An $\mathcal{O}(m \log n)$ algorithm for the weighted stable set problem in claw-free graphs with $\alpha(G) \leq 3$

Paolo Nobili · Antonio Sassano

the date of receipt and acceptance should be inserted later

Abstract In this paper we show how to solve the Maximum Weight Stable Set Problem in a claw-free graph G(V, E) with $\alpha(G) \leq 3$ in time $\mathcal{O}(|E| \log |V|)$. More precisely, in time $\mathcal{O}(|E|)$ we check whether $\alpha(G) \leq 3$ or produce a stable set with cardinality at least 4; moreover, if $\alpha(G) \leq 3$ we produce in time $\mathcal{O}(|E| \log |V|)$ a maximum stable set of G. This improves the bound of $\mathcal{O}(|E||V|)$ due to Faenza et alii ([2]).

Keywords claw-free graphs \cdot stable set

1 Introduction

The Maximum Weight Stable Set (MWSS) Problem in a graph G(V, E) with nodeweight function $w : V \to \Re$ asks for a maximum weight subset of pairwise nonadjacent nodes. For each graph G(V, E) and subset $W \subset V$ we denote by N(W)(neighborhood of W) the set of nodes in $V \setminus W$ adjacent to some node in W. If $W = \{w\}$ we simply write N(w). A clique is a complete subgraph of G induced by some set of nodes $K \subseteq V$. With a little abuse of notation we also regard the set K as a clique. A claw is a graph with four nodes w, x, y, z with w adjacent to x, y, z and x, y, z mutually non-adjacent. To highlight its structure, it is denoted as (w : x, y, z). A graph G with no induced claws is said to be claw-free and has the property ([1]) that the symmetric difference of two stable sets induces a subgraph of G whose connected components are either (alternating) paths or (alternating) cycles. A subset $T \in V$ is null (universal) to a subset $W \subseteq V \setminus T$ if and only if $N(T) \cap W = \emptyset (N(T) \cap W = W)$. If $T = \{u\}$ with a little abuse of notation we say that u is null (universal) to W.

A. Sassano

P. Nobili

Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy

Dipartimento di Informatica e Sistemistica "Antonio Ruberti", Università di Roma "La Sapienza", Roma, Italy

Let G(V, E) be a claw-free graph. A subset X of V is said to be *local* if there exists a node $u \in V$ such that $X \subseteq N[u]$. Observe that, by [3], a local set contains $\mathcal{O}(\sqrt{|E|})$ nodes.

Lemma 11 Let G(V, E) be a claw-free graph and $X, Y, Z, W \subseteq V$ four disjoint local sets (with W possibly empty) such that Z induces a clique in G and W is null to Z. In $\mathcal{O}(|E|)$ time we can either find a stable set $\{x, y, z\}$ with $x \in X, y \in Y$, $z \in Z$ or conclude that no such stable set exists. Moreover, if X is null to Y and W is non-empty, in $\mathcal{O}(|E|)$ time we can either find a stable set $\{x, y, z, w\}$ with $x \in X, y \in Y, z \in Z, w \in W$ or conclude that no such stable set exists.

Proof. For any node $u \in X \cup Y$ let h(u) denote the cardinality of $N(u) \cap Z$. It is easy to see that we can compute h(u) for all the nodes $u \in X \cup Y$ in overall time $\mathcal{O}(|X \cup Y||Z|) = \mathcal{O}(|E|)$ (recall that X, Y, and Z are local sets, so their cardinality is $\mathcal{O}(\sqrt{|E|})$). Now let $\bar{x} \in X$ and $\bar{y} \in Y$ be any two non-adjacent nodes.

Claim (i). There exists a node $\bar{z} \in Z$ such that $\{\bar{x}, \bar{y}, \bar{z}\}$ is a stable set if and only if $h(\bar{x}) + h(\bar{y}) < |Z|$.

