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Abstract

An optimization model based on the use of Neural Network surrogate models for the
multi-objective optimization of small scale Organic Rankine Cycles is presented, which cou-
ples the optimal selection of the thermodynamic parameters of the cycle with the main design
parameters of In-Flow Radial turbines. The proposed approach proved well suited in the
resolution of the highly non-linear constrained optimization problems, typical of the design
of energy systems. Indeed the use of a surrogate model allows to adopt gradient based meth-
ods that are computationally more efficient and accurate than conventional derivative-free
optimization algorithms.

The intensive numerical experiments demonstrate that assuming a constant efficiency
for the In-Flow Radial turbine leads to an error in the evaluation of the performance of the
system of up to 50 % and that the optimization approach proposed improves the accuracy
of the solution and it reduces the computational time required to reach it by two orders of
magnitude. An holistic approach in which the turbine and the thermodynamic cycle are
designed simultaneously and the use of multi-objective optimization proved to be essential
for the design of Organic Rankine cycles that satisfy both size and performance criteria.

Keywords: Artificial Neural Networks, ORC, ANN, Radial inflow turbine, Turbine
efficiency

1. Introduction

Organic Rankine Cycle (ORC) is a consolidated technology to exploit thermal energy
from wasted heat in low/medium temperature (400 to 700 K) range. Although the ORC
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technology has been widely installed to produce power in the MW range [1], the instal-
lation of ORC machines of power in the kW range still finds little practical application.
In fact, when scaling down ORC systems, additional design issues arise which still limit
the widespread availability of the technology. Particular effort has been recently expended
by researchers to try to optimize the performance of ORC systems in the production of
power in the kW range. Tocci et al. [2], in their techno-economic review of ORC appli-
cations, stated that particular attention needs to be taken when designing the turbine, in
that its performance plays a crucial role in the definition of the overall efficiency of ORC
systems; therefore, a preliminary design of the turbine needs to be considered in the process
of optimization of the thermodynamic parameters of the cycle.

Even though it is usual practice to define the thermodynamic cycle as a first step and
subsequently to design the turbine, recently, researchers started to consider the effect of
the thermodynamic parameters of ORC cycles on the performance of the turbine at an
early design stage. Uusitalo et al. [3] addressed the subject of combining the design of the
ORC cycle’s thermodynamics and of the turbine for low power applications, discussing the
performance of different working fluids. Ventura and Rowlands [4] proposed a tool to couple
the design of radial turbines to the selection of the thermodynamic parameters of the cycle.
La Seta et al. [5] derived an optimization tool to carry out the simultaneous optimization of
both the cycle’s and the turbine’s design. Zhai et al. [6] developed an optimization tool for
the simultaneous design of the ORC cycle and of the radial turbine using genetic algorithms.
Lazzaretto and Manente [7] proposed an optimization procedure of the thermodynamic cycle
of the ORC in which a specific correlation for the efficiency of the turbine is included: they
derived correlations for both radial and axial turbines.

The combined optimization of the thermodynamic parameters of the cycle and of the
design parameters of the turbine implies the need to solve a highly non-linear constrained
optimization problem, which requires the use of thermodynamic libraries to calculate the
thermo-physical properties of the fluids involved in the transformations. It is usual practice
in the energy field to use derivative-free optimization methods, such as artificial bees colonies
[8] and genetic algorithms [9], to solve highly nonlinear black-box optimization problems.
However, derivative-free optimization algorithms have the disadvantage of being intrinsically
slow, due both to the high computational cost of functions’ evaluations and to the large
number of such evaluations. In addition, they are less accurate than the algorithms based
on the gradient method, i.e. those that use the derivative of the objective function and of
the constraints during the optimization process.

In this work, Neural Networks are used to derive surrogate models and to overcome the
limitation of derivative-free optimization algorithms. Artificial Neural Networks (ANNs) al-
low to derive approximated mathematical models of the nonlinear system based on samples.
The resulting model can be conveniently applied to the combined optimization of the ther-
modynamic parameters of the ORC cycle and of the design parameters of the turbine. The
use of Neural Networks to improve optimization processes has been discussed in previous
works [10]. ANN models provide an intrinsically continuous and differentiable correlation
function that allows for the use of analytical gradient methods for its optimization [11]. The
use of gradient methods, as opposed to derivative-free methods commonly used in ORC
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optimization problems, allows to reach more accurate results in an amount of time that is
one order of magnitude smaller with respect to that of derivative-free optimization algo-
rithms [12]. To the authors’ knowledge, no one has ever applied the proposed methodology
to the combined optimization of the thermodynamic cycle and of the design of the turbine
of ORC systems. This paper aims at presenting an optimization tool specifically derived
for the multi-objective optimization of small scale ORC systems, in which a novel model of
radial in-flow turbines coupled to a model of the thermodynamic cycle is converted into a
set of ANNs to improve the optimization performance of the highly non linear model of the
system.

The paper is organized as follows. Section 2 describes the architecture of the neural
network implemented, which has been developed using the platform TensorFlow [13]. Sec-
tion 3 presents the thermodynamic model of the ORC cycle, the analytical model to derive
the performance of IFR turbines, the model to preliminary estimate the size of the heat
exchangers and the formulation of the optimization problem to be solved. Section 4 investi-
gates the influence of the thermodynamic parameters of the ORC cycle on the performance
of IFR turbines. Section 5 applies the ANN based optimization model to the combined
optimization of the thermodynamic parameters of the cycle and of the design parameters
of the IFR turbine of a small scale ORC system. Section 6 summarizes the results of the
study.

2. Neural networks

A learning machine can be described as a regression tool capable of deriving a mathe-
matical model by means of a set of samples representing the process and available in the
form (xp, ȳp), for p = 1, . . . , P , where xp ∈ Rn represents the features of the input and
ȳp ∈ Rm the corresponding outputs. These samples can be derived as measures of experi-
ments or using numerical thermodynamic tools. Among learning machines, Artificial Neural
networks (ANN) are often selected, since they proved reliable in many different tasks [14].
The aim of an ANN model is to define a function y : Rn → Rm as a ”good” approximation
of the unknown function underlying the process. The type of function and the parameters
settings are defined through a learning procedure briefly described below. The basic ANN
architecture is known as the Multi Layer Perceptron (MLP) and it is composed by units
(neurons) organized in layers forward-connected to each other. As a matter of example in
Figure 1 (a) a representation of an ANN is reported where the nodes represent the neurons
and the arcs represent the weighted synaptic connections among neurons.

The main elements characterizing an ANN are:

• an input layer (IL), that receives the training examples;

• one or more intermediate layers, called hidden layers (HL);

• an output layer (OL), which consists of as many neurons as the number of outputs of
the network.
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An ANN consisting of a unique hidden layer, as e.g. in Figure 1, is called shallow network
whereas it is called deep network otherwise. Each unit of the HL is characterized by the
activation function g, which acts as an on-off trigger on a weighted combination of the
outputs of the neurons in the preceding layer, and a bias bj; each connection from input i to
neuron j of the HL is characterized by a weight wj

i as shown in Figure 1 (b); the arc from
the hidden neuron j to the output neuron are weighted by wj
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Figure 1: (a) ANN with one hidden layer and one output; (b) internal structure of the j-th neuron of the
hidden layer.

The number of the hidden layers L and the number of neurons m` in each HL ` = 1, . . . , L
together with the activation function g of the neurons are user-dependent parameters. Once
they are fixed, the output of the ANN network is obtained by forward propagation of the
input. In the case of a shallow network with one output, it takes the following form:

y(x; w,b) =
m∑
j

wj
og

(
n∑
i

wj
ixi + bj

)
(1)

where w = {wj
o, w

j
i }i=1,...,,j=1,...,m and b = {bj, bo}j=1,...,m are respectively the weights and

the biases of the neurons.
All the parameters w,b that appear in Eq. (1) are “learned” through a training process

that consists in the solution of the minimization problem described by Eq. (2):

min
w,b

E(w,b) =
1

2

P∑
p

‖ȳp − y(xp; w,b)‖2
(2)

3. The mathematical models

Section 3 reports the description of the mathematical models considered in this work
for the design of small scale ORC systems. The models have been coded using MATLAB
[15] whereas the thermodynamic properties of the fluids have been calculated using the
thermodynamic library REFPROP [16]. Figure 2 shows the thermodynamic transformations
of a regenerated ORC system on the specific entropy - Temperature diagram. Table 1
provides a brief description of the processes that take place in each of the components of
the system.

