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Abstract: Colorectal cancer (CRC) is rapidly increasing representing the second most frequent cause
of cancer-related deaths. From a clinical-molecular standpoint the therapeutically management
of CRC focuses on main alterations found in the RAS family protein, where single mutations of
KRAS are considered both the hallmark and the target of this tumor. Double and concomitant
alterations of KRAS are still far to be interpreted as molecular characteristics which could potentially
address different and more personalized treatments for patients. Here, we firstly describe the case
of two patients at different stages (pT2N0M0 and pT4cN1cM1) but similarly showing a double
concurrent mutations G12D and G13D in the exon 2 of the KRAS gene, normally mutually exclusive.
We also evaluated genetic testing of dihydropyrimidine dehydrogenase (DPYD) and microsatellite
instability (MSI) by real-time PCR and additional molecular mutations by next generation sequencing
(NGS) which resulted coherently to the progression of the disease. Accordingly, we reinterpreted and
discuss the clinical history of both cases treated as single mutations of KRAS but similarly progressing
towards a metastatic asset. We concluded that double mutations of KRAS cannot be interpreted
as univocal genomic alterations and that they could severely impact the clinical outcome in CRC,
requiring a tighter monitoring of patients throughout the time.
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1. Introduction

Sporadic colorectal cancer (CRC) represents one of the most increasing type of tumor
of the last decades, as the result of significant changes in our lifestyle habits—including
dietary factors, smoking, obesity, and sedentary behavior—acknowledged to modulate
epigenetics [1]. However, the 5–6% of CRC is associated to susceptibility to polyposis,
playing a key role in both surveillance and diagnosis of CRC in this set of subjects [2].
Despite this, epidemiological worldwide studies are continuing to strengthen the concept
that differences among populations and even between men and women in terms of survival
rate, are likely ascribable to genetic background factors. In fact, from a molecular point of
view, the genomic asset of patients with CRC, is crucial to identify the best treatment and
to tailor a personalized targeted therapy.

Colorectal cancer can be the result of accumulated changes in chromosome alterations
even in absence of family history, confirming that the genome is a unique hallmark in
patients and so it should be interpreted.
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KRAS, a small GTPase belonging to the RAS family including also NRAS and HRAS,
is considered the most mutated gene in all cancer types and the “gold” biomarker in
CRC [3]. This is expected, as the RAS proteins control several biological processes from
cell proliferation and differentiation to migration and survival, by alternating in on and
off states, a process finely regulated by guanine nucleotide exchange factors (GEFs) and
GTPase activating proteins (GAPs) [4,5]. Consequently, deregulations of the RAS family
play a crucial role in cancer progression towards metastatic phases [4,6,7]. Moreover, KRAS
also represents the predictive factor for the successful employment of monoclonal antibody
against EGFR such as cetuximab and panitumumab [8,9].

Although RAS proteins display high homology within the family but the C-terminus,
mutations of KRAS, NRAS, and HRAS are currently considered not equivalent. Additional
studies are demonstrating that even in the same gene of the RAS family including KRAS,
mutations cannot be conceived as similar as they differently affect the clinical outcome of
the disease and response to chemotherapy [10,11]. Accordingly, we acknowledge that in
CRC, KRAS mutations of codons 12, 13, and 61 preferentially occur at high frequency, but
additional mutations of codons such as 19, 117, and 146 may exist at low frequency.

Although the abovementioned oncogenic changes are the result of missense mutations
(85%) [12] with gain of function effect on the protein (they generate a constitutive GTPase
activity with the loss of any control by the GAPs [3]), they do differ in terms of specific
biochemical pathways and downstream effectors involved [13,14]. This suggests that
we should reinterpret the oncogenic changes of KRAS (and of the whole RAS family) in
the light of the clinical history of the patient and discriminate these tiny differences that
seem apparently irrelevant. Moreover, the significance of double and/or concomitantly
oncogenic mutations of KRAS in patients with CRC remains unclear.

Although double mutations are rare events, the biological and clinical implication
are not yet understood. Here, we report two women affected by CRC showing two
concurrent mutations G12D and G13D on the exon 2 of the KRAS gene, which are normally
mutually exclusive in patients. Given that patients harbor identical KRAS mutations, we
have reinterpreted the double genetic asset with patients’ clinicopathological features and
clinical history.

2. Results

Between March 2019 and November 2020, a total of 132 cases with CRC were referred
to our laboratory for in depth analysis and to investigate molecular genetic mutations for
potential targeted therapy. Out of 132 cases screened by next generation sequencing, two
female patients (Patient A and Patient B, 78 and 58 years old, respectively) displayed the
double mutation reported in this study. Patient A underwent surgery for obstructing carci-
noma of the cecum. The histopathological analysis showed an ulcerative and moderately
differentiated adenocarcinoma staged as pT2N0M0 with mucinous aspects (<5%). The
neoplasm infiltrated the muscular tunic where neoplastic lymphangitis was present. Ac-
cording to the stage, a standard follow-up was started until metacron hepatic, pulmonary,
and lymph nodes metastasis were found by computed tomography (CT) scan. Patient B
was admitted for a massive metastatic disease showed by CT with lymph-nodes and more
than 20 liver metastatic lesions, mainly in the right hepatic lobe. For this reason, a palliative
surgery and biopsies of colon vegetative lesion was performed. The histopathological
examination displayed an ulcerative adenocarcinoma staged as pT4cN1cM1.

