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1 Introduction

In the pioneered work [15] A. Lupaş introduced the q-analogue of the Bernstein
operator and numerous generalizations based on q-integers have been devel-
oped (see, e.g., [17,18]). q-extensions of positive operators find application also
in CAGD (see, e.g. [13,16]).
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On the other hand in [8] the authors proved that there exist simple rational
functions rn and qn s.t. ∀f ∈ C([0, 1]) and ∀x ∈ [0, 1]

|f(x)− rn(x)| ≤ Cω

(
f ;

(x(1− x))γ

n

)
, (1)

|f(x)− qn(x)| ≤ Cω

(
f ;
|x− 1/2|γ

n

)
, (2)

with 0 < γ < 1, ω(f) the usual modulus of continuity of f and C a positive
constant assuming in this paper different values even in the same formula.
Estimates of type (1) with 1/2 < γ < 1 and of type (2) with 0 < γ < 1 are not
achievable by polynomials (cfr. [12]). Moreover in [8] the authors proved that
the exponent γ in (1) and (2) cannot be equal to 1. For example if f ∈ C([0, 1]),
the estimate

|f(x)−Rn(x)| ≤ Cω
(
f ;
x

n

)
, x ∈ [0, 1],

is not possible by rational approximant Rn (see the remark to Corollary 2.5
in [8] suggested to authors by Totik).

Here extending the idea of Lupaş, we construct simple rational operators
based on q-integers and prove they are a good tool to approximate functions
from C([0, 1]), achieving pointwise approximation error estimates improving
(1)-(2). In Section 2 the q−analogue of Shepard operators are considered and
uniform convergence results and pointwise approximation error estimates are
given in Theorems 1–10. Influence of choice of q on the error estimates is also
discussed. In Section 3 simple procedures in CAGD for shape modeling of ra-
tional curves based on above operators are presented. Numerical examples are
given in Section 4. Finally the proofs are in Section 5 and are based on direct
estimates of our operators and careful analysis of nodes mesh distributions.

2 Main results

First of all we recall the definition of Shepard operators. For n ∈ N introduce
the nodes matrix

X = (xn,k = xk, k = 0, . . . , n, n ∈ N) ⊆ [0, 1], (3)

with x0 = 0 and xn = 1. Then for any function f ∈ C([0, 1]) we consider the
Shepard operator Sn defined by

Sn(X; f ;x) =

n∑
k=0

f(xk)

(x− xk)s

n∑
k=0

1

(x− xk)s

, (4)

with x ∈ [0, 1], xk as in (3) and s even > 2. From (4) we deduce that Sn is a
linear, positive operator of interpolatory type, min0≤x≤1 |f(x)| ≤ |Sn(f ;x)| ≤
max0≤x≤1 |f(x)|,∀x ∈ [0, 1], Sn(f) is a rational function of degree (sn, sn),
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with S′n(f ;xk) = 0, k = 0, . . . , n. Shepard operators are widely studied in
classical approximation theory and in scattered data interpolation problems
(see, e.g., [1,2,7,8,10,22,23]). If the nodes mesh in (4) is equispaced, then
direct and converse results are well-known for Sn (see, e.g. [19,20]). If the
nodes mesh in (4) is of algebraic type, then pointwise approximation error
estimates, direct and converse results, bridge theorems, saturation statements
and simultaneous approximation error estimates not possible by polynomials
were achieved in [7–9,21].

The case of geometric progression nodes mesh for Sn was an open prob-
lem. Aim of this paper is to give a positive answer to this question, proving
that Shepard operators on q−integers uniformly approximate functions from
C([0, 1]) and allow pointwise estimates improving (1)–(2).

Indeed if q > 0, for any n = 0, 1, 2, . . ., the q-integer [n]q is defined by

[n]q :=
1− qn

1− q
= 1 + q + . . .+ qn−1, n = 1, 2, . . . , [0]q = 0.

Consider the nodes matrix

X =

(
xn,k = xk =

[k]q
[n]q

, k = 0, . . . , n, n ∈ N
)
. (5)

Note that if q = 1, then xk = k/n, k = 0, . . . , n, which corresponds to the
equispaced mesh case.

Now let q = q(n) > 1, with limn q(n) = 1. Define for f ∈ C([0, 1]) the
operator

Sn(X; f ;x) =

n∑
k=0

f(xk)

(x− xk)s

n∑
k=0

1

(x− xk)s

, (6)

with x ∈ [0, 1], xk as in (5) and s even > 2. We call Sn(X) the q-analogue of
Shepard operator. Indeed if q = 1, then (6) gives back the Shepard operator
(4) on equispaced mesh, whose approximation behaviour has been completely
studied in [1,19,20]. In such case pointwise estimates of type (1) and (2) are
against nature; indeed it is well-known that the approximation behaviour of the
Sn operator is strongly influenced by the mesh distribution and for uniformly
spaced mesh the endpoints 0 and 1 or the inner point 1/2 do not play a special
role (cfr. [8]).