Section 3.1 presents the thermodynamic model of the ORC cycle. Section 3.2 describes
the analytical model for the preliminary design of the IFR turbine. Section 3.3 reports the

4



Figure 2: T-s diagram of an ORC thermodynamic cycle.

Table 1: Transformations of the cycle.

Transformation ComponentDescription

1 - 2 Pump Fluid pressurized by the pump
2a - 3 Pre-heater Pressurized fluid heating
3 - 4 Evaporator Pressurized fluid vaporization
4 - 5 Super-heater Pressurized fluid super-heating
5 - 6 Turbine Expansion process
6 - 6a Regenerator Heat recovery to pre-heat the fluid at the pump outlet
6a - 1 Condenser Fluid condensation

calculations performed to preliminary assess the size of the heat exchangers of an ORC sys-
tem, based on the ε - Net Transfer Unit (NTU) method. Section 3.4 reports the formulation
of the optimization problem to be solved using the proposed machine learning approach.

3.1. Thermodynamic model of the Organic Rankine Cycle

The thermodynamic model of the ORC is based on the mass conservation equations and
the energy balance equations applied to each component of the system. Eq. (3) to (10) are
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representative of the model implemented.

ṁhs = const (3)

ṁwf = const (4)

ṁcf = const (5)

ṁhs · (h5,hs − h2a,hs) = ṁwf · (h5 − h2a) (6)

Pturbine = ηturbine · ṁwf · (h5 − h6) (7)

ṁwf · (h6a − h1) = ṁcf · (h6a,cf − h1,cf ) (8)

ṁwf · (h6 − h6a) = ṁwf · (h2a − h2) (9)

Ppump = ṁwf · (h2 − h1)/ηpump (10)

RD =
h6 − h6a

h6 − h7

(11)

The subscripts refer to the thermodynamic points depicted in Figure 2, where ṁhs, ṁwf

and ṁcf are the mass flow rates of the heat source, of the working fluid and of the cooling
fluid respectively, RD is the degree of regeneration, ηturbine and ηpump are the isentropic
efficiencies of the turbine and of the pump.

3.2. Analytical model of the in-flow radial turbine

The In-Flow Radial (IFR) turbine model presented in this section is based on the calcu-
lation of the velocity triangles (quasi-two dimensional model). The model requires as input
the thermodynamic parameters of the expansion process, namely inlet temperature, inlet
pressure and outlet pressure, and provides in output the isentropic efficiency of the machine.

Figure 3 shows the sections in which the IFR turbine is divided.

Figure 3: In-Flow Radial (IFR) turbine.

As shown in Figure 3, an IFR turbine is composed of a volute that distributes the fluid
around the statoric blades; a statoric row of blades (nozzle vanes) that partially convert
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pressure energy into kinetic energy; a row of rotoric blades that extract the energy deriving
from the expansion of the working fluid, transferring it to the rotating shaft as mechanical
energy. The design of an IFR turbine consists in the definition of the geometry of the various
sections of the machine. To this end, some parameters have been kept constant in the IFR
turbine design, using values suggested by experience in turbomachinery to maximize the
performance of IFR turbines [17]. Table 2 lists the constant inputs used for the design of
the IFR turbine:

Table 2: Inlet design parameters for the IFR turbine design

Parameter Value

ψr,out 0
φc 0.25
Vv,in 50 m/s
Ds,in

Dr,in
1.3

br,in
Dr,in

0.02

where ψr,out is the head coefficient at the outlet section of the rotor, φc is the flow
coefficient of Chen and Baines, Vv,out is the velocity of the fluid at inlet section of the volute,
Ds,in/Dr,in is the ratio between the inlet diameter of the stator and the rotor and br,in/Dr,in

is the ratio of the thickness of the blades to the diameter at the inlet section of the rotor.
In addition to the constant values listed in Table 2, the pressure at the inlet of the volute
(pv,in), the temperature at the inlet of the volute (Tv,in), the pressure at the outlet of the
rotor (pr,out), the mass flow rate of the working fluid (ṁwf ), the specific speed (ns), the
specific diameter (ds) and a first tentative isentropic efficiency (ηis) are provided as input
variables. The thermodynamic conditions at the inlet of the IFR turbine are fully defined, in
that temperature and pressure are known from the calculation of the thermodynamic cycle.
The first tentative value of the isentropic efficiency (ηis) is used to calculate the enthalpy at
the outlet of the rotor of the turbine and hence, the Euler Work (WEuler) that the turbine
provides, using Eq. (12):

WEuler = ηis · (hv,in − hr,out,is) (12)

The power output of the turbine (Pturbine) is calculated using Eq. (13):

Pturbine = ṁwf ·WEuler (13)

The specific speed of the IFR turbine (ns) is used to calculate the rotational speed
(ωturbine, Eq. (14)):

ωturbine =
ns ·W 0.75

Euler

Q0.5
r,out

(14)

Where Qr,out is the volumetric flow rate at the outlet of the rotor, defined as:
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Qr,out = ṁwf/ρr,out (15)

The specific diameter of the IFR turbine (ds) is used to calculate the diameter of the
rotor of the IFR turbine at the inlet section (Dr,in):

Dr,in =
ds ·Q0.5

r,out

W 0.25
Euler

(16)

and the height of the blade at the inlet of the rotor (br,in) is defined considering the ratio
br,in
Dr,in

reported in Table 2:

br,in =
br,in
Dr,in

·Dr,in (17)

The peripheral velocity at the inlet section of the rotor (~Ur,in) is equal to:

~Ur,in = ωturbine ·
Dr,in

2
(18)

Once ~Ur,in is known, the head coefficient at the inlet of the turbine (ψr,in) is calculated
as:

ψr,in = WEuler/~U
2
r,in (19)

The definition of the parameters at the inlet section of the rotor is completed using the
chart defined by Rohlik, which reports the optimal inlet angle of the flow into the rotor of
the IFR turbine as a function of the specific speed. Figure 4 displays the Rohlik’s chart [18].

Figure 4: Rohlik’s chart for the definition of the optimal nozzle exit angle.
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At this stage, the velocity triangle at the inlet of the rotor can be evaluated. The velocity
triangle of the rotor at the outlet section is calculated using the flow coefficient (φc, see Table
2) as defined by Chen and Baines [19].

The flow coefficient, as defined by Chen and Baines (φc) is reported in Eq. (20).

φc = ~Vr,out/~Ur,in (20)

Knowing the absolute velocity at the outlet section of the rotor (~Vr,out) and the head
coefficient at the outlet section of the rotor (ψr,out, see Table 2), it is possible to define the
velocity triangle at the outlet of the IFR turbine’s rotor.

At this point, the number of blades of the rotor (Zr) is calculated using Eq. (21).

Zr = π/30 · (100− αRohlik) · tan(αRohlik) (21)

Finally, the stator is designed using the diameter ratio listed in Table 2 (Ds,in/Dr,in) and
assuming that the fluid enters the stator radially.

The geometry is now fully defined and the losses in the different sections of the IFR
turbine can be evaluated to calculate the value of the isentropic efficiency of the IFR turbine.
In this work, the following losses have been taken into account:

• Rotor losses, comprehending tip clearance, secondary, friction and exit kinetic losses;

• Nozzle losses, which depend on friction;

• Volute losses.