Afterwards, biopsies from both patients were evaluated by mutational analysis.
Paraffin-embedded tissue sections were collected on microscopic slides and stained for
hematoxylin and eosin in order to select the tumor area by optical microscopy. After
manual dissection of the cancer area, genomic DNA was extracted using the Gene-
Read DNA FFPE KIT (Qiagen, Milan, Italy) according to the manufacturer’s instruction.
DNA concentration (12.6 and (12.6 and 26 ng/µL for patient A and B, respectively) was
determined by Qubit4 fluorometer with Quant-IT dsDNA HS Assay Kit (Invitrogen).
Library construction with patient’s DNA including quality and quantity was performed
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using 40 ng of DNA by employing GeneRead QIAact AIT DNA UMI Panel [15], QIAxcell
DNA high resolution kit (Qiagen) and Qubit4 fluorometer with Quant-IT dsDNA HS
Assay Kit (Invitrogen), respectively. Sequencing was performed by GeneReader platform
(Qiagen) according to the manufacture’s protocols. Primary sequence data were first
processed by QCI Analyze for GeneReader1.5.0 software (Qiagen) and clinical SNVs were
detected by Ingenuity software (Qiagen). The application was internally designed and
developed by QIAGEN. All analyses were based on: QIAGEN Clinical Insight-Interpret
(7.1.20201218), Ingenuity Knowledge Base (B-release), CADD (v1.6), Allele Frequency
Community (2019-09-25), EVS (ESP6500SI-V2), Refseq Gene Model (2020-04-06), JASPAR
(2013-11), Ingenuity Knowledge Base Snapshot Timestamp (29 January 2021), Vista
Enhancer hg18 (July 2012), Vista Enhancer hg19 (July 2012), Clinical Trials (B-release),
MITOMAP: A human Mitochondrial Genome Database http://www.mitomap.org.2019
(accessed on 19 June 2020), PolyPhen-2 (v2.2.2), 1000 Genome Frequency (phase3v5b),
ExAC (0.3.1), iva (Nov 20 02:39), TargetScan (7.2), PhyloP hg18 (NCBI36 (hg18) 2019-11,
GRCh37 (hg19) 2014-02, GRCh38 2015-05), PhyloP hg19 (NCBI36 (hg18) 2019-11, GRCh37
(hg19) 2014-02, GRCh38 2015-05).

GENCODE (Release 33), CentoMD (5.3), OMIM (26 July 2020), gnomAD (2.1.1),
BSIFT (23 February 2016), TCGA (5 September 2013), Clinvar (15 September 2020), DGV
(15 May 2016), COSMIC (v92), HGMD (2020.4), OncoTree (oncotree_2019_03_01), dbSNP
(NCBI36 (hg18) 151, GRCh37 (hg19) 153, GRCh38 153), SIFT4G (2016-02-23). Weekly up-
dates to Ingenuity Knowledge Base for clinical trials recruitment status and new findings
from recent articles. Variants are reported according to HGVS nomenclature and were
classified following ACMG guidelines. The genes analyzed (the whole CDS was cov-
ered as well as the intronic sequences (10-bp) immediately flanking the exons) for SNVs
were: AKT1, ALK1, BRAF, CTNNB1, DDR2, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FBXW7,
FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, HRAS, KIT, KRAS, MAP2K1, MAP2K2, MET,
NOTCH1, NRAS, PDGFRA, PIK3CA, RAF1, SMAD4, SOD2, and STK11. The genes analyzed
for CNV was: ALK, BRAF, EGFR, ERBB2, FGFR1, FGFR2, FLT3, KIT, KRAS, MAP2K1, MET,
and PI3KCA. For the read coverages and the Average Quality scores of UMI reads for each
patient, see Supplementary material (Tables S1, S2 and Supplementary Figure S1).

Results (Figure 1) have shown that both Patients exhibited two coexistent mutations
on the same exon 2 of the KRAS gene with the nucleotide changes c.38G>A (amino acid
change p.G13D) and c.35G>A (amino acid change p.G12D) both classified with pathogenic
significance. The effect of the parallel changes at two different amino acid positions resulted
as gain of function mutation. The variant allelic fraction (VAF) was estimated 34% (p.G12D)
and 31% (p.G13D) for Patient A and 4.6% (p.G13D) and 12.6% (p.G12D) for Patient B.
More intriguingly, the NGS analysis also showed that numerous additional mutations
were present. Both patients exhibited changes in the PIK3CA gene. Patient A showed
the pathogenic significant nucleotide change c.317G>T (amino acid change p.G106V) on
the exon 2 of the PIK3CA gene with a VAF of 12% and gain of function effect on the
corresponding protein, whereas Patient B displayed the variant c.1173A>G (amino acid
change p.I391M) on the exon 7 of the gene with a VAF of 52.23% and classified as of
uncertain significance.

