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Abstract In this paper we show how to solve the Maximum Weight Stable Set
Problem in a claw-free graph G(V,E) with α(G) ≤ 3 in time O(|E| log |V |). More
precisely, in time O(|E|) we check whether α(G) ≤ 3 or produce a stable set with
cardinality at least 4; moreover, if α(G) ≤ 3 we produce in time O(|E| log |V |) a
maximum stable set of G. This improves the bound of O(|E||V |) due to Faenza et
alii ([2]).
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1 Introduction

The Maximum Weight Stable Set (MWSS) Problem in a graph G(V,E) with node-
weight function w : V → ℜ asks for a maximum weight subset of pairwise non-
adjacent nodes. For each graph G(V,E) and subset W ⊂ V we denote by N(W )
(neighborhood of W ) the set of nodes in V \ W adjacent to some node in W . If
W = {w} we simply write N(w). A clique is a complete subgraph of G induced
by some set of nodes K ⊆ V . With a little abuse of notation we also regard the
set K as a clique. A claw is a graph with four nodes w, x, y, z with w adjacent to
x, y, z and x, y, z mutually non-adjacent. To highlight its structure, it is denoted as
(w : x, y, z). A graph G with no induced claws is said to be claw-free and has the
property ([1]) that the symmetric difference of two stable sets induces a subgraph
of G whose connected components are either (alternating) paths or (alternating)
cycles. A subset T ∈ V is null (universal) to a subset W ⊆ V \ T if and only if
N(T ) ∩ W = ∅ (N(T ) ∩ W = W ). If T = {u} with a little abuse of notation we
say that u is null (universal) to W .
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Let G(V,E) be a claw-free graph. A subset X of V is said to be local if there
exists a node u ∈ V such that X ⊆ N [u]. Observe that, by [3], a local set contains

O(
√

|E|) nodes.

Lemma 11 Let G(V,E) be a claw-free graph and X,Y,Z,W ⊆ V four disjoint
local sets (with W possibly empty) such that Z induces a clique in G and W is null
to Z. In O(|E|) time we can either find a stable set {x, y, z} with x ∈ X, y ∈ Y ,
z ∈ Z or conclude that no such stable set exists. Moreover, if X is null to Y and
W is non-empty, in O(|E|) time we can either find a stable set {x, y, z, w} with
x ∈ X, y ∈ Y , z ∈ Z, w ∈ W or conclude that no such stable set exists.

Proof. For any node u ∈ X ∪ Y let h(u) denote the cardinality of N(u) ∩ Z. It is
easy to see that we can compute h(u) for all the nodes u ∈ X ∪ Y in overall time
O(|X∪Y ||Z|) = O(|E|) (recall that X, Y , and Z are local sets, so their cardinality

is O(
√

|E|)). Now let x̄ ∈ X and ȳ ∈ Y be any two non-adjacent nodes.

Claim (i). There exists a node z̄ ∈ Z such that {x̄, ȳ, z̄} is a stable set if and only
if h(x̄) + h(ȳ) < |Z|.

Proof. In fact, if h(x̄)+h(ȳ) < |Z| then the neighborhoods of nodes x̄ and ȳ do not
cover Z, so there exists some node z̄ ∈ Z which is non-adjacent to both x̄ and ȳ.
On the other hand, assume by contradiction that h(x̄)+h(ȳ) ≥ |Z| and still there
exists some node z̄ ∈ Z which is non-adjacent to both x̄ and ȳ. Let Z′ = Z \ {z̄}.
Since we have |N(x̄)∩Z′|+ |N(ȳ)∩Z′| = h(x̄)+h(ȳ) ≥ |Z′|+1 there exists some
node z′ ∈ Z′ which is adjacent to both x̄ and ȳ. But then (z′ : x̄, ȳ, z̄) is a claw in
G, a contradiction. The claim follows.
End of Claim (i).

Now, in O(|E|) time, we can check if there exists some pair of nodes x ∈ X and
y ∈ Y such that x, y are non-adjacent and h(x)+h(y) < |Z|. If no such pair exists,
by Claim (i) we can conclude that no stable set {x, y, z} with x ∈ X, y ∈ Y , z ∈ Z

exists. If, on the other hand, there exist two non-adjacent nodes x ∈ X and y ∈ Y

satisfying h(x) + h(y) < |Z| then, in O(
√

|E|) time, we can find a node z ∈ Z

which is non-adjacent to both.

