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Abstract

In this paper, we propose a Deep Belief Network (DBN) based approach for the classifi-
cation of audio signals to improve work activity identification and remote surveillance
of construction projects. The aim of the work is to obtain an accurate and flexible
tool for consistently executing and managing the unmanned monitoring of construc-
tion sites by using distributed acoustic sensors. In this paper, ten classes of multiple
construction equipment and tools, frequently and broadly used in construction sites,
have been collected and examined to conduct and validate the proposed approach. The
input provided to the DBN consists in the concatenation of several statistics evaluated
by a set of spectral features, like MFCCs and mel-scaled spectrogram. The proposed
architecture, along with the preprocessing and the feature extraction steps, has been
described in details while the effectiveness of the proposed idea has been demonstrated
by some numerical results, evaluated by using real-world recordings. The final overall
accuracy on the test set is up to 98% and is a significantly improved performance com-
pared to other state-of-the-are approaches. A practical and real-time application of the
presented method has been also proposed in order to apply the classification scheme to
sound data recorded in different environmental scenarios.

Keywords: Deep learning, Deep Belief Network (DBN), Audio processing,
Environmental sound classification, Construction monitoring.

1. Introduction

Environmental sound classification (ESC) (Piczak, 2015b) is a challenging field
of research aiming at identifying a large variety of sounds related to natural sounds,
like animals (dogs, birds, etc.), weather conditions (rain, wind, etc.), vehicles (cars,
trucks, train, etc.), domestic noise (washing-machine, glass-breaking, clock-tick, etc.)
and many others. However, often sounds are regarding urban environments, and hence
sounds are usually related to various non-human events in normal day-to-day life. Al-
though there exist lots of literature on the classification of speech and music (Fu et al.,
2011), ESC is not yet a mature field of application. The main difference between
speech or music signals and environmental sounds is that these last signals do not
posses any common structure (Boddapati et al., 2017), making difficult the classifica-
tion (Barchiesi et al., 2015).

Generally, due to the flexibility and cheapness of acoustic sensors, ESC can be a
robust and adaptive approach for the environmental monitoring (Atrey et al., 2006).
When we consider generic outdoor scenarios, an automatic monitoring system based
on a microphone array would be an invaluable tool in assessing and controlling any
type of situation occurring in the environment (Sallai et al., 2011; Scardapane et al.,
2015). The general idea of this kind of approach is to capture the audio signal emitted
from a particular direction by set of microphones, extract a set of peculiar and discrim-
inative features from the recorded signals, and then apply some (audio) classification
algorithms to identify the recorded sound (Abu-El-Quran, 2006).
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A specific application of ESC can be for the classification of audio sounds of con-
struction work and equipment operations (Navon & Sacks, 2007). According to the
previous research studies, the steady and real-time monitoring of construction pro-
cesses and tasks in the field reduces one of the most salient risks in a construction
project’s uncertainty (Cheng & Teizer, 2013). In order to reduce such uncertainty,
several studies explored that the systematic monitoring of a construction project helps
project managers by providing construction field information in a timely manner and
enabling them to identify urgent issues and promptly respond to unexpected problems
(Golparvar-Fard et al., 2015). At the moment, several methods have been suggested
(Sherafat et al., 2020) and the video-based approaches are currently the preferable ones
(Kim et al., 2019; Khosrowpour et al., 2014).

However, recently diverse studies investigated and showed the potentials of audio-
based construction site monitoring, which can be a promising method for advanced
unmanned field monitoring (Sherafat et al., 2020, 2019). It has been found that this
new approach can obtain satisfactory performance and reliability (Cho et al., 2017;
Sharan & Moir, 2016; Lee et al., 2020). In addition, an audio-based approach entails
various opportunities to be analyzed with construction project data and other resources
such as visuals to improve accurate project monitoring and progress surveillance. Since
sounds generally consist of various discriminant features extracted from recorded sig-
nals, the identification of suitable and highly accurate classifiers that can accurately
recognize and understand feature characteristics is of fundamental importance (Zhang
et al., 2018).

Numerous methods have been developed for ESC (Ahmad et al., 2020) and acous-
tic environmental monitoring (Scardapane et al., 2015). Machine Learning (ML) ap-
proaches are very common for this kind of topic (Heittola et al., 2018; Chachada &
Jay Kuo, 2013). Specifically, many works propose to use several methods like, to cite
a few of them: Support Vector Machines (SVMs), k-Nearest Neighbors (k-NN), Artifi-
cial Neural Networks (ANNs), Hidden Markov Models (HMMs) and Gaussian Mixture
Models (GMMs) (Sharan & Moir, 2016; Barchiesi et al., 2015).

Recently, Deep Learning (DL) (Goodfellow et al., 2016) provided very promising
results overcoming those of traditional ML approaches (Gencoglu et al., 2014; Abeßer,
2020). Differently from the traditional shallow ML algorithms, like GMM, HMM and
SVM, the deep models have many hidden layers of different abstract representations,
which well fit in with the human acoustic perception that appears to use many layers
of feature extractors and event detectors. The most used model in the field of DL is the
Convolutional Neural Network (CNN) (Salamon & Bello, 2017; Piczak, 2015a; Abdoli
et al., 2019) and related variants (Medhat et al., 2020; Li et al., 2018), followed by the
Deep Recurrent Neural Network (DRNN) (Phan et al., 2017; Scarpiniti et al., 2020)
or a combination of the two approaches (Sang et al., 2018). A comparison of several
traditional and deep learning algorithms for construction activity monitoring can be
found in (Lee et al., 2020).

A very interesting approach, not fully exploited in audio classification, consists
in the use of Deep Belief Networks (DBNs) that show a powerful representation of
audio signals (Mohamed et al., 2012; Hamel & Eck, 2010). A DBN is an architecture
composed of multiple layers of latent variables, called hidden units, with connections
between the layers but not between units within each layer (Goodfellow et al., 2016).
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Although DBNs have demonstrated good results in audio classification, this kind of
architecture has been used only for structured sound data as speech (Mohamed et al.,
2012; Hinton et al., 2012) and music (Hamel & Eck, 2010; Xue & Su, 2015), but it has
not been considered for other kind of data as in ESC. The main feature of DBN that
makes it very suitable for the classification of audio data in construction sites, is that it
presents a reasonable computational complexity compared to other DL methods, but,
despite all this, providing very encouraging performance.