Specifically, Patient A exhibited a molecular profile for SMAD4 similarly to KRAS
and of pathogenic significance. Accordingly, exon 9 and exon 12 of the SMAD4 gene were
found mutated with the nucleotide change c.1067C>T (amino acid change p.P356L) and
c.1610A>G (amino acid change p.D537G), respectively. However, differently from the of the
KRAS mutation on the proteins, the two changes on the SMAD4 gene were loss of function
mutations. The VAF for the first mutation on SMAD4 was 18% and the second 33%.

Additional variants of uncertain significance were shown by both patients but on
different genes. Specifically, Patient A exhibited the genetic variant c. 4598A>G (amino
acid change p.D1533G) with a VAF of 45% on exon 26 of the NOTCH1 gene as well on
the exon 17 of the ERBB2 gene with a nucleotide change c.1963A>G (amino acid change
p.I655V) and VAF of 58%. Patient B showed expressed the nucleotide change c.1562G>A

http://www.mitomap.org.2019
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(amino acid change p.R521K) on the exon 13 of the EGFR with a VAF of 18.8% and classified
as of uncertain significance.

Figure 1. Next generation sequencing analysis of Patient A and B displaying in the exon 2 of the KRAS gene the double nu-
cleotide changes c.38G>A (amino acid change p.G13D) and c.35G>A (amino acid change p.G12D) of pathogenic significance.
The black box highlights both mutations.

The NGS confirmed that both Patients were wild type for BRAF, HRAS, and NRAS
and for the remaining genes of the molecular profile panel analyzed. Besides, Patient B
showed a variant of uncertain significance of the EGFR, differently from Patient A with
wild type EGFR. A summary of the whole molecular profile for both subjects is displayed
below in Table 1.

Moreover, to investigate more deeply the genetic role of this double mutations, both
women were also screened for germline microsatellite instability (MSI), given that MSI
is ascribable to 15–20% of patients with CRC [16] as well as in familiar and hereditary
forms [17] (during anamnesis Patient A referred of cancer familiarity). Accordingly, we
analyzed the full panel of genes including BAT-25, BAT-26, NR-21, NR-24, and NR-27
(recommended by ESMO [18]) and a further group NR-22, CAT-25, and MONO-27. Both
patients showed MSI stability with a wild-type genotype. According to the overall molec-
ular tests, patients were similarly treated and prior administration of drugs containing
5-Fluorouracil (FU), the genetic dihydropyrimidine dehydrogenase (DPYD) variants such
as c.1236G>A (rs56038477), c.1679T>G (rs55886062), c.1905+1G>A (rs3918290), c.2194G>A
(rs1801160), and c.2846A>T (rs67376798) [19] were evaluated. Patients exhibited a wild-
type genotype for all genes investigated. Patient A received a first-line Bevacizumab plus
Folfox chemotherapy. Partial response was the best overall response. Due to the persistence
of stable disease, after 12 cycles of induction chemotherapy, Patient A started a maintenance
treatment with Bevacizumab plus De Gramont regimen. To date, maintenance treatment is
still ongoing with substantially stable disease. Nevertheless, the last CT scan has already
highlighted the progression of the tumor in the hepatic district, although PET analysis will
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be required as confirmation. Patient B received the same Bevacizumab plus Folfox regimen
both as first-line and maintenance treatment.

Table 1. Molecular variant details of patients analyzed by next generation sequencing (NGS)

Patient Gene Exon Nucleotide Change Amino Acid
Change

Allele
Fraction (%) Classification Effect on Protein

A KRAS 2 NM_004985.5: c.38G>A p.G13D 31 Pathogenic Gain of function
A KRAS 2 NM_004985.5: c.35G>A p.G12D 34 Pathogenic Gain of function
A SMAD4 9 NM_005359.5: c.1067C>T p.P356L 18 Pathogenic Loss of function
A SMAD4 12 NM_005359.5: c.1610A>G p.D537G 33 Pathogenic Loss of function
A PIK3CA 2 NM_006218.3: c.317G>T p.G106V 12 Pathogenic Gain of function
A ERBB2 17 NM_004448.3: c.1963A>G p.I655V 58 VUS Gain of function
A NOTCH1 26 NM_017617.5: c.4598A>G p.D1533G 45 VUS Loss of function
B KRAS 2 NM_004985.5: c.38G>A p.G13D 4.6 Pathogenic Gain of function
B KRAS 2 NM_004985.5: c.35G>A p.G12D 12.6 Pathogenic Gain of function
B EGFR 13 NM_005228.5: c.1562G>A p.R521K 18.8 VUS Loss of function
B PIK3CA 7 NM_006218.4: c.1173A>G p.I391M 52.23 VUS Normal function

VUS: variant of uncertain significance

3. Discussion

In CRC three main molecular mechanisms including alteration of the mismatch repair
(MSI), aberrant DNA methylation and genetic mutations of main genes, play a key role
in neoplastic transformation and progression. According to different guidelines, the
mutational analysis of the RAS family is not recommended at early stages (I and II), where
the MSI analysis is rather preferred, as several studies indicate a good correlation to
discriminate for a possible adjuvant therapy [20,21].

