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Abstract

The Nash equilibrium problem is a widely used tool to model non-cooperative

games. Many solution methods have been proposed in the literature to compute so-

lutions of Nash equilibrium problems with continuous strategy sets, but, besides some

specific methods for some particular applications, there are no general algorithms to

compute solutions of Nash equilibrium problems in which the strategy set of each

player is assumed to be discrete. We define a branching method to compute the whole

solution set of Nash equilibrium problems with discrete strategy sets. This method is

equipped with a procedure that, by fixing variables, effectively prunes the branches of

the search tree. Furthermore, we propose a preliminary procedure that by shrinking

the feasible set improves the performances of the branching method when tackling

a particular class of problems. Moreover, we prove existence of equilibria and we

propose an extremely fast Jacobi-type method which leads to one equilibrium for a

new class of Nash equilibrium problems with discrete strategy sets. Our numerical

results show that all proposed algorithms work very well in practice.

1 Introduction

The Nash equilibrium problem is a key model in game theory that has been widely used
in many fields since fifties, see [22, 23]. Anyway, a strong interest in the numerical solu-
tion of realistic Nash games is a relatively recent research topic. Several algorithms have
been proposed for the computation of one solution of Nash equilibrium problems, see e.g.
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monograph [14] and the references therein, and of generalized Nash equilibrium problems,
see e.g. [10] and [7, 8, 9, 12, 13, 16, 11, 21, 25]. All these methods assume that the feasible
region of all players is continuous, and, besides some specific procedures for some particular
applications and to the best of our knowledge, no numerical methods for the solution of
any Nash equilibrium problem with discrete strategy spaces have been proposed so far.
This constitutes an important gap in the literature, since, in general, it is not clear how it
is possible to compute equilibria of many non-cooperative game models that are designed
so that their variables represent indivisible quantities, see e.g. [4, 18, 19].

Another important numerical topic is the computation of the whole solution set of Nash
equilibrium problems. This issue becomes crucial when a selection of the equilibria is in
order. Some methods were proposed for computing the whole equilibrium set of generalized
Nash games with continuous strategy sets, see [8, 16, 21], but, as said above, there are no
general methods for discrete games.

In this work we present a branching method to compute all solutions of any Nash
equilibrium problem with discrete strategy sets (Section 3). We define an effective fixing
strategy which is useful in order to prune the branches of the search tree (Subsection 3.3).
Moreover, we define an algorithmic framework for a class of Nash equilibrium problems
with discrete strategy sets that, by using the branching method, efficiently yields the whole
equilibrium set (Subsection 3.5). Furthermore, we define a new class of Nash equilibrium
problems with discrete strategy sets for which: (i) we propose an extremely fast Jacobi-
type algorithm to compute one equilibrium, (ii) we prove existence of equilibria, and (iii)
we give an economic interpretation as a standard pricing game (Section 4).

In Section 5, we show that algorithms proposed in this paper work very well in practice.
We deal with problems up to 1000 variables.

2 Problem description and preliminary results

We consider a Nash equilibrium problem (NEP) with N players and denote by xν ∈ R
nν

the vector representing the ν-th player’s strategy. We further define the vector x−ν :=
(xν′)Nν 6=ν′=1 and write R

n ∋ x := (xν ,x−ν), where n := n1 + · · ·+ nN .
Each player has to solve an optimization problem in which the objective function de-

pends on other players’ variables, while the feasible set is defined by convex constraints
depending on player’s variables only, plus integrality constraints:

minxν θν(x
ν ,x−ν)

gν(xν) ≤ 0

xν ∈ Z
nν ,

(1)

where θν : Rn → R and gν : Rnν → R
mν . We call this problem as discrete NEP.

By relaxing integrality constraints in (1) we obtain a NEP in which each player ν solves
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the following optimization problem:

minxν θν(x
ν ,x−ν)

gν(xν) ≤ 0,
(2)

we call this problem as continuous NEP.
Let us define

Xν := {xν ∈ R
nν : gν(xν) ≤ 0}, X :=

N
∏

ν=1

Xν ,

a point x∗ ∈ X ∩ Z
n is a solution (or an equilibrium) of the discrete NEP if, for all ν, xν

∗

is an optimal solution of problem (1) when x−ν is fixed to x−ν
∗ , that is:

θν(x
ν
∗ ,x

−ν
∗ ) ≤ θν(x

ν ,x−ν
∗ ), ∀ xν ∈ Xν ∩ Z

nν .

On the other hand, a point x̄ ∈ X is a solution (or an equilibrium) of the continuous NEP
if, for all ν, x̄ν is an optimal solution of problem (2) when x−ν is fixed to x̄−ν , that is:

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν), ∀ xν ∈ Xν .

For the sake of simplicity, in this paper we make the following blanket assumptions for
each player ν: θν is continuously differentiable and it is convex as a function of xν alone,
and gν is continuously differentiable and convex.

Let F be the operator comprised by the objective function gradients of all players:

F ν(x) := ∇xνθν(x), F (x) :=







F 1(x)
...

FN(x)






.

It is well known that if JF (x) is symmetric for all x ∈ X , then a function f : Rn → R exists
such that ∇

x
f(x) = F (x) for all x ∈ X , and then the set of all equilibria of the continuous

NEP, defined by (2), coincides with the solution set of the following optimization problem:

min
x
f(x)

x ∈ X.

This nice connection does not hold for discrete NEPs. It is very easy to give an example
of a discrete NEP with JF (x) symmetric for all x ∈ X and for which the solution set of
the corresponding discrete optimization problem, that is

min
x
f(x)

x ∈ X ∩ Z
n,

(3)

does not contain all discrete equilibria.
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Example 2.1 There are two players each controlling one variable. Players’ problems are

min
x1

θ1(x
1, x2) =

9

2
(x1)2 + 7x1x2 − 72x1

0 ≤ x1 ≤ 9

x1 ∈ Z,

min
x2

θ2(x
1, x2) =

9

2
(x2)2 + 7x1x2 − 72x2

0 ≤ x2 ≤ 9

x2 ∈ Z.

This discrete NEP has the following equilibria: (3, 6), (4, 5), (5, 4) and (6, 3), see Fig-

ure 1. Being JF (x1, x2) =

(

9 7
7 9

)

symmetric, function f(x1, x2) = 9
2
(x1)2 + 7x1x2 +

Figure 1: Equilibria for Example 2.1. Figure 2: Lack of equilibria in Example 2.3.

9
2
(x2)2−72x1−72x2 is such that ∇(x1,x2)f(x

1, x2) = F (x1, x2) for all x ∈ X. However, the
optimization problem defined by

min
(x1,x2)

f(x1, x2) =
9

2
(x1)2 + 7x1x2 +

9

2
(x2)2 − 72x1 − 72x2

0 ≤ x1 ≤ 9
0 ≤ x2 ≤ 9
(x1, x2) ∈ Z

2,

has the following solutions: (4, 5) and (5, 4), but not (3, 6) and (6, 3).

In any case, it is straightforward to prove the contrary, i.e. that all solutions of discrete
optimization problem (3) are equilibria for the discrete NEP defined by (1). And, therefore,
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we can say that a necessary, but not sufficient, condition for a point x̄ to be a solution of
problem (3) is to be a solution of the discrete NEP defined by (1).

Reformulating a dicrete NEP by using KKT conditions or variational inequalities is
not fruitful, since first order optimality conditions cannot be effectively used with discrete
strategy sets. However it is easy to see that relaxing integrality and then solving the
resulting continuous NEP, defined by (2), may produce an integer solution, which then is
also a solution for the original discrete game defined by (1). The following proposition,
whose proof is trivial and therefore omitted, formalizes this issue.

Proposition 2.2 Let y∗ ∈ X ∩ Z
n be such that for all ν ∈ {1, . . . , N}:

θν(y
ν
∗ ,y

−ν
∗ ) ≤ θν(x

ν ,y−ν
∗ ), ∀ xν ∈ Xν ,

that is y∗ is a solution of the continuous NEP. Then it holds that for all ν ∈ {1, . . . , N}:

θν(y
ν
∗ ,y

−ν
∗ ) ≤ θν(x

ν ,y−ν
∗ ), ∀ xν ∈ Xν ∩ Z

nν ,

that is y∗ is a solution of the discrete NEP. In particular, we say that y∗ is a favorable
solution for the discrete NEP.

In general, favorable solutions (defined in Proposition 2.2) are only a subset of the solution
set of a discrete NEP. Moreover, very often, a discrete NEP can have more than one
solution, but not favorable ones. In Example 2.1 this occurs, in that, none equilibrium of
the discrete NEP is a favorable solution since, by relaxing the integrality contraints, the
corresponding continuous NEP has the unique solution (4.5, 4.5) /∈ Z

2, see Figure 1.
It is not easy to give conditions ensuring the existence of solutions for discrete NEPs

in their general form. In fact, unlike for continuous problems, neither compactness of
feasible set X , nor strong monotonicity of operator F , nor both together, can guarantee
the existence of at least one solution, see Example 2.3.