Motivated by these considerations, the main contributions of this paper are:

• we propose a DBN-based approach for the enhanced classification of audio sig-
nals captured in construction sites. We have chosen the DBN because it has a
capability to improve the classification of audio signals with a superior classifi-
cation accuracy. Although the training time is not negligible (even if less than
other DL approaches), it presents an inference time comparable or lower than
traditional ML approaches, but the accuracy is unquestionably greater. More-
over, DBN shows several advantages compared to other methods in that pre-
training improves the model performance by avoiding overfitting and enhancing
the model generalization (Pinaya et al., 2016). In time critical applications, like
classification of work activities in construction sites, a fast, accurate, and reliable
inference phase is of primary importance;

• we propose a statistically optimized set of features obtained as a series of statis-
tics evaluated from mel-frequency cepstral coefficients (MFCCs) (Chu et al.,
2009). In order to provide a robust set of features, our method assesses the
minimum and maximum values, alongside with the mean, standard deviation,
skewness and kurtosis of MFCCs, evaluated over different (possibly, overlapped)
time windows in the same signal frame. The proposed set of features allows to
obtain a reduced-dimensional input while keeping robust performance in terms
of classification ability;

• we numerically evaluate the proposed architecture with existing state-of-the-art
approaches by using real-world recordings. Ten classes of multiple vehicles and
tools, normally employed in a construction sites, have been considered and used
to validate the performance of the proposed method, which proves the reliability,
feasibility, and applicability of the proposed method in a real industry. Inter-
estingly enough, we expect that the carried out numerical performance com-
parisons support the conclusion that the proposed architecture outperforms both
traditional ML and other DL approaches;

• we propose a possible practical and real-time application of the proposed method
aiming at providing a reliable and prompt response. In order to mitigate the
rapid degradation possibly caused by variations of an environmental condition in
which audio sources are recorded, we adopted an approach executing majority
voting over time windows that collects a certain number of adjacent frames. The
decision is in turn made by the majority of the produced labels over each window,
which is expected to maintain and enhance the performance of the proposed
method under diverse situations and environments.
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We expect that the proposed approach will provide a significant impact on advanc-
ing real-world data analyses of construction projects with advanced and consistent per-
formance and accuracy of audio-based work activity identification.

The rest of the paper is organized as follows. Section 2 shows the related literature.
Section 3 describes the proposed approach in terms of both used architecture and set
of features. Section 4 introduces the experimental setup, while Section 5 shows the
obtained numerical results. Section 6 is dedicated to describe a possible practical and
real-time application of the proposed method. Finally, Section 7 concludes the paper
and outlines some future works.

2. Related work

2.1. Audio classification

In this subsection, we present a literature review on the audio classification ap-
proaches. Specifically, three lines of research can be outlined: ESC, security monitor-
ing and construction site monitoring.

Environmental sound classification. In environmental sound classification, so far re-
sults have been obtained by using several classic acoustic models such as hidden Markov
models (HMM), Gaussian mixture models (GMM), support vector machines (SVM),
and so on (Barchiesi et al., 2015; Chachada & Jay Kuo, 2013). HMM is a parametric
representation of time-varying features that simulate the human language process. It
needs a large number of samples for time-consuming training (Su et al., 2011). GMM
is a probability density estimation model that can fit all probability distribution func-
tions, but it has a strong dependence on data and demonstrates sensitive to data noise
(Barchiesi et al., 2015; Chachada & Jay Kuo, 2013). On the other hand, SVM maps the
feature vectors from input space to a high-dimensional Hilbert space by using kernel
tricks and seeks an optimal hyperplane in the high-dimensional space to classify data at
the price of a high computational complexity (Dhanalakshmi et al., 2009). But it cannot
solve the problems of large-scale training samples that lead to a large or prohibitively
huge kernel matrix (Sharan & Moir, 2016). With the rise of more powerful comput-
ers, a variety of new artificial neural networks (ANNs) have also been introduced for
acoustic modeling (Chachada & Jay Kuo, 2013).

In the literature, it is possible to find several instances of successful applications
in the field of ESC that make use of DL techniques (Goodfellow et al., 2016; Abeßer,
2020). Most of these approaches rely on the use of a convolutional neural network
(CNN), particularly efficient in capturing spatial information (Abdoli et al., 2019). For
example, in the work of Piczak (2015a), the author exploits a 2-layered CNN working
on the spectrogram of the data to perform ESC, reaching an average accuracy of 70%
over different datasets (Piczak, 2015b). Other approaches, instead of using handcrafted
features such as the spectrogram, perform end-to-end environmental sound classifica-
tion obtaining higher results with respect to the previous ones (Tokozume & Harada,
2017). The MelNet architecture described in Li et al. (2018) has been proven to be re-
markably effective in environmental sound classification. This architecture uses a com-
bination of two deep CNNs (DCNNs) to classify environmental sound data (like rain,

5



dogs, cats, engines, trains, airplanes, etc.). Some approaches, like that in Boddapati
et al. (2017), also exploit the intrinsic characteristic of CNNs to perform classification
by processing the audio spectrogram as an image.

Another successful approach is based on recurrent neural networks (RNNs) that are
good at dealing with time series information (Goodfellow et al., 2016; Schmidhuber,
2015), Specifically, RNNs are used together with CNNs to take into account the tem-
poral structures of audio signals. Works in Phan et al. (2017) and Sang et al. (2018)
show the potential suitability of such approach by obtaining high accuracy on real-
world dataset. Often, in order to avoid exploding or vanishing gradient issues, long
short-term memory (LSTM) networks, which are a special type of RNN with gating
units, have been applied to the input audio sequence (Bae et al., 2016).

Security monitoring. Regarding the automatic security monitoring, audio-based ap-
proaches generally fall under the umbrella of the Computational Auditory Scene Anal-
ysis (CASA) (Wang & Brown, 2006), whose aim is to successfully analyze a stream
of continuous audio to identify and isolate the sources of interest contained in it. Usu-
ally, the audio can be acquired by using a single microphone, (large) acoustic arrays
(Abu-El-Quran, 2006; Scardapane et al., 2015), distributed sensors (Sallai et al., 2011)
or sets of smart sensors (Maijala et al., 2018). The sound identification and classi-
fication for monitoring purposes are usually performed by machine learning and/or
deep learning technique (Fu et al., 2011; Barchiesi et al., 2015; Abeßer, 2020). There
are many practical applications of audio monitoring. For example, there exists a vast
literature regarding speech discrimination (Maganti et al., 2007; Zhang et al., 2004),
vehicle recognition (Duarte & Hu, 2004; Hsieh et al., 2006) and weapon classification
(Jin et al., 2009; Sallai et al., 2011). In addition, due to the maturity of the field there
exist several commercial and open-source products that perform these tasks in specific
domains, such as airports control (Aldeman et al., 2016).

Construction site monitoring. Traditional approaches to the manual collection of on-
site work data and human-based construction project monitoring are time-consuming,
inaccurate, costly, and labor intensive (Navon & Sacks, 2007). With the evolution of in-
formation technology, the construction industry has been seeking state-of-art field data
collection and analysis methods to enhance construction project monitoring and robust
field management (Cho et al., 2017). The growing demand for improving real-time
field data collection and site monitoring has led to a paradigm shift in new intelli-
gent construction management (Taghaddos et al., 2016). Various field data collection
methods have been studied and implemented in construction project management such
as GPS, ultra-wide band (UWB), and sensors (Cheng & Teizer, 2013). Several re-
cent studies (Golparvar-Fard et al., 2015; Seo et al., 2015) also have used construction
field images such as daily construction photography to explore automatic image-based
progress monitoring.

Studies on sound identification of construction site activities, involving signal pro-
cessing and audio classification, have primarily focused on four main areas: signal
analysis, feature extraction, model training, and model testing (Sharan & Moir, 2016).
Some studies (Cheng & Teizer, 2013; Cheng et al., 2017; Cho et al., 2017; Zhang et al.,
2018) have applied various algorithms such as the support vector machine (SVM) and
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the Hidden Markov model (HMM) to test and evaluate the audio-based classification
of the activity types related to construction operational equipment. In addition, authors
in Xie et al. (2019) adopt the k-NN classifier for sound classification based on extracted
features of selectively retrieved sound data, assisted by a construction schedule in the
XML format extracted from a construction scheduling software. A comprehensive
comparison of the performance of several classifiers applied to several construction
sites audio signals can be found in Lee et al. (2020).

