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Abstract. In this work, we consider multiobjective optimization problems with both bound constraints on the
variables and general nonlinear constraints, where objective and constraint function values can only be obtained
by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of
Pareto stationary points. To this aim, we carry out a theoretical analysis of the problem by only assuming Lipschitz
continuity of the functions; more specifically, we give new optimality conditions that take explicitly into account the
bound constraints, and prove that the original problem is equivalent to a bound constrained problem obtained by
penalizing the nonlinear constraints with an exact merit function. Finally, we present the results of some numerical
experiments on bound constrained and nonlinearly constrained problems, showing that our approach is promising
when compared to a state-of-the-art method from the literature.
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1. Introduction. Many real-world problems can be modeled as the minimization (or maxi-
mization) of multiple objective functions, usually conflicting one another, over a set of constraints.
We have a number of relevant examples coming from many fields of science, including engineering,
economics and logistics, where optimal decisions need to be taken in the presence of trade-offs
between two or more conflicting objectives (see e.g. [5] and references therein). When dealing with
functions whose derivatives are expensive, unreliable or impossible to calculate, derivative-free
methods (see [4] for a complete overview of derivative-free methods) need to be used in order to
get a good solution for the given problem. Methods for Multi-Objective Optimization (MOO) can
be classified into two different classes with respect to the moment when preferences relating the ob-
jectives are estabilished. This way of classifying MOO approaches also holds in the derivative-free
context (see e.g. [7, 6]), where we have:

- Methods with a priori articulation of preferences, where objective functions are combined
into a single one with a proper aggregation criterion before the optimization starts (see
e.g. [1], [20]). In this case, since the original problem is transformed into a single-objective
problem, we will get a single nondominated point.

- Methods with a posteriori articulation of preferences, which try to reconstruct the whole
Pareto front for the MOO problem under analysis. In this class we both have globally con-
vergent derivative-free methods, like e.g. Direct-Search-type methods [7], and heuristics,
like e.g. genetic algorithms [8] and simulated annealing [24].

In this paper, we are interested in developing new globally convergent derivative-free methods
with posteriori articulation of preferences for nonlinearly constrained multiobjective minimization
problems of the following form:

(1.1)
min F (x) = (f1(x), . . . , fq(x))

⊤

s.t. g(x) ≤ 0,
l ≤ x ≤ u,
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where fi : R
n → R, i = 1, . . . , q, g : Rn → R

m, and l, u ∈ R
n, with l < u. We denote by X the set

defined by simple bounds on the variables, that is,

X = {x ∈ R
n : l ≤ x ≤ u},

and by F the feasible set of problem (1.1), namely,

F = {x ∈ R
n : g(x) ≤ 0} ∩X.

We note that, by definition, X is a compact set.
Into this context, the Direct Multisearch (DMS) proposed in [7] represents an appealing method
since it extends, from single to multiobjective optimization, classic directional derivative-free meth-
ods called direct search [4]. Two different steps characterize the DMS method, namely the search
step and the poll step. Once a current iterate (a poll center) has been selected from a list of (fea-
sible) nondominated points, the poll step evaluates the objective functions at some neighboring
points defined by a positive spanning set and a step size parameter. Then it uses an acceptance
criterion based on the concept of Pareto dominance for selecting the new iterates. Finally, the list
of nondominated points is updated by using those points generated at the current iteration. The
search step is included to further spread the search of points belonging to the Pareto front. The
handling of the nonlinear constraints is done by means of an extreme barrier function approach.
In practice, the following function