If || || denotes the usual supremum norm on [a, b], for f ∈ C([a, b]), for any
fixed a < b, we have

Theorem 1 Let q = q(n) = (1 + log2 n/n). Then for any f ∈ C([0, 1]) and
n ∈ N, n > 1,

lim
n
||Sn(X; f)− f || = 0

and

|f(x)− Sn(X; f ;x)| ≤ Cω
(
f ;

(
x+

1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (7)
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Remark 1 Under the assumptions of Theorem 1 we deduce the uniform con-
vergence of Sn(X; f) to f , ∀f ∈ C([0, 1]). From (29) it follows that the mesh
(5) is thicker near 0 and this affects the approximation error (see the pres-
ence of x at the r.h.s. in (7)). For example if f ∈ C1([0, 1]) and x ≤ C/n,
then by (7) the approximation error is O

(
log2 n/n

2
)
, which is better than

O
(
1/n1+γ

)
coming from (1) for f ∈ C1([0, 1]) and x ≤ C/n. In other words

the slight worsening of the uniform approximation error rate in (7) (which is
O (log2 n/n)) with respect to (1) (which is O(1/n)) is compensated by a better
approximation rate near 0.

In general we can prove

Theorem 2 Let q = q(n) > 1, limn q(n) = 1 and limn q(n)n = ∞. Then for
any f ∈ C([0, 1]) and n ∈ N, n > 1,

lim
n
||Sn(X; f)− f || = 0

and

|f(x)− Sn(X; f ;x)| ≤ Cω
(
f ;

(
x+

1

qn − 1

)
(q − 1)

)
, ∀x ∈ [0, 1].

Moreover we can get analogous results as Theorems 1–2 for the endpoint 1,
for both the endpoints ±1 or for any interior point. For example, let

yk = 1− qk − 1

qn − 1
, k = 0, . . . , n, (8)

and consider the matrix Y = (yk, k = 0, . . . , n, n ∈ N). Note that y0 = 1, yn =
0 and this mesh is finer near 1. Then for any f ∈ C([0, 1]) define the operator

Sn(Y ; f ;x) =

n∑
k=0

f(yk)

(x− yk)s

n∑
k=0

1

(x− yk)s

,

with x ∈ [0, 1] and s even > 2. We have

Theorem 3 Let q = q(n) = (1 + log2 n/n). Then for any f ∈ C([0, 1]) and
n ∈ N, n > 1,

lim
n
||Sn(Y ; f)− f || = 0

and

|f(x)− Sn(Y ; f ;x)| ≤ Cω
(
f ;

(
1− x+

1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (9)
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Remark 2 From Theorem 3 we get the uniform convergence of Sn(Y ; f) to f ,
∀f ∈ C([0, 1]). The mesh thickness near 1 influences the error estimate (see
the presence of 1 − x at the r.h.s. in (16)). For example if f ∈ C1([0, 1]) and
1 − x ≤ C/n, then by (16) the approximation error is O(log2 n/n

2), which is
better than O(1/n1+γ), coming from (1) for f ∈ C1([0, 1]) and (1−x) ≤ C/n.
This means the uniform approximation error rate in (9) (which is O (log2 n/n))
is slightly slower than in (1) (which is O(1/n)), but is balanced by a faster
approximation rate near 1.

Analogously if n is even, let

zk =


1

2

qk − 1

qn/2 − 1
, k = 0, . . . ,

n

2
,

1− zn−k, k =
n

2
+ 1, . . . , n.

This mesh is thicker near 0 and 1. Then denote by Sn(Z) the Sn operator based
on the matrix Z = (zk, k = 0, 1, . . . , n, n ∈ N) . If n is odd, then replace
Sn(Z) by Sn+1(Z). We have

Theorem 4 Let q(n) = (1 + log2 n/n) . Then for any f ∈ C([0, 1]) and n ∈
N, n > 1,

lim
n
||Sn(Z; f)− f || = 0

and

|f(x)− Sn(Z; f ;x)| ≤ Cω
(
f ;

(
x(1− x) +

1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (10)

Remark 3 From Theorem 4 we obtain the uniform convergence of Sn(Z; f)
to f , ∀f ∈ C([0, 1]). Error estimate (10) is strongly influenced by the mesh
thickness near both the endpoints (see the presence of x(1−x) at the r.h.s. in
(10)).