More recently, DL techniques demonstrate their effectiveness by obtaining a high
accuracy in classification of construction site activities (Sherafat et al., 2020). The
work in Rashid & Louis (2019) exploits a RNN for analyzing time-series obtained
by several sensors located on construction machines. Among other approaches, the
most common use DCNNs applied to audio spectrograms. This kind of approach is
exploited in Maccagno et al. (2021) whose aim is to develop an application able to
recognize vehicles and tools used in construction sites, and classify them in terms of
type and brand. This task has been tackled with a neural network approach, involving
the use of a DCNN, which will be fed with the mel spectrogram of the audio source
as input. However, the classification task presented in this paper is limited to only five
classes extracted from audio files collected in several construction sites, containing in
situ recordings of multiple vehicles and tools. Finally, Scarpiniti et al. (2020) propose a
deep RNN (DRNN) approach, based on LSTM units (Goodfellow et al., 2016), for the
classification of real-world data recorded in construction sites. Both these last methods
provide very high accuracy in classifying the recorded audio data.

2.2. DBN approaches for audio
In this subsection we present a literature review on the deep belief network (DBN),

with a particular focus on the audio classification.
DBNs were the first deep network models that successfully worked in practice

(Goodfellow et al., 2016). The main aim of DBNs is to learn a layer-wise and un-
supervised abstract representation of the input data in a hierarchical model. It has been
demonstrated that DBNs are compact universal approximators (Le Roux & Bengio,
2010; Montufar et al., 2011) and that they behave very well on small and medium size
datasets (Bondarenko & Borisov, 2013).

Since their first appearance in 2006 (Hinton et al., 2006), DBNs have received
much interest from researchers and have been widely used to solve problems in signal
processing, speech recognition and many other fields (Bondarenko & Borisov, 2013;
Hamel & Eck, 2010; Mohamed et al., 2012; Zhang & Wu, 2013). However, to the
best of our knowledge, DBNs have been amply exploited for speech signals and re-
lated application (Hinton et al., 2012) but they were rarely used for recognizing and
classifying environmental sounds that are relatively unstructured. Just authors in Xue
& Su (2015) use the DBN model to recognize auditory scenes of typical indoor and
outdoor scenarios (inside vehicle, beach, train station, street, restaurant, raining, etc.)
by discovering unsupervised features and generating high-level descriptions of scene
audio. Some recent extension of DBNs are related to their convolutional version (Lee
et al., 2009; Li et al., 2019), but they are mainly used for image processing.

In these state-of-the-art works, a feature vector is used to set the states of the visible
units on the lowest (input) layer, then the DBN is first pre-trained one layer at a time
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by using an unsupervised learning procedure. Once the pre-training is completed, the
resulting feed-forward neural network is fine-tuned in a discriminative way by using the
back-propagation algorithm to slightly adjusts the weights in every layer to optimize
them for the classification (Xue & Su, 2015; Mohamed et al., 2012).

Differently from the literature reviewed above, in this paper we focus our attention
on the challenging task of real-time monitoring of construction sites by exploiting the
powerful representation provided by audio signals, which can be recorded, transmitted,
saved and analyzed in a simpler way with respect video recordings. In addition, since
we need of a high performance, we expect that DL techniques can guarantee a suffi-
cient accuracy to be used in real-time monitoring systems, by trying to keep limited
the inference time. Due to their nice trade-off between accuracy, training time, and in-
ference time among other DL techniques, the attention of the paper is devoted towards
the DBN architectures.

3. The proposed approach

The proposed approach consists in using a DBN, which is a learning model based
on deep neural networks having capability of unsupervised pre-learning. DBN is com-
posed of multiple modules stacked each other. After an unsupervised layer-wise learn-
ing, a DBN can be further fine-tuned by using a supervised learning (i.e., using class
labels) in order to perform the final classification. The DBN is fed with a set of feature
based on the MFCCs. Specifically, six statistics are evaluated from MFCCs over differ-
ent (possibly, overlapped) time windows in the same signal frame. The proposed set of
features makes the classification more robust with respect to environmental changes.

In the following subsections, we provide a detailed description of the feature ex-
traction procedure and of each block of the used architecture.

3.1. Feature extraction

In the process of audio classification, feature extraction is the most important step
before the choice of a suitable classification technique (Mierswa & Morik, 2005). The
assessment of several different features, extracted from audio samples or signals, has
been discussed in the literature (Jiang et al., 2002). These features can regard both the
time and the spectral domains (Lu et al., 2002; Scardapane et al., 2013). For exam-
ple, (Hiyane, 2001) presented a signal processing-based system to classify five types
of single impulsive sounds, whose features are based on peak and reverberation times.
Often, basic statistics such as the mean and variance of the signal have been used as the
main features for classification. As an effective alternative, many researchers started
using the features such as Mel-Frequency Cepstral Coefficients (MFCCs) because they
are time-invariant timbral descriptors and of reliable classification results (Zheng et al.,
2001; Chu et al., 2009; Mendes da Silva et al., 2020). Several works used MFCC fea-
tures alongside calculating mean and variance for each sound class (Chu et al., 2009).

Although, the use of mean and variance can significantly decrease the size of input
dimension, it could not be a robust choice in a practical context due to the environ-
mental variability introduced in the real-world recordings. This issue is further worsen
by considering challenging environments, such as construction sites. Motivated by
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Figure 1: The whole process used for the feature extraction phase.

these considerations, in this work, we propose to take into consideration Ns time statis-
tics extracted from the MFCCs. Specifically, we consider the following six aggregate
statistics: the minimum and maximum values of MFCCs, and the first, second, third
and fourth moments (i.e., mean, standard deviation, skewness and kurtosis) of MFCCs.
These statistics are evaluated over different (possibly, overlapped) time windows in the
same signal frame.

In this paper, we consider a total of Nmfcc = 64 MFCC coefficients. The MFCCs
are extracted by considering a window size of L = 2048 sample with an hop size of
H = 512 samples. This implies that an audio frame of TF = 100 ms, equivalent to
4410 samples when a sampling frequency FS = 44,100 Hz is used, generates 9 vectors
of 64 MFCCs. Hence, each frame of audio input generates a set of 64 × 9 parameters.
Then the previous six statistics are evaluated along the time index, obtaining a total
of NF = 6 × 64 = 384 features per frame. The list of these 384 features generates an
instance of the dataset. The whole process of feature extraction is graphically illustrated
in Fig. 1, while the used parameters in the process are listed in Table 1.
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Table 1: Main parameters used in the feature extraction process.