Example 2.3 There are two players each controlling one variable. Players’ problems are

min
x1

θ1(x
1, x2) =

1

2
(x1)2 + x1x2 − 9x1 min

x2

θ2(x
1, x2) =

1

2
(x2)2 − x1x2

0 ≤ x1 ≤ 9 0 ≤ x2 ≤ 9
x1 ∈ Z x2 ∈ Z.

Note that 0 ≤ x1 ≤ 9 and 0 ≤ x2 ≤ 9 define a compact set and that operator F is strongly
monotone. However the problem does not have any equilibrium, see Figure 2.

The most obvious way in order to give sufficient conditions for the existence of equilibria of a
discrete NEP is to prove that at least one favorable solution exists. Following this reasoning,
some researchers had considered discrete NEPs, then written down their KKT conditions,
by previously relaxing integrality constraints, and finally given conditions ensuring that at
least one of these KKT points is integer, see e.g. [18]. As said above, favorable solutions
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are only a subset (often empty) of the whole solution set of a discrete NEP, therefore it
is worth to give conditions for the existence of solutions without assuming that these are
favorable ones. We have to cite the works of Yang et al., [20, 29], that, by developing a
theory on discrete nonlinear complementarity problems, proposed an alternative way to
guarantee the existence of at least one equilibrium of discrete NEPs coming from some
economic applications. However, results given in [29] are quite technical, and is rather
difficult to use them in order to define general classes of problems for which existence
can be proven. One important contribution on this topic was given by Topkis, [28], that,
by studying supermodular games, defined a class of discrete NEPs that have at least one
solution. In Section 4, we give conditions for the existence of equilibria (not only favorable
ones) for a new class of discrete NEPs and we compare with results in [28] and in [29].

Notation: M ∈ Mm×n is a matrix with m rows and n columns; Mj∗ denotes the j-th
row of M and M∗i denotes the i-th column of M ; given a set of row indices Jr and a set of
column indices Jc, MJrJc is the submatrix with rows in Jr and columns in Jc.

3 A branching method for finding all equilibria

In this section we present a method for finding all solutions of the discrete NEP defined by
(1). This method mimics the branch and bound paradigm for discrete and combinatorial
optimization problems. It consists of a systematic enumeration of candidate solutions by
means of strategy space search: the set of candidate solutions is thought of as forming a
rooted tree with the full set at the root. The algorithm explores branches of this tree, and
during the enumeration of the candidate solutions a procedure is used in order to reduce
the strategy set, in particular by fixing some variables.

It is important to say that bounding strategies, which are standard for discrete and
combinatorial optimization problems, in general cannot be easily applied for discrete NEPs
because of the difficulty to compute a lower bound for a suitable merit function. Standard
merit fuctions for contiuous NEPs, see e.g. [14], not only cannot be directly applied in a
discrete framework, but neither are easy to optimize. So, computing a lower bound for a
merit function in a subset of the feasible discrete region needs, except in special cases, a
complete enumeration. The situation is obviously much easier when JF (x) is symmetric
for all x ∈ X since, as said before, a solution of the discrete NEP can be found by solving
problem (3), and then f(x) can be an “easy” merit function. A similar situation also occurs
in potential games, see [15]. However here we consider the general case and therefore given
a subset of the strategy space it is very difficult to say if it cannot contain an equilibrium
by using a standard bounding method.

The method we propose is defined below, but, before, we have to define some tools that
it uses:

• an oracle O that takes a point x̄ ∈ X ∩ Z
n and outputs YES if and only if x̄ is an

equilibrium for the discrete NEP defined by (1);
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• a procedure S that, given a convex set Y such that

Y ν ⊆ Xν , Y :=

N
∏

ν=1

Y ν , (4)

yields one equilibrium of the continuous NEP in which each player ν solves

minxν θν(x
ν ,x−ν)

xν ∈ Y ν ;
(5)

• a procedure F that, given set Y defined in (4) and a point x̄ returned by procedure
S, yields a closed, possibly unbounded, box B such that set Y \B does not contain
any equilibrium of the discrete NEP defined by (1);

• a procedure C that, given set Y defined in (4) and a point x̄ ∈ Y ∩Z
n, yields p closed,

maybe unbounded, boxes B̄i such that x̄ /∈ ∪p
i=1B̄i, that B̄i ∩ B̄j = ∅ for all i 6= j,

and that x̃ ∈ ∪p
i=1B̄i for all x̃ ∈ Y ∩ Z

n, x̃ 6= x̄.

Later in this section we will discuss more in detail about these tools, now we are ready to
define the branching method for finding all solutions of the discrete NEP defined by (1).

Algorithm 3.1 (Branching Method)

(S.0) Initialize list of strategy subsets L := {X} and set of equilibria E := ∅.

(S.1) Take from L a strategy set Y .

(S.2) Use S to obtain a solution x̄ of the continuous NEP defined by (5).

(S.3) Use F , with Y and x̄, to obtain box B.

(S.4) If x̄ ∈ Z
n then use O on x̄: if O says YES then put x̄ in E.

(S.5) If x̄ ∈ Z
n then use C, with Y and x̄, to obtain p boxes B̄i;

for all i ∈ {1, . . . , p}, if Y ∩B ∩ B̄i 6= ∅ then put it in L;
go to (S.7).

(S.6) Find an index i ∈ {1, . . . , n} such that x̄i /∈ Z;
if Y ∩B ∩ {x ∈ R

n : xi ≥ ⌈x̄i⌉} 6= ∅ then put it in L;
if Y ∩B ∩ {x ∈ R

n : xi ≤ ⌊x̄i⌋} 6= ∅ then put it in L.

(S.7) If L = ∅ then STOP, else go to (S.1).
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Eventually Algorithm 3.1 enumerates all points in X∩Zn, checking their optimality, except
those that are cut off by using procedure F . Therefore, it is clear that: (i) if X is compact,
Algorithm 3.1 computes the whole solution set of the discrete NEP and (ii) procedure F
is crucial in order to obtain an efficient algorithm.

On the other hand, if we are interested in computing only one equilibrium of the discrete
NEP, and not the whole solution set, then we can stop Algorithm 3.1 as soon as it finds a
solution, so considerably increasing efficiency of the method.

Now we describe in detail the tools used by Algorithm 3.1.

3.1 Oracle O

Given a point x̄ ∈ Z
n, let us define the following best response at x̄ for each player ν:

x̂ν(x̄−ν) := arg min
xν∈Xν∩Znν

θν(x
ν , x̄−ν). (6)

Oracle O must certify optimality of a point x̄ ∈ Z
n. Therefore, for all ν, it checks if

x̄ν ∈ x̂ν(x̄−ν), and, if it is true, then answers YES, otherwise answers NO. Note that, in
practice, computing a point in x̂ν(x̄−ν) could be a demanding task, since, in general, it
requires to use a Mixed Integer Non-Linear Programming tool, see e.g. [2, 3, 24, 26]. In
Section 5 we give specific implementation details on this issue.

3.2 Procedure S

There are a lot of methods for finding a solution of a continuous NEP, see e.g. [6, 7, 14].
It is well known that if operator F is monotone, or something a bit weaker, in the strategy
set then there is more than one algorithm which is globally convergent to a solution of the
continuous NEP. In Section 5 we give specific implementation details also on this issue.

3.3 Procedure F

As said above, procedure F is crucial in order to obtain an efficient algorithm. First of
all, let us analyze a situation that may set a trap. Suppose that x̄ ∈ Z

n is a solution of
the continuous NEP defined by (5), being x̄ integer then it is a favorable solution for the
discrete NEP with strategy set Y ⊆ X , see Proposition 2.2. Moreover suppose that oracle
O says that x̄ is not a solution of the discrete NEP defined by (1), which has strategy
set X ⊇ Y . Then one could think that this is enough to say that Y cannot contain any
equilibrium of the discrete NEP defined by (1). But this is not true in general. Example
3.2 shows this in a very simple setting even with F strongly monotone.

Example 3.2 There are two players each controlling one variable. Players’ problems are

min
x1

θ1(x
1, x2) =

7

16
(x1)2 − x1x2 +

1

2
x1 min

x2

θ2(x
1, x2) =

1

2
(x2)2 −

3

4
x1x2

− 1 ≤ x1 ≤ 2 − 1 ≤ x2 ≤ 2
x1 ∈ Z x2 ∈ Z.

8



Figure 3: Equilibria for Example 3.2.

Then X = {x1, x2 ∈ R : −1 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 2} and it holds that

JF (x1, x2) =

(

7
8

−1

−3
4

1

)

≻ 0.