Also if n is even, letting

vk =


qk − 1

qn/2 − 1
, k = 0, . . . ,

n

2
,

−v−k, k = −n
2
, . . . ,−1,

put

tk =
1

2

(
vk−n/2 + 1

)
, k = 0, 1, . . . , n.

This mesh is thicker near the inner point 1/2, with t0 = 0 and tn = 1. Then
denote by Sn(T ) the Sn operator based on the matrix T = (tk, k = 0, . . . , n,
n ∈ N). If n is odd, then replace Sn(T ) by Sn+1(T ). We prove
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Theorem 5 Let q(n) = (1 + log2 n/n) . Then for any function f ∈ C([0, 1])
and n ∈ N, n > 1,

lim
n
||Sn(T ; f)− f || = 0

and

|f(x)− Sn(T ; f ;x)| ≤ Cω
(
f ;

(∣∣∣∣x− 1

2

∣∣∣∣+
1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (11)

Remark 4 From Theorem 5 we deduce the uniform convergence of Sn(T ; f)
to f , ∀f ∈ C([0, 1]). The mesh thickness near 1/2 influences the approxima-
tion error (see the presence of |x− 1/2| at the r.h.s. in (11)). For example if
f ∈ C1([0, 1]) and |x− 1/2| ≤ C/n, then by (11) the approximation error is
O(log2 n/n

2), which is better than O(1/n1+γ), coming from (2). Equivalently
the uniform approximation error rate in (11) (which is O (log2 n/n)) is slightly
slower than in (2) (which is O(1/n)), on the other hand is made up for by a
quicker decay rate near 1/2.

Finally consider the case q = q(n) < 1, with limn q(n) = 1 and limn q(n)n = 0.
We can prove convergence results in this case too. For example if

q = q(n) = 1− log2 n/n, (12)

consider the matrix

U =

(
un,k = uk =

[k]q
[n]q

, k = 0, . . . , n, n ∈ N
)
. (13)

Note that this mesh is thicker near 1 (compare with the nodes mesh X in
Theorem 1). Then denote by Sn(U) operator the Sn operator based on the
matrix U . We have

Theorem 6 Then for any function f ∈ C([0, 1]) and n ∈ N, n > 1,

lim
n
||Sn(U ; f)− f || = 0

and

|f(x)− Sn(U ; f ;x)| ≤ Cω
(
f ;

(
1− x+

1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (14)

Remark 5 From Theorem 6 we deduce the uniform convergence of Sn(U ; f)
to f , ∀f ∈ C([0, 1]). The mesh thickness near 1 influences the approximation
error (see the presence of 1−x at the r.h.s. in (14)). Comparing Theorem 1 with
Theorem 6, we can see that the choice (12) for q reversed the approximation
behaviour of Sn operator near the endpoints, in the sense that now the error
estimate is better near the right-end point.

In general we can prove
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Theorem 7 Let q = q(n) < 1, limn q(n) = 1 and limn q(n)n = 0 in (13).
If Sn(U) denotes the Sn operator on the matrix U , then for any function
f ∈ C([0, 1]) and n ∈ N, n > 1,

lim
n
||Sn(U ; f)− f || = 0

and

|f(x)− Sn(U ; f ;x)| ≤ Cω
(
f ;

(
1

1− qn
− x
)

(1− q)
)
, ∀x ∈ [0, 1]. (15)

Remark 6 The choice q < 1 in Theorem 7 made the nodes mesh in (13) thicker
near 1 and this influenced the pointwise error estimate near 1, as one can see
comparing Theorem 2 with Theorem 7.

Moreover consider the matrix Y = (yk = 1− uk, k = 0, . . . , n, n ∈ N),
with uk given in (13) and q given by (12). Note that y0 = 1, yn = 0 and
this mesh is finer near 0 (compare with the nodes mesh Y in Theorem 3).
Then denote by Sn(Y ) the Sn operator based on the matrix Y . We have

Theorem 8 Let q = q(n) = (1− log2 n/n). Then for any f ∈ C([0, 1]) and
n ∈ N, n > 1,

lim
n
||Sn

(
Y ; f

)
− f || = 0

and ∣∣f(x)− Sn(Y ; f ;x)
∣∣ ≤ Cω(f ;

(
x+

1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (16)

Remark 7 From Theorem 8 we get the uniform convergence of Sn(Y ; f) to f ,
∀f ∈ C([0, 1]). The mesh thickness near 0 influences the error estimate (see the
presence of x at the r.h.s. in (16)). Hence the choice (12) for q here reversed
the approximation behaviour near the endpoints with respect to Theorem 3,
in the sense that now the error rate is better near 0.