Description Parameter Value

Sampling frequency FS 44100 Hz
Frame duration TF 100 ms
Number of MFCCs Nmfcc 64
Number of statistics Ns 6
Number of features NF 384
Analysis window size L 2048
Hope size H 512

3.2. Deep Belief Network (DBN)

The extracted features will be used as input to a deep belief network (DBN). DBN
is a particular deep architecture composed by stacking several computational layers
formed by restricted Boltzmann machines (RBMs) one on the top of the other, as de-
picted in Fig. 2, and they incorporate both unsupervised pre-training and supervised
fine-tuning. The unsupervised pre-training is used to obtain data distribution without
the need of labels (Hinton et al., 2006). DBNs are also able to nicely scale on graphical
processors for big data analytics (Raina et al., 2009; Chen & Lin, 2014). Although
DBNs are not the most recent architecture, they show several advantages compared to
other methods in that pre-training improves the model performance by avoiding over-
fitting and enhancing the model generalization such as in presence of background noise
(Pinaya et al., 2016). This benefit is critical in construction sites given the limited num-
ber of samples available due to the difficulties in obtaining high quality recordings.

Each of single RBMs that compose the DBN is trained by an unsupervised layer-
wise procedure by exploiting the contrastive divergence (CD) algorithm (Hinton et al.,
2006; Fischer & Igel, 2014). The learned weights are then copied to a deep neural
network (DNN). When used for the classification tasks, a top output layer is added
to the DNN in order to make a prediction of the correct class label, i.e, the type of
tool and equipment we are interested to classify on construction sites. Usually, this
output layer uses a softmax function for the multi-class classification: the softmax is
used to calculate a probability for every possible class (Mohamed et al., 2012). Note
that the whole stack is a hybrid generative model whose top two layers are undirected
(they form the final RBM in the stack) while the lower layers have top-down directed
connections (Goodfellow et al., 2016), as shown in Fig. 2a

In the following subsections, we briefly describe the RBM, its unsupervised learn-
ing algorithms and the final fine-tuning through the back-propagation algorithm.

3.2.1. Training of RBMs
A RBM, also known as Bernoulli RBM, is a particular network composed by two

layers of generally binary units (Goodfellow et al., 2016; Fischer & Igel, 2014), as
shown in Fig. 3. Real-valued units are also possible, as shown next in this section.
The first layer, called visible layer, represents the observed data and it is composed of
NV units vi, i = 1, 2, . . . ,NV directly fed by the data. In our case, the visible layers is
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Figure 2: (a) A schematic representation of a Deep Belief Network (DBN) with three hidden layers. (b) A
Layer-wise block representation of a DBN for classification.

directly fed by the NF features extracted from the audio signals, i.e., NV = NF . The
second layer, called hidden layer, is used, instead, to capture the dependencies between
the observed data, and it is composed by NH units h j, j = 1, 2, . . . ,NH . Every unit in
the visible layer is connected to all the units of the hidden layer and vice versa, but
there are no connections between units in the same layer. The connections between the
visible and hidden layers are of undirected type. Additionally, we denote with bi and
c j the biases of the visible and hidden units, respectively.
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Figure 3: A Restricted Boltzmann Machine (RBM).

Let us denote with v =
[
v1, v2, . . . , vNV

]T and h =
[
h1, h2, . . . , hNH

]T , the vectors
collecting the visible and hidden units of a RBM, respectively. Hence, for a joint
configuration, (v,h) of visible and hidden units it is possible to evaluate an energy
function given by:

E (v,h) = −

NV∑
i=1

bivi −

NH∑
j=1

c jh j −

NV∑
i=1

NH∑
j=1

wi jvih j, (1)

where vi, h j are the binary states of visible unit i and hidden unit j, while bi, c j are
their biases, and wi j is the weight of the link between them (see Fig. 3). By using
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a matrix notation, let us denote the coefficients of biases as the vectors b = {bi}
NV
i=1,

c =
{
c j

}NH

j=1
and weights as the matrix W =

{
wi j

}
, for i = 1, . . . ,NV and j = 1, . . . ,NH .

In the following, we denote the set of all the RBM parameters in a compact way as
θ = {W,b, c}.

The RBM uses the energy function in (1) to assign a probability to every possible
pair of a visible and a hidden vector. For example, the probability of a visible vector v
is given by summing over all possible hidden vectors h, as:

p(v) =
1
Z

∑
h

e−E(v,h), (2)

where Z =
∑

v,h e−E(v,h) is a normalizing factor, called the partition function.
When both the visible and hidden units are binary, the sampling probabilities are

very easy to sample. Specifically, we obtain:

p
(
h j = 1 | v, θ

)
= σ

bi +

NV∑
i=1

wi jvi

 (3)

and

p (vi = 1 | h, θ) = σ

ci +

NH∑
j=1

wi jh j

 , (4)

where σ(x) = 1/ (1 + e−x) denotes the sigmoid function.
RBMs are usually trained by the gradient descent algorithm on the log-likelihood

function:

L(θ | v) = p(v | θ) = log
1
Z

∑
h

e−E(v,h) = log
∑

h

e−E(v,h)
− log

∑
v,h

e−E(v,h). (5)

The derivative of the log-likelihood (5) of a training set {vn}
N
n=1 with respect to the

weights wi j is very simple (Fischer & Igel, 2014):

1
N

N∑
n=1

∂ log p(vn)
∂wi j

=
〈
vih j

〉
data
−

〈
vih j

〉
model

(6)

where 〈·〉data and 〈·〉model are the expectations under the distributions defined by the data
and the model, respectively.

An exact maximization of the log-likelihood function is infeasible in large RBMs
because the term

〈
vi h j

〉
model

has an exponentially computational complexity for the
derivative evaluation. However, there exist a very efficient approximate training pro-
cedure, known as contrastive divergence (CD) (Hinton, 2002). This procedure begins
by setting the states of the visible units to a training vector. Subsequently, the states of
the hidden units are computed all together by (3). Once binary states have been chosen
for the hidden units, a “reconstruction” is produced by setting each new ṽi to one with
a probability given by (4) and, finally, the states of the hidden units are updated again
with (3) obtaining h̃ j. This forms a one step of the a Gibbs sampling procedure, which

12



consists of an alternating updating of the hidden units by using (3) followed by updat-
ing the visible units by using (4) and so on more and more again (Fischer & Igel, 2014).
Using the contrastive divergence, the update equation at the t-th iteration becomes:

wi j(t + 1) = wt(t) + η
(〈

vi h j

〉
data
−

〈̃
vi h̃ j

〉
reconstruction

)
. (7)

In a similar way, the biases bi and c j can be updated as:

bi(t + 1) = bi(t) + η
(
vi − ṽi

)
, (8)

and
c j(t + 1) = c j(t) + η

(
h j − h̃ j

)
. (9)

The learning algorithms in (7), (8) and (9) are iterated until the convergence, usually
for a number NR

e of epochs.
When the input data is real-valued, such as the feature extracted by an audio signal,

it is more natural to use the Gaussian-Bernoulli RBM, which considers input variables
as linear with a Gaussian noise. In this case, the energy function in (1) is modified as
follows:

E (v,h) =

NV∑
i=1

(vi − bi)2

2σ2
i

−

NH∑
j=1

c jh j −

NV∑
i=1

NH∑
j=1

vi

σi
h jwi j, (10)

where σi is the standard deviation of the Gaussian noise for the visible unit i.
The two conditional distributions in (3) and (4), for the GBRBM become:

p
(
h j = 1 | v, θ

)
= σ

bi +

NV∑
i=1

vi

σi
wi j

 (11)

and

p (vi = 1 | h, θ) = N

ci + σi

NH∑
j=1

h jwi j, σ
2
i

 , (12)

respectively, whereN
(
µ, σ2

i

)
is a Gaussian function with mean µ and variance σ2

i . For
the training with the CD algorithm, the data are usually normalized to zero mean and
unit variance, and hence the standard deviations are set to one. This simplifies the
learning and the unique difference with respect the binary RBM is the use of (12) with
σi = 1 in the first layer, instead of (4), while the rest remains unchanged.