Let us indicate by S ⊆ X ∩ Z
n the set of all solutions of this discrete NEP. Now let us

consider Y = {x1, x2 ∈ R : 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2} ⊂ X and indicate by S̄ ⊆ X the
set of all solutions of the continuous NEP with strategy set Y and with the same objective
functions. Then it is easy to see that S = {(−1,−1), (1, 1), (2, 2)} and S̄ = {(0, 0)}, see
Figure 3. Note that: (0, 0) /∈ S and S ⊃ {(1, 1), (2, 2)} ⊂ Y .

Therefore procedure F cannot use this simple strategy in order to indentify a subset which
provably does not contain any equilibrium. Procedure F we propose is motivated by the
following proposition.

Proposition 3.3 Suppose that X is defined by box constraints:

X := {x ∈ R
n : l ≤ x ≤ u} , l,u ∈ Z

n. (7)

Let x̄ ∈ X ∩ Z
n be a solution for the continuous NEP defined by (2). Let us consider a

generic player ν. Suppose that an index i ∈ {1, . . . , nν} exists such that one of the following
two possibilities holds:

(i) F ν
i (•) is a convex function, x̄ν

i = lνi , and for each player µ ∈ {1, . . . , N} and each
index j ∈ {1, . . . , nµ}, such that (µ, j) 6= (ν, i):

• if
∂F ν

i (x̄)

∂x
µ
j

> 0 then x̄µ
j = lµj ,
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• if
∂F ν

i (x̄)

∂x
µ
j

< 0 then x̄µ
j = uµ

j .

(ii) F ν
i (•) is a concave function, x̄ν

i = uν
i and for each player µ ∈ {1, . . . , N} and each

index j ∈ {1, . . . , nµ}, such that (µ, j) 6= (ν, i):

• if
∂F ν

i (x̄)

∂x
µ
j

> 0 then x̄µ
j = uµ

j ,

• if
∂F ν

i (x̄)

∂x
µ
j

< 0 then x̄µ
j = lµj .

If θν is strictly convex with respect to xν
i , then any point x̃ ∈ X ∩ Z

n such that x̃ν
i 6= x̄ν

i

cannot be an equilibrium for the discrete NEP defined by (1).

Proof. Let ¯̃x ∈ X ∩ Z
n be such that ¯̃xν

i = x̄ν
i and ¯̃xµ

j = x̃µ
j for all (µ, j) 6= (ν, i). And let

˜̄x ∈ X ∩ Z
n be such that ˜̄xν

i = x̃ν
i and ˜̄xµ

j = x̄µ
j for all (µ, j) 6= (ν, i).

Let us assume that situation (i) holds: function F ν
i (•) is convex, then we can write

F ν
i (¯̃x)− F ν

i (x̄) ≥ JF ν
i (x̄)(¯̃x− x̄).

And then, by assumptions made in (i), it holds that

F ν
i (x̄) ≤ F ν

i (¯̃x). (8)

The following chain of inequalities holds

0
(A)

≤ F ν(x̄)T (˜̄x− x̄) = F ν
i (x̄)(x̃

ν
i − x̄ν

i )
(B)

≤ F ν
i (

¯̃x)(x̃ν
i − x̄ν

i )
(C)
< θν(x̃)− θν(¯̃x), (9)

where (A) holds since x̄ is a solution for the continuous NEP and ˜̄x is a feasible point;
(B) follows from (8) and the fact that x̃ν

i > x̄ν
i since x̄ν

i = lνi ; (C) holds since θν is strictly
convex with respect to xν

i . Therefore θν(x̃) > θν(¯̃x) ∈ X ∩ Z
n.

Now let us assume that situation (ii) holds: function F ν
i (•) is concave, then we can

write
F ν
i (¯̃x)− F ν

i (x̄) ≤ JF ν
i (x̄)(¯̃x− x̄).

And then, by assumptions made in (ii), it holds that

F ν
i (x̄) ≥ F ν

i (¯̃x). (10)

Then, by using (10) and with the same rationale of case (i), chain of inequalities (9) holds.
Therefore we have the proof. �

As said above procedure F is based on Proposition 3.3. Therefore it can be applied only
when Algorithm 3.1 faces situations satisfying assumptions of Proposition 3.3. Let us
assume, for simplicity, that

θν(x) :=
1

2
(xν)TQνxν +

(

Cνx−ν + bν
)T

xν , ∀ ν ∈ {1, . . . , N}, (11)

10



with Qν ∈ Mnν×nν
, Cν ∈ Mnν×(n−nν) and bν ∈ R

nν for all ν. Moreover, let us assume
that X is defined as in (7). Then it is clear that, considering Algorithm 3.1, any strategy
set Y ∈ L is a box. In this case, and by exploiting Proposition 3.3, procedure F can be
defined as follows:

Algorithm 3.4 (Procedure F)

(Data) A box strategy set Y := {x ∈ R
n : l ≤ x ≤ u}, with l ∈ Z

n and u ∈ Z
n, and a

solution x̄ of the continuous NEP defined by (5).

(S.0) Set B := R
n, ν := 1 and i := 1.

(S.1) If all the following conditions hold:

• Qν
ii > 0;

• x̄ν
i = lνi ;

• x̄ν
j = lνj for all Qν

ij > 0, j = 1, . . . , nν, j 6= i;

• x̄ν
j = uν

j for all Qν
ij < 0, j = 1, . . . , nν, j 6= i;

• x̄−ν
j = l−ν

j for all Cν
ij > 0, j = 1, . . . , (n− nν);

• x̄−ν
j = u−ν

j for all Cν
ij < 0, j = 1, . . . , (n− nν);

then set B := B ∩ {x ∈ R
n : xν

i ≤ lνi } and go to (S.3).

(S.2) If all the following conditions hold:

• Qν
ii > 0;

• x̄ν
i = uν

i ;

• x̄ν
j = uν

j for all Qν
ij > 0, j = 1, . . . , nν, j 6= i;

• x̄ν
j = lνj for all Qν

ij < 0, j = 1, . . . , nν, j 6= i;

• x̄−ν
j = u−ν

j for all Cν
ij > 0, j = 1, . . . , (n− nν);

• x̄−ν
j = l−ν

j for all Cν
ij < 0, j = 1, . . . , (n− nν);

then set B := B ∩ {x ∈ R
n : xν

i ≥ uν
i }.

(S.3) Set i := i+ 1; if i ≤ nν then go to (S.1), else set i := 1.

(S.4) Set ν := ν + 1; if ν ≤ N then go to (S.1).

(Output) Return B.

11



3.4 Procedure C

This procedure is used in order to produce p boxes B̄i such that, given a point x̄ ∈ Z
n and

a strategy set Y , we obtain x̄ /∈ ∪p
i=1B̄i, and B̄i ∩ B̄j = ∅ for all i 6= j, and x̃ ∈ ∪p

i=1B̄i for
all x̃ ∈ Y ∩ Z

n with x̃ 6= x̄.
There are a lot of different implementations for this procedure. In this work we propose

the following which yields p = 2n boxes.

Algorithm 3.5 (Procedure C)

(Data) A point x̄ ∈ Z
n.

(S.0) Set B̄i := R
n, for all i ∈ {1, . . . , 2n}, and set j := 1.

(S.1) Set:

• B̄2j−1 := B̄2j−1 ∩ {x ∈ R
n : xj ≥ x̄j + 1};

• B̄2j := B̄2j ∩ {x ∈ R
n : xj ≤ x̄j − 1};

• B̄t := B̄t ∩ {x ∈ R
n : xj = x̄j} for all t ∈ Z such that 2j + 1 ≤ t ≤ 2n.

(S.2) Set j := j + 1; if j ≤ n then go to (S.1).

(Output) Return B̄i, i = 1, . . . , 2n.

At this point, we have described all tools used by Algorithm 3.1, which, as said above,
can be used to compute the whole solution set of any discrete NEP. Its efficiency is totally
based on procedure F that prunes the branches of the search tree. In the next subsection,
we propose an improved version of the branching algorithm, that, by using a preliminary
procedure, shrinks the search area and drastically reduces the feasible points to be exam-
ined. However this improved algorithm can be used only if the problem has a particular
structure.

3.5 An improved version of Algorithm 3.1

Here we propose an efficient algorithmic framework for finding all equilibria of discrete
NEPs in which functions θν are defined as in (11) and X is defined by box constraints
as in (7). Note that many noncooperative games can be modeled as NEPs defined by
(11) and (7), see e.g. [1]. This framework is composed of three parts: (i) compute lower
bounds l∗ ≥ l for the set of solutions, (ii) compute upper bounds u∗ ≤ u for the set of
solutions, and, then, (iii) use Algorithm 3.1 in order to get all solutions by exploring points
in [l∗,u∗]∩Z

n. The framework presented in this subsection is a great deal faster than just
Algorithm 3.1 to compute either one equilibrium or the whole solution set of the discrete
NEP. This is due to the effectiveness of the shrinkage of the search area: from [l,u] to
[l∗,u∗].