Assume now that X is null to Y . Let w̄ be any node in W , let X̄ = X \N(w̄) and
let Ȳ = Y \N(w̄). Since by assumption W is null to Z, we have that there exists
a stable set {x, y, z, w̄} with x ∈ X, y ∈ Y , z ∈ Z, if and only if there exists a
stable set {x, y, z} with x ∈ X̄, y ∈ Ȳ , z ∈ Z. Let x̄ ∈ X̄ and ȳ ∈ Ȳ be two nodes

such that h(x̄) and h(ȳ) are minimized. We can find such nodes in O(
√

|E|) time
and, by assumption, x̄ and ȳ are non-adjacent. By Claim (i) and the minimality
of h(x̄) and h(ȳ) there exists a stable set {x, y, z} with x ∈ X̄, y ∈ Ȳ , z ∈ Z if
and only if h(x̄) + h(ȳ) < |Z|; moreover, if such a set exists we may assume x ≡ x̄

and y ≡ ȳ. Hence, in O(
√

|E|) time we can check whether there exists a stable
set {x, y, z, w̄} with x ∈ X, y ∈ Y , z ∈ Z. Moreover, if the check is positive in

O(
√

|E|) time we can find a node z̄ ∈ Z which is non-adjacent to x̄, ȳ and w̄ so
that {x̄, ȳ, z̄, w̄} is the sought-after stable set. It follows that in O(|E|) time we
can check all the nodes in W and either find a stable set {x, y, z, w} with x ∈ X,
y ∈ Y , z ∈ Z, w ∈ W or conclude that no such stable set exists. This concludes
the proof of the lemma. ⊓⊔

Theorem 11 Let G(V,E) be a claw-free graph. In O(|E|) time we can construct
a stable set S of G with |S| = min{α(G), 4}.
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Proof. First, observe that in O(|E|) time we can check whether G is a clique (in
which case any singleton S ⊆ V would satisfy |S| = α(G) = 1) or construct a
stable set of cardinality 2. In the first case we are done, so assume that {s, t} ⊆ V

is a stable set of cardinality 2.

We now claim that, In O(|E|) time, we can construct a stable set of cardinality
3 or conclude that α(G) = 2. In fact, in O(|V |) time we can classify the nodes in
V \ {s, t} in four sets: (i) the set F (s) of nodes adjacent to s and non-adjacent
to t; (ii) the set F (t) of nodes adjacent to t and non-adjacent to s; (iii) the
set W (s, t) of nodes adjacent both to s and to t; and (iv) the set SF of nodes
(super-free) non-adjacent both to s and to t. If SF 6= ∅ then let u be any node
in SF ; in this case {s, t, u} is a stable set of cardinality 3. Otherwise, in O(|E|)
time we can check whether F (s) is a clique or find a pair of non-adjacent nodes
u, v ∈ F (s). If F (s) is not a clique, then {u, v, t} is a stable set of cardinality
3. Analogously, in O(|E|) time we can check whether F (t) is a clique or find
a stable set of cardinality 3. Finally, if SF = ∅ and both F (s) and F (t) are
cliques then, by claw-freeness, a stable set S of cardinality 3 (if any) satisfies
|S ∩ F (s)| = |S ∩ F (t)| = |S ∩ W (s, t)| = 1. Letting X ≡ W (s, t), Y ≡ F (s),
Z ≡ F (t) and observing that X, Y , Z are local sets, by Lemma 11 we can,
in O(|E|) time, either conclude that α(G) = 2 or find a stable set {x, y, z} with
x ∈ X, y ∈ Y , z ∈ Z. In the first case we are done, so assume that T = {s, t, u} ⊆ V

is a stable set of cardinality 3.

We now claim that, In O(|E|) time, we can construct a stable set of cardinality
4 or conclude that α(G) = 3. In fact, in O(|V |) time we can classify the nodes in
V \ T in seven sets: (i) the set F (s) of nodes adjacent to s and non-adjacent to t