The losses in the different sections of the machine reduce the available enthalpy drop
of the working fluid that is transferred to the rotating shaft in form of mechanical energy.
Therefore, the isentropic efficiency of the turbine is calculated as in Eq. (22):

ηis =
WEuler −∆hlosses

WEuler

(22)

where ∆hlosses is the sum of the losses in the different sections of the IFR turbine:

∆hlosses = ∆hlosses,r + ∆hlosses,s + ∆hlosses,v (23)

An in depth analysis of the losses occurring in IFR turbines is beyond the scope of this
work. One interested in the detailed analysis of the losses model considered in this paper,
is referred to the work of Rahbar et al. [20], who analyzed in detail the nature of the losses
of an IFR turbine for ORC applications.

Once the isentropic efficiency of the turbine is computed, the design process is iterated
using the new value for the isentropic efficiency of the turbine. The process stops when the
discrepancy between the tentative value of the efficiency and that of the calculated efficiency
is negligible.
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Figure 5: Validation of the IFR turbine model against the results of Rahbar et al. [20].

The model of the IFR turbine presented in Section 3.2 has been validated against the
results presented in the work of Rahbar et al. [20]. Figure 5 reports the validation of the
IFR turbine model.

One may notice that the prediction of the isentropic efficiency of the IFR turbine model
presented in this work is in accordance to that of the model presented in [20].

The IFR turbine model has been also validated against experimental studies. The results
are displayed in Figure 6:

The validation against the experimental results reported in Figure 6 shows that the IFR
turbine model proposed in this paper is able to estimate the efficiency of IFR turbines with
a good degree of accuracy.

3.3. Calculation of the size of the heat exchangers

In this work an estimation of the size of the heat exchangers is expressed using the UA
parameter, which has been calculated using the NTU − ε method. Even though a complete
design of the heat exchangers has not been performed in this work, the UA parameter
provides a good understanding of the size of the heat exchangers of which an ORC system is
composed. In an ORC system, heat transfer takes place in the evaporator, the regenerator
and the condenser. The evaporator has been divided into pre-heating (2a - 3, see Figure
2), vaporization (3 -4) and super heating (4 - 5) sections whereas the condenser has been
divided into de-super heating (6a - 7), condensation (7 - 8) and sub-cooling (8 - 1). The
UA parameter has been calculated for each of the aforementioned sections and for the
regenerator. Finally the sum of each segment provides the sum of the UA parameter of the
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Figure 6: Validation of the IFR turbine model against the experimental results reported in Bao and Zhao
[21].

heat exchangers (UAsum). The NTU − ε method is an established methodology: interested
readers are referred for example to [22] for a detailed description of the procedure.

3.4. Definition of the optimization problems

The mathematical models described in sections 3.1, 3.2 and 3.3 have been used in com-
bination to solve the optimization problems described in this Section. The aim of this work
is to define an ANN based optimization tool that can be used by process engineers to se-
lect the optimal thermodynamic parameters of an ORC cycle, considering the effect of the
thermodynamic parameters selected on the performance of the IFR turbine. Three different
optimization problems have been solved in this work, namely the maximization of the net
power output of the ORC system (Pcycle), the maximization of the cycle’s efficiency (ηcycle)
and the minimization of the size of the components (UAsum).

The optimization model (24) displays the different objective functions and the constraints
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considered in the analysis.

max
x∈Ω

Pcycle

max
x∈Ω

ηcycle

min
x∈Ω

UAsum

subject to Ti − Ti,cf ≥ ∆T , i = 1, 7

T6a − T6a,cf ≥ ∆T

T8 − T8,cf ≥ ∆T

T2a,hs − T2a ≥ ∆T

T6 − T2a ≥ ∆T

T6a − T2 ≥ ∆T

Ti,hs − Ti ≥ ∆T , i = 3, 5

T2a,hs − T2 ≥ ∆T

h2a ≤ h3

T2a ≥ T2

T6a ≤ T6

T6a ≥ T7

T2a,hs ≥ Tlimit,hs

(24)

where Ω ⊆ R7 is a set representing lower and upper bounds on the variables, ∆T is
the minimum pinch temperature difference allowed in the heat exchangers, T8 and T8,cf are
respectively the temperature of the working fluid and of the cooling source at the end of the
condensation process, Pcycle and ηcycle are explicitly reported in Eq. (25) and (26).

Pcycle = Pturbine − Ppump (25)

ηcycle =
Pcycle

ṁwf · (h5 − h2a)
(26)

The optimization has the objective to define the optimal thermodynamic parameters of
the cycle and the optimal design parameters of the IFR turbine at the same time. Table 3
reports the decision variables considered in this work:

In Table 3, ṁwf is the mass flow rate of the working fluid, T4 and T7 are the vaporization
and condensation temperatures of the cycle (see Figure 2), ∆Tsh is the superheat, RD is
the degree of regeneration, ns is the specific speed of the IFR turbine and ds is the specific
diameter of the turbine at the inlet section of the rotor.

The general multi-objective optimization problem can be expressed as:
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Table 3: Decision variables of the optimization problem.

Independent Parameter SI unit

ṁwf [kg/s]

T4 [K]

∆Tsh = T5 − T4 [K]

T7 [K]

RD [-]

ns [-]

ds [-]

min
x∈Ω

fj(x) , j = 1, . . . , 3

subject to ci(x) ≤ 0 , i = 1, . . . , 15
(27)

where fj represents the three objective functions and ci represents the sixteen constraints
in the same order as they appear in Eq. (24).

4. Effect of the thermodynamic parameters of the cycle on the performance of
the turbine

Section 4 provides an investigation of the effect of the thermodynamic parameters of
the ORC cycle on the efficiency of the IFR turbine, to quantify the advantages of the
model proposed in this paper over a simplified model that considers a constant value for
the isentropic efficiency of the IFR turbine. The objective of this section is twofold. First,
the impact of the parameters listed in Table 3 on the isentropic efficiency of the turbine
is investigated. Second, the discrepancy in evaluating the performance of the ORC system
considering a constant isentropic efficiency of 0.75 for the IFR turbine and taking into
account the effect of the thermodynamic parameters on the efficiency of the IFR turbine is
addressed. To this end, the parameters listed in Table 3 have been varied over a wide range
and the results on the performance of the system are discussed. The name of the working
fluid implemented in this work cannot be disclosed for confidentiality reasons.

Figure 7 reports the IFR turbine isentropic efficiency as a function of the specific speed
(ns) and of the specific diameter (ds).
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Figure 7: IFR turbine efficiency as a function of the specific speed (ns) and of the specific diameter (ds).

From Figure 7 it is possible to notice that the maximization of the efficiency of the
IFR turbine is reached from the selection of an optimal pair of specific speed and specific
diameter. Figure 7 shows that higher values of the specific speed result in a better efficiency
when coupled with lower values of the specific diameter and viceversa, which is consistent
with all accepted performance charts.

Figure 8 reports the isentropic efficiency of the IFR turbine as a function of the vapor-
ization temperature for various values of the superheat, for fixed mass flow rate (0.8 kg/s),
condensation temperature (313.15 K), degree of regeneration (0.5), specific speed (0.8) and
specific diameter (3).
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Figure 8: Isentropic efficiency of the IFR turbine as a function of the vaporization temperature for various
values of the superheat, for fixed mass flow rate (0.8 kg/s), condensation temperature (313.15 K), degree
of regeneration (0.5), specific speed (0.8) and specific diameter (3)..

Figure 8 shows that the isentropic efficiency of the IFR turbine decreases when the va-
porization temperature of the ORC cycle is increased. This is an important effect to keep
into account. On one hand, an increase in the vaporization temperature has a negative
impact on the performance of the IFR turbine. On the other hand, the higher the vapor-
ization temperature the higher the efficiency of the ORC cycle, for a constant performance
of the turbine. A good trade off between the isentropic efficiency of the turbine and the
efficiency of the thermodynamic cycle needs to be found, which highlights the need for the
combined optimization of the two parameters. In addition, Figure 8 shows that the increase
of the superheat is beneficial for the performance of the turbine, which is a tendency well
known by designers. The gain in efficiency for the IFR turbine due to an increase in the
superheat is higher when the vaporization temperature of the cycle is higher. However, one
may notice that the effect of the superheat on the performance of the turbine is negligible
when compared to that of the vaporization temperature of the cycle.