The following Gauss-Seidel method performs the first task, that is computing lower
bounds l∗ for the set of solutions of the discrete NEP.
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Algorithm 3.6 (Gauss-Seidel Method to compute Solution Set Lower Bounds)

(S.0) Set w := l and y := l.

(S.1) Set ν := 1.

(S.2) Set i := 1.

(S.3) Set z ∈ Z
n such that, for all µ ∈ {1, . . . , N} and all j ∈ {1, . . . , nµ}, z

µ
j := yµj if

∂F ν
i

∂x
µ
j

≤ 0 and zµj := uµ
j otherwise.

(S.4) Compute s ∈ Z such that yνi ≤ s ≤ uν
i ,

if s+ 1 ≤ uν
i then

θν





























































zν1
...

zνi−1

s

zνi+1
...

zνnν































, z−ν































≤ θν





























































zν1
...

zνi−1

s+ 1

zνi+1
...

zνnν































, z−ν































, (12)

and if yνi ≤ s− 1 then

θν





























































zν1
...

zνi−1

s− 1

zνi+1
...

zνnν































, z−ν































> θν





























































zν1
...

zνi−1

s

zνi+1
...

zνnν































, z−ν































. (13)

(S.5) Set yνi := s.

(S.6) Set i := i+ 1. If i > nν then set ν := ν + 1. If ν ≤ N then go to (S.2).

(S.7) If w = y then STOP and return l∗ := y. Else set w := y and go to (S.1).

The following theorem states that point l∗ returned by Algorithm 3.6 is a lower bound for
the set of solutions of the discrete NEP.
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Theorem 3.7 Suppose that θν are defined as in (11) and that X is non-empty, bounded
and defined as in (7).

Then Algorithm 3.6 returns point l∗ in a finite number of iterations and for any solution
x∗ of the discrete NEP, defined by (1), it holds that l∗ ≤ x∗.

Proof. At (S.5) of the first iteration of the algorithm, let us consider any point x̄ ∈ X∩Zn

such that x̄1
1 < y11 and the corresponding point x̃ ∈ X ∩ Z

n such that x̃ν
i = x̄ν

i for all
(ν, i) 6= (1, 1) and x̃1

1 = y11.
By assumptions, it holds that

n1
∑

j=2

Q1
1j x̄

1
j ≤

n1
∑

j=2

Q1
1jz

1
j , and, C1

1∗x̄
−1 ≤ C1

1∗z
−1. (14)

The following chain of inequalities holds

1

2
Q1

1 1

(

x̄1
1

)2
−

1

2
Q1

1 1

(

y11
)2 (A)

>
(

n1
∑

j=2

Q1
1jz

1
j + C1

1∗z
−1 + b1

)

(y11 − x̄1
1)

(B)

≥

(

n1
∑

j=2

Q1
1j x̄

1
j + C1

1∗x̄
−1 + b1

)

(y11 − x̄1
1),

where (A) holds by (13) and the convexity of θ1 with respect to x1
1; (B) follows from (14)

and x̄1
1 < y11. Therefore θ1(x̄) > θ1(x̃), and then x̄ cannot be an equilibrium of the discrete

NEP.
By iterating this reasoning, by using the new lower bounds as soon as they are com-

puted, and by noting that y ≥ w for all iterations, we get the proof. �

The algorithm to compute upper bounds u∗ for the set of solutions of the discrete NEP is
specular. We report it for completeness.

Algorithm 3.8 (Gauss-Seidel Method to compute Solution Set Upper Bounds)

(S.0) Set w := u and y := u.

(S.1) Set ν := 1.

(S.2) Set i := 1.

(S.3) Set z ∈ Z
n such that, for all µ ∈ {1, . . . , N} and all j ∈ {1, . . . , nµ}, z

µ
j := yµj if

∂F ν
i

∂x
µ
j

≤ 0 and zµj := lµj otherwise.
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(S.4) Compute s ∈ Z such that lνi ≤ s ≤ yνi ,

if lνi ≤ s− 1 then

θν





























































zν1
...

zνi−1

s− 1

zνi+1
...

zνnν































, z−ν































≥ θν





























































zν1
...

zνi−1

s

zνi+1
...

zνnν































, z−ν































, (15)

and if s+ 1 ≤ yνi then

θν





























































zν1
...

zνi−1

s

zνi+1
...

zνnν































, z−ν































< θν





























































zν1
...

zνi−1

s+ 1

zνi+1
...

zνnν































, z−ν































. (16)

(S.5) Set yνi := s.

(S.6) Set i := i+ 1. If i > nν then set ν := ν + 1. If ν ≤ N then go to (S.2).

(S.7) If w = y then STOP and return u∗ := y. Else set w := y and go to (S.1).

Algorithm 3.8 works under the same assumptions of Algorithm 3.6 and then we skip a
formal convergence result.

We are now ready to define the improved algorithm to compute the whole solution set
of the discrete NEP.

Algorithm 3.9 (Improved Branching Method)

(S.1) Compute l∗ by using Algorithm 3.6.

(S.2) Compute u∗ by using Algorithm 3.8.

(S.3) Compute the whole solution set of the discrete NEP by using Algorithm 3.1 and
initializing L := {[l∗,u∗]}.

In Section 5 we show that Algorithm 3.9 works very well in practice and effectively computes
the whole solution set of discrete NEPs.
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4 Fast algorithms and existence results for a class of

discrete NEPs

In this section we define a class of discrete NEPs for which we can give stronger results,
namely, existence of equilibria and a fast Jacobi-type method for computing one of their
equilibria.

Definition 4.1 We say that a discrete NEP is 2-groups partitionable if it satisfies the
following conditions:

(i) X is defined by box constraints as in (7);

(ii) θν is defined, for each player ν, as

θν(x
ν ,x−ν) := θPν (x

ν) + ΘO
ν (x

−ν)Txν , (17)

where θPν : Rnν → R is defined in the following way

θPν (x
ν) :=

nν
∑

i=1

ϑP
ν,i(x

ν
i ) +

1

2
(xν)TQνxν , (18)

ϑP
ν,i : R → R, for all i, and Qν ∈ Mnν×nν

, and ΘO
ν : Rn−ν → R

nν is an operator made
up of convex or concave functions;

(iii) a partition of the variables indices in two groups, G1 and G2, exists such that

∂F ν
i (x)

∂xµ
j

≤ 0, ∀x ∈ X, ∀ (ν, i) 6= (µ, j) :

(ν, i) ∈ G1 ∋ (µ, j) or (ν, i) ∈ G2 ∋ (µ, j), (19)

∂F ν
i (x)

∂xµ
j

≥ 0, ∀x ∈ X, ∀ (ν, i) 6= (µ, j) :

(ν, i) ∈ G1 6∋ (µ, j) or (ν, i) ∈ G2 6∋ (µ, j). (20)

The following is an example of a 2-groups partitionable discrete NEP.

Example 4.2 There are two players. The first player solves the following problem

min
x1

θ1(x
1, x2) =

1

2
(x1)T

(

3 1
1 3

)

x1 + (x1)T
(

4 −3
−1 1

)

x2 + (7 2)x1

− 5 ≤ x1 ≤ 5

x1 ∈ Z
2,

while the second player solves the following problem

min
x2

θ2(x
1, x2) =

1

2
(x2)T

(

2 1
1 2

)

x2 + (x2)T
(

1 −2
−3 4

)

x1 + (5 6)x2
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− 5 ≤ x2 ≤ 5

x2 ∈ Z
2.

By partitioning variables in this way: G1 = {(1, 1), (2, 2)}, G2 = {(1, 2), (2, 1)}, then (19)
and (20) are satisfied.

Note that also the problems in Examples 2.1 and 3.2 are 2-groups partitionable discrete
NEPs.

In order to give an economic interpretation of condition (iii) in Definition 4.1, let us
consider a standard pricing game. There are N firms that compete in the same market in
order to increase their profits as much as possible. Each firm ν produces a single product
and sets its price pν ∈ Z. The prices are considered as integer, rather than real, variables
in order to get the model more realistic, since the price of a product cannot be specified
more closely than the minimum unit of a currency. For the sake of simplicity, let us assume
that the consumers demand function for each firm ν is linear:

Dν(p
ν ,p−ν) := aν − bνp

ν + (cν)Tp−ν ,

where aν , bν ∈ R+ and cν ∈ R
N−1. Moreover, assume that there are no fixed costs of

production and marginal cost dν for each firm ν is such that 0 < dν < aν . Therefore,
for each firm ν, since the objective is to maximize its profit Dν(p

ν ,p−ν)(pν − dν), the
optimization problem to solve is the following:

min
pν

bν(p
ν)2 − (p−ν)T cνpν − (aν + bνdν)p

ν

0 ≤ pν ≤ Pν , pν ∈ Z,

where Pν ∈ Z is a suitable upper bound. Clearly this discrete NEP satisfies conditions (i)
and (ii) in Definition 4.1. Condition (iii) in Definition 4.1 simply requires that two groups
of products G1 and G2 exist such that: two products of firms ν and µ belonging to the
same group are substitutes (that is cνµ ≥ 0 and cµν ≥ 0), while two products of firms ν and
µ belonging to different groups are complements (that is cνµ ≤ 0 and cµν ≤ 0).