Analogously if n is even, let

zk =


1

2

1− qk

1− qn/2
, k = 0, . . . ,

n

2
,

1− zn−k, k =
n

2
+ 1, . . . , n.

This mesh is thicker near 1/2 (compare with nodes matrix Z). Then denote by
Sn(Z) the Sn operator based on the matrix Z = (zk, k = 0, 1, . . . , n, n ∈ N) .
If n is odd, then replace Sn(Z) by Sn+1(Z). We have

Theorem 9 Let q(n) = (1− log2 n/n) . Then for any f ∈ C([0, 1]) and n ∈
N, n > 1,

lim
n
||Sn(Z; f)− f || = 0

and

|f(x)− Sn(Z; f ;x)| ≤ Cω
(
f ;

(∣∣∣∣x− 1

2

∣∣∣∣+
1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (17)
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Remark 8 From Theorem 9 we obtain the uniform convergence of Sn(Z; f)
to f , ∀f ∈ C([0, 1]). Error estimate (17) is strongly influenced by the mesh
thickness near 1/2 (see the presence of |x−1/2| at the r.h.s. in (17)). Comparing
Theorem 9 with Theorem 4, we can see the choice (12) for q modified the
approximation behaviour of Sn operator, in the sense that now pointwise error
is smaller near the inner point 1/2.

Also if n is even, letting

vk =


1− qk

1− qn/2
, k = 0, . . . ,

n

2
,

−v−k, k = −n
2
, . . . ,−1,

put

tk =
1

2

(
vk−n/2 + 1

)
, k = 0, 1, . . . , n.

This mesh is thicker near the endpoints 0 and 1, with t0 = 0 and tn = 1. Then
denote by Sn(T ) the Sn operator based on the matrix T =

(
tk, k = 0, . . . , n,

n ∈ N). If n is odd, then replace Sn(T ) by Sn+1(T ). We prove

Theorem 10 Let q(n) = (1− log2 n/n) . Then for any function f ∈ C([0, 1])
and n ∈ N, n > 1,

lim
n
||Sn(T ; f)− f || = 0

and

|f(x)− Sn(T ; f ;x)| ≤ Cω
(
f ;

(
x(1− x) +

1

n

)
log2 n

n

)
, ∀x ∈ [0, 1]. (18)

Remark 9 From Theorem 10 we deduce the uniform convergence of Sn(T ; f)
to f , ∀f ∈ C([0, 1]). The mesh thickness near 0 and 1 influences the approx-
imation error (see the presence of x(1 − x) at the r.h.s. in (18)). Hence the
choice (12) for q changed the approximation behaviour of Sn operator with
respect to Theorem 5, since here the error rate is better near the endpoints 0
and 1.

3 Modelling by Shepard-type curves

In this Section we consider modeling techniques in CAGD by Shepard-type op-
erators. Following the notation in [4], letAn(t) = [An,0(t), An,1(t), . . . , An,n(t)]

T
,

where

An,k(t) =

1

(t− xk)s + λ
n∑
k=0

1

(t− xk)s + λ

, (19)
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for 0 ≤ k ≤ n, n ∈ N, t ∈ [0, 1], xk given by (3) and 0 < λ. The presence
of λ at the denominators overcomes the flat spots drawback affecting original
Shepard operator and preserves the fundamental properties in CAGD

0 ≤ An,i(t) ≤ 1, i = 0, . . . , n,

n∑
i=0

An,i(t) = 1.

Given the functions An,i(t) defined by (19) and a control polygon P =
[P0, P1, . . . , Pn]T , Pi ∈ Rd, i = 0, . . . , n, d ≥ 2, consider the Shepard-type
curve defined by

Sn[P, t] =

n∑
i=0

An,i(t)Pi = An(t)P. (20)

From the definition we deduce that Sn[P, t] is a rational curve of degree
(sn, sn), it reproduces points, it is symmetric, it is smooth, it is nondegenerate,
it lies in the convex hull of the control points Pi, it satisfies the pseudo-local
control property (indeed each function An,j(t), 0 ≤ j ≤ n, attains its maxi-
mum value close to 1 at t = tj and is very small for |t−tj | > 1

2n , in other words
the point Pj influences strongly the shape of the curve in a neighborhood of
t = tj).

In the nonparametric case, i.e. Pi = (xi, f(xi)), f ∈ C([0, 1]), 0 ≤ i ≤ n, if
xi are given from (3) and λ = 0, then we find back the interpolating function
(6). If xk = k/n, k = 0, 1, . . . , n, then Sn[P, t] curves were studied in [4]. If xk
are given by (5), the corresponding Shepard-type curves are called q−analogue
of Shepard-type curves. Obviously if q = 1 we find back Shepard-type curves
studied in [4].