KRAS is mainly considered a predictive factor for the employment of anti-EGFR mon-
oclonal antibodies in combination with chemotherapy. Thus, although not confirmed in all
studies, the role of KRAS as prognostic factor is mainly conceivable for metastatic stages,
highlighting the need of deeper investigations on this topic [9,22,23]. Notably, mutations of
KRAS account for the 40% of patients with CRC [24] and they have represented the intense
effort of drug targeting over the last decades. Very recently, the AMG510 inhibitor for the
KRASG12C (glycine to cysteine) mutation is currently under clinical trial phase I for lung
adenocarcinoma, demonstrating that KRAS is a druggable target gene [25,26]. Similarly,
in 2018 the FDA has approved the use of MRTX849, a novel and covalent inhibitor for
the specific KRASG12C mutation [27,28], highlighting the role of KRAS as a distinct and
independent driver mutation.

Our two cases underline the significance of the double mutations of KRAS. To date,
there are no specific diagnostic algorithms to further stratify patients based on the presence
of double mutations. Thus, from a clinical standpoint, a patient harboring a single mutation
of KRAS is similarly treated as a patient with concurrent genomic alterations. Although
double mutations on the same exon of KRAS are very rare events, our report suggests that
the double mutations could be considered as a distinct subset of genomic alterations and
that they should be investigated even at early stages to attempt the prediction of a potential
progression of the cancer.

According to the clinical guidelines recommending the combination of chemotherapy
with biological agents as first-line treatment, both patients were treated with the same
therapeutical regimen, normally employed for the metastatic stages (a combination of
fluoropyrimidines, oxaliplatin, and bevacizumab). In fact, the use of biological agents
has been demonstrated to increase the standard chemotherapy efficacy as Chen et al.
showed the role of the addition of bevacizumab to chemotherapy regimens (XELOX,
FOLFIRI, Folfox), highlighting a significant improvement of progression free survival (PFS;
HR = 0.68; 95% CI = 0.59–0.78; p < 0.00001) [29].

Thus, we could suggest that the screening of double mutations of KRAS would
be useful not only to detect the potential resistance to anti-EGFR monoclonal antibody,
but more importantly to identify patients at high-risk as Patient B. Hence, this set of
subjects will benefit from an intensified follow up similarly to patients with established
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metastatic stages (as Patient A). Other recent studies have also suggested that the inclusion
of different cohorts of patients with multiple mutations would be useful to identify potential
pharmacological targets and to better understand the physiopathological meaning of these
genomic alterations [30].

Importantly, in colorectal cancer cells the G12D and G13 D KRAS mutation have been
recently demonstrated to activate distinct and independent signaling pathways, resulting
in dissimilar biological effects [31]. Similarly, different cohorts of patients with lung
adenocarcinoma, have highlighted that KRAS mutations are extremely heterogenous and
that co-alterations are present at high frequency [32]. A further study has corroborated these
observations for additional emerging predictive and prognostic biomarkers. Specifically,
coexisting mutations of KRAS and SMAD4 or TP53 worsen both the overall survival and
relapse free survival compared to the single mutation of KRAS [33]; therefore, authors
concluded that KRAS alone cannot be considered the only predictive prognosis after
resection of colorectal liver metastases.

Coherently with a metastatic profile, we also observed in Patient A but not Patient B
concomitant mutations of SMAD4 (loss function) and PIK3CA with pathogenic significance.
PIK3CA and SMAD 4 have been involved in drug resistance to anti-EGFR monoclonal
antibodies [34] and to 5-fluoruracil mediated apoptosis in cell lines [35], respectively.
SMAD4 loss mutations has been found to positively associated to mucinous CRC (Patient
A had a mucinous CRC) [36], and progression of CRC, because of its key role to control
the TGFβ1-SMAD4 axis of the epithelial-mesenchymal transition [37]. These late-stage
modifications have been found in Patient B in line with the metastatic profile. Notably, we
could not unequivocally assess in this study the role of SMAD-4 and PIK3CA mutations
beyond KRAS. The prognostic significance of both markers as driver mutations in CRC in
absence of KRAS mutations has not yet fully established.

Although conclusive data to validate multiple mutations are not available to adopt
different clinical strategies, and so far, our patients have not shown an enhanced resistance
to the same therapeutical regimen, however the concomitant presence of SMAD4 and
PIK3CA could be strengthen a potential future resistance effect due to the G12D and G13D
KRAS mutations, especially in Patient B.

Besides, the parallel investigation of the MSI analysis has been also important to
add prognostic information in combination with the molecular profile. MSI and chromo-
some instability are two main mechanisms in the etiopathogenesis of CRC. Notably, both
mechanisms can coexist or being mutually exclusive [38]. Recently, it has been reported a
correlation between MSI status, KRAS mutation and clinical-pathological features of pa-
tients with CRC at stage III [39], showing the strict association between high MSI and high
mutation rate of KRAS (with the mutation rate of p.G12D in codon 12 of exon 2 the highest,
followed by p.G13D). Conversely, low MSI or MSS are associated with low mutation rate of
KRAS. Besides, MSI-high has been reported as the mostly frequent in female patients with
stage II and III [40] and in subjects aged ≥ 50 years. Moreover, observational studies have
described the association between MSI and KRAS mutation as the hallmark of a worse
prognosis of mucinous CRC with metastatic profile [41,42]. Thus, wild type or mutated
KRAS always in association with microsatellite stability, is a negative predictor for disease
survival [43,44]. Besides, the presence of hereditary settings in MSI can be linked to KRAS
mutations or to the Lynch syndrome. As both patients were female, aged ≥ 50, with a
mucinous/ulcerative stage II and IV CRC, MSI was performed. Although, a high MSI was
expected, both patients were stable.