3.2.2. Stacking RBMs
A DBN is obtained by stacking L RBMs on the top of each other, as shown in

Fig. 2b. The hidden state of the l-the layer, for l = 1, 2, . . . , L, is denoted as hl =[
hl

1, h
l
2, . . . , h

l
N l

H

]T
, where N l

H is the number of hidden units in the l-th layer.
The visible layer v of the first RBM is clamped directly with the features extracted

from the input signal, and a hidden state h1 is produced and a set of weights θ1 ={
W1,b1, c1

}
is learned. The hidden state h1 of the first layer is then used as input
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to the second RBM, in order to produce a hidden state h2 and a set of parameters
θ2 =

{
W2,b2, c2

}
. Again, the hidden state h2 of the second layer is then used as input

to the third RBM and an estimate of the hidden state h3 and the set of parameters
θ3 =

{
W3,b3, c3

}
is obtained. The process is continued until reaching the top layer L,

generating the last hidden state hL.
Upon the l-th layer of RBM is learned, its parameters θl are frozen, and we pass to

train the (l + 1)-th layer. When we have learned all the L layers, we obtain the directed
generative model called a deep belief network (DBN) that has L different parameter
sets (L weight matrices and 2L bias vectors) between the first lower layer and top L-th
higher one. Since the feature are usually real-valued, the first layer is composed by
a Gaussian-Bernoulli RBM, while all the other layers implement the simple Bernoulli
(binary) RBM.

3.2.3. Supervised fine-tuning
In order to use the DBN as a classifier, we then simply add a (top) final “softmax”

layer of label units representing the possible K class values yk, k = 1, 2, . . . ,K, i.e.,
the number of tools and equipments we are interested to classify on construction sites.
In summary, the generative DBN has been used for initializing all the detecting layers
of a deterministic feed-forward DNN with parameters equal to θl, for l = 1, 2, . . . , L.
Hence, we have to train the whole DNN in a discriminative way, by using a back-
propagation fine-tuning. After the fine-tuning, the outputs of each layer is not more
binary sampled values, but they become real-valued.

For the final softmax layer, the probability of the q-th label yq, given the real-valued
activations of the final layer of features hl, is defined as:

p
(
yq | hL

)
=

exp
(
cq +

∑
i hL

i wiq

)
∑

k exp
(
ck +

∑
i hL

i wik

) , (13)

where cq is the bias of the q-th label and wiq is the weight from hidden unit i in layer L
to label q.

The discriminative training must learn the set of weights wiq from the last layer
of features to the label units. However, this training has not to destroy the feature
discovered by the previous unsupervised pre-training: it simply fine-tunes existing hid-
den layers. This fine-tuning is performed by the classical back-propagation algorithm
applied to the corss-entropy loss function:

L = −

K∑
k=1

dk log(yk), (14)

where dk is the k-th target label and yk the (predicted) k-th output label. Since the back-
propagation is a gradient-based minimization techniques, a learning rate µ is used. The
training is performed over all the training samples for a certain number of epochs Ne,
or anyway until the network convergence.

The complete algorithm to train the proposed architecture is summarized in Algo-
rithm 1. The output of the training algorithm, is the full set of the network parameters
θl and the set of weights wiq of the output layer.
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Algorithm 1 — DBN training algorithm
Input:

• the input data x, i.e., the features extracted from audio signals;
• the number of layers L, input units NV and hidden units for layer N l

H ;
• the number of classes K;
• the learning rates η and µ;
• the number of RBM epochs NR

e and DBN epochs Ne.
Output:

• the trained set of parameters θl, for l = 1, 2, . . . , L;
• the NL

H × K output weights wiq.

1: Initialize weights W1 and biases b1 and c1 . (visible layer)
2: Initialize the iteration index t = 0
3: Set the visible state to the input v = x
4: while t < NR

e do
5: Evaluate the hidden state h1 by Eq. (3)
6: Perform Gibss sampling obtaining ṽ1 and h̃1 with Eqs. (4) and (3)
7: Update the weight matrix W1 with Eq. (7)
8: Update the bias vectors b1 and c1 with Eqs. (8) and (9)
9: t = t + 1

10: end while
11: for l = 2 : L do . (hidden layers)
12: Initialize the iteration index t = 0
13: Initialize weights Wl and biases bl and cl

14: Set the visible state to the output of the previous layer v = hl−1

15: while t < NR
e do

16: Evaluate the hidden state hl by Eq. (3)
17: Perform Gibss sampling obtaining ṽl and h̃l with Eqs. (4) and (3)
18: Update the weight matrix Wl with Eq. (7)
19: Update the bias vectors bl and cl with Eqs. (8) and (9)
20: t = t + 1
21: end while
22: end for
23: Stack the L trained RBMs on the top of each other
24: Add a softmax layer . (output layer)
25: Initialize weights and biases of the output layer
26: for ep = 1 : Ne do
27: Perform fine-tuning by back-propagation of the whole architecture
28: end for
29: Evaluate the final output of the architecture
30: return: θl and the set wiq

4. Experimental setup

In this section, we describe the experimental setup. Specifically, we introduce the
used dataset and its pre-processing.

4.1. Dataset

Audio data of equipment operations has been collected in several construction sites
consisting of diverse construction machines and equipments. The activities of these
machines were observed during certain periods, and the audio signals generated were
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recorded accordingly. A Zoom H1 digital handy recorder has been used for data col-
lection purposes. All files have been recorded by using a sample rate of FS = 44,100
Hz and different files in WAV format for each machine are available. The different files
are referring to a single machine per class recorded during these are in use and working
in similar environmental conditions.

Unlike artificially built datasets, when working with real data different problems
arise, such as noise due to weather conditions and/or workers talking among them-
selves. Classes which did not have enough usable audio (too short, excessive noise,
low quality of the audio) were ignored for this work.

Thus, we focused our work on the classification of a reduced number of classes;
specifically we consider 10 classes related to 5 different machinery (excavators of dif-
ferent size, bulldozers, compactors, concrete mixer and shovel) from 6 different manu-
factures. Details on such classes are shown in Table 2. For all of the ten classes, after
pre-processing, approximately 97 minutes of clean audio are available and have been
used to train, validate, and test the proposed architecture.

Table 2: Description of the used dataset and related 10 classes.

N. Class Description

1 CAT320D Hydraulic excavator Caterpillar 320D
2 CAT320E Hydraulic excavator Caterpillar 320E
3 CATC5K Dozer Caterpillar D5K
4 Hitachi50U Compact excavator Hitachi ZX50U
5 IRCOM Ingersoll Rand Compactor
6 JC3CX Dozer JCB 3CX
7 JD50D Compact excavator John Deere 50D
8 JD50G Compact excavator John Deere 50G
9 KomatsuPC200 Hydraulic excavator Komatsu PC200
10 ConcreteMixer Concrete mixer Mercedes-Benz Actros

4.2. Preprocessing

All files have been preemptively pre-processed and the silence segments (frames
where the root mean square (RMS) is under the threshold of −30 dB) have been re-
moved. In order to feed the network with enough and proper data, each audio file for
each class is segmented into fixed length frames. In this work, we consider frames of
TF = 100 ms, corresponding to size of 4410 samples. A total of 58,204 frames have
been extracted.