Proof. In fact, if $h(\bar{x}) + h(\bar{y}) < |Z|$ then the neighborhoods of nodes \bar{x} and \bar{y} do not cover Z, so there exists some node $\bar{z} \in Z$ which is non-adjacent to both \bar{x} and \bar{y} . On the other hand, assume by contradiction that $h(\bar{x}) + h(\bar{y}) \ge |Z|$ and still there exists some node $\bar{z} \in Z$ which is non-adjacent to both \bar{x} and \bar{y} . Let $Z' = Z \setminus \{\bar{z}\}$. Since we have $|N(\bar{x}) \cap Z'| + |N(\bar{y}) \cap Z'| = h(\bar{x}) + h(\bar{y}) \ge |Z'| + 1$ there exists some node $z' \in Z'$ which is adjacent to both \bar{x} and \bar{y} . But then $(z' : \bar{x}, \bar{y}, \bar{z})$ is a claw in G, a contradiction. The claim follows. End of Claim (i).

Now, in $\mathcal{O}(|E|)$ time, we can check if there exists some pair of nodes $x \in X$ and $y \in Y$ such that x, y are non-adjacent and h(x) + h(y) < |Z|. If no such pair exists, by Claim (i) we can conclude that no stable set $\{x, y, z\}$ with $x \in X, y \in Y, z \in Z$ exists. If, on the other hand, there exist two non-adjacent nodes $x \in X$ and $y \in Y$ satisfying h(x) + h(y) < |Z| then, in $\mathcal{O}(\sqrt{|E|})$ time, we can find a node $z \in Z$ which is non-adjacent to both.

Assume now that X is null to Y. Let \bar{w} be any node in W, let $\bar{X} = X \setminus N(\bar{w})$ and let $\overline{Y} = Y \setminus N(\overline{w})$. Since by assumption W is null to Z, we have that there exists a stable set $\{x, y, z, \overline{w}\}$ with $x \in X, y \in Y, z \in Z$, if and only if there exists a stable set $\{x, y, z\}$ with $x \in \overline{X}, y \in \overline{Y}, z \in Z$. Let $\overline{x} \in \overline{X}$ and $\overline{y} \in \overline{Y}$ be two nodes such that $h(\bar{x})$ and $h(\bar{y})$ are minimized. We can find such nodes in $\mathcal{O}(\sqrt{|E|})$ time and, by assumption, \bar{x} and \bar{y} are non-adjacent. By Claim (i) and the minimality of $h(\bar{x})$ and $h(\bar{y})$ there exists a stable set $\{x, y, z\}$ with $x \in \bar{X}, y \in \bar{Y}, z \in Z$ if and only if $h(\bar{x}) + h(\bar{y}) < |Z|$; moreover, if such a set exists we may assume $x \equiv \bar{x}$ and $y \equiv \bar{y}$. Hence, in $\mathcal{O}(\sqrt{|E|})$ time we can check whether there exists a stable set $\{x, y, z, \overline{w}\}$ with $x \in X, y \in Y, z \in Z$. Moreover, if the check is positive in $\mathcal{O}(\sqrt{|E|})$ time we can find a node $\overline{z} \in Z$ which is non-adjacent to $\overline{x}, \overline{y}$ and \overline{w} so that $\{\bar{x}, \bar{y}, \bar{z}, \bar{w}\}$ is the sought-after stable set. It follows that in $\mathcal{O}(|E|)$ time we can check all the nodes in W and either find a stable set $\{x, y, z, w\}$ with $x \in X$, $y \in Y, z \in Z, w \in W$ or conclude that no such stable set exists. This concludes the proof of the lemma.

Theorem 11 Let G(V, E) be a claw-free graph. In $\mathcal{O}(|E|)$ time we can construct a stable set S of G with $|S| = \min\{\alpha(G), 4\}$. *Proof.* First, observe that in $\mathcal{O}(|E|)$ time we can check whether G is a clique (in which case any singleton $S \subseteq V$ would satisfy $|S| = \alpha(G) = 1$) or construct a stable set of cardinality 2. In the first case we are done, so assume that $\{s, t\} \subseteq V$ is a stable set of cardinality 2.