Let us consider the following Jacobi-type method:

Algorithm 4.3 (Jacobi-type Method)

(S.0) Choose a starting point x0 ∈ X ∩ Z
n and set k := 0.

(S.1) If xk is a solution of the discrete NEP then STOP.

(S.2) Choose a subset J k of the players. For each ν ∈ J k compute a best response x̂k,ν:

x̂k,ν ∈ x̂ν(xk,−ν).

(S.3) For all ν ∈ J k set xk+1,ν := x̂k,ν and for all ν /∈ J k set xk+1,ν := xk,ν.
Set k := k + 1 and go to (S.1).
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We recall that x̂ν(•) is defined in (6). This type of methods are very popular among
practitioners of Nash problems and their rationale is particularly simple to grasp since they
are the most “natural” decomposition methods. Algorithm 4.3 can be easily implemented in
a parallel framework in order to reduce the computational burden at (S.2). Furthermore,
it has a non-standard feature that gives an additional degree of freedom compared to
traditional Jacobi-type schemes: the choice of subset J k of the players that “play” at
iteration k. We can say that it is an incomplete Jacobi-type iteration. As special cases,
by selecting only one player at each iteration we get a Gauss-Southwell scheme, while by
selecting roundly each single player we get a Gauss-Seidel scheme.

Theorem 4.4 Suppose that (19) and (20) hold and that, for each player ν, θν is defined
as in (17), where θPν is defined as in (18) and ΘO

ν is an operator made up of convex or
concave functions. Suppose that X is non-empty, bounded and defined by box constraints
as in (7).

For all ν ∈ {1, . . . , N} and all i ∈ {1, . . . , nν}, let x0,ν
i := lνi if (ν, i) ∈ G1 and let

x0,ν
i := uν

i if (ν, i) ∈ G2. Let a finite positive integer h exists such that ν ∈ ∪k+h
t=k J

t for
each player ν and each iterate k.

Then, for each iterate k and each player ν ∈ J k, a best response x̂k,ν ∈ x̂ν(xk,−ν) can
be computed such that

x̂k,ν
i ≥ xk,ν

i , ∀ (ν, i) ∈ G1, x̂k,ν
i ≤ xk,ν

i , ∀ (ν, i) ∈ G2. (21)

By computing x̂k,ν for all k and all ν ∈ J k such that (21) holds, Algorithm 4.3 converges
in a finite number of iterations to a solution of the discrete NEP defined by (1).

Proof. First of all note that, by assumptions on X , set x̂ν(x̄−ν) is non-empty and finite
for any ν and any x̄−ν . However, it is easy to see that x̂ν(x̄−ν) may contain more than one
element.

Let us consider the first iteration. Since x1 ∈ X ∩ Z
n then it holds that x1,ν

i ≥ x0,ν
i if

(ν, i) ∈ G1, and x1,ν
i ≤ x0,ν

i if, otherwise, (ν, i) ∈ G2. For all ν and all i ∈ {1, . . . , nν} such
that (ν, i) ∈ G1, if Θ

O
ν,i is a convex function, then we can write

ΘO
ν,i(x

0,−ν)−ΘO
ν,i(x

1,−ν) ≥ ∇ΘO
ν,i(x

1,−ν)T (x0,−ν − x1,−ν), (22)

otherwise, ΘO
ν,i is concave, and then we can write

ΘO
ν,i(x

1,−ν)−ΘO
ν,i(x

0,−ν) ≤ ∇ΘO
ν,i(x

0,−ν)T (x1,−ν − x0,−ν). (23)

In both cases, since, by (19), for all µ 6= ν such that (µ, j) ∈ G1 it holds that

x1,µ
j ≥ x0,µ

j ,
∂ΘO

ν,i(x
0,−ν)

∂xµ
j

≤ 0,
∂ΘO

ν,i(x
1,−ν)

∂xµ
j

≤ 0,

while, by (20), for all µ 6= ν such that (µ, j) ∈ G2 it holds that

x1,µ
j ≤ x0,µ

j ,
∂ΘO

ν,i(x
0,−ν)

∂xµ
j

≥ 0,
∂ΘO

ν,i(x
1,−ν)

∂xµ
j

≥ 0,
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then, by (22) or (23), it holds that

ΘO
ν,i(x

1,−ν) ≤ ΘO
ν,i(x

0,−ν), ∀ (ν, i) ∈ G1. (24)

On the other hand, for all ν and all i ∈ {1, . . . , nν} such that (ν, i) ∈ G2, if Θ
O
ν,i is a convex

function, then we can write

ΘO
ν,i(x

1,−ν)−ΘO
ν,i(x

0,−ν) ≥ ∇ΘO
ν,i(x

0,−ν)T (x1,−ν − x0,−ν), (25)

otherwise, ΘO
ν,i is concave, and we can write

ΘO
ν,i(x

0,−ν)−ΘO
ν,i(x

1,−ν) ≤ ∇ΘO
ν,i(x

1,−ν)T (x0,−ν − x1,−ν). (26)

Then, by (20), for all µ 6= ν such that (µ, j) ∈ G1 it holds that

x1,µ
j ≥ x0,µ

j ,
∂ΘO

ν,i(x
0,−ν)

∂xµ
j

≥ 0,
∂ΘO

ν,i(x
1,−ν)

∂xµ
j

≥ 0,

while, by (19), for all µ 6= ν such that (µ, j) ∈ G2 it holds that

x1,µ
j ≤ x0,µ

j ,
∂ΘO

ν,i(x
0,−ν)

∂xµ
j

≤ 0,
∂ΘO

ν,i(x
1,−ν)

∂xµ
j

≤ 0,

then, by (25) or (26), it holds that

ΘO
ν,i(x

1,−ν) ≥ ΘO
ν,i(x

0,−ν), ∀ (ν, i) ∈ G2. (27)

Now let us consider the second iteration. In order to prove that, for all ν, a best response
x̂1,ν ∈ x̂ν(x1,−ν) exists such that for all i ∈ {1, . . . , nν}:

x̂1,ν
i ≥ x1,ν

i , if (ν, i) ∈ G1, and, x̂1,ν
i ≤ x1,ν

i , if (ν, i) ∈ G2, (28)

we have to consider two possibilities. If ν /∈ J 0 then x1,ν = x0,ν and then (28) is trivially
satisfied. Otherwise ν ∈ J 0 and we suppose by contradiction that for all yν ∈ x̂ν(x1,−ν)
a non-empty set of indices J ⊆ {1, . . . , nν} exists such that for all i ∈ J it holds that
yνi < x1,ν

i if (ν, i) ∈ G1 and yνi > x1,ν
i if (ν, i) ∈ G2. Now we show that this is impossible.

Let J̄ := {1, . . . , nν} \ J , for all j ∈ J̄ we have yνj ≥ x1,ν
j if (ν, j) ∈ G1 and yνj ≤ x1,ν

j if

(ν, j) ∈ G2. We define ȳν, ỹν ∈ Z
nν such that ȳνJ = yνJ , ȳ

ν
J̄
= x1,ν

J̄
, ỹνJ = x1,ν

J and ỹν
J̄
= yν

J̄
. It

is easy to see that both ȳν and ỹν are feasible for player ν, since X is a box. In order to
show that

(

θPν (ỹ
ν)− θPν (y

ν)
)

−
(

θPν (x
1,ν)− θPν (ȳ

ν)
)

≤ 0, (29)

we consider the following two chains of inequalities:

[

1

2
(ỹν)TQν ỹν −

1

2
(yν)TQνyν

]

−

[

1

2
(x1,ν)TQν(x1,ν)−

1

2
(ȳν)TQν ȳν

]

=
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[

((yνJ)
T (yνJ̄)

T )

(

Qν
JJ

Qν
J̄J

)

(

x1,ν
J − yνJ

)

+
1

2

(

x1,ν
J − yνJ

)T

Qν
JJ

(

x1,ν
J − yνJ

)

]

−

[

(

(yνJ)
T (x1,ν

J̄
)T
)

(

Qν
JJ

Qν
J̄J

)

(

x1,ν
J − yνJ

)

+
1

2

(

x1,ν
J − yνJ

)T

Qν
JJ

(

x1,ν
J − yνJ

)

]

=

(

yνJ̄ − x1,ν
J̄

)T

Qν
J̄J

(

x1,ν
J − yνJ

)