The MSI analysis was also determined in order to provide the best pharmacological
treatment for both patients. In fact, we reckon that the variable prognostic value of KRAS
mutations in operable CRC [45,46], should be accompanied by the MSI analysis, as this
latter better correlates with the adjuvant therapy in patients with stage II and III [47].

Notably, MSI has been also associated with high-rate response to immunotherapy
after employment of PD-1/PDL-1 inhibitors in CRC [48–50], therefore strengthening the
MSI investigation as a novel important parallel predictive marker. In our two cases, the
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double mutation in KRAS was not accompanied by alterations of microsatellites in the
germline, therefore potentially suggesting the propensity to develop sporadic CRC.

In conclusion, the analysis of the double mutations in the RAS family should be
evaluated not as univocal genomic alterations, but rather as accumulation of biological
events which should be carefully monitored throughout the time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11040659/s1. Table S1: Reads coverage patient A, Table S2: Reads coverage
patient B, Figure S1: Average Quality scores of UMI reads.

Author Contributions: Conceptualization, E.D.F.; Methodology, L.P. and D.B.; Software, L.P. and
D.B.; Investigation, C.S., E.V., and G.P.S.; Resources, A.C.; Data curation, E.D.F.; Writing—original
draft preparation, E.D.F.; Writing—review and editing, E.D.F. and A.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed written consent for publication was not asked for by the
Institutional review board, since no data that can potentially and clearly identify the patient were
found in the case description.

Acknowledgments: Authors thank to the Department of Medical-Surgical Sciences and Biotechnolo-
gies (Latina), Sapienza University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Angelini, F.; Pagano, F.; Bordin, A.; Milan, M.; Chimenti, I.; Peruzzi, M.; Valenti, V.; Marullo, A.; Schirone, L.; Palmerio, S.; et al.

The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System.
Oxidative Med. Cell. Longev. 2017, 2017, 1–18. [CrossRef] [PubMed]

2. Kaminski, M.F.; Robertson, D.J.; Senore, C.; Rex, D.K. Optimizing the Quality of Colorectal Cancer Screening Worldwide.
Gastroenterology 2020, 158, 404–417. [CrossRef] [PubMed]

3. Khan, A.Q.; Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Shanmugakonar, M.; Naemi, H.A.A.; Haris, M.; Dermime, S.; Uddin, S.
RAS-mediated oncogenic signaling pathways in human malignancies. Semin. Cancer Biol. 2019, 54, 1–13. [CrossRef]

4. Prior, I.A.; Lewis, P.D.; Mattos, C. A Comprehensive Survey of Ras Mutations in Cancer. Cancer Res. 2012, 72, 2457–2467.
[CrossRef]

5. Muñoz-Maldonado, C.; Zimmer, Y.; Medová, M. A Comparative Analysis of Individual RAS Mutations in Cancer Biology. Front.
Oncol. 2019, 9, 1088. [CrossRef]

6. Levidou, G.A.; Saetta, A.; Gigelou, F.; Karlou, M.; Papanastasiou, P.; Stamatelli, A.; Kavantzas, N.; Michalopoulos, N.V.;
Agrogiannis, G.; Patsouris, E.; et al. ERK/pERK expression and B-raf mutations in colon adenocarcinomas: Correlation with
clinicopathological characteristics. World J. Surg. Oncol. 2012, 10, 47. [CrossRef]

7. Qing, H.; Gong, W.; Che, Y.; Wang, X.; Peng, L.; Liang, Y.; Wang, W.; Deng, Q.; Zhang, H.; Jiang, B. PAK1-dependent MAPK
pathway activation is required for colorectal cancer cell proliferation. Tumor Biol. 2012, 33, 985–994. [CrossRef]

8. Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al.
Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26,
1626–1634. [CrossRef] [PubMed]

9. Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.;
Robitaille, S.; et al. K-rasMutations and Benefit from Cetuximab in Advanced Colorectal Cancer. N. Engl. J. Med. 2008, 359,
1757–1765. [CrossRef] [PubMed]

10. Fiala, O.; Buchler, T.; Mohelnikova-Duchonova, B.; Melichar, B.; Matejka, V.M.; Holubec, L.; Kulhankova, J.; Bortlicek, Z.;
Bartouskova, M.; Liska, V.; et al. G12V and G12A KRAS mutations are associated with poor outcome in patients with metastatic
colorectal cancer treated with bevacizumab. Tumor Biol. 2015, 37, 6823–6830. [CrossRef] [PubMed]

11. Rocks, O.; Peyker, A.; Bastiaens, P.I. Spatio-temporal segregation of Ras signals: One ship, three anchors, many harbors. Curr.
Opin. Cell Biol. 2006, 18, 351–357. [CrossRef]

12. Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS Proteins and Their Regulators in Human Disease. Cell 2017, 170, 17–33.
[CrossRef]