and to u; (ii) the set F (t) of nodes adjacent to t and non-adjacent to s and to u;
(iii) the set F (u) of nodes adjacent to u and non-adjacent to s and to t; (iv) the
set W (s, t) of nodes adjacent both to s and to t and non-adjacent to u; (v) the
set W (s, u) of nodes adjacent both to s and to u and non-adjacent to t; (vi) the
set W (t, u) of nodes adjacent both to t and to u and non-adjacent to s; (vii) the
set SF of nodes (super-free) non-adjacent to s, to t and to u. Observe that, by
claw-freeness, no node can be simultaneously adjacent to s, t and u, so the above
classification is complete. If SF 6= ∅ then let w be any node in SF ; in this case
S = T ∪{w} is a stable set of cardinality 4. Otherwise, in O(|E|) time we can check
whether F (s) is a clique or find a pair of non-adjacent nodes v, w ∈ F (s). If F (s)
is not a clique, then {v, w} ∪ T \ {s} is a stable set of cardinality 4. Analogously,
in O(|E|) time we can check whether F (t) or F (u) are cliques or find a stable set
of cardinality 4.

Finally, assume that SF is empty and that F (s), F (t), F (u) are all cliques. Observe
that, by claw-freeness, the symmetric difference of T and any stable set S of
cardinality 4 induces a subgraph of G whose connected components are either
paths or cycles where the nodes in S and T alternates. Since |S| > |T |, at least
one component is a path P with |P ∩ S| = |P ∩ T | + 1. Since SF = ∅, the path
P contains at least one node of T . If it contains a single node of T , say s, the two
nodes in P ∩S belong to F (s), contradicting the assumption that F (s) is a clique.
It follows that either (i) P contains two nodes of T and |P | = 5 or (ii) T ⊆ P

and |P | = 7. Hence, to check whether G contains a stable set S of cardinality 4 it
is sufficient to verify that there exists a path P of type (i) or (ii). We shall prove
that such check can be done in O(|E|) time.
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Case (i).

We have three different choices for the pair of nodes in P ∩ T . Consider, without
loss of generality, P ∩T = {s, t} and let P = (x, s, y, t, z). Such a path exists if and
only if there exists a stable set {x, y, z} with x ∈ F (s), y ∈ W (s, t), z ∈ F (t). Let
X ≡ F (s), Y ≡ W (s, t), Z ≡ F (t). Observe that Z is a clique and X, Y are local
sets, so X,Y, Z satisfy the hypothesis of Lemma 11. Hence we can, in O(|E|) time,
either find the stable set {x, y, z} or conclude that there exists no such stable set.
In the first case, observe that u is non-adjacent to x, y and z, so {x, y, z, u} is the
sought-after stable set of cardinality 4.

Case (ii).

We have three different choices for the order in which the three nodes s, t, u appear
in the path P . Consider, without loss of generality, P = (x, s, w, t, y, u, z). Such
a path exists if and only if there exists a stable set {x, y, z, w} with x ∈ F (s),
y ∈ W (t, u), z ∈ F (u), w ∈ W (s, t). Let X ≡ F (s), Y ≡ W (t, u), Z ≡ F (u),
W ≡ W (s, t). Observe that, by claw-freeness, X is null to Y and W is null to
Z; moreover Z is a clique and X, Y , W are local sets. So X,Y, Z,W satisfy the
hypothesis of Lemma 11 and we can, in O(|E|) time, either find the stable set
{x, y, z, w} or conclude that there exists no such stable set.

It follows that in O(|E|) time we can either construct a stable set of cardinality 4
or conclude that α(G) = 3. This concludes the proof of the theorem. ⊓⊔

Lemma 12 Let G(V,E) be a claw-free graph, w ∈ ℜV a weighting of V and
X,Y,Z ⊆ V disjoint local sets such that Z induces a clique in G. In O(|E| log |V |)
time we can either find a maximum-weight stable set {x, y, z} with x ∈ X, y ∈ Y ,
z ∈ Z or conclude that no such stable set exists.

Proof. Let z1, z2, . . . , zp be an ordering of the nodes in Z such that w(z1) ≥ w(z2) ≥
. . . ≥ w(zp). Let Zi (i = 1, . . . , p) denote the set {z1, . . . , zi} ⊆ Z. For any node
u ∈ X ∪Y and index i ∈ {1, . . . , p} let h(u, i) denote the cardinality of N(u)∩Zi.
It is easy to see that we can compute h(u, i) for all the nodes u ∈ X ∪ Y and all
the indices in {1, . . . , p} in overall time O(|X ∪Y ||Z|) = O(|E|) (recall that X, Y ,

and Z are local sets, so their cardinality is O(
√

|E|)). Now let x̄ ∈ X and ȳ ∈ Y

be any two non-adjacent nodes and let i be an index in {1, . . . , p}.