≤ 0,

where the last inequality holds because:

• for all j ∈ J̄ :
(

yνj − x1,ν
j

)

≥ 0 if (ν, j) ∈ G1 and
(

yνj − x1,ν
j

)

≤ 0 if (ν, j) ∈ G2,

• for all j ∈ J̄ and all i ∈ J : Qν
ji ≤ 0 if (ν, j) ∈ G1 ∋ (ν, i) or (ν, j) ∈ G2 ∋ (ν, i), by

(19), and Qν
ji ≥ 0 if (ν, j) ∈ G1 6∋ (ν, i) or (ν, j) ∈ G2 6∋ (ν, i), by (20),

• for all i ∈ J :
(

x1,ν
i − yνi

)

> 0 if (ν, i) ∈ G1 and
(

x1,ν
i − yνi

)

< 0 if (ν, i) ∈ G2;

the other chain is the following:

nν
∑

i=1

ϑP
ν,i(ỹ

ν
i )−

nν
∑

i=1

ϑP
ν,i(y

ν
i )−

nν
∑

i=1

ϑP
ν,i(x

1,ν
i ) +

nν
∑

i=1

ϑP
ν,i(ȳ

ν
i ) =

(

∑

i∈J

ϑP
ν,i(x

1,ν
i ) +

∑

i∈J̄

ϑP
ν,i(y

ν
i )

)

−
nν
∑

i=1

ϑP
ν,i(y

ν
i )−

nν
∑

i=1

ϑP
ν,i(x

1,ν
i )+

(

∑

i∈J

ϑP
ν,i(y

ν
i ) +

∑

i∈J̄

ϑP
ν,i(x

1,ν
i )

)

= 0;

therefore (29) holds. By using (29), we can write the following chain of inequalities

0 ≥ θPν (ỹ
ν)− θPν (y

ν)− θPν (x
1,ν) + θPν (ȳ

ν)

(A)

≥ θPν (ỹ
ν)− θPν (y

ν) + ΘO
ν,J(x

0,−ν)T (x1,ν
J − yνJ)

(B)

≥ θPν (ỹ
ν)− θPν (y

ν) + ΘO
ν,J(x

1,−ν)T (x1,ν
J − yνJ)

= θPν (ỹ
ν)− θPν (y

ν) + ΘO
ν (x

1,−ν)T (ỹν − yν),

where (A) holds since x1,ν ∈ x̂ν(x0,−ν) (remember that we are considering the case in which
ν ∈ J 0) and ȳν is feasible for player ν; while (B) is true since for all i ∈ J : if (ν, i) ∈ G1

we have (24) and (x1,ν
i − yνi ) > 0, and if (ν, i) ∈ G2 we have (27) and (x1,ν

i − yνi ) < 0. Then
we can conclude that θν(ỹ

ν ,x1,−ν) ≤ θν(y
ν,x1,−ν) and, since ỹνi ≥ x1,ν

i for all (ν, i) ∈ G1

and ỹνi ≤ x1,ν
i for all (ν, i) ∈ G2, this is a contradiction. Therefore, for all ν ∈ J 1, we can

set x̂1,ν ∈ x̂ν(x1,−ν) satisfying (28) for all i ∈ {1, . . . , nν}, and then we obtain

x2,ν
i ≥ x1,ν

i , ∀ (ν, i) ∈ G1, x2,ν
i ≤ x1,ν

i , ∀ (ν, i) ∈ G2.
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At a generic iterate k ≥ 2, assuming that for all t < k

xk,ν
i ≥ xt,ν

i , ∀ (ν, i) ∈ G1, xk,ν
i ≤ xt,ν

i , ∀ (ν, i) ∈ G2,

we can do similar considerations in order to prove that we can get for all (ν, i):

xk+1,ν
i ≥ xk,ν

i , if (ν, i) ∈ G1, and, xk+1,ν
i ≤ xk,ν

i , if (ν, i) ∈ G2. (30)

In fact, we have the following two possibilities for any ν ∈ J k: if ν /∈ ∪k−1
t=0J

t then
xk,ν = x0,ν and then (30) is trivially satisfied, otherwise, as above we can contradict the
fact that any point yν in x̂ν(xk,−ν) has a non-empty set of indices J such that for all i ∈ J
it holds that yνi < xk,ν

i if (ν, i) ∈ G1 and yνi > xk,ν
i if (ν, i) ∈ G2. We define ȳν and ỹν as

above. Let p < k be the last iterate such that ν ∈ J p. By the same considerations made
above, we can write ΘO

ν,i(x
k,−ν) ≤ ΘO

ν,i(x
p,−ν) for all (ν, i) ∈ G1, Θ

O
ν,i(x

k,−ν) ≥ ΘO
ν,i(x

p,−ν)

for all (ν, i) ∈ G2, and
(

θPν (ỹ
ν)− θPν (y

ν)
)

−
(

θPν (x
k,ν)− θPν (ȳ

ν)
)

≤ 0 and therefore, since
xk,ν = xp+1,ν , the chain of inequalities

0 ≥ θPν (ỹ
ν)− θPν (y

ν)− θPν (x
k,ν) + θPν (ȳ

ν)

≥ θPν (ỹ
ν)− θPν (y

ν) + ΘO
ν,J(x

p,−ν)T (xk,ν
J − yνJ)

≥ θPν (ỹ
ν)− θPν (y

ν) + ΘO
ν,J(x

k,−ν)T (xk,ν
J − yνJ)

= θPν (ỹ
ν)− θPν (y

ν) + ΘO
ν (x

k,−ν)T (ỹν − yν),

which proves the contradiction in the same way as above.
Therefore, we can say that the entire sequence {xk} is such that xk ∈ X ∩ Z

n and
(30) is true for all (ν, i). Finally, by recalling that ν ∈ ∪k+h

t=k J
t for each player ν and each

iterate k and that X is convex and compact, and therefore the set X ∩ Z
n has a finite

number of elements, we can conclude that the sequence {xk} converges in a finite number
of iterations to a point x∗ such that

x∗,ν ∈ x̂ν(x∗,−ν), ∀ ν ∈ {1, . . . , N}.

And, therefore, x∗ is a solution for the discrete NEP. �

The following result is about complexity of Algorithm 4.3.

Proposition 4.5 Let us suppose that all assumptions in Theorem 4.4 are fulfilled. Then
Algorithm 4.3 converges to a solution of the discrete NEP defined by (1) in at most

h
[

∑N
ν=1

∑nν

i=1 (u
ν
i − lνi )

]

+ h steps.

Proof. As stated in the proof of Theorem 4.4, sequence {xk}, generated by Algorithm
4.3, is such that xk ∈ X ∩ Z

n and (30) is true for all (ν, i). By recalling that ν ∈ ∪k+h
t=k J

t

for each player ν and each iterate k, then, if for an iteration k̄ it holds that xk̄ = xk̄+h+1,
then xk̄+h+1 is a solution of the discrete NEP. Otherwise at least one (ν, i) exists such that

xk̃+1,ν
i > xk̃,ν

i , if (ν, i) ∈ G1, or, xk̃+1,ν
i < xk̃,ν

i , if (ν, i) ∈ G2,
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where k̄ ≤ k̃ ≤ k̄+h. Therefore Algorithm 4.3 can do no more than h
∑N

ν=1

∑nν

i=1 (u
ν
i − lνi )

steps before xk,ν
i = uν

i if (ν, i) ∈ G1 and xk,ν
i = lνi if (ν, i) ∈ G2, for all ν ∈ {1, . . . , N} and

all i ∈ {1, . . . , nν}, and no more than h final steps to check the optimality. �

Note that, if the iterations of Algorithm 4.3 follow a Gauss-Seidel rule, then the upper
bound for the algorithm steps is N [

∑N
ν=1

∑nν

i=1 (u
ν
i − lνi )] + N . While, if the iterations

follow a Jacobi rule, the bound is [
∑N

ν=1

∑nν

i=1 (u
ν
i − lνi )] + 1.

The following corollary gives conditions for existence of equilibria of 2-groups partition-
able discrete NEPs.

Corollary 4.6 A 2-groups partitionable discrete NEP with X non-empty and bounded
always has at least one equilibrium.

Let us compare the class of discrete NEPs defined in this section with supermodular games
defined in [28]. It is not difficult to see that the problem in Example 4.2 is not a super-
modular game. In that, −θ1 is not supermodular in x1 on X1 for all x2 in X2, e.g.:

− θ1 ((1, 0)
T , (0, 0)T)− θ1 ((0, 1)

T , (0, 0)T) = −12 >

− 13 = −θ1 ((0, 0)
T , (0, 0)T)− θ1 ((1, 1)

T , (0, 0)T ) .