The parameter q ≥ 1 can be interpreted as a shape handle, allowing to
model the form of a curve. Indeed playing on the mesh thickness regulated by
q−integers, the designer has the freedom to change the contour of Shepard-
type curve (20) with respect to the case q = 1 (corresponding to the equispaced
mesh). Obviously when the nodes mesh is very thick, the parameter λ at de-
nominators in (19) plays a significative role, hence the curve is approximating
the corresponding control points; on the other hand, when the mesh is less
dense, the parameter λ has less weight at denominators in (19), which means
the interpolatory character of the curve takes over with respect to the case
q = 1. For example if the nodes mesh is given by (5), it is thicker near 0
(see Remark to Theorem 1), consequently the corresponding q−analogue of
Shepard-type curve approximates the control polygon and is closer to the last
part of it than the case q = 1 (see Example 4.1 in Section 4). Analogously if
nodes mesh is given by (8), the nodes mesh is thicker near 1 (see e.g. Remark
to Theorem 3), hence the corresponding q−analogue of Shepard-type curve is
nearer to the first part of the control polygon than the equispaced case (see
Example 4.2 in Section 4).

Finally, if the knots are equispaced, we present a modeling technique by
two shape parameters. Recently in [5] the authors introduced and studied the
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parametric curves

Sn,1[P, t] = Sn[P, t],

Sn,m+1[P, t] =

n∑
i=0

An,i(t)P
m
i , m ∈ N,

P 0
i = Pi

Pm+1
i = CmP

0
i

Cm = Cm−1(2I −KCm−1)

C0 = I,

(21)

with K the collocation matrix of the basis An,i(t), i = 0, . . . , n, i.e.

K =


An,0(x0) An,1(x0) · · · An,n(x0)
An,0(x1) An,1(x1) · · · An,n(x1)

...
...

. . .
...

An,0(xn) An,1(xn) · · · An,n(xn)

 ,

with xi = i/n, 0 ≤ i ≤ n. Such procedure called progressive iterative approxi-
mation (PIA in short) technique is based on a suitable combination of iterates
of operator introduced in (20) (properties of iterates of positive operators can
be seen for ex. in [11]).

In Theorems 5–7 in [5] it was proved that

lim
m
Sn,m[P, ti] = Pi, 0 ≤ i ≤ n, (22)

in other words (see [5]) the control points of the active curve are changed to
deform it towards the target shape represented by sampled points from the
given curve. Equivalently (see [5]) PIA process makes possible to construct a
sequence of control points converging to the control polygon of an interpolating
curve of Shepard-type. Hence the parameter m can be considered as a shape
handle in order to model different shapes, obtaining as an extreme case original
Sn curve and global interpolating Shepard-type curve. Convergence theorems
and approximation error estimates for process (21) can be found in [5] . Here
we stop iterations for the smallest m such that ‖Pmi −P

m−1
i ‖ < 10−10, where

‖ ‖ denotes the usual supremum norm in Rd. We remark the convergence rate
in (22) is exponential, while in [4] an analogous process had algebraic rate. A
similar technique bridging Bernstein and Lagrange polynomials was studied in
[3]. A further generalization of PIA format for shape modeling was examined
in [6].

Now we introduce the function

σ(c; t) =



t2

t2 + (1− t)2
, c = 0

(1− t)2

t2 + (1− t)2
, c = 1

t2(1− t)2

t2(1− t)2 + (t− c)2(1− t)2 + t2(t− c)2
, 0 < c < 1,

(23)
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with c, t ∈ [0, 1]. From the definition it follows that σ(c; t) is a rational function
of degree (2, 2) for c = 0, 1 and (4, 4) for 0 < c < 1; moreover σ(0; 0) = 0,
σ(0; 1) = 1, σ(1; 1) = 0, σ(1; 0) = 1, σ(c; c) = 1, σ(c; 0) = σ(c; 1) = 0, in other
words the function σ(0; t) is a rational approximation of signum function,
σ(1; t) is its complement (i.e. σ(1; t) = 1−σ(0; t)) and σ(c; t) is a composition
of two signum-type functions, that is vanishes at the endpoints and is equal
to 1 at t = c. Then we construct the curve

S̃n,m[P, c, t] = σ(c; t)Sn[P, t] + (1− σ(c; t))Sn,m[P, t]. (24)