13. Chiu, V.K.; Bivona, T.; Hach, A.; Sajous, J.B.; Silletti, J.; Wiener, H.; Johnson, R.L., 2nd; Cox, A.D.; Philips, M.R. Ras signalling on
the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 2002, 4, 343–350. [CrossRef] [PubMed]

14. Voice, J.K.; Klemke, R.L.; Le, A.; Jackson, J.H. Four Human Ras Homologs Differ in Their Abilities to Activate Raf-1, Induce
Transformation, and Stimulate Cell Motility. J. Biol. Chem. 1999, 274, 17164–17170. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/diagnostics11040659/s1
https://www.mdpi.com/article/10.3390/diagnostics11040659/s1
http://doi.org/10.1155/2017/2712751
http://www.ncbi.nlm.nih.gov/pubmed/28607629
http://doi.org/10.1053/j.gastro.2019.11.026
http://www.ncbi.nlm.nih.gov/pubmed/31759062
http://doi.org/10.1016/j.semcancer.2018.03.001
http://doi.org/10.1158/0008-5472.CAN-11-2612
http://doi.org/10.3389/fonc.2019.01088
http://doi.org/10.1186/1477-7819-10-47
http://doi.org/10.1007/s13277-012-0327-1
http://doi.org/10.1200/JCO.2007.14.7116
http://www.ncbi.nlm.nih.gov/pubmed/18316791
http://doi.org/10.1056/NEJMoa0804385
http://www.ncbi.nlm.nih.gov/pubmed/18946061
http://doi.org/10.1007/s13277-015-4523-7
http://www.ncbi.nlm.nih.gov/pubmed/26662311
http://doi.org/10.1016/j.ceb.2006.06.007
http://doi.org/10.1016/j.cell.2017.06.009
http://doi.org/10.1038/ncb783
http://www.ncbi.nlm.nih.gov/pubmed/11988737
http://doi.org/10.1074/jbc.274.24.17164
http://www.ncbi.nlm.nih.gov/pubmed/10358073


Diagnostics 2021, 11, 659 8 of 9

15. Caruso, G.; Pacini, L.; Iossa, A.; Di Cristofano, C.; Bastianelli, D.; Silecchia, G.; Mele, M.; Petrozza, V.; Calogero, A.; De Falco, E.
A rare case of omental extra-gastrointestinal stromal tumor showing two coexisting mutations on exon 14 of the PDGFRA gene.
Gastroenterol. Rep. 2020. [CrossRef]

16. Nojadeh, J.N.; Sharif, S.B.; Sakhinia, E. Microsatellite instability in colorectal cancer. EXCLI J. 2018, 17, 159–168.
17. Sameer, A.S.S. Colorectal Cancer: Molecular Mutations and Polymorphisms. Front. Oncol. 2013, 3, 114. [CrossRef] [PubMed]
18. Luchini, C.; Bibeau, F.; Ligtenberg, M.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.-Y.; Andre, F.; et al.

ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1
expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. 2019, 30, 1232–1243. [CrossRef]

19. Henricks, L.M.; Lunenburg, C.A.T.C.; de Man, F.M.; Meulendijks, D.; Frederix, G.W.J.; Kienhuis, E.; Creemers, G.-J.; Baars, A.O.;
Dezentjé, V.; Imholz, A.L.T.; et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with
cancer: A prospective safety analysis. Lancet Oncol. 2018, 19, 1459–1467. [CrossRef]

20. Klingbiel, D.; Saridaki, Z.; Roth, A.; Bosman, F.; Delorenzi, M.; Tejpar, S. Prognosis of stage II and III colon cancer treated with
adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: Results of the PETACC-3 trial. Ann. Oncol. 2015, 26,
126–132. [CrossRef]

21. Gavin, P.G.; Colangelo, L.H.; Fumagalli, D.; Tanaka, N.; Remillard, M.Y.; Yothers, G.; Kim, C.; Taniyama, Y.; Kim, S.I.;
Choi, H.J.; et al. Mutation Profiling and Microsatellite Instability in Stage II and III Colon Cancer: An Assessment of Their
Prognostic and Oxaliplatin Predictive Value. Clin. Cancer Res. 2012, 18, 6531–6541. [CrossRef] [PubMed]

22. Peeters, M.; Oliner, K.S.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; et al.
Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as
Second-line Treatment for Metastatic Colorectal Cancer. Clin. Cancer Res. 2015, 21, 5469–5479. [CrossRef]

23. Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; Punt, C.J.; et al.
Randomized Phase III Study of Panitumumab With Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI) Compared with FOLFIRI
Alone As Second-Line Treatment in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2010, 28, 4706–4713. [CrossRef]

24. Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in Colorectal Cancer: Current Research and Future Prospects. Int. J.
Mol. Sci. 2020, 21, 5311. [CrossRef] [PubMed]

25. Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical
KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nat. Cell Biol. 2019, 575, 217–223. [CrossRef] [PubMed]

26. Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.;
Goodman, G.; et al. Discovery of a Covalent Inhibitor of KRAS(G12C) (AMG 510) for the Treatment of Solid Tumors. J. Med.
Chem. 2020, 63, 52–65. [CrossRef]