Claim (i). There exists a node z̄ ∈ Zi such that {x̄, ȳ, z̄} is a stable set if and only
if h(x̄, i) + h(ȳ, i) < i.

Proof. This is a special case of Claim (i) in Lemma 11.
End of Claim (i).

Now, assume h(x̄, p) + h(ȳ, p) < p and let k be the smallest index in {1, . . . , p}
such that h(x̄, k) + h(ȳ, k) < k.

Claim (ii). The set {x̄, ȳ, zk} is the heaviest stable set containing x̄, ȳ and some
node in Z.

Proof. Trivial consequence of Claim (i) and the ordering of Z.
End of Claim (ii).

Claim (iii). If h(x̄, i)+h(ȳ, i) < i for some i ∈ {1, . . . , p} then h(x̄, j)+h(ȳ, j) < j

for any j ≥ i.
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Proof. If h(x̄, i) + h(ȳ, i) < i, by Claim (i) there exists a node z̄ ∈ Zi which is
non-adjacent to both x̄ and ȳ. If x̄ and ȳ had a common neighbor z′ in Zj then
(z′ : x̄, ȳ, z̄) would be a claw in G, a contradiction. It follows that h(x̄, j)+h(ȳ, j) =
|N(x̄) ∩ Zj |+ |N(ȳ) ∩ Zj | < |Zj | = j and the claim follows.
End of Claim (iii).

By Claim (iii) We can find k in ⌈log p⌉ = O(log |V |) constant time computations,
by binary search. As a consequence, by checking all the pairs of non-adjacent nodes
x ∈ X and y ∈ Y , in O(|E| log |V |) time we can either find a maximum-weight
stable set {x, y, z} with x ∈ X, y ∈ Y , z ∈ Z or conclude that no such stable set
exists. The lemma follows. ⊓⊔

Theorem 12 Let G(V,E) be a claw-free graph and let w ∈ ℜV be a weighting
of V . In O(|E| log |V |) time we can either conclude that α(G) ≥ 4 or construct a
maximum-weight stable set S of G.

Proof. By Theorem 11 in O(|E|) time we can construct a stable set S of G with
|S| = min(α(G), 4). If |S| = 4 we are done. Otherwise, α(G) ≤ 3 and, as observed

in [2], |V | = O(
√

|E|). If |S| = α(G) ≤ 2 then in O(|E|) time we can find a
maximum-weight stable set. In fact, since S is maximal, every node in V belongs
to N [S], |V | = O(

√

|E|) and the theorem follows. Hence, we can assume that
α(G) = 3 and that we have a stable set T = {s, t, u}. Moreover, since a maximum-
weight stable set intersecting T can be found in O(|E|) time, we are left with
the task of finding a maximum-weight stable set in V \ T . In O(|V |) time we can
classify the nodes in V \ T in six sets: (i) the set F (s) of nodes adjacent to s and
non-adjacent to t and to u; (ii) the set F (t) of nodes adjacent to t and non-adjacent
to s and to u; (iii) the set F (u) of nodes adjacent to u and non-adjacent to s and
to t; (iv) the set W (s, t) of nodes adjacent both to s and to t and non-adjacent to
u; (v) the set W (s, u) of nodes adjacent both to s and to u and non-adjacent to t;
(vi) the set W (t, u) of nodes adjacent both to t and to u and non-adjacent to s.
Observe that, by claw-freeness, no node can be simultaneously adjacent to s, t and
u; moreover, since α(G) = 3, no node can be simultaneously non-adjacent to s, t
and u, so the above classification is complete. If F (s) is not a clique, let v, w be
two non-adjacent nodes in F (s). The set {v,w, t, u} is a stable set of cardinality 4,
contradicting the assumption that α(G) = 3. It follows that F (s) and, analogously,
F (t) and F (u) are cliques.

Observe that, by claw-freeness, the symmetric difference of T and any stable set
S of cardinality 3 induces a subgraph H of G whose connected components are
either paths or cycles whose nodes alternate between S and T . It follows that we
can classify the stable sets non-intersecting T according to the structure of the
connected components of H. Since α(G) = 3, no connected component of H can
have an odd number of nodes. We say that S is of type (i) if H is a path of length
6; of type (ii) if H is a cycle of length 6; of type (iii) if H contains a path of length
2. Hence, to find a maximum-weight stable set S non-intersecting T it is sufficient
to construct (if it exists) a maximum-weight stable set of each one of the above
three types. We now prove that this construction can be done in O(|E|) time.

