x⋆) ≤ c1
(

f(xk)− f(xk+1)
)

,
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with c1 > 1. After rearranging the terms in (C.19), we obtain

f(xk+1)− f(x⋆) ≤ c2
(

f(xk)− f(x⋆)
)

with c2 =
(

1− 1

c1

)

< 1. Then, {f(xk)} converges at least linearly to f⋆.

Finally, by using (C.16) and Lemma 3.1 in [24] we get that the sequence {xk} converges
at least linearly to x⋆. ✷
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