In addition, also a standardization procedure has been used. A standard scaler
operation has been applied to the data matrix, in order to transform data to zero mean
and unit variance.

In order to train, validate, and test our architecture, we split the original audio files
into three parts: training samples (52% of the original dataset), test samples (25% of
the original dataset), and validation samples (23% of the original dataset) used to find
the optimal setting of the hyper-parameters. Details about the number of instances
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for every class in each set are provided in Table 3. This split is equivalent to about
50 minutes of audio data for training the architecture, 25 minutes for testing it, and
22 minutes for its validation. For the training process, the audio data is about 5 min-
utes for class, for the testing the length varies between 1.6 and 4 minutes, while for
the validation the length is just over 2 minutes. After the partition in frames, we ob-
tain 30,152 training, 13,200 validating, and 14,852 testing audio segments, all with
384 features per frame, as described in Section 3.1. We remark that data in each split
(training/validation/test) belongs to different files, which are referring to the same ma-
chine and have been recorded on the same construction site. However, they have been
recorded at different time (not always in the same day) and involve different operation
tasks.

Table 3: Number of instances of the used dataset.

N. Class Training Validation Test

1 CAT320D 3,030 1,307 1,333
2 CAT320E 3,068 1,273 1,022
3 CATC5K 2,995 1,338 997
4 Hitachi50U 3,013 1,322 966
5 IRCOM 2,979 1,352 991
6 JC3CX 3,048 1,291 2,554
7 JD50D 3,028 1,309 1,033
8 JD50G 2,978 1,353 1,827
9 KomatsuPC200 2,979 1,352 2,180
10 ConcreteMixer 3,034 1,303 1,949

Total 30,152 13,200 14,852

Using the Python library librosa1 (McFee et al., 2015), we extract the waveform
of the audio tracks from the audio samples and, using the same library, we generate
the log-scaled Mel spectrogram of the signal and evaluate the features. Simulations
have been carried out by using a computer equipped with an Intel® i7-8700K CPU @
3.70GHz, with an INVIDIA GeForce GTX 1080.

A bi-dimensional projection of a sub-set of the training instances, by using the
t-distributed stochastic neighbor embedding (t-SNE), is shown in Fig. 4. Specifically,
t-SNE is a dimensionality reduction technique, which is particularly suited for the visu-
alization of high-dimensional datasets (van der Maaten & Hinton, 2008). This method
tries to keep similar instances close and dissimilar instances apart. Fig. 4 clearly shows
that the considered classes are quite separated and bodes well that they will be nicely
separable in the higher-dimensional feature space, confirming the validity of the pro-
posed set of features.

1Available at: https://librosa.github.io/librosa/
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Figure 4: Bi-dimensional projection of the feature matrix using the t-SNE technique.

5. Numerical results

In this section we present some numerical results in order to demonstrate the effec-
tiveness of the proposed approach and the suitability of the DBN for the classification
of construction site tools and machinery. The results will be evaluated in terms of the
overall accuracy (i.e., the proportion of instances that are correctly classified) and other
well known metrics used in machine learning applications, specifically: precision, re-
call and F1-score (Powers, 2011; Alpaydin, 2014). The confusion matrix will be also
considered.

The training of the RBMs and the subsequent back-propagation fine-tuning have
been performed by a mini-batch updated. A mini-batch is the amount of sample in-
stance presented to the network at each learning step. The dimension B of a mini-batch,
also called batch size, should be accurately chosen since it represents a trade-off: small
values provide fast convergence at the cost of a noisy gradient evaluation, while large
values show slow convergence but accurate estimates of the error gradient. In this pa-
per, we have selected the value B = 64 that provides good and accurate results. Inside
a mini-batch, the instance are presented in a random order, to avoid bias due to the
position order. Moreover, the final fine-tuning optimization is always performed by a
dropout technique, with probability pdo = 0.5.

The main parameters used in simulation, obtained by considering the validation
set, are reported in Table 4. Some of these parameters have been set heuristically by
repeated trials. The rest have been selected by performing a grid search approach over
suitable sets of values. To this purpose, Fig. 5 shows the results of the overall accuracy
with respect the DBN learning rate µ and the number of back-propagation epochs Ne.
The other parameters assume the values listed in Table 4. The figure clearly shows that
the best results are obtained for µ = 0.02 and Ne = 200, respectively. Hence, in the rest
of this section we assume the latter values.

A first set of numerical results are related to the performance evaluation at varying
the number L of hidden layers in the DBN. Since each layer represents feature auto-
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Table 4: Main parameters of the adopted approach and related meaning.

Description Parameter Value

Mini-batch size B 64
Number of MFCC coefficients Nmfcc 64
Number of features NF 384
Number of hidden layers L 3
Number of hidden units per layer N l

H 256/256/128
RBM learning rate η 0.0005
RBM epochs NR

e 10
DBN learning rate µ 0.02
DBN epochs Ne 200
Dropout probability pdo 0.5

0.010
0.012

0.014
0.016

0.018
0.020

Ne

100

120

140
160

180
200

Ac
cu

ra
cy

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 5: Overall accuracy vs. learning rate vs. number of epochs on the validation set.

matically extracted from the previous layer, a correct number of these hidden layers
can largely help for a high accuracy in the classification process. Overall performance
metrics and training time (in seconds) of the proposed approach, for different number
L of hidden layers, are shown in Table 5. This table clearly indicates that a suitable
number of hidden layers is 3. In fact, if the number L of layers is small the considered
metrics are lower than the best ones, otherwise, if it is too large, the performance tends
to rapidly and drastically drop off.

A second set of numerical results are related to the performance evaluation at vary-
ing the number Nmfcc of MFCCs in the feature extraction process. Since this param-
eter controls the dimension NF of the feature space, the classification performance is
strongly dependent of Nmfcc. Overall performance metrics and training time (in sec-
onds) of the proposed approach for different number Nmfcc of MFCCs are shown in
Table 6. Performance, in terms of all the considered metrics, slightly decreases at di-
minishing and increasing of the number of MFCCs with respect to an optimal number
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Table 5: Overall performance metrics and training time (in seconds) of the proposed approach for different
number of hidden layers obtained on the validation set.

L Units per Layer Accuracy Precision Recall F1 Training time

2 [256, 128] 0.9626 0.9624 0.9628 0.9624 1368
3 [256, 256, 128] 0.9820 0.9823 0.9820 0.9821 2837
4 [256, 256, 256, 128] 0.9160 0.9162 0.9140 0.9151 4795
5 [256, 256, 256, 256, 128] 0.7602 0.8562 0.7602 0.7936 7197

of coefficients. However, a larger number of MFCCs not only tends to excessively
increase the computational load, but is also not beneficial since MFCCs represent in-
creasing levels of spectral details in higher bands where the considered sounds have a
limited contribution. This table clearly indicates that a suitable number of MFCCs is
64, providing NF = 384.

Table 6: Overall performance metrics and training time (in seconds) of the proposed approach for different
number of MFCCs obtained on the validation set.