Case (i).

If a maximum-weight stable set S of type (i) exists, then there exists a path P

of length 6 containing S and T . We have six different choices for the order of the
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nodes s, t, u in P . Consider, without loss of generality, P = (s, x, t, y, u, z). The
set S = {x, y, z} with x ∈ W (s, t), y ∈ W (t, u), z ∈ F (u) is the sought-after
maximum-weight stable set. Let X ≡ W (s, t), Y ≡ W (t, u), Z ≡ F (u). Observe
that Z is a clique and X, Y are local sets. So X,Y, Z satisfy the hypothesis of
Lemma 12 and we can, in O(|E| log |V |) time, either find a maximum-weight stable
set {x, y, z} with x ∈ X, y ∈ Y , z ∈ Z or conclude that no such stable set exists.

Case (ii). If a maximum-weight stable set S of type (ii) exists, then there exists a
cycle C of length 6 containing S and T . Let C = (s, a, t, b, u, c). The set S = {a, b, c}
with a ∈ W (s, t), b ∈ W (t, u), c ∈ W (s, u) is the sought-after maximum-weight
stable set.

Assume first that W (t, u) is a clique (we can check this in O(|E|) time). Let
X ≡ W (s, t), Y ≡ W (s, u), Z ≡ W (t, u). By Lemma 12 we can, in O(|E| log |V |)
time, either conclude that there exists no stable set of type (ii) or find a maximum-
weight stable set of this type.

Assume now that W (t, u) is not a clique and let v, v′ be two non-adjacent nodes
in W (t, u). Let Z1 = W (s, u) ∩ N(v) and Z2 = W (s, u) ∩ N(v′). Since u is a
common neighbor to v, v′ and any node in W (s, u), by claw-freeness we have
W (s, u) ⊆ Z1 ∪ Z2. Moreover, since s is adjacent to any node in Z1 ∪ Z2 and
non-adjacent to v and v′, again by claw-freeness we have Z1∩Z2 = ∅, so Z1 is null
to v′, Z2 is null to v and W (s, u) is the disjoint union of Z1 and Z2. It follows that
Z1 is a clique for, otherwise, (u : p, q, v′) would be a claw, with p and q any two
non-adjacent nodes in Z1. Analogously, also Z2 is a clique. Now let X ≡ W (s, t),
Y ≡ W (t, u) and Z ≡ Z1 or Z ≡ Z2. By applying Lemma 12 twice we can, in
O(|E| log |V |) time, either conclude that there exists no stable set of type (ii) or
find a maximum stable set {a, b, c} with a ∈ W (s, t), b ∈ W (t, u), c ∈ W (s, u).

Case (iii). If a maximum-weight stable set S of type (iii) exists, then there exists a
path P of length 2 containing a node in S and a node in T . We have three different
choices for the node in P ∩ T . Consider, without loss of generality, P = (s, z); let
Z = F (s). The connected components of the symmetric difference of S and T

containing the nodes t and u are either (iii-a) two paths P1 and P2 of length 2;
(iii-b) a path P1 of length 4; or (iii-c) a cycle C of length 4. In the first case let
P1 = (t, x), P2 = (u, y) and let X = F (t), Y = F (u). In the second case we have
two possibilities: either t or u is an extremum of P1. Without loss of generality,
assume P1 = (t, x, u, y) and let X = W (t, u), Y = F (u). In either case, the set
S = {x, y, z} with x ∈ X, y ∈ Y , z ∈ Z is the sought-after maximum-weight
stable set. By applying Lemma 12 we can, in O(|E| log |V |) time, either conclude
that there exists no stable set of types (iii-a) and (iii-b) or find a maximum stable
set {x, y, z} with x ∈ X, y ∈ Y , z ∈ Z. In case (iii-c) let C = (t, x, u, y). The
nodes x, y belong to W (t, u) and the node z to F (s). Moreover, by claw-freeness,
F (s) is null to W (t, u). Recall that W (t, u) is a local sets, so its cardinality is

O(
√

|E|). It follows that the maximum-weight stable set S = {x, y, z} can be
obtained by choosing the node z having maximum weight in F (s) and finding
in O(|E|) time the pair of non-adjacent nodes x, y ∈ W (t, u) having maximum
weight. This concludes the proof of the theorem. ⊓⊔
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