Such curve is a rational curve of degree (sn+ 2, sn+ 2) for c = 0, 1, or (sn+
4, sn+4) for 0 < c < 1, generally not positive, preserving constants. Obviously
S̃n,1[P, c, t] = Sn[P, t],∀c, t ∈ [0, 1]. Acting on the parameter c in (24) we can
give more or less weight to Sn[P ] with respect to Sn,m[P ] on certain parts of
the control polygon, consequently from (22) playing with the parameter m, we
can approximate or go closer and closer to some control points or to other ones.
In other words the two parameters c and m make the curve more flexible than
in [4,5]. For example if c = 0, from (23) and (24) S̃n,m[P ] curve approximates
the first parts of the control polygon and is very close to the last parts of it
(see Example 4.3 in Section 4), while if c = 1 from (23) and (24) S̃n,m[P ] is
very narrow to the first parts of the control polygon and approximates the last
parts of it (see Example 4.3 in Section 4). Similarly if c = 1/2, from (23) and
(24) S̃n,m[P ] is very narrow to the middle parts of the control polygon and is
approximating the remaining parts of it (see Example 4.3 in Section 4).

4 Examples

4.1 Example 1

Consider the curve

(x(t), y(t), z(t)) =

(
1

8
logq

(
t
(
q8 − 1

)
− 1
)
, cos 2πt, t

)
, t ∈ [0, 1]. (25)

A sequence of 9 control points denoted by circle symbol in Fig. 1 is sampled
from curve (25) as

(x(ui), y(ui), z(ui)), ui =
qi − 1

q8 − 1
, i = 0, . . . , 8, q = 1 +

1

80.1
≈ 1.8027. (26)

Note that the mesh in (26) is thicker near 0. Starting with these control points,
we fit curve (25) by q−analogue of Shepard-type curve on nodes mesh ui, i =
0, 1, . . . , 8, given in (26) with s = 4 and λ = 5 10−4 in Fig. 1. We also consider
the Shepard-type curve on equispaced nodes xi = i/8, i = 0, 1, . . . , 8, for s = 4
and λ = 5 10−4 in Fig. 1. Comparing the two curves we can see the modeling
effect of q−integers nodes mesh, pushing the corresponding curve closer to the
last parts of control polygon than to equispaced case and approximating the
remaining parts of it.



12 Umberto Amato, Biancamaria Della Vecchia

1
0.8

0.6

x

0.4
0.2

0-1

-0.5

0

y

0.5

0

0.2

0.4

0.6

1

0.8

1

z

Data
uniform
q-integers

Fig. 1 Modeling by Shepard-type curves (20) on uniform and q−integers mesh

4.2 Example 2

Consider the curve

(x(t), y(t), z(t)) = (sin 2πt, cos 2πt, t), t ∈ [0, 1]. (27)

Then we sample a sequence of 9 control points from curve (27) as

(x (ui) , y (ui) , z (ui)) , ui = 1− q8−i − 1

q8 − 1
, i = 0, . . . , 8, q = 1 +

1

80.1
≈ 1.8027.

(28)
Note that u0 = 0, un = 1 and the mesh in (28) is denser near 1. Starting with
these control points, in Fig. 2 we fit curve (27) by q−analogue of Shepard-type
curve on nodes mesh ui given in (28) and by Shepard-type curve on equispaced
nodes xi = i/8, i = 0, 1, . . . , 8, for s = 4 and λ = 4 10−6. From Fig. 2 we can
see the shaping power of q−integers-type nodes, moving the corresponding
curve nearer to the first parts of control polygon than to equispaced case and
approximating the remaining parts of it.

4.3 Example 3

Consider a helix of radius 5 given by (cfr. [14])

(x(t), y(t), z(t)) = (5 cos 6πt, 5 sin 6πt, t), t ∈ [0, 1].
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Fig. 2 Modeling by Shepard-type curves (20) on uniform and q−integers mesh

A sequence of 19 control points denoted by circle symbol in Fig. 3 is sampled
from the helix as

(x(si), y(si), z(si)), si =
π

3
i, i = 0, . . . , 18.

Starting with these control points we fit the helix by a sequence of five curves
generated by processes (20), (21) with m = 2, (24) with m = 2 and c = 0, (24)
with m = 2 and c = 1, (24) with m = 2 and c = 1/2, respectively, for s = 4 and
λ = 4 10−6. Comparing the five curves from Fig. 3 we can see the modeling
power of technique (24), pushing the corresponding curves very close to the
last, first, middle parts of control polygon respectively and approximating the
remaining parts of it.

Analogous curves for m = 3 are given in Fig. 4, emphasizing the shape
control behavior showed in Fig. 3. We stopped iterations at m = 3, since
we met the stop criterion. So the designer can choose among different shapes
modeling the helix.