We now claim that, In $\mathcal{O}(|E|)$ time, we can construct a stable set of cardinality 3 or conclude that $\alpha(G) = 2$. In fact, in $\mathcal{O}(|V|)$ time we can classify the nodes in $V \setminus \{s,t\}$ in four sets: (i) the set F(s) of nodes adjacent to s and non-adjacent to t; (ii) the set F(t) of nodes adjacent to t and non-adjacent to s; (iii) the set W(s,t) of nodes adjacent both to s and to t; and (iv) the set SF of nodes (super-free) non-adjacent both to s and to t. If $SF \neq \emptyset$ then let u be any node in SF; in this case $\{s, t, u\}$ is a stable set of cardinality 3. Otherwise, in $\mathcal{O}(|E|)$ time we can check whether F(s) is a clique or find a pair of non-adjacent nodes $u, v \in F(s)$. If F(s) is not a clique, then $\{u, v, t\}$ is a stable set of cardinality 3. Analogously, in $\mathcal{O}(|E|)$ time we can check whether F(t) is a clique or find a stable set of cardinality 3. Finally, if $SF = \emptyset$ and both F(s) and F(t) are cliques then, by claw-freeness, a stable set S of cardinality 3 (if any) satisfies $|S \cap F(s)| = |S \cap F(t)| = |S \cap W(s,t)| = 1$. Letting $X \equiv W(s,t), Y \equiv F(s),$ $Z \equiv F(t)$ and observing that X, Y, Z are local sets, by Lemma 11 we can, in $\mathcal{O}(|E|)$ time, either conclude that $\alpha(G) = 2$ or find a stable set $\{x, y, z\}$ with $x \in X, y \in Y, z \in Z$. In the first case we are done, so assume that $T = \{s, t, u\} \subseteq V$ is a stable set of cardinality 3.

We now claim that, In $\mathcal{O}(|E|)$ time, we can construct a stable set of cardinality 4 or conclude that $\alpha(G) = 3$. In fact, in $\mathcal{O}(|V|)$ time we can classify the nodes in $V \setminus T$ in seven sets: (i) the set F(s) of nodes adjacent to s and non-adjacent to t and to u; (ii) the set F(t) of nodes adjacent to t and non-adjacent to s and to u; (iii) the set F(u) of nodes adjacent to u and non-adjacent to s and to t; (iv) the set W(s,t) of nodes adjacent both to s and to t and non-adjacent to u; (v) the set W(s, u) of nodes adjacent both to s and to u and non-adjacent to t; (vi) the set W(t, u) of nodes adjacent both to t and to u and non-adjacent to s; (vii) the set SF of nodes (super-free) non-adjacent to s, to t and to u. Observe that, by claw-freeness, no node can be simultaneously adjacent to s, t and u, so the above classification is complete. If $SF \neq \emptyset$ then let w be any node in SF; in this case $S = T \cup \{w\}$ is a stable set of cardinality 4. Otherwise, in $\mathcal{O}(|E|)$ time we can check whether F(s) is a clique or find a pair of non-adjacent nodes $v, w \in F(s)$. If F(s)is not a clique, then $\{v, w\} \cup T \setminus \{s\}$ is a stable set of cardinality 4. Analogously, in $\mathcal{O}(|E|)$ time we can check whether F(t) or F(u) are cliques or find a stable set of cardinality 4.

Finally, assume that SF is empty and that F(s), F(t), F(u) are all cliques. Observe that, by claw-freeness, the symmetric difference of T and any stable set S of cardinality 4 induces a subgraph of G whose connected components are either paths or cycles where the nodes in S and T alternates. Since |S| > |T|, at least one component is a path P with $|P \cap S| = |P \cap T| + 1$. Since $SF = \emptyset$, the path P contains at least one node of T. If it contains a single node of T, say s, the two nodes in $P \cap S$ belong to F(s), contradicting the assumption that F(s) is a clique. It follows that either (i) P contains two nodes of T and |P| = 5 or (ii) $T \subseteq P$ and |P| = 7. Hence, to check whether G contains a stable set S of cardinality 4 it is sufficient to verify that there exists a path P of type (i) or (ii). We shall prove that such check can be done in $\mathcal{O}(|E|)$ time. Case (i).

We have three different choices for the pair of nodes in $P \cap T$. Consider, without loss of generality, $P \cap T = \{s, t\}$ and let P = (x, s, y, t, z). Such a path exists if and only if there exists a stable set $\{x, y, z\}$ with $x \in F(s)$, $y \in W(s, t)$, $z \in F(t)$. Let $X \equiv F(s)$, $Y \equiv W(s, t)$, $Z \equiv F(t)$. Observe that Z is a clique and X, Y are local sets, so X, Y, Z satisfy the hypothesis of Lemma 11. Hence we can, in $\mathcal{O}(|E|)$ time, either find the stable set $\{x, y, z\}$ or conclude that there exists no such stable set. In the first case, observe that u is non-adjacent to x, y and z, so $\{x, y, z, u\}$ is the sought-after stable set of cardinality 4.