Then the discrete NEP in Example 4.2 is a simple case for which existence conditions
of Corollary 4.6 are satisfied, while those in [28] are not. Moreover, it is not difficult to
see that supermodularity conditions given in [28] are satisfied, in the framework we are
considering, only if JF (x) is a Z-matrix for all x ∈ X . We recall that a square matrix
M is a Z-matrix if all its off-diagonal entries are non-positive, see [5]. Clearly, any JF (x)
which is a Z-matrix for all x ∈ X satisfies (19) and (20), simply by putting all variables in
the same group of the partition, G1 or G2. Therefore, we can say that the class of discrete
NEPs defined here is more general than that defined by using supermodularity theory.

Let us consider again the pricing game described above. When there are only two firms
(N = 2), it is known as the Bertrand model of duopoly, see e.g. [27]. In [29] existence for
this 2-players discrete NEP was proved only when the two products are substitutes, while,
by putting one product in G1 and the other in G2 and referring to Corollary 4.6, we can
prove existence also when the two products are complements.

5 Numerical experiments

We tested Algorithms 3.9 and 4.3 on a benchmark of discrete NEPs in which θν is defined
as in (11), for all ν, and X is defined by box constraints as in (7).

All experiments were carried out on an Intel Core i7-4702MQ CPU @ 2.20GHz x 8 with
Ubuntu 14.04 LTS 64-bit and by using Matlab 7.14.0.739 (R2012a).

In all our implementations, we computed a point in x̂ν(x−ν), defined in (6), by using ga,
which is the genetic algorithm available in the considered Matlab release. Such algorithm
is an easy-to-use procedure that proved to be effective in all our tests.
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For what concerns Algorithm 3.1: the strategy for picking up from and inserting in L
was First In First Out; O was implemented by using ga with standard options; S was im-
plemented by using a C version of the PATH solver, see [6], with a Matlab interface down-
loaded from \protect\vrulewidth0pthttp://pages.cs.wisc.edu/∼ferris/path/ and whose
detailed description can be found in [17]; entries of points, returned by S, that were less
than 1e-10 far from their nearest integer value were rounded to their nearest integer value;
F was implemented as in Algorithm 3.4; C was implemented as in Algorithm 3.5.

Step (S.4) in Algorithms 3.6 and 3.8 was computed by using a simple line search.
About Algorithm 4.3: we used Gauss-Seidel iterations; the starting guess was set by

following the assumptions in Theorem 4.4 and by using the first row of JF to define G1 and
G2; we used xk = xk−1 as stopping criterion at (S.1); the best responses were computed,
at (S.2), by using ga with standard options.

To create a benchmark for testing Algorithm 3.9, we randomly generated problems
with JF positive definite and non symmetric by keeping to the following procedure. Let
M ∈ R

n×n be a symmetric positive definite matrix, let h > 0 and letMmax be the maximum
among all entries modules |Mij |. We made M to be non symmetric for all off diagonal
entries Mij and Mji, corresponding to blocks C in (11), by doing the following operations:
(1) compute a random value vij uniformly in [−hMmax, hMmax], (2) set Mij := Mij + vij
and Mji := Mji− vij . It is clear that, after this transformation, M is still positive definite.
In our tests, we considered two values of h, one higher (h = 0.1) and one lower (h = 0.01),
in order to obtain matrices having different degrees of asymmetry. In Table 1 we report the
list of discrete NEPs used to test Algorithm 3.9. For each problem, defined in (11) and (7),

prob λmin λmax binf bsup l u #feas

G-2-1-A-⋆ 0.03 0.25 -1 1 -500 500 1.002e+06
G-3-1-A-⋆ 0.04 1.29 -1 1 -50 50 1.030e+06
G-4-1-A-⋆, G-2-2-A-⋆ 0.18 14.05 -1 1 -5 5 1.464e+04
G-6-1-A-⋆, G-3-2-A-⋆, G-2-3-A-⋆ 0.15 5.44 -1 0 0 5 4.666e+04

G-2-1-B-⋆ 0.01 4.47 -10 10 -1000 1000 4.004e+06
G-3-1-B-⋆ 0.02 14.41 -10 10 -100 100 8.120e+06
G-4-1-B-⋆, G-2-2-B-⋆ 0.41 18.14 -10 10 -10 10 1.945e+05
G-6-1-B-⋆, G-3-2-B-⋆, G-2-3-B-⋆ 0.78 48.26 -10 0 0 10 1.771e+06

Table 1: Small test problems description.

we indicate the following data: prob contains the problem name; λmin and λmax are the
minimum and the maximum eigenvalues of the symmetric part of JF ; binf and bsup are the
bounds with which all entries of bν ∈ R

nν were generated by using a uniform distribution;
l and u are the bounds of X ; #feas is the amount of feasible points. Each name label tells
us information about the type and dimensions of the problem. In particular, let T -N -n-I-⋆
be a name label: T indicates the problem type (problems in Table 1 are all of type “G”,
that is they are generic problems); N is the amount of players; n is the amount of variables
for each player; I indicates the specific instance; ⋆ indicates the value of h (that is the
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degree of asymmetry of JF ) and can be equal to “H” for h = 0.1 or to “L” for h = 0.01.

prob #eq %1st %last %tot %LB %F O1st Olast Otot

ex 2.1 4 2.00 9.00 10.00 84.00 6.00 2 9 10
ex 2.3 0 26.00 0.00 74.00 26
ex 3.2 3 6.25 50.00 56.25 0.00 43.75 1 8 9
ex 4.2 2 0.01 0.01 14.22 9.09 76.69 1 2 2082

G-2-1-A-L 3 < 0.01 < 0.01 < 0.01 99.99 < 0.01 2 7 7
G-2-1-A-H 2 < 0.01 < 0.01 < 0.01 99.99 < 0.01 2 3 4
G-3-1-A-L 8 < 0.01 0.01 0.01 99.93 0.06 1 141 142
G-3-1-A-H 5 < 0.01 0.01 0.01 99.97 0.02 4 78 108
G-4-1-A-L 11 0.01 4.95 8.73 36.36 54.91 2 725 1278
G-4-1-A-H 1 0.01 0.01 8.20 36.36 55.43 2 2 1201
G-2-2-A-L 3 0.03 1.76 8.68 36.36 54.96 4 258 1271
G-2-2-A-H 1 0.01 0.01 8.40 36.36 55.24 2 2 1230
G-6-1-A-L 5 0.01 0.17 3.60 88.89 7.51 5 78 1679
G-6-1-A-H 4 < 0.01 0.26 3.44 90.74 5.82 1 122 1605
G-3-2-A-L 4 0.01 0.17 3.59 88.89 7.52 5 78 1676
G-3-2-A-H 4 0.02 0.20 2.79 92.28 4.93 7 93 1301
G-2-3-A-L 3 0.01 0.17 3.59 88.89 7.52 5 78 1676
G-2-3-A-H 3 0.02 0.21 3.67 88.89 7.44 9 100 1713

G-2-1-B-L 119 < 0.01 0.01 0.01 98.69 1.30 1 449 449
G-2-1-B-H 10 < 0.01 < 0.01 < 0.01 99.99 < 0.01 2 30 30
G-3-1-B-L 50 < 0.01 0.13 0.13 94.39 5.49 15 10185 10206
G-3-1-B-H 3 < 0.01 < 0.01 < 0.01 99.99 < 0.01 4 58 113
G-4-1-B-L 8 0.01 0.43 2.94 88.34 8.72 19 842 5714
G-4-1-B-H 0 2.40 66.83 30.77 4664
G-2-2-B-L 7 < 0.01 0.30 3.57 84.56 11.87 4 582 6940
G-2-2-B-H 1 0.04 0.04 4.34 79.59 16.06 69 69 8447
G-6-1-B-L 8 < 0.01 0.02 1.13 84.97 13.90 1 410 20015
G-6-1-B-H 8 < 0.01 0.07 0.59 93.69 5.72 3 1181 10446
G-3-2-B-L 7 < 0.01 0.06 1.14 84.97 13.89 1 979 20217
G-3-2-B-H 5 < 0.01 0.07 0.42 93.69 5.89 6 1237 7432
G-2-3-B-L 7 < 0.01 0.06 0.98 87.98 11.04 1 992 17366
G-2-3-B-H 4 < 0.01 0.01 0.44 92.79 6.77 6 121 7773

Table 2: Results for Algorithm 3.9 (1/2).