Nmfcc NF Accuracy Precision Recall F1 Training time

96 576 0.9626 0.9629 0.9626 0.9626 3230
80 480 0.9740 0.9743 0.9740 0.9741 3072
64 384 0.9820 0.9823 0.9820 0.9821 2837
48 288 0.9712 0.9712 0.9712 0.9712 2556
32 192 0.9533 0.9530 0.9534 0.9532 2360

For comparison purpose, the same numerical test has been performed by using the
whole set of MFCCs features, without the evaluation of the aggregate statistics. In this
case, we experiment a diminishing of the accuracy and other performance. Specifically,
the best accuracy for Nmfcc = 64 was 0.82. Also the training time is higher, of the order
of 4200 seconds.

This last numerically setup (i.e., L = 3 layers, µ = 0.02 and Ne = 200 epochs)
with a number of MFCCs equal to Nmfcc = 64 has been chosen as the optimal set of
hyper-parameters. Hence, the proposed architecture with this set of hyper-parameters
has been evaluated on the test set: a detailed per-class metric evaluation is shown in
Table 7, which corresponds to an overall accuracy of 97.79%. From Table 7, it is
evident that the majority of classes are well classified. However, some classes show a
lower accuracy. Specifically, also in accordance with the confusion matrix in Fig. 6b,
class 6 (JC3CX) and class 9 (KomatsuPC200) provide the worst performance, in any
case greater than 96% in terms of precision and recall.

In the following, in order to better understand the behavior of the DBN for the
classification, especially for the couple of classes that provides a lower performance,
we analyze the obtained confusion matrices. In particular, the confusion matrices after
50 and 200 epochs are shown in Figures 6a and 6b, respectively. From a careful ex-
amination of such matrices, we can see that the worst performing classes (JC3CX and
KomatsuPC200) show the greater number of false positive between them, hence many
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Table 7: Per-class performance metrics and their weighted average obtained on the test set.

Class Precision Recall F1-score Support

1 0.9812 0.9747 0.9779 1333
2 0.9873 0.9665 0.9768 1022
3 0.9880 0.9666 0.9772 997
4 0.9896 0.9785 0.9840 966
5 0.9899 0.9859 0.9879 991
6 0.9608 0.9773 0.9690 2554
7 0.9787 0.9902 0.9844 1033
8 0.9787 0.9770 0.9778 1827
9 0.9661 0.9638 0.9649 2180
10 0.9882 0.9990 0.9936 1949

weighted avg 0.9779 0.9780 0.9779 14852

instances of the bulldozer JC3CX have been classified as the excavator KomatsuPC200
and vice-versa. Sometimes the bulldozer JC3CX has also been classified as the exca-
vator JD50G. Similar behavior for the KomatsuPC200, at times confused also for the
bulldozer CATC5K. The rest of the classes, instead, show very good results.
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Figure 6: Confusion matrix after: (a) 50 epochs and (b) 200 epochs.

The convergence behavior can be analyzed by seeing the shape of the training loss
functions. Specifically, Fig. 7 shows that the loss of the proposed network decreases
quickly for the first 100 epochs and then continues to decrease gradually until reaching
the convergence at 200 epochs. A quantitatively evaluation of the effect of the values of
the loss function, can be observed in Fig. 6 that compares the confusion matrices of the
DBN after 50 and 200 epochs, respectively. A comparison of this couple of matrices
highlights the poorer performance of the architecture after 50 epochs (corresponding
to an accuracy of 88.47%) with respect to the suggested number of 200 epochs (corre-
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sponding to a top accuracy of 97.79%). No more substantial improvements are obtained
by further increasing the number of training epochs.
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Figure 7: Training loss of the DBN for 200 epochs of learning.

Finally, we perform comparisons with other state-of-the-art approaches. Compar-
isons have been performed with both other Deep Learning methods and some standard
Machine Learning approaches. Specifically, the proposed DBN approach has been
compared with the Convolution Neural Network (CNN) in Maccagno et al. (2021)
based on the spectrogram interpreted as image, and the Deep Recurrent Neural Net-
work (DRNN) in Scarpiniti et al. (2020). Both these method showed high performance
on the same dataset. Regarding the traditional ML approaches, results have been com-
pared against the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM),
k Nearest Neighborhoods (kNN), Decision Trees (DT), Naive Bayes (NB), Quadratic
Discriminant Analysis (QDA), and the two ensemble methods of Random Forests (RF)
and AdaBoost (AB), with 500 and 100 base learners, respectively (Alpaydin, 2014).
Specifically, the used hyper-parameters are summarized in the following. MLP con-
sists in two hidden layers of 100 and 50 neurons with the ReLU activation function,
while the learning is performed by 1000 iterations with the step size set to 0.001 and an
L2 penalty term. The SVM uses the default RBF kernel with a regularization parameter
C = 1 and a kernel size γ = 1/NF . The kNN uses a number k = 3 of neighborhoods.
The DT uses the Gini impurity as information gain measure, with a minimum number
of two samples to perform a split and no pruning. The NB classifier assumes that the
likelihood of the features is Gaussian. QDA is a classifier with a quadratic decision
boundary and no regularization has been used.

Table 8 summarizes the numerical results of the considered algorithms, in terms
of the previous evaluation metrics. In addition, Table 8 also reports the training and
inference time of the compared models. These times do not consider the time for
feature extraction, but only the time needed to train the model and to predict the output
of the whole test set, respectively. The training and inference time of the traditional
ML approaches reported in Table 8 are referring to the implementation provided by the
Scikit-learn library.

Table 8 shows that the proposed DBN provides the best accuracy of 97.79% and
a similar behavior for precision, recall and F1-score. Moreover, as can be seen from
the table, from an accuracy point of view the other deep learning methods behave in
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Table 8: Overall performance metrics and training and inference times (in seconds) of the compared DL and
ML approaches.

Approach Accuracy Precision Recall F1 Training time Inference time

DBN 0.9779 0.9780 0.9779 0.9779 2837 0.430
CNN 0.9708 0.9730 0.9734 0.9732 4300 0.786
RNN 0.9671 0.9569 0.9671 0.9620 6240 1.022

MLP 0.9599 0.9599 0.9599 0.9599 118 0.115
SVM 0.9602 0.9601 0.9602 0.9601 125 66.73
kNN 0.9431 0.9436 0.9431 0.9429 5 370.2
DT 0.8692 0.8692 0.8692 0.8692 34 0.022
NB 0.6770 0.7865 0.6770 0.7034 4 0.722
QDA 0.7302 0.7737 0.7302 0.7355 11 1.635

RF 0.9614 0.9613 0.9610 0.9611 288 3.158
AB 0.8355 0.8362 0.8355 0.8329 292 2.671

a similar way, obtaining up to 97% of accuracy. The traditional machine learning
methods, instead, show results in a wider range. While some approaches (MLP, SVM,
RF and kNN) are comparable to the deep learning ones performing with an accuracy
in the range 94%–96%, the remaining others (DT, NB, QDA and AB) provided poorer
results, with lower accuracy in the range 68%–87%. The worst performing approach is
the NB, which makes too simple assumption and provides only the 68% of accuracy,
even if it is very fast, while the best among the ML approaches is RF. Decision tree
(DT), instead, provides an intermediate accuracy of 87%, however greater than that of
AB, while running in a small amount of time.