5 Proofs

Proof of Theorem 1. Because of the interpolatory behaviour of Sn, we may
assume x 6= xk, k = 0, . . . , n. Denote by xj the closest knot to x, with xj ≤
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Fig. 3 Modeling the helix by curves (20), (21) and (24)

x ≤ xj+1 (we can work analogously if the closest knot to x is xj+1). Then

xj ≤ x, i.e., qj < x(qn − 1) + 1,

therefore

(x− xj) ≤ xj+1 − xj =
qj+1 − 1

qn − 1
− qj − 1

qn − 1
=
qj(q − 1)

qn − 1

≤
(
x+

1

qn − 1

)
log2 n

n
.

(29)
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Fig. 4 Modeling the helix by curves (20), (21) and (24)

We have

|f(x)− Sn(f ;x)| ≤

n∑
k=0

|f(x)− f(xk)|
(x− xk)s

n∑
k=0

1/(x− xk)s

=

|f(x)− f(xj)|
(x− xj)s

+
|f(x)− f(xj+1)|

(x− xj+1)s
+

∑
k 6=j,j+1

|f(x)− f(xk)|
(x− xk)s

n∑
k=0

1

(x− xk)s

:= Σ1 +Σ2 +Σ3.
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Working as usual (see, e.g., [8])

Σ1 ≤ |f(x)− f(xj)| ≤ ω(f ; |x− xj |)

and

Σ2 ≤ |f(x)− f(xj+1)| |x− xj |
s

|x− xj+1|s
≤ ω

(
f ;
|x− xj+1|
|x− xj |

|x− xj |
)
|x− xj |s

|x− xj+1|s

≤
(

1 +
|x− xj+1|
|x− xj |

)
|x− xj |s

|x− xj+1|s
ω(f ; |x− xj |)

≤ 2ω(f ; |x− xj |).

Moreover

Σ3 ≤
∑

k 6=j,j+1

ω(f ; |x− xk|)
|x− xk|s

(x− xj)s

≤ ω(f ; |x− xj |)
∑

k 6=j,j+1

1 + |x− xk|/|x− xj |
(x− xk)s

|x− xj |s

= ω(f ; |x− xj |)
∑

k 6=j,j+1

(
|x− xj |s

|x− xk|s
+
|x− xj |s−1

|x− xk|s−1

)
:= Σ4 +Σ5.

First we estimate Σ4 (we can work similarly for Σ5). If k < j, then x− xk >
xj − xk, hence

∑
k<j

|x− xj |s

|x− xk|s
≤
∑
k<j

(
qj+1 − qj

)s
(qn − 1)

s
(qn − 1)

s

(qj − qk)
s . (30)

It results

qj − qk > qk(j − k) loge q

and

qj

qj − qk
<
qj − qk + qk

qj − qk
= 1 +

qk

qj − qk
≤ 1 +

1

(j − k) loge q
,

from which

qjs(q − 1)s

(qj − qk)s
≤
(

log2 n

n

)s(
1 +

1

(j − k) loge q

)s
.

If k > j + 1, then xk − x > xk − xj+1, consequently

∑
k>j+1

|x− xj |s

|x− xk|s
≤
∑
k>j+1

(
qj+1 − qj

)s
(qn − 1)

s
(qn − 1)

s

(qk − qj+1)
s .
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If k > j + 1, then qk − qj+1 > qj+1(k − j − 1) loge q and

qjs(q − 1)s

(qk − qj)s
≤ logs2 n

qsns(k − j − 1)s logse q
≤ logs2 n

ns(k − j − 1)s logse q
. (31)

Hence working as usual (see, e.g., [8]) from (30)–(31)

Σ4 ≤ Cω(f ; |x− xj |). (32)

Now if [x] denotes the integer part of x, from the well-known inequality (1 +
1/m) ≥ 2,∀m ∈ N, we obtain for n > 1

(1 + log2 n/n)
n

=

(
1 +

1

n/ log2 n

)n
≥
(

1 +
1

[n/ log2 n] + 1

)n

=

(
1 +

1

[n/ log2 n] + 1

)n([n/ log2 n] + 1)

[n/ log2 n] + 1 ≥

≥ 2
n

[n/ log2 n]+1 ≥ 2
n

n/ log2 n+1 ≥ 2log2 n−
log22 n

n+log2 n .

So
1

(1 + log2 n/n)
n − 1

≤ 2log
2
2 n/(n+log2 n)

n− 2log
2
2 n/(n+log2 n)

≤ C

n
.

Therefore from (29) and (32), (7) follows. ut

Proof of Theorem 2. Following the proof of Theorem 1, one gets

|x− xj | ≤
(
x+

1

qn − 1

)
(q − 1).