Figure 9 reports the isentropic efficiency of the IFR turbine as a function of the con-
densation temperature for different values of the vaporization temperature, for fixed mass
flow rate (0.6 kg/s), superheat (50 K), degree of regeneration (0.7), specific speed (0.6) and
specific diameter (3).
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Figure 9: Isentropic efficiency of the IFR turbine as a function of the condensation temperature for various
values of the vaporization temperature, for fixed mass flow rate (0.6 kg/s), superheat (50 K), degree of
regeneration (0.7), specific speed (0.6) and specific diameter (3).

Figure 9 shows that no linear correlation exists between the performance of the IFR
turbine and the temperature difference between the vaporization and the condensation pro-
cesses. In fact, when the condensation temperature is low, the IFR turbine benefits from a
low value of the vaporization temperature. On the contrary, for high values of the conden-
sation temperature, the isentropic efficiency of the turbine increases for higher vaporization
temperatures. Figures 7 to 9 demonstrate the nonlinear impact of the thermodynamic pa-
rameters of the ORC cycle and of the design parameters of the turbine on the performance of
the IFR turbine. The rest of Section 4 investigates the error that derives from considering a
constant value of 0.75 for the isentropic efficiency of the IFR turbine with respect to the use
of a more accurate calculation of the performance of the turbine using the model proposed
in Section 3.

Figure 10 reports the net power (Pcycle) and the efficiency (ηcycle) of the ORC cycle as
a function of the vaporization temperature, for fixed mass flow rate (0.75 kg/s), superheat
(50 K), condensation temperature (313.15 K), degree of regeneration (0.75), specific speed
(0.6) and specific diameter (3).
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Figure 10: ORC cycle net power (Pcycle) and efficiency (ηcycle) as a function of the vaporization temperature,
for fixed mass flow rate (0.75 kg/s), superheat (50 K), condensation temperature (313.15 K), degree of
regeneration (0.75), specific speed (0.6) and specific diameter (3).

The full dots in Figure 10 represent the values calculated using the model proposed in
Section 3 while the crosses represent the values calculated considering a constant efficiency
for the IFR turbine. Figure 10 shows that the efficiency of the cycle and the net power
output are overestimated when assuming a constant value for the efficiency of the turbine.
The discrepancy between the two models is higher for higher values of the vaporization
temperature. The efficiency of the ORC increases with the vaporization temperature. In
fact, increasing the vaporization temperature implies that the heat is provided to the ORC
at a higher average temperature, which has a positive effect on the efficiency of the cycle.
The net power of the cycle increases when the vaporization temperature increases. This is
due to the increase in the difference between the work provided by the turbine with respect
to that absorbed by the pump.

Figure 11 reports the net power (Pcycle) and the efficiency (ηcycle) of the ORC cycle as
a function of the condensation temperature, for fixed mass flow rate (0.7 kg/s), superheat
(50 K), vaporization temperature (368.15 K), degree of regeneration (0.9), specific speed
(0.6) and specific diameter (3).
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Figure 11: ORC cycle net power (Pcycle) and efficiency (ηcycle) as a function of the condensation temperature,
for fixed mass flow rate (0.7 kg/s), superheat (50 K), vaporization temperature (368.15 K), degree of
regeneration (0.9), specific speed (0.6) and specific diameter (3).

Figure 11 shows that both the efficiency of the ORC cycle and the power output are
greatly affected by the condensation temperature. In fact, it is well known that a lower
value of the condensation temperature has a beneficial effect on the performance of ORC
systems. The full dots show that the use of the model presented in this work to evaluate
the performance of ORC systems results in lower values for the cycle’s efficiency and power
output with respect to considering a constant value of 0.75 for the isentropic efficiency of
the IFR turbine.

Figures 12 and 13 report respectively the isentropic efficiency of the IFR turbine and
the UA coefficient (UAsum) as a function of the specific speed for various values of the va-
porization temperature, for fixed mass flow rate (0.7 kg/s), superheat (10 K), condensation
temperature (343.15 K), degree of regeneration (0.2) and specific diameter (3.4).
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Figure 12: Isentropic efficiency of the IFR turbine as a function of the specific speed for various values of the
vaporization temperature, for fixed mass flow rate (0.7 kg/s), superheat (10 K), condensation temperature
(343.15 K), degree of regeneration (0.2) and specific diameter (3.4).
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Figure 13: UA coefficient (UAsum) as a function of the specific speed for various values of the vaporization
temperature, for fixed mass flow rate (0.7 kg/s), superheat (10 K), condensation temperature (343.15 K),
degree of regeneration (0.2) and specific diameter (3.4).

Figure 12 shows that the efficiency of the IFR turbine is greatly affected by the change
in the specific speed, as already demonstrated in Figure 7. An increase in the specific speed
of the turbine results in a decrease of the efficiency of the turbine, for the given value of
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the specific diameter (ds = 3.4, Figure 12). Furthermore, Figure 12 shows that the optimal
value of the specific speed, for the given specific diameter, is around 0.55. A decrease in the
specific speed below this value results in a decrease of the efficiency of the turbine. Figure
13 shows that the UA parameter, and hence, the size of the heat exchangers is not affected
by the specific speed of the turbine. On the contrary, the UA parameter is a strong function
of the vaporization temperature of the cycle. In fact, for a given set of conditions of the heat
source, the increase in the vaporization temperature of the cycle reduces the temperature
difference between the organic fluid at a high pressure and the heat source, resulting in an
increase in the size of the heat exchangers. A low vaporization temperature is convenient to
enhance the performance of the turbine (see Figure 12) and to minimize the UA coefficient
(see Figure 13) but it has a negative effect on the overall ORC efficiency (see Figure 10).
A high vaporization temperature ensures an overall higher efficiency at the expenses of a
less compact system. A good trade off between the two counteracting effects needs to be
found each time an ORC system is designed. This highlights the need for the combined
optimization of the design of the IFR turbine and of the ORC cycle parameters proposed in
this work.

Figure 14 reports the efficiency of the ORC cycle as a function of the degree of regenera-
tion for various values of the vaporization temperature, for fixed mass flow rate (0.3 kg/s),
superheat (30 K), condensation temperature (313.15 K), specific speed (0.6) and specific
diameter (3).
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Figure 14: efficiency of the ORC cycle (ηcycle) as a function of the degree of regeneration for various
values of the vaporization temperature, for fixed mass flow rate (0.3 kg/s), superheat (30 K), condensation
temperature (313.15 K), specific speed (0.6) and specific diameter (3).

Figure 14 highlights the discrepancy between the results obtained using the model object
of this paper and those obtained by considering a constant 0.75 isentropic efficiency. Also,
the beneficial effect of the regeneration on the efficiency of the ORC cycle is assessed. In fact,
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regeneration lowers the heat input to the system (i.e. the denominator of Eq. (26)) keeping
constant the power output of the system (i.e. the numerator of Eq. (26)). The drawback
of regeneration is represented by the addition of a heat exchanger, which - in addition to
introducing pressure losses in the cycle - may have a non negligible size and therefore cost.
In fact, a regenerator needs to handle liquid on one side and low density vapour on the other
side, resulting in a large component. The degree of regeneration is included in the set of
decision variables in this work to keep into account its effect on the performance and on the
size of the ORC system.

Finally, the percentage error that derives from computing the efficiency of the ORC
(ηcycle, see Eq. (26)) and of the net power output of the system (Pcycle, see Eq. (25)) using a
constant isentropic efficiency of 0.75 for the IFR turbine is evaluated. The percentage error
(%Err) is expressed as in Eq. (28).