Regarding the training time, Table 8 shows that DBN obviously needs a longer
training with respect to the ML approaches, but its training time is considerably smaller
than the other considered DL approaches (CNN and RNN). However, this higher train-
ing time corresponds to a greater accuracy. Interestingly enough, a careful examination
of the last column in Table 8 shows that, despite its training time, the inference time
of the proposed DBN is considerably limited compared to the majority of the consid-
ered approaches. Just DT and MLP present a lower inference time, but only MLP can
compete in accuracy. It is difficult to compare different classifiers that presents dif-
ferent behavior for heterogeneous metrics (i.e., accuracy, training time and inference
time) and decide which could be the best model. An attempt to represent these differ-
ent metrics all together is provided in the scatterplot of Fig. 8. This figure shows each
classifier with respect to its accuracy (x-axis), its normalized training time (y-axis) and
its normalized inference time (z-axis). The normalization is performed with respect
to the worst case. In order to have a decent classifier, it should be located in the in
front bottom-right corner of the figure. This indicates that the classifier provides a high
accuracy and low training and inference time. The proposed DBN, denoted with a red
diamond, is located in the correct side of the figure and behaves significantly well com-
paring to the other approaches. In fact, despite its training time (not the higher one),
it produces a high accuracy (the best one) with a sufficiently small inference time (one
of the smallest). Since the training is usually performed offline, a fast inference (i.e.,
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a prediction of a new class label) is of primary importance in real-time scenarios and
represents a valuable characteristic of a classification model. From this trade-off point
of view, we can consider the proposed DBN as the best one. We have to remark here,
that we are searching for a fast, accurate, and reliable approach, which can be suitable
for real-time critical applications, such as classification of work activities in a construc-
tion site. DBN possesses all these characteristics that make it a suitable approach for
the enhanced classification of sounds generated in construction sites.

Figure 8: Scatterplot of the trade-off between accuracy vs. training time vs. inference time of the compared
approaches.

6. Practical application

In this section, we aim at presenting a potential real-time application of the pro-
posed architecture. Specifically, the inference results of a classification algorithm
can rapidly degrade with the changing of the environmental condition in which au-
dio sources are recorded. For example, the distance of the recording equipments, the
number of different active tools and/or machinery, the closeness to a railway or other
noisy sources, etc., can strongly reduce the obtained accuracy. Also the material on
which the machinery is working can cause a performance degradation.

In order to overcome this issue, we propose a majority voting approach over time
windows that collects a certain number of adjacent frames. Specifically, the recorded
signal is analyzed in a longer window of duration Tw, for example, of 4–5 seconds or
longer, if there is not an urgent real-time need. Since the feature for the inference are
extracted for each frame of duration TF , a total of Q = Tw/TF frames for windows are
available, each of which produces an estimated class label. A decision can then be made
by the majority of the produced labels over each window, as detailed in Fig. 9. This
is similar to the ensemble majority voting approach, well known in machine learning
(Alpaydin, 2014). Class labels predicted in each window, along with the associated
information (like, e.g., ID of the related microphone, timestamps, etc.), can be easily
saved into a database for future analytics and inferences.
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Figure 9: Basic idea of the proposed majority approach over a large window. In this example, the majority of
frames over the first window produces the class 3 as the estimated label, even if some frames disagree since
they estimate classes 1 or 2. A similar behavior is obtained for the second window and windows hereafter.
The predicted class labels are then saved into a database along with related information.

In equation, the class label ŷ over a window can be estimated as:

ŷ = arg
K

max
k=1

Q∑
i=1

ŷi,k, (15)

where ŷi,k is equal to 1 if the predicted label in the i-th frame matches the k-th class, 0
otherwise. Hence, the effectiveness of the predicted label depends on a suitable choice
of the number Q of frames. We expect that a low frame count implies a non-robust
classification, since the could happen that there is no a predominant class among the
others. On the contrary, a high value of Q causes the temporal resolution to be lost,
which is instead an important prerogative in real-time applications.

As a practical example, we propose some numerical results related to a subset of the
considered classes, for which the dataset provides recordings in different environmen-
tal conditions. Specifically, for class Hitachi50U it is available an on-board recording
that strongly differs from the out-door one. On the contrary, for classes JD50D and
JD50G, there are available other recordings made at different distances and with dif-
ferent environmental noise in background and ground material. A total of 5 minutes
for each class have been recorded and tested. Results related to these classes, in terms
of true positive rate, can be found in Table 9 that clearly shows the effectiveness of the
proposed idea. Sounds recorded in different positions and with different background
noise level are well classified by using a suitable number Q of frames. A good trade-off

between the obtained true positive rate and the temporal resolution is by considering
a number Q = 100 of frames, for which the true positive rate is close to 97% for Hi-
tachi50U and JD50D classes, and up to 91% for the JD50G one, and the window has
a length of Tw = Q × TF = 10 s, appropriate for typical construction site activities.
We observe in Table 9 that low values of Q produce a not adequate true positive rate,
which is increased by increasing Q up to 100–120, then it decreases again for higher
values of Q. In the interval 100–120, the true positive rate tends to remain constant at
a value close to its maximum. In order to prefer an adequate time resolution, we have
chosen Q = 100 frames.
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Table 9: True positive rate (in %) obtained for a different number Q of frames per window for the considered
classes.

Class Q

10 20 30 40 50 70 100 120 150 180

Hitachi50U 82.00 84.67 88.00 89.67 91.67 95.67 96.67 96.67 95.67 93.67
JD50D 84.33 90.00 95.00 96.33 96.67 96.67 96.67 96.67 95.67 94.33
JD50G 83.33 86.67 88.42 88.60 88.60 90.00 91.23 90.80 89.20 86.67

7. Conclusion

In this paper, we have presented a deep belief network (DBN) approach for the
classification of audio data of construction work and equipment operations. The pri-
mary contribution of this study resides in that such architecture works with small audio
frames and, for practical applications, the ability to perform a classification using very
short samples with a low inference time can lead to the possibility to use such a net-
work in time-critical applications in construction sites that require fast and reliable
responses, such as hazard detection and activity monitoring. Up to now, the proposed
architecture was tested on ten classes related to vehicles and tools, obtaining an over-
all accuracy up to 98%. The trade-off between accuracy, training time, and inference
time overcomes results obtained by existing studies using other machine/deep learning
algorithms and confirms that the proposed DBN can be a suitable approach for the clas-
sification of audio recorded on construction sites. The input to the DBN consists in the
concatenation of six aggregate statistics extracted from the spectral features evaluated
by the mel-spectrogram of each audio frame. A practical and real-time application of
the proposed method has been also proposed in order to apply the classification scheme
to sound data recorded in different environmental scenarios.

Future works will be conducted with an increased number of classes to cover di-
verse tools and vehicles employed in building sites, in order to lead to a more reliable
and useful system. In addition, with the well-performed classification framework, the
authors will build a real system that encompasses a wearable device for capturing and
identifying sound data in real time and rapidly reflecting the results into physical en-
vironment. Moreover, the most interesting way to extend the work would be to test
other deep learning architectures and try to combine different architectures in order to
establish which kind of neural network approach can help the audio classification in
construction sites.
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