Case (ii).

We have three different choices for the order in which the three nodes s, t, u appear in the path P. Consider, without loss of generality, P = (x, s, w, t, y, u, z). Such a path exists if and only if there exists a stable set $\{x, y, z, w\}$ with $x \in F(s)$, $y \in W(t, u), z \in F(u), w \in W(s, t)$. Let $X \equiv F(s), Y \equiv W(t, u), Z \equiv F(u),$ $W \equiv W(s, t)$. Observe that, by claw-freeness, X is null to Y and W is null to Z; moreover Z is a clique and X, Y, W are local sets. So X, Y, Z, W satisfy the hypothesis of Lemma 11 and we can, in $\mathcal{O}(|E|)$ time, either find the stable set $\{x, y, z, w\}$ or conclude that there exists no such stable set.

It follows that in $\mathcal{O}(|E|)$ time we can either construct a stable set of cardinality 4 or conclude that $\alpha(G) = 3$. This concludes the proof of the theorem.

Lemma 12 Let G(V, E) be a claw-free graph, $w \in \mathbb{R}^V$ a weighting of V and $X, Y, Z \subseteq V$ disjoint local sets such that Z induces a clique in G. In $\mathcal{O}(|E| \log |V|)$ time we can either find a maximum-weight stable set $\{x, y, z\}$ with $x \in X, y \in Y$, $z \in Z$ or conclude that no such stable set exists.

Proof. Let z_1, z_2, \ldots, z_p be an ordering of the nodes in Z such that $w(z_1) \ge w(z_2) \ge \ldots \ge w(z_p)$. Let Z_i $(i = 1, \ldots, p)$ denote the set $\{z_1, \ldots, z_i\} \subseteq Z$. For any node $u \in X \cup Y$ and index $i \in \{1, \ldots, p\}$ let h(u, i) denote the cardinality of $N(u) \cap Z_i$. It is easy to see that we can compute h(u, i) for all the nodes $u \in X \cup Y$ and all the indices in $\{1, \ldots, p\}$ in overall time $\mathcal{O}(|X \cup Y||Z|) = \mathcal{O}(|E|)$ (recall that X, Y, and Z are local sets, so their cardinality is $\mathcal{O}(\sqrt{|E|})$). Now let $\bar{x} \in X$ and $\bar{y} \in Y$ be any two non-adjacent nodes and let i be an index in $\{1, \ldots, p\}$.

Claim (i). There exists a node $\bar{z} \in Z_i$ such that $\{\bar{x}, \bar{y}, \bar{z}\}$ is a stable set if and only if $h(\bar{x}, i) + h(\bar{y}, i) < i$.

Proof. This is a special case of Claim (i) in Lemma 11. End of Claim (i).

Now, assume $h(\bar{x}, p) + h(\bar{y}, p) < p$ and let k be the smallest index in $\{1, \ldots, p\}$ such that $h(\bar{x}, k) + h(\bar{y}, k) < k$.

Claim (ii). The set $\{\bar{x}, \bar{y}, z_k\}$ is the heaviest stable set containing \bar{x}, \bar{y} and some node in Z.

Proof. Trivial consequence of Claim (i) and the ordering of Z. *End of Claim* (ii).

Claim (iii). If $h(\bar{x}, i) + h(\bar{y}, i) < i$ for some $i \in \{1, \dots, p\}$ then $h(\bar{x}, j) + h(\bar{y}, j) < j$ for any $j \ge i$.

Proof. If $h(\bar{x}, i) + h(\bar{y}, i) < i$, by Claim (i) there exists a node $\bar{z} \in Z_i$ which is non-adjacent to both \bar{x} and \bar{y} . If \bar{x} and \bar{y} had a common neighbor z' in Z_j then $(z': \bar{x}, \bar{y}, \bar{z})$ would be a claw in G, a contradiction. It follows that $h(\bar{x}, j) + h(\bar{y}, j) = |N(\bar{x}) \cap Z_j| + |N(\bar{y}) \cap Z_j| < |Z_j| = j$ and the claim follows. End of Claim (iii).