%Err =
|xactual − x0.75|

x0.75

1̇00 (28)

where x0.75 is the value calculated considering a constant value for the isentropic efficiency
of the IFR turbine of 0.75 while xactual is the value calculated considering the effect of the
thermodynamic parameters on the efficiency of the IFR turbine.

Using multiple values for the decision variables, the net power of the cycle (Pcycle) and
the efficiency of the ORC system (ηcycle) have been evaluated considering a constant turbine
efficiency of 0.75 in one case and calculating the turbine efficiency via the model proposed in
Section 3.2 in the other case. Figure 15 shows the percentage error for the cases analyzed.
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Figure 15: Percentage error in the evaluation of the net power (Pcycle) and on the efficiency of the ORC
cycle (ηcycle) when considering a constant isentropic efficiency for the turbine of 0.75. The calculations have
been considered varying the decision variables over a wide range. Specifically, the vaporization temperature
(363.15 - 433.15 K) and the specific speed (0.3 - 1.2) have been varied, keeping constant the turbine power
(15 kW ), the super heating rate (30K), the condensation temperature (310.15 K), the degree of regeneration
(0.5) and the specific diameter (3).

.

Figure 15 reports the percentage error when considering a constant isentropic efficiency
of the IFR turbine. The blue crosses refer to the percentage error on the calculation of the
power of the cycle (Pcycle, left y axis) whereas the red dots refer to the percentage error on
the calculation of the efficiency of the cycle (ηcycle, right y axis). For the cases analyzed, the
error on the power output of the cycle reaches values as high as 8 % while the efficiency of
the cycle is estimated with a greater error, reaching values that exceed 50%.

Section 4 demonstrates the need for the inclusion of the impact of the thermodynamic
parameters on the isentropic efficiency of the turbine at the stage of the selection of the
thermodynamic parameters of the cycle. Section 5 reports the results obtained from the
application of the ANN optimization approach presented in Section 3. The optimization
problems introduced in Section 3.4 have been solved taking into account the impact of the
thermodynamic parameters of the cycle on the performance of the IFR turbine.

5. Optimization of the performance of an organic Rankine cycle system using
the neural network approach

Section 5 presents the application of the optimization model described in Section 3 to
the optimization of an ORC system for waste heat recovery applications.

The ORC system to be designed is conceived to recover the thermal energy released in
the exhaust gasses of a 206 kW Y C6A280− 30 Yuchai engine. A thermal oil loop extracts
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the thermal energy discharged by the engine in the exhaust gasses via a shell and tube
heat exchanger. At steady state conditions, the thermal oil in input to the ORC reaches a
temperature of 493.15 K and a mass flow rate of 0.67 kg/s and the minimum temperature
that the oil can reach is 418 K, to avoid that the exhaust gasses reach the dew point. Notice
that the optimization performed in this paper represents the first step taken in the design
of the prototype of an ORC test rig that has been presented and tested in [23].

The use of surrogate models derived by means of the machine learning approach as
introduced in this paper represents a promising technique to solve the highly nonlinear
optimization problems (24) presented in Section 3.4. In fact, neural network models provide
a continuously differentiable correlation function as the one presented in Eq. (1), that
makes it possible the use of gradient based methods for the optimization process. The
use of gradient methods, as opposed to derivative-free methods commonly used in ORC
optimization problems (e.g. genetic algorithms), allows to reach more accurate results in an
amount of time that is one order of magnitude smaller [12].

The target set for the ANN models has been derived using the thermodynamic models
described in Section 3, that have been developed using the software MATLAB [15]. In
particular the target set has been obtained running the physical model multiple times for
different values of the decision variables listed in Table 3 in the ranges reported in Table 4
(order of 105 samples).

Table 4: Range of the inputs for which the neural network is trained.

Parameter Value

ṁwf [kg/s] 0.2− 1

T4 [K] 368.15− 438.15

∆Tsh = T5 − T4 [K] 10− 90

T7 [K] 303.15− 353.15

RD [-] 0.05− 0.95

ns [-] 0.5− 0.7

ds [-] 3.5− 6

For the purpose of this work, 19 networks have been trained using the input variables
of Table 3 in the range reported in Table 4. Each network has been trained to predict a
different output; three networks are representative of the three objective functions of the
optimization problems presented in Section 3.4. The remaining 15 networks are meant to
describe the constraints ci of the optimization problems (27) introduced in Section 3.4. As
a matter of example, the first constraint of the optimization problems (24) is written as

c1 = T1 − T1,cf −∆T ≥ 0 (29)
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The output of the neural network representing the first constraint is the function c1. The
same has been done for the remaining 14 constraints of the optimization problems (24).

The optimization problems (24) have been solved using both the Neural Network models
presented in Section 2 and standard derivative-free algorithms to compare the performance
of the different optimization techniques both in terms of accuracy and computational time.
In particular, two different derivative-free optimization algorithms have been used in this
work. First, the Mesh Adaptive Direct Search (MADS) method as implemented in the
OPTI toolbox [24] and presented by the authors in [12]. Second, genetic algorithms (GAs) as
implemented in the optimization toolbox of the software MATLAB [15], which are derivative-
free optimization algorithms of the class of evolutionary algorithms. Because of their ease
of implementation, GAs are broadly used, even when more suitable optimization algorithms
would be more performing.

When machine learning models are used, the solution of the optimization problems (24)
requires two steps:

1. The training of the Neural Networks representing the objective functions fj and the
constraints ci;

2. The solution of the optimization problem.

The set of 18 networks has been used to solve two different categories of optimization
problems. First, the multi-objective optimization via scalarization to single optimizations
of the three objective functions has been performed. Second, the same optimization prob-
lems have been solved using holistic scalarization techniques. In both cases, the objective
functions are subject to the constraints ci .

Section 5 is divided into three parts. Section 5.1 reports the sensitivity analysis over
the performance of different architectures of the neural networks, to identify the structure
that maximizes the accuracy of the predictions. Section 5.2 reports the results of the multi-
objective optimization via scalarization to single optimizations when using the proposed
surrogate models based on the ANN approach in comparison with those obtained using
standard derivative-free algorithms. It is demonstrated that the results one can obtain
using the neural network approach are consistent to those commonly found using alterna-
tive optimization methods and that the computational effort required is lower. Section 5.3
considers two possible holistic scalarization methods for the solution of the multi-objective
optimization problems that are solved by means of the surrogate ANN models to investigate
both the performance of the algorithm and the design optimization results with respect to
those obtained by the single objectives optimization.

5.1. Choice of the architectures and parameters of the neural networks

All the neural networks used to approximate the functions in the optimization problems
(24) are coded using TensorFlow [13], an open source software library for machine learning
applications. A different neural network is defined for each of the output functions that
must be approximated fj, j = 1, 2, 3 and ci, i = 1, . . . , 15.
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The training phase, as already mentioned in Section 2, consists in solving an optimization
problem in which the objective is the minimization of the error of the network in evaluating
known examples. The mean squared error has been considered as the function to be mini-
mized during the training phase. The algorithm used for the optimization is Adam [25], a
modified stochastic gradient descent with a mini-batch of dimension 500. An initial learning
rate of 0.01 and a maximum number of epochs of 200 have been selected for the training
phase.

Different architectures of the network have been considered with different activation
functions g as the sigmoid, the hyperbolic tangent and the ReLu. The selected activation
function at the end is the sigmoid function g(t):

g(t) =
1

1 + e−t
(30)

that results in better performance.
Different configurations of the network have been tested both shallow and deep using

a trial and error process to determine the number of hidden layers and of the neurons.
Generally speaking, the larger the number of parameters, i.e. units of the network, the
larger must be the target set used in the training phase, otherwise overfitting can easily
occur.

For the case of this work, the training set is derived running multiple times the analytical
code presented in Section 3, so that one can generate a training set of a large number of
instances, at the expenses of a time consuming learning process. However it has been decided
to limit the size of the training set to guarantee a good trade off between the computational
time required for the training process and the accuracy of the solution.