27. Christensen, J.G.; Olson, P.; Briere, T.; Wiel, C.; Bergo, M.O. Targeting Kras(g12c) -mutant cancer with a mutation-specific inhibitor.
J. Intern. Med. 2020, 288, 183–191. [CrossRef] [PubMed]

28. Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballard, J.A.; et al.
The KRAS(G12C) Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse
Models and Patients. Cancer Discov. 2020, 10, 54–71. [CrossRef] [PubMed]

29. Chen, Y.-X.; Yang, Q.; Kuang, J.-J.; Chen, S.-Y.; Wei, Y.; Jiang, Z.-M.; Xie, D.-R. Efficacy of Adding Bevacizumab in the First-Line
Chemotherapy of Metastatic Colorectal Cancer: Evidence from Seven Randomized Clinical Trials. Gastroenterol. Res. Pr. 2014,
2014, 1–8. [CrossRef]

30. Vittal, A.; Sharma, D.; Samanta, I.; Kasi, A. Rare case of triple mutant (KRAS + NRAS + BRAF) metastatic colon adenocarcinoma.
BMJ Case Rep. 2019, 12, e221816. [CrossRef] [PubMed]

31. Tahir, R.; Renuse, S.; Udainiya, S.; Madugundu, A.K.; Cutler, J.A.; Nirujogi, R.S.; Na, C.H.; Xu, Y.; Wu, X.; Pandey, A. Mutation-
Specific and Common Phosphotyrosine Signatures of KRAS G12D and G13D Alleles. J. Proteome Res. 2021, 20, 670–683. [CrossRef]
[PubMed]

32. Gibert, J.; Clavé, S.; Hardy-Werbin, M.; Taus, Á.; Rocha, P.; Longarón, R.; Piquer, G.; Chaib, I.; Carcereny, E.; Morán, T.; et al.
Concomitant genomic alterations in KRAS mutant advanced lung adenocarcinoma. Lung Cancer 2020, 140, 42–45. [CrossRef]

33. Kawaguchi, Y.; Kopetz, S.; Newhook, T.E.; De Bellis, M.; Chun, Y.S.; Tzeng, C.-W.D.; Aloia, T.A.; Vauthey, J.-N. Mutation Status of
RAS, TP53, and SMAD4 is Superior to Mutation Status of RAS Alone for Predicting Prognosis after Resection of Colorectal Liver
Metastases. Clin. Cancer Res. 2019, 25, 5843–5851. [CrossRef] [PubMed]

34. De Roock, W.; Claes, B.; Bernasconi, D.; De Schutter, J.; Biesmans, B.; Fountzilas, G.; Kalogeras, K.T.; Kotoula, V.; Papamichael, D.;
Laurent-Puig, P.; et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy
in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 2010, 11, 753–762.
[CrossRef]

35. Papageorgis, P.; Cheng, K.; Ozturk, S.; Gong, Y.; Lambert, A.W.; Abdolmaleky, H.M.; Zhou, J.-R.; Thiagalingam, S. Smad4
Inactivation Promotes Malignancy and Drug Resistance of Colon Cancer. Cancer Res. 2011, 71, 998–1008. [CrossRef]

36. Fleming, N.I.; Jorissen, R.N.; Mouradov, D.; Christie, M.; Sakthianandeswaren, A.; Palmieri, M.; Day, F.; Li, S.; Tsui, C.;
Lipton, L.; et al. SMAD2, SMAD3 and SMAD4 Mutations in Colorectal Cancer. Cancer Res. 2013, 73, 725–735. [CrossRef]
[PubMed]

37. Maitra, A.; Molberg, K.; Albores-Saavedra, J.; Lindberg, G. Loss of Dpc4 Expression in Colonic Adenocarcinomas Correlates with
the Presence of Metastatic Disease. Am. J. Pathol. 2000, 157, 1105–1111. [CrossRef]

http://doi.org/10.1093/gastro/goaa086
http://doi.org/10.3389/fonc.2013.00114
http://www.ncbi.nlm.nih.gov/pubmed/23717813
http://doi.org/10.1093/annonc/mdz116
http://doi.org/10.1016/S1470-2045(18)30686-7
http://doi.org/10.1093/annonc/mdu499
http://doi.org/10.1158/1078-0432.CCR-12-0605
http://www.ncbi.nlm.nih.gov/pubmed/23045248
http://doi.org/10.1158/1078-0432.CCR-15-0526
http://doi.org/10.1200/JCO.2009.27.6055
http://doi.org/10.3390/ijms21155311
http://www.ncbi.nlm.nih.gov/pubmed/32726923
http://doi.org/10.1038/s41586-019-1694-1
http://www.ncbi.nlm.nih.gov/pubmed/31666701
http://doi.org/10.1021/acs.jmedchem.9b01180
http://doi.org/10.1111/joim.13057
http://www.ncbi.nlm.nih.gov/pubmed/32176377
http://doi.org/10.1158/2159-8290.CD-19-1167
http://www.ncbi.nlm.nih.gov/pubmed/31658955
http://doi.org/10.1155/2014/594930
http://doi.org/10.1136/bcr-2017-221816
http://www.ncbi.nlm.nih.gov/pubmed/31519714
http://doi.org/10.1021/acs.jproteome.0c00587
http://www.ncbi.nlm.nih.gov/pubmed/32986951
http://doi.org/10.1016/j.lungcan.2019.12.003
http://doi.org/10.1158/1078-0432.CCR-19-0863
http://www.ncbi.nlm.nih.gov/pubmed/31221662
http://doi.org/10.1016/S1470-2045(10)70130-3
http://doi.org/10.1158/0008-5472.CAN-09-3269
http://doi.org/10.1158/0008-5472.CAN-12-2706
http://www.ncbi.nlm.nih.gov/pubmed/23139211
http://doi.org/10.1016/S0002-9440(10)64625-1