Working as in the proof of Theorem 1, the assertion follows. ut

Proof of Theorem 3. From the proof of Theorem 1, we deduce

|yj+1 − yj | =
qj(q − 1)

qn/2 − 1
and x− yj ≤

(
1− x+

1

qn/2 − 1

)
(q − 1)

and working as in the proof of Theorem 1, we obtain (16). ut

Proof of Theorem 4. We can follow the proof of Theorems 1 and 3 and get

x− zj ≤
(
x(1− x) +

1

qn/2 − 1

)
(q − 1).

If x, zk > 1/2, we can work as in the proof of Theorem 1. If x > 1/2 and
zk < 1/2, then |x − zk| > |x − 1/2 + zk| and we can follow the proof of
Theorem 1. The case x < 1/2 can be treated similarly.

ut



18 Umberto Amato, Biancamaria Della Vecchia

Proof of Theorem 5. We can follow the proof of Theorems 1 and 2 and conclude

x− tj ≤
(∣∣∣∣x− 1

2

∣∣∣∣+
1

qn/2 − 1

)
(q − 1).

Working as in the proof of Theorem 4 we deduce (11). ut

Proof of Theorem 6. Working as in the proof of Theorem 1, denote by uj+1

the closest knot to x, with uj ≤ x ≤ uj+1 (we can work analogously if the
closest knot to x is uj). Then

x ≤ uj+1, i.e., qj+1 < 1− x(1− qn),

therefore

(uj+1 − x) ≤ uj+1 − uj =
1− qj+1

1− qn
− 1− qj

1− qn
=
qj(1− q)

1− qn

≤ C
(

1

1− qn
− x
)

log2 n

n
.

(33)

We have

|f(x)− Sn(U ; f ;x)| ≤

n∑
k=0

|f(x)− f(uk)|
(x− uk)s

n∑
k=0

1/(x− uk)s

=

|f(x)− f(uj)|
(x− uj)s

+
|f(x)− f(uj+1)|

(x− uj+1)s
+

∑
k 6=j,j+1

|f(x)− f(uk)|
(x− uk)s

n∑
k=0

1

(x− uk)s

:= Σ1 +Σ2 +Σ3.

Working as before

Σ1 ≤
|f(x)− f(uj)|(x− uj+1)s

(x− uj)s
≤ Cω(f ;uj+1 − x)

and
Σ2 ≤ ω(f ;uj+1 − x).

Moreover

Σ3 ≤
∑

k 6=j,j+1

ω(f ; |x− uk|)
|x− uk|s

(uj+1 − x)s

≤ ω(f ;uj+1 − x)
∑

k 6=j,j+1

1 + |x− uk|/(uj+1 − x)

(x− uk)s
(uj+1 − x)s

= ω(f ;uj+1 − x)
∑

k 6=j,j+1

(
(uj+1 − x)s

|x− uk|s
+

(uj+1 − x)s−1

|x− uk|s−1

)
:= Σ4 +Σ5.
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Following the proof of Theorem 1 we obtain

Σ4 ≤ Cω(f ;uj+1 − x).

Analogously we can work for Σ5.
Working as in the proof of Theorem 1, we can verify that qn < 1

n , hence
1/(1 − qn) < 1 + 1

n−1 . From (33) collecting above estimates, the assertion
follows.

ut

Proof of Theorem 7. Following the proof of Theorem 6, one gets

uj+1 − x ≤ C
(

1

1− qn
− x
)

(1− q).

Working as in the proof of Theorem 6, we deduce Theorem 7. ut

Proof of Theorem 8. Working as in the proof of Theorem 1 and Theorem
6, denote by yj+1 the closest knot to x, with yj+1 < x < yj (we can work
analogously if the closest knot to x is yj). Then

qj+1 < 1− (1− x)(1− qn),

therefore

x− yj+1 ≤ yj − yj+1 = − 1− qj

1− qn
+

1− qj+1

1− qn

=
qj

1− qn
log2 n

n
≤ C

(
1

1− qn
− (1− x)

)
log2 n

n
.

Working as in the proof of Theorem 6, since 1/(1−qn)−1+x ≤ x+1/(n−1),
the statement follows. ut

Proof of Theorem 9. We can follow the proof of Theorems 1 and 5 and get

x− zj+1 ≤ C
(∣∣∣∣x− 1

2

∣∣∣∣+
1

n

)
log2 n

n
.

Working as in the proofs above, we obtain Theorem 9. ut

Proof of Theorem 10. We can follow the proof of Theorems 1 and 6 and con-
clude

x− tj ≤ C
(
x(1− x) +

1

n

)
log2 n

n
.

Working as in the proof of Theorem 4, the assertion follows. ut
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