Different configurations of the network have been tested, to investigate the performance
of the different networks and select the best setting to be used in the optimization problems.
Specifically, shallow structures of the network have been considered, respectively with 20,
50 and 100 neurons in the hidden layer and a deep network with two hidden layers with 30
neurons in the first layer and 10 neurons in the second one.

The training phase has been implemented as a k-fold cross validation procedure (with
k = 10) that consists in using 90% of the data as training set and the remaining 10% as
the validation set used to evaluate key performance indicators (KPIs). This is a well known
procedure which allows to use all the available samples for the prediction without being
biased by the choice of the splitting in training versus test sets. The overall performance of
the different architectures is measured as the average of the obtained KPIs. In particular
the average relative absolute error has been used to compare the predictions of the different
networks. The results are reported in Table 5 where each row refers to the Neural Network
representing one of the output functions, being the first three lines those corresponding to
the three objective functions (Pcycle, ηcycle and UAsum) and the remaining lines those related
to the constraints (c1 to c15). Each column represents the 10-fold cross validation relative
absolute error obtained by the different configuration of the networks.

The last column ”Winner” of Table 5 reports the configuration that gives the best relative
absolute error. A ”tie” is declared when the values differ at most of the 0.01%.
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Table 5: 10−fold cross average relative absolute error.

Network 20 N 50 N 100 N 30 - 10 N Winner

f1 = Pcycle 0.017 0.0129 0.0158 0.0075 30-10
f2 = ηcycle 0.0159 0.014 0.0117 0.0109 tie
f3 = UAsum 0.032 0.039 0.0302 0.0105 30 - 10
c1 0.0021 0.00478 0.0207 0.0016 30 - 10
c2 0.0024 0.00478 0.0143 0.00137 tie
c3 0.4811 0.484 0.4828 0.483 tie
c4 0.0023 0.0031 0.0053 0.0023 tie
c5 0.006 0.0067 0.0146 0.0072 30 - 10
c6 0.0074 0.0129 0.0143 0.0049 30 - 10
c7 0.0035 0.0059 0.0123 0.0041 tie
c8 0.29 0.289 0.289 0.2899 tie
c9 0.0076 0.007 0.0193 0.00587 30 - 10
c10 0.0058 0.0089 0.0211 0.0048 tie
c11 0.309 0.308 0.309 0.31 tie
c12 0.0029 0.0036 0.0082 0.0029 tie
c13 0.0059 0.0058 0.011 0.0068 tie
c14 0.0053 0.0086 0.0119 0.0069 tie
c15 0.0068 0.012 0.0116 0.0071 tie

It has been decided to select the same type of network for all the functions to be approx-
imated fj and ci. From the results in Table 5, the configuration that has the best predictive
performance is the deep network with two hidden layers, so that it has been selected for the
construction of the surrogate models necessary to solve the optimization problems (24).

5.2. Multi Objective optimization via scalarization and comparison among algorithms

In this Section the optimization problems presented in Section 3.4 are solved by using
either the surrogate models obtained by the deep Neural Networks chosen in Section 5.1 with
a gradient based method, or the black box model with standard derivative-free methods.

The multi-objective optimization problems have been solved by means of a scalarization
procedure that falls under the category of ε - constraints multi-objective optimization of the
following form:

min
x∈Ω

fl(x)

c(x) ≤ 0

fi(x) ≤ εi ∀ i = i, ..., k i 6= l

(31)

where fl(x) is the function chosen to be optimized whereas fi(x), i 6= l are the remaining
objective functions that are instead add as constraints with a given tolerance εi to the other
constraints c(x) : Rn → R15 of the problem.
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In particular, the following procedure has been adopted.
First, the problem P1 of maximizing the net power output f1 of the ORC system has

been solved obtaining the value x̂1:

f̂1 = min
x∈Ω

f1(x)

s.t. ci(x) ≤ 0 , i = 1, . . . , 15

where the constraint on the minimum power output is removed.
Subsequently, the maximization of the efficiency of the cycle f2 and the minimization of

the UA parameter f3 have been solved with the additional constraint that the net power
output f1 of the ORC is at least 90 % of f̂1; namely the solutions x̂2, x̂3 of the two problems
P2 and P3 have been obtained as:

f̂2 = min
x∈Ω

f2(x)

s.t. ci(x) ≤ 0 , i = 1, . . . , 15

c16 = 0.9f̂1 − f1(x) ≤ 0

f̂3 = min
x∈Ω

f3(x)

s.t. ci(x) ≤ 0 , i = 1, . . . , 15

c16 = 0.9f̂1 − f1(x) ≤ 0

The three single optimization problems Pi, i = 1, 2, 3 have been solved by either the
derivative-free methods (i.e. MADS and GA) or by using the ANN surrogate models and
the algorithm SLSQP [26] as implemented in SciPy [27] (SANO: Surrogate Artificial Network
Optimization). It is noted that, due to non convexity, it is not possible to certificate that
a global solution is reached. However, to improve the quality of the solution a simple
global strategy based on a random multi-start algorithm using 20 random starting points
has been used. The best solution obtained after 20 runs of the multi-start SLSQP algorithm
is selected.

Table 6 reports the results of the optimizations. In particular for each of three single-
objective problems Pi, i = 1, 2, 3 defined above, the results obtained by using the GA, MADS
algorithm and the proposed SANO are reported.

For each problem Pi, i = 1, 2, 3, and for each algorithm GA, MADS or SANO the
following values are reported:

• the value of the optimal decision variables x̂i;

• the values of the three objective functions fj(x̂
i) for j = 1, 2, 3 (in bold j = i);

• the corresponding isentropic efficiency of the IFR turbine ηis;

• the computational time (cpu time) required for the optimization.

Table 6 shows that the GA, one of the optimization algorithms most commonly used
for the optimization of ORC systems, provides the worse performance among the three
optimization methods. In fact, the optimal values found using the GA in the solution of
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Table 6: Optimization results.

P1 (maxPcycle) P2 (max ηcycle) P3 (minUAsum)
Parameters GA MADS SANO GA MADS SANO GA MADS SANO

ṁwf [kg/s] 0.84 0.95 0.93 0.86 0.83 0.82 0.9 0.92 0.88
T4 [K] 437 437 438 438 438 438 438 430 438
∆Tsh [K] 41 33 34 39 42 42 36 33 32
T7 [K] 326 328 328 326 325 325 327 327 327
RD [-] 0.85 0.9 0.88 0.91 0.91 0.9 0.9 0.85 0.82
ns [-] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
ds [-] 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Pcycle [kW] 15.39 16.33 16.07 15.62 15.25 15.24 15.93 15.25 15.247
ηcycle [-] 0.15 0.15 0.149 0.157 0.159 0.159 0.15 0.141 0.141
UAsum [kW/K] 14.23 16.29 15.36 15.25 14.85 14.74 15.68 13.19 12.79

ηis [-] 0.69 0.70 0.70 0.69 0.69 0.69 0.7 0.71 0.7
Cpu time [s] 6441.7 165 4.1 6663 103 8.4 6304 432 5.2

the three optimization problems is worse with respect to the values found by the other two
methods using significantly more computational time. Hence we can limit the discussion to
the comparison beetween MADS and SANO.