Diagnostics 2021, 11, 659 9 of 9

38. Loeb, K.R.; Loeb, L.A. Significance of multiple mutations in cancer. J. Carcinog. 2000, 21, 379–385. [CrossRef]
39. Niu, W.; Wang, G.; Feng, J.; Li, Z.; Li, C.; Shan, B. Correlation between microsatellite instability and RAS gene mutation and stage

III colorectal cancer. Oncol. Lett. 2019, 17, 332–338.
40. Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012,

3, 153–173.
41. Corso, G.; Pascale, V.; Flauti, G.; Ferrara, F.; Marrelli, D.; Roviello, F. Oncogenic mutations and microsatellite instability phenotype

predict specific anatomical subsite in colorectal cancer patients. Eur. J. Hum. Genet. 2013, 21, 1383–1388. [CrossRef] [PubMed]
42. Hu, J.; Yan, W.-Y.; Xie, L.; Cheng, L.; Yang, M.; Li, L.; Shi, J.; Liu, B.-R.; Qian, X.-P. Coexistence of MSI with KRAS mutation is

associated with worse prognosis in colorectal cancer. Medicine 2016, 95, e5649. [CrossRef] [PubMed]
43. Sinicrope, F.A.; Shi, Q.; Smyrk, T.C.; Thibodeau, S.N.; Dienstmann, R.; Guinney, J.; Bot, B.M.; Tejpar, S.; Delorenzi, M.;

Goldberg, R.M.; et al. Molecular Markers Identify Subtypes of Stage III Colon Cancer Associated with Patient Outcomes.
Gastroenterology 2015, 148, 88–99. [CrossRef]

44. Malapelle, U.; Passiglia, F.; Cremolini, C.; Reale, M.L.; Pepe, F.; Pisapia, P.; Avallone, A.; Cortinovis, D.; De Stefano, A.;
Fassan, M.; et al. RAS as a positive predictive biomarker: Focus on lung and colorectal cancer patients. Eur. J. Cancer 2021, 146,
74–83. [CrossRef]

45. Lee, D.-W.; Kim, K.J.; Han, S.-W.; Lee, H.J.; Rhee, Y.Y.; Bae, J.M.; Cho, N.-Y.; Lee, K.-H.; Kim, T.-Y.; Oh, D.-Y.; et al. KRAS Mutation
is Associated with Worse Prognosis in Stage III or High-risk Stage II Colon Cancer Patients Treated with Adjuvant FOLFOX. Ann.
Surg. Oncol. 2014, 22, 187–194. [CrossRef]

46. Dienstmann, R.; Mason, M.J.; Sinicrope, F.A.; Phipps, A.I.; Tejpar, S.; Nesbakken, A.; Danielsen, S.A.; Sveen, A.; Buchanan, D.D.;
Clendenning, M.; et al. Prediction of overall survival in stage II and III colon cancer beyond TNM system: A retrospective, pooled
biomarker study. Ann. Oncol. 2017, 28, 1023–1031. [CrossRef] [PubMed]

47. Hutchins, G.; Southward, K.; Handley, K.; Magill, L.; Beaumont, C.; Stahlschmidt, J.; Richman, S.; Chambers, P.; Seymour, M.;
Kerr, D.; et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in
colorectal cancer. J. Clin. Oncol. 2011, 29, 1261–1270. [CrossRef]

48. Diaz, L.A.; Le, D.T. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 373, 1979. [CrossRef]
49. Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al.

Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer
(CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [CrossRef]

50. Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al.
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [CrossRef] [PubMed]

http://doi.org/10.1093/carcin/21.3.379
http://doi.org/10.1038/ejhg.2013.66
http://www.ncbi.nlm.nih.gov/pubmed/23572025
http://doi.org/10.1097/MD.0000000000005649
http://www.ncbi.nlm.nih.gov/pubmed/27977612
http://doi.org/10.1053/j.gastro.2014.09.041
http://doi.org/10.1016/j.ejca.2021.01.015
http://doi.org/10.1245/s10434-014-3826-z
http://doi.org/10.1093/annonc/mdx052
http://www.ncbi.nlm.nih.gov/pubmed/28453697
http://doi.org/10.1200/JCO.2010.30.1366
http://doi.org/10.1056/nejmc1510353
http://doi.org/10.1016/S1470-2045(17)30422-9
http://doi.org/10.1056/NEJMoa1500596
http://www.ncbi.nlm.nih.gov/pubmed/26028255

	Introduction 
	Results 
	Discussion 
	References