By Claim *(iii)* We can find k in $\lceil \log p \rceil = \mathcal{O}(\log |V|)$ constant time computations, by binary search. As a consequence, by checking all the pairs of non-adjacent nodes $x \in X$ and $y \in Y$, in $\mathcal{O}(|E|\log |V|)$ time we can either find a maximum-weight stable set $\{x, y, z\}$ with $x \in X$, $y \in Y$, $z \in Z$ or conclude that no such stable set exists. The lemma follows.

Theorem 12 Let G(V, E) be a claw-free graph and let $w \in \Re^V$ be a weighting of V. In $\mathcal{O}(|E| \log |V|)$ time we can either conclude that $\alpha(G) \ge 4$ or construct a maximum-weight stable set S of G.

Proof. By Theorem 11 in $\mathcal{O}(|E|)$ time we can construct a stable set S of G with $|S| = \min(\alpha(G), 4)$. If |S| = 4 we are done. Otherwise, $\alpha(G) \leq 3$ and, as observed in [2], $|V| = \mathcal{O}(\sqrt{|E|})$. If $|S| = \alpha(G) < 2$ then in $\mathcal{O}(|E|)$ time we can find a maximum-weight stable set. In fact, since S is maximal, every node in V belongs to N[S], $|V| = \mathcal{O}(\sqrt{|E|})$ and the theorem follows. Hence, we can assume that $\alpha(G) = 3$ and that we have a stable set $T = \{s, t, u\}$. Moreover, since a maximumweight stable set intersecting T can be found in $\mathcal{O}(|E|)$ time, we are left with the task of finding a maximum-weight stable set in $V \setminus T$. In $\mathcal{O}(|V|)$ time we can classify the nodes in $V \setminus T$ in six sets: (i) the set F(s) of nodes adjacent to s and non-adjacent to t and to u; (ii) the set F(t) of nodes adjacent to t and non-adjacent to s and to u; (iii) the set F(u) of nodes adjacent to u and non-adjacent to s and to t; (iv) the set W(s,t) of nodes adjacent both to s and to t and non-adjacent to u; (v) the set W(s, u) of nodes adjacent both to s and to u and non-adjacent to t; (vi) the set W(t, u) of nodes adjacent both to t and to u and non-adjacent to s. Observe that, by claw-freeness, no node can be simultaneously adjacent to s, t and u; moreover, since $\alpha(G) = 3$, no node can be simultaneously non-adjacent to s, t and u, so the above classification is complete. If F(s) is not a clique, let v, w be two non-adjacent nodes in F(s). The set $\{v, w, t, u\}$ is a stable set of cardinality 4, contradicting the assumption that $\alpha(G) = 3$. It follows that F(s) and, analogously, F(t) and F(u) are cliques.

Observe that, by claw-freeness, the symmetric difference of T and any stable set S of cardinality 3 induces a subgraph H of G whose connected components are either paths or cycles whose nodes alternate between S and T. It follows that we can classify the stable sets non-intersecting T according to the structure of the connected components of H. Since $\alpha(G) = 3$, no connected component of H can have an odd number of nodes. We say that S is of type (*i*) if H is a path of length 6; of type (*ii*) if H is a cycle of length 6; of type (*iii*) if H contains a path of length 2. Hence, to find a maximum-weight stable set S non-intersecting T it is sufficient to construct (if it exists) a maximum-weight stable set of each one of the above three types. We now prove that this construction can be done in $\mathcal{O}(|E|)$ time.

Case (i).

If a maximum-weight stable set S of type (i) exists, then there exists a path P of length 6 containing S and T. We have six different choices for the order of the

nodes s, t, u in P. Consider, without loss of generality, P = (s, x, t, y, u, z). The set $S = \{x, y, z\}$ with $x \in W(s, t), y \in W(t, u), z \in F(u)$ is the sought-after maximum-weight stable set. Let $X \equiv W(s, t), Y \equiv W(t, u), Z \equiv F(u)$. Observe that Z is a clique and X, Y are local sets. So X, Y, Z satisfy the hypothesis of Lemma 12 and we can, in $\mathcal{O}(|E| \log |V|)$ time, either find a maximum-weight stable set $\{x, y, z\}$ with $x \in X, y \in Y, z \in Z$ or conclude that no such stable set exists.