Table 6 shows that the computational time required to solve the optimization problems
using SANO with the multistart procedure is two orders of magnitude smaller than that
needed by the MADS algorithm. However one may argue that the time comparison is not fair
in that the most time consumed when using the SANO approach is due to the training of the
networks. Actually, the overall time required to train each network, in the proposed setting,
is of the same order of magnitude of the time needed to solve each optimization problem
by the MADS algorithm. Furthermore, in ORC design multiple optimization problems
need to be solved to take a decision on the final design of the system. Therefore, the
SANO approach results promising. In fact, if the design of the system requires the solution
of more than 19 optimization problems (equal to the number of networks trained in the
proposed methodology), the SANO approach proposed results in time saving that increases
exponentially with the number of optimization problems solved. For what concern the
maximization of the net power output of the ORC system (see Table 6), the optimal value
of the specific speed (ns) results to be one that maximizes the turbine efficiency (see Figure 7)
and the optimal value of the vaporization temperature results to be the maximum possible.
As already discussed in this work, a high value of the vaporization temperature has a negative
impact on the isentropic efficiency of the IFR turbine (see Figure 8) and a positive impact
on the cycle’s efficiency (see Figure 10). The results of Table 6 show that, with the objective
of maximizing the net power output of the ORC cycle, the cycle’s efficiency has a higher
impact with respect to that of the IFR turbine.

A physical interpretation of the results leads to the conclusion that, to improve the effi-
ciency of the ORC cycle, one needs to increase the degree of regeneration and the superheat.
The optimal values for the specific speed and the specific diameter of the IFR turbine are
not varied with respect to the case of the optimization of the net power output of the cycle.
It is worth mentioning that the same value for the ns and the ds parameter does not imply
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that the IFR turbine has the same rotational speed and diameter in the two cases. In fact,
the rotational speed and the diameter of the rotor of the turbine are a function of the ther-
modynamic conditions at the inlet and at the outlet of the turbine, which are different in the
two optimization problems considered. One can conclude that the IFR turbine to maximize
the net power output of the system and that necessary to maximize the thermodynamic
efficiency of the cycle present a different design.

The SANO approach provides an optimal value for the UA parameter that is lower than
that found with MADS method (see Table 6). This demonstrates that the higher the non
linearity of the model to be optimized, the more accurate the solution found using surrogate
machine learning models with respect to the use of a derivative-free algorithm. From a
thermodynamic stand point, one may notice that the minimization of the UA parameter,
which is directly proportional to the size of the ORC system, can be obtained diminishing
the degree of regeneration, since the regenerator represents the heat exchanger with the
largest dimensions of an ORC system.

5.3. A holistic formulation of the multi-objective optimization of the ORC system

The results listed in Table 6 referring to the different optimization problems proposed
in Section 3.4 lead to a set of different values for the decision variables, which in turn,
implies the design of three different ORC systems, each representing the optimal solution
for a specific purpose. The choice of one of the optimal solution requires the supervision of
an expert who takes into account additional a posteriori preferences criteria.

In this section, a holistic multi objective optimization approach has been considered to
investigate over the optimal configuration that would result from keeping into account the
three objective functions (i.e. Pcycle, ηcycle and UAsum) at the same time. This has been
done using two alternative methodologies: goal programming, which is a method without
preferences, and weighted sum method, which instead requires a priori preferences.

First, goal programming [28] has been used, which is based on the assumption that the
different objective functions are treated in the same way.

Goal programming consists in solving the optimization problem described in (32):

min
x∈Ω

||f(x)− zid||p

c(x) ≤ 0
(32)

where || · ||p is the `p norm of a vector, with 1 ≤ p ≤ ∞ and zid is a reference point. For
the specific purpose of this work, zid is represented by the optimal values resulted from the
resolution of the optimization problems discussed in the previous Section, namely the optimal
values Pcycle, ηcycle and UAsum obtained by SANO for problem P1, P2 and P3 respectively
and reported in bold in Table 6.

The problem (32) aims at minimizing the difference between the optimal solutions of the
optimization problems reported in Table 6 and those of the holistic multi objective opti-
mization. Different results are obtained for different values of the norm p. The optimization
has been performed using the SANO method and the algorithm SLSQP. Table 7 reports the
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results of the multi-objective optimization problem, solved using goal programming with
different values of p.

Table 7: Multi Objective Optimization using the goal programming approach with p = 1, 2,∞.

Parameters p = 1 p = 2 p =∞

ṁwf [kg/s] 0.78 0.83 0.85
T4 [K] 437 438 438
∆Tsh [K] 40 36 35
T7 [K] 324 325 326
RD [-] 0.91 0.88 0.87
ns [-] 0.5 0.5 0.5
ds [-] 3.5 3.5 3.5

Pcycle [kW] 14.47 14.94 15.21
ηcycle [-] 0.159 0.153 0.15
UAsum [kW/K] 13.17 13.26 13.45

ηis [-] 0.696 0.697 0.697
Cpu time [s] 15.3 6.71 11.2

Table 7 demonstrates that, depending on the choice of the parameter p, the optimal
point assumes different values. It is important to mention that the solution of the goal
programming is a Pareto solution when the parameter p assumes finite values. The statement
could be false in case the parameter p is infinite (last column, Table 7). The solution obtained
using p = 1 demonstrates that it is possible to reach the same optimal values listed in Table
6 for what concern the cycle’s efficiency and the UA parameter, if one accepts a lower value
for the net power output of the cycle. On the contrary, when assuming p = 2 and p =∞, the
resolution of the holistic multi-objective optimization problems leads to a higher net power
output of the cycle with respect to the case p = 1, at the expenses of the degradation of the
remaining objective values, i.e. the cycle’s efficiency and the UA parameter. An alternative
methodology to perform multi-objective optimization is the weighted sum method [29], which
consists in allowing the decisor to rank the different objective functions in order of preference.
This leads to an optimization problem of the form (33):

min
x∈Ω

k∑
i=1

wi · fi(x)

ci(x) ≤ 0 i = 1, . . . , 15

(33)

where the weights wi ≥ 0 are normalized, i.e. they satisfy the condition of Eq. (34):

k∑
i=1

wi = 1 (34)
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it is well known that the solution obtained by the weighted sum method is a Pareto
solution.

Table 8 reports the solution of the multi-objective optimization problem using the weighted
sum method, with the objective function defined as:

min
x∈Ω

(−w1Pcycle − w2ηcycle + w3UAsum)

and assuming different values for the weights.

Table 8: Multi Objective Optimization using the weighted sum method.

w1 = 0.7 w1 = 0.5 w1 = 0.5
Parameters w2 = 0.2 w2 = 0.4 w2 = 0.1

w3 = 0.1 w3 = 0.1 w3 = 0.4

ṁwf [kg/s] 0.93 0.83 0.84
T4 [K] 438 438 438
∆Tsh [K] 34 41 17
T7 [K] 328 325 330
RD [-] 0.87 0.9 0.66
ns [-] 0.5 0.5 0.5
ds [-] 3.5 3.5 3.5

Pcycle [kW] 16.07 15.32 13.19
ηcycle [-] 0.149 0.158 0.119
UAsum [kW/K] 15.36 14.8 8.77

ηis [-] 0.7 0.697 0.7
Cpu time [s] 2.77 4.57 3.54

The results shown in Table 8 report three different Pareto solutions obtained by setting
different values for the weights. In the first setting, high priority is given to the weight
referring to the net power production (i.e., w1), in that the ORC proposed is conceived for
waste heat recovery applications where the maximization of the net power production is
crucial. In this case, the Pareto solution turns out to be very similar to the one obtained
by the maximization of the power output reported in Table 6. The other two settings of
weights reduce the weight associated with the net power production, increasing in turns the
weight of the efficiency of the cycle (i.e. w2) and of the UA parameter (i.e. w3). An increase
of w2 has a beneficial effect on the value found for the cycle’s efficiency and for the UA
parameter with respect to the first case analyzed. The increase of w3 leads to a substantial
reduction of the UA parameter (and hence, a reduction of the size of the ORC system) at
the expenses of a lower net power production and efficiency.