In Tables 2 and 3 we report the numerical results obtained by tackling all examples
given in the paper and all problems in Table 1 with Algorithm 3.9. More precisely: #eq
is the amount of computed equilibria; %1st, %last and %tot is the percentage of feasible
points that were analyzed by Oracle O before the first equilibrium was found, the last
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prob iter tLB t1st tlast ttot ga

ex 2.1 15 < 0.01 2.05 4.60 4.86 14
ex 2.3 27 < 0.01 7.22 28
ex 3.2 13 < 0.01 0.51 3.07 3.33 13
ex 4.2 2338 < 0.01 0.65 1.15 563.70 2117

G-2-1-A-L 11 < 0.01 0.82 2.67 2.67 10
G-2-1-A-H 7 < 0.01 0.80 1.31 1.56 6
G-3-1-A-L 191 < 0.01 0.87 50.28 50.55 186
G-3-1-A-H 145 < 0.01 1.93 27.18 35.93 131
G-4-1-A-L 1598 < 0.01 2.00 280.12 467.00 1682
G-4-1-A-H 1514 < 0.01 1.69 1.69 428.63 1545
G-2-2-A-L 1588 < 0.01 1.41 72.77 344.31 1306
G-2-2-A-H 1514 < 0.01 0.87 0.87 333.00 1263
G-6-1-A-L 1989 < 0.01 4.01 51.52 809.02 2790
G-6-1-A-H 1823 < 0.01 1.80 76.37 757.40 2616
G-3-2-A-L 1983 < 0.01 2.31 30.35 510.24 1900
G-3-2-A-H 1494 < 0.01 2.69 32.55 388.70 1450
G-2-3-A-L 1980 < 0.01 2.06 25.01 465.69 1712
G-2-3-A-H 1966 < 0.01 3.36 30.31 473.35 1742

G-2-1-B-L 687 < 0.01 0.56 191.82 191.83 752
G-2-1-B-H 51 < 0.01 0.78 11.70 11.70 46
G-3-1-B-L 11605 < 0.01 5.06 2785.80 2791.34 10532
G-3-1-B-H 155 < 0.01 1.60 17.84 33.57 128
G-4-1-B-L 6357 < 0.01 7.65 277.82 1753.61 6473
G-4-1-B-H 5289 < 0.01 1363.76 4963
G-2-2-B-L 7652 < 0.01 2.71 174.96 1948.00 7017
G-2-2-B-H 9012 < 0.01 19.89 19.89 2325.06 8500
G-6-1-B-L 22959 < 0.01 1.94 182.04 6536.53 22316
G-6-1-B-H 11662 < 0.01 2.45 394.01 3325.10 11708
G-3-2-B-L 23163 < 0.01 1.38 305.73 5585.99 20555
G-3-2-B-H 8395 < 0.01 2.28 349.63 2040.76 7575
G-2-3-B-L 20028 < 0.01 0.68 285.73 4756.06 17501
G-2-3-B-H 8865 < 0.01 2.00 34.45 2127.20 7829

Table 3: Results for Algorithm 3.9 (2/2).

equilibrium was found and list L was empty respectively; %LB and %F is the percentage
of feasible points that was cut off by Algorithms 3.6 and 3.8 together and by Procedure
F respectively; O1st, Olast and Otot is the amount of feasible points that were analyzed
by oracle O before the first equilibrium was computed, the last equilibrium was computed
and list L was empty respectively; iter is the total amount of iterations; tLB, t1st, tlast and
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ttot is the elapsed CPU-time (in seconds) before Algorithms 3.6 and 3.8 stopped, the first
equilibrium was computed, the last equilibrium was computed and the algorithm stopped
respectively; ga is the total amount of ga calls.

Results in Table 2 show that almost always %last is less than 0.50, that is the whole
equilibrium set is computed by evaluating a tiny percentage of the feasible points. In any
case, when %last is bigger, Olast is rather low. Most of the time %LB plus %F is over
95.00, this means that most feasible points were cut off by Algorithms 3.6 and 3.8 and
by procedure F . Therefore only a few percentage of the feasible points were evaluated by
using the oracle.

Table 3 shows that CPU-time used by Algorithms 3.6 and 3.8 is always negligible. We
recall that procedure S was called one time per iteration. Therefore, by comparing iter
and ga with ttot, we can easily deduce that, essentially, the whole elapsed time is consumed
by ga calls. Moreover, note that, although Otot ≤ ga ≤ NOtot, most of the time ga is just
a bit bigger than Otot.

We tested Algorithm 4.3 on all examples given in the paper, on all problems in Table
1, and on the big discrete NEPs described in Table 4. As above, the first character in the

prob λmin λmax binf bsup l u #feas

G-10-2-A-H 0.01 2.33 -10 10 -5 5 6.727e+20
G-10-2-B-H < 0.01 2.75 -10 10 -5 5 6.727e+20
C-10-2 0.15 2.54 -10 10 -5 5 6.727e+20
C-8-10 0.01 2309.75 -0.1 0.1 -3 3 4.054e+67
C-20-5 0.10 362.08 -10 10 -10 10 1.667e+132
C-200-5 0.06 207.03 -1000 1000 -6 0 71000

Table 4: Big test problems description.

name label of the problems indicates the type of the problem. In Table 4, some problems
are of type “C”, which indicates that these problems were randomly generated in order to
belong to the class of 2-groups partitionable discrete NEPs (defined in Section 4). Note
that we are dealing with problems up to 1000 variables and 71000 feasible points.

In Table 5 we report the numerical results obtained by using Algorithm 4.3 to compute
one equilibrium of the discrete NEPs considered. As above iter is the total amount of
iterations and ga is the total amount of ga calls, while, t is the elapsed CPU-time (in sec-
onds) and G1-G2 has a checkmark if the problem is 2-groups partitionable (see Section 4).
Note that, although many problems do not satisfy conditions of Theorem 4.4, nonetheless,
Algorithm 4.3 always computed one equilibrium of the discrete NEP, except in three cases.
In particular, it properly failed on ex 2.3 and G-4-1-B-H, since these discrete NEPs do not
have any equilibrium, and it failed on G-2-2-A-H, that, anyway, does not satisfy assump-
tions of Theorem 4.4. As concerns performances, Algorithm 4.3 compares with Algorithm
3.9 on small problems. Table 6 shows performances of Algorithm 3.9 when computing one
equilirium of the big problems in Table 4. There, we considered a failure a run that took
more than 5000 seconds to stop. Concluding, Algorithm 4.3 seems to be a big deal faster
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prob G1-G2 iter t ga

ex 2.1 X 3 1.48 6

ex 2.3 failure

ex 3.2 X 1 0.50 2

ex 4.2 X 2 1.13 4

G-2-1-A-L X 15 7.42 30

G-2-1-A-H X 15 7.36 30

G-3-1-A-L X 16 12.29 48

G-3-1-A-H 17 12.89 51

G-4-1-A-L 5 5.21 20

G-4-1-A-H 6 6.27 24

G-2-2-A-L 4 2.47 8

G-2-2-A-H failure

G-6-1-A-L 4 6.72 24

G-6-1-A-H 5 8.62 30

G-3-2-A-L 4 3.18 12

G-3-2-A-H 5 3.83 15

G-2-3-A-L 3 1.57 6

G-2-3-A-H 3 1.58 6

G-2-1-B-L X 250 123.26 500

prob G1-G2 iter t ga

G-2-1-B-H X 43 21.37 86

G-3-1-B-L X 7 5.36 21

G-3-1-B-H 12 9.43 36

G-4-1-B-L 4 4.22 16

G-4-1-B-H failure

G-2-2-B-L 4 1.99 8

G-2-2-B-H 7 3.52 14

G-6-1-B-L 4 6.75 24

G-6-1-B-H 4 6.93 24

G-3-2-B-L 4 3.08 12

G-3-2-B-H 5 3.82 15

G-2-3-B-L 5 2.62 10

G-2-3-B-H 3 1.59 6

G-10-2-A-H 6 17.53 60

G-10-2-B-H 5 14.61 50

C-10-2 X 5 14.62 50

C-8-10 X 2 11.10 16

C-20-5 X 6 54.63 120

C-200-5 X 9 2197.44 1800

Table 5: Results for Algorithm 4.3.

prob %1st O1st iter tLB t1st ga

G-10-2-A-H < 0.01 38 126 < 0.01 47.58 158
G-10-2-B-H < 0.01 167 337 < 0.01 117.51 395
C-10-2 < 0.01 146 2192 0.02 138.17 467
C-8-10 failure
C-20-5 failure
C-200-5 failure

Table 6: Results for Algorithm 3.9 on big problems.

than the branching algorithm to compute one equilibrium of big discrete NEPs.

6 Conclusions and directions for future research

In this paper, we propose the first branching method to compute the whole solution set of
any NEP with discrete strategy sets. This method works well on small and medium prob-
lems by efficiently computing all equilibria without examining more than a tiny percentage
of the feasible points. Futhermore a class of discrete games is defined for which we prove
that a Jacobi-type algorithm converges to one of their equilibria. This algorithm is quite
fast and works very well also on big problems.

27



Note that, although in this paper we do not tackle NEPs with mixed integer optimiza-
tion problems, it is straightforward to extend our results to these more general games. In
future work, we plan to address these mixed integer NEPs and to develop new methods
for equilibrium selection in a mixed integer setting.
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