Case (ii). If a maximum-weight stable set S of type (ii) exists, then there exists a cycle C of length 6 containing S and T. Let C = (s, a, t, b, u, c). The set $S = \{a, b, c\}$ with $a \in W(s, t), b \in W(t, u), c \in W(s, u)$ is the sought-after maximum-weight stable set.

Assume first that W(t, u) is a clique (we can check this in $\mathcal{O}(|E|)$ time). Let $X \equiv W(s, t), Y \equiv W(s, u), Z \equiv W(t, u)$. By Lemma 12 we can, in $\mathcal{O}(|E| \log |V|)$ time, either conclude that there exists no stable set of type *(ii)* or find a maximum-weight stable set of this type.

Assume now that W(t, u) is not a clique and let v, v' be two non-adjacent nodes in W(t, u). Let $Z_1 = W(s, u) \cap N(v)$ and $Z_2 = W(s, u) \cap N(v')$. Since u is a common neighbor to v, v' and any node in W(s, u), by claw-freeness we have $W(s, u) \subseteq Z_1 \cup Z_2$. Moreover, since s is adjacent to any node in $Z_1 \cup Z_2$ and non-adjacent to v and v', again by claw-freeness we have $Z_1 \cap Z_2 = \emptyset$, so Z_1 is null to v', Z_2 is null to v and W(s, u) is the disjoint union of Z_1 and Z_2 . It follows that Z_1 is a clique for, otherwise, (u : p, q, v') would be a claw, with p and q any two non-adjacent nodes in Z_1 . Analogously, also Z_2 is a clique. Now let $X \equiv W(s, t)$, $Y \equiv W(t, u)$ and $Z \equiv Z_1$ or $Z \equiv Z_2$. By applying Lemma 12 twice we can, in $\mathcal{O}(|E|\log|V|)$ time, either conclude that there exists no stable set of type *(ii)* or find a maximum stable set $\{a, b, c\}$ with $a \in W(s, t), b \in W(t, u), c \in W(s, u)$.

Case (iii). If a maximum-weight stable set S of type *(iii)* exists, then there exists a path P of length 2 containing a node in S and a node in T. We have three different choices for the node in $P \cap T$. Consider, without loss of generality, P = (s, z); let Z = F(s). The connected components of the symmetric difference of S and T containing the nodes t and u are either *(iii-a)* two paths P_1 and P_2 of length 2; (*iii-b*) a path P_1 of length 4; or (*iii-c*) a cycle C of length 4. In the first case let $P_1 = (t, x), P_2 = (u, y)$ and let X = F(t), Y = F(u). In the second case we have two possibilities: either t or u is an extremum of P_1 . Without loss of generality, assume $P_1 = (t, x, u, y)$ and let X = W(t, u), Y = F(u). In either case, the set $S = \{x, y, z\}$ with $x \in X, y \in Y, z \in Z$ is the sought-after maximum-weight stable set. By applying Lemma 12 we can, in $\mathcal{O}(|E| \log |V|)$ time, either conclude that there exists no stable set of types (*iii-a*) and (*iii-b*) or find a maximum stable set $\{x, y, z\}$ with $x \in X, y \in Y, z \in Z$. In case *(iii-c)* let C = (t, x, u, y). The nodes x, y belong to W(t, u) and the node z to F(s). Moreover, by claw-freeness, F(s) is null to W(t, u). Recall that W(t, u) is a local sets, so its cardinality is $\mathcal{O}(\sqrt{|E|})$. It follows that the maximum-weight stable set $S = \{x, y, z\}$ can be obtained by choosing the node z having maximum weight in F(s) and finding in $\mathcal{O}(|E|)$ time the pair of non-adjacent nodes $x, y \in W(t, u)$ having maximum weight. This concludes the proof of the theorem.

References

- Berge, C.: Two Theorems in Graph Theory. Proc. Nat. Acad. Sci. USA 43, 842–844 (1957)
 Faenza, Y., Oriolo, G., Stauffer, G.: Solving the weighted stable set problem in claw-free
- graphs via decomposition. J. ACM 61(4), 20 (2014)
 Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3-4), 115-121 (2000)