The weighted sum method results particularly suitable to plot a set of Pareto solutions
when considering only two objective functions at a time. In the rest of this Section, different
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plots show the results of multi-objective optimization problems in which two of the three
objective functions are taken into account simultaneously, assigning a null value to the weight
of the third objective function. In other words, each Figure presents the results obtained
solving the problem:

min wifi + wjfj + wkfk
s.t. ch ≤ 0, h = 1, . . . , 15

where the weights assume the values:

Opt. Problem 1 2 3 4 5 6 7 8 9 10 11

wi 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
wj 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wk 0 0 0 0 0 0 0 0 0 0 0

Each Figure shows the Pareto solutions obtained by solving 11 optimization problems
corresponding to the following assignments of the subscripts:

Figure 16 17 18

Pcycle j k i
ηcycle i j k
UAsum k i j

Figure 16 shows the Pareto front in the objective space of the efficiency and the power
output of the cycle.
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Figure 16: Pareto front in the objective space of the efficiency (ηcycle) and the power output of the cycle
(Pcycle)
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Figure 16 demonstrates that the maximum efficiency of the system (blue dot, bottom
right) can be obtained at the expenses of a low power output. In a waste heat recovery
application, in which one would like to produce as much electricity as possible from a given
amount of thermal energy, the aforementioned design point does not represent an interesting
solution. On the other hand, the configuration which is capable of extracting the maximum
amount of power (dark red, top left) shows the lowest efficiency and the highest UAsum

among the configurations analyzed. Figure 16 suggests that a trade off between efficiency
and power needs to be found.

Figure 17 shows the Pareto front in the objective space of the efficiency of the cycle and
the UA parameter.
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Figure 17: Pareto front in the objective space of the efficiency of the cycle (ηcycle) and the UA parameter
(UAsum)

Figure 17 demonstrates that the efficiency and the UAsum parameter are conflicting
objectives. In fact, a high efficiency of the system is obtained for a large UAsum value and
viceversa. It can also be observed that the improvement in the efficiency with an increase
of the UAsum parameter follows a non-linear trend. Figure 17 highlights that increasing
the UAsum parameter has limited effect on the efficiency for values of the UAsum parameter
higher than 3 W/K.

Figure 18 shows the Pareto front in the objective space of the power output of the cycle
and the UA parameter.

Figure 18 shows that the value of the UAsum parameter, directly correlated to the size of
the system, increases almost linearly with the power output of the system. In other words,
the reduction of the size of the system implies a decrease of the power output. The results
reported in Figure 18 can be used to take decisions on the power output of the system in
those cases in which the size of the system is constrained.

The results show that the introduction of the SANO approach allows for the representa-
tion of a portion of the Pareto front. This would take a consistently larger amount of time
using traditional optimization techniques that do not provide an analytic model.

33



0.0 2.5 5.0 7.5 10.0 12.5 15.0
Power [KW]

0

2

4

6

8

10

12

14

16

UA
 [W

/K
]

0.04

0.06

0.08

0.10

0.12

0.14

Figure 18: Pareto front in the objective space of the power output of the cycle (Pcycle) and the UA parameter
(UAsum)

Section 5.3 demonstrates that depending on the strategy considered to perform the multi-
objective optimization one may found a different Pareto solution. The experience of the
designer drives the choice among the different optimized configurations.

6. Conclusions

This work proposes a novel methodology based on machine learning techniques for the
combined optimization of the thermodynamic cycle and of the radial in-flow turbine for
small scale Organic Rankine cycle applications. The machine learning approach consists
in converting the physical model of the thermodynamic cycle and of the components of the
plant into a set of continuous and differentiable functions. This approach allows for the use of
gradient based methods for the optimization, as opposed to derivative-free methods, and this
leads to an increase in the accuracy of the solution and to a decrease of the computational
time required to solve the optimization problem.

The results of this work can be summarized as follows:

• The combination of the design of the thermodynamic cycle and that of the radial inflow
turbine leads to an increase in the accuracy in the prediction of the performance of
the system of up to 8 % for what concern the power output of the system and up to
50 % for the efficiency of small scale Organic Rankine cycle systems;

• Different architectures of the neural network have been tested, showing that the re-
quired number of neurons in the hidden layer to obtain accurate predictions strongly
depends on the objective function to be optimized. The 2-layers network has been
used because it is the one that shows the lowest error in predicting the instances of
the test set;
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• The neural networks designed in this work show that they are capable of accurately
learning the highly nonlinear physical model object of this work with a degree of
accuracy higher than 99 %;

• The proposed neural network approach proved more efficient than derivative-free al-
gorithms in the optimization of Organic Rankine cycle systems, reaching an accurate
solution in a computational time that is two orders of magnitude lower than that of
derivative-free methods. This depends on the possibility to use gradient methods for
the optimization, once the physical model is mathematically converted into a set of
functions suitable for the optimization;

• The maximization of the net power output of the system is obtained by maximizing
the vaporization temperature of the cycle and selecting a specific speed value of 0.5
for the radial in-flow turbine;

• The maximization of the efficiency of the cycle is reached through the maximization
of the degree of regeneration and the increase of the superheat with respect to that of
the maximization of the net power output of the cycle;

• The minimization of the size of the heat exchangers is reached through a minimization
of the degree of regeneration, since the regenerator is by far the largest heat exchanger
in an Organic Rankine cycle system;

• The multi-objective optimization strategies considered can be conveniently used in the
design process of small scale systems. The strategy considered for the multi-objective
optimization plays a crucial role in the definition of the Pareto solution reached.

The machine learning approach for the combined optimization of the thermodynamic
parameters of the Organic Rankine cycle and of the design parameters of the in-flow ra-
dial turbine represents a promising alternative to the most commonly used derivative-free
optimization algorithms. The higher accuracy in the results and the substantially shorter
computational time required for the optimization process make the proposed approach ideal
for the solution of many highly nonlinear problems, typical of the energy field.

This paper represents the first step towards the design of an optimization tool that can
be used by academics and industries for the design multi-objective optimization of Organic
Rankine cycle systems. The rapid evaluation of a large set of possible (i.e. feasible) de-
sign configurations provides the opportunity to explore different optimization criteria before
taking final decisions of the ORC system to be built.
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Abbreviations

ANN Artificial Neural Network
CoMT-CAMD Continuous-Molecular Targeting Computer Aided Molecular Design
GA Genetic Algorithm
HL Hidden Layer
IFR In-Flow Radial
IL Input Layer
KPI key performance indicator
MADS Mesh Adaptive Direct Search
NTU Net Transfer Unit
OL Output Layer
OPTI OPTimization Interface
ORC Organic Rankine Cycle
SANO Surrogate Artificial Network Optimization
SLSQP Sequential Least Square Quadratic Programming
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Nomenclature

A Area [m2]
α angle of the blades [degrees]
b threshold [-]
br,in thickness of the blade of the turbine [m]
c constraint
cp specific heat at constant pressure [J/kgK]
C thermal capacity [J/sK]
ds specific diameter [-]
D diameter [m]
∆T pinch point temperature difference [K]
ε effectiveness [-]
η efficiency [-]
φc flow coefficient Chain and Baines [-]
g activation function [-]
h enthalpy [J/kg]
ṁ mass flow rate [kg/s]
m number of neurons in the hidden layer [-]
n number of inputs of the network [-]
ns specific speed [-]
ω rotational speed [rpm]
p pressure [Pa]
P Power [kW]
ρ density [kg/m3]
RD degree of regeneration [-]
s specific entropy [J/kgK]
ψ head coefficient [-]
Q volumetric flow rate [m3/s]
tan tangent
T temperature [K]
U heat transfer coefficient [W/m2]
~U peripheral velocity [m/s]
~V absolute velocity [m/s]
x vector of inputs [-]
w weight [-]
WEuler Euler work [J]
y target function [-]
Z number of blades [-]
zid reference point [-]
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Subscripts

c Chain and Baines
cf cooling fluid
cond condensation
dsh de-super heating
evap evaporation
hs heat source
i input of the neural network
in inlet section of the turbine
j neuron of the hidden layer
is isentropic
o output of the neural network
out outlet section of the turbine
p instance of the training set
ph pre heating
r rotor
reg regeneration
s stator
sc sub cooling
sh super heating
v volute
wf working Fluid
2p two phase
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