F̄ (x) =

{

F (x) If x is feasible
(+∞, . . . ,+∞)⊤ Otherwise

is minimized over Rn. Hence, when a given point is infeasible, the extreme barrier does not evalu-
ate the objective function F (x) and sets the values of F̄ (x) to +∞. Thus, a feasible starting point
is always needed in an extreme barrier framework. This can be problematic when dealing with
real-world problems, since a feasible starting point is not always available, and obtaining such a
point can be a very time-consuming task. Furthermore, even though in principle the function F̄ (x)
can be used in the presence of constraints, in many situations the constraints can be managed in
a more efficient way, i.e. when the amount of violation can be quantified.
Inspired by the ideas in [10] and [7], we describe a new exact-penalty-based linesearch approach
(with sufficient decrease) for nonlinearly constrained MOO problems. In order to study the con-
vergence properties of the proposed method, we carry out a preliminary theoretical analysis of the
problem itself. We describe new optimality conditions that take explicitly into account the bound
constraints and that are obtained by only assuming Lipschitz continuity of the problem functions.
We also prove that the original problem is equivalent to a bound constrained problem obtained
by penalizing the nonlinear constraints with an exact merit function. In particular, we introduce
a merit function that penalizes the general nonlinear inequality constraints in each term of F (x)
and we resort to the minimization of a penalty function subject to the simple bound constraints.
We would like to point out that some exact penalty methods for multiobjective optimization have
already been proposed in the literature (see e.g. [11, 14] and references therein). Anyway, to the
best of our knowledge, this is the first time that a penalty approach with explicit handling of the
bound constraints for Lipschitz continuous multiobjective problems is studied. The proposed ap-
proach enables to handle also infeasible starting points. Furthermore, thanks to this exact penalty,
we can adapt the derivative-free approach in [10] to the MOO case. This new approach gives us
three relevant advantages:

- by means of the sufficient decrease we can avoid the use of integer lattices (see e.g. [7, 10]);

- the extrapolation phase allows us to better exploit a descent direction and hence to prove,
under some density assumptions on the search directions, convergence to a set of Pareto
stationary points (i.e. we prove that any accumulation point of the sequences generated
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by our method is a Pareto stationary point);

- thanks to the exact penalty approach, the starting point can be infeasible.

The fact that any accumulation point of the generated sequences is a Pareto stationary point, is
an interesting theoretical result, since it is slightly stronger than the results reported in [7]. We
would also like to note that, to the best of our knowledge, the idea of only penalizing the nonlinear
constraints is new in the context of multiobjective derivative-free optimization.

In the last part of the paper, we test the linesearch approach on both bound constrained and
nonlinearly constrained problems. The aim of the tests on bound constrained problems is under-
standing to what extent the theoretical properties of our method are helpful in practice. On the
other hand, the goal of the tests on nonlinearly constrained problems is to show the effectiveness
of the exact penalty approach when embedded in a DFO method for bound constrained multiob-
jective problems. For this reason we report the results obtained by both our algorithm and the
globally convergent version of DMS.

The paper has the following structure. In Section 2, we introduce the proposed algorithm along
with the penalization idea to manage the general nonlinear constraints. In Section 3, we carry
out the theoretical analysis of the proposed method. In particular, the analysis is structured as
follows:

- in subsection 3.1, we define new optimality conditions for problem (1.1) which explicitly
take into account the bound constraints on the variables, and we define “stationary” points
for the problem;

- in subsection 3.2, we prove the equivalence between the nonlinearly constrained problem
(1.1) and the bound constrained problem obtained by penalizing the nonlinear constraints;

- in subsection 3.3, we prove that (under some suitable assumptions) the proposed algorithm
produces sequences of points that converge to stationary points of the original problem.

Numerical results and comparison are reported and discussed in Section 4. Finally, in Section 5,
we draw some conclusions.

1.1. Notations and preliminary material. Given a vector v ∈ R
n, a subscript will be

used to denote either one of its components (vi) or the fact that it is an element of an infinite
sequence of vectors (vk). In case of possible misunderstanding or ambiguities, the ith component
of a vector will be denoted by (v)i.

Given two vectors u, v ∈ R
n, we use the following convention for vector equalities and inequalities:

u = v ⇔ ui = vi, ∀ i = 1, . . . , n,

u < v ⇔ ui < vi, ∀ i = 1, . . . , n,

u ≤ v ⇔ ui ≤ vi, ∀ i = 1, . . . , n, and u 6= v.

Note that u ≥ v if and only if −u ≤ −v.

We denote by vj the generic jth element of a finite set of vectors. Furthermore, vectors e1, . . . , en
represent the coordinate unit vectors. Given two vectors a, b ∈ R

n, we denote by y = max{a, b}
the vector such that yi = max{ai, bi}, i = 1, . . . , n. Furthermore, given a vector v we denote by
v+ = max{0, v}. The projection of a point x onto the set X will be denoted by [x][l,u]. Finally,
we denote the unit sphere in the origin by S(0, 1) = {d ∈ R

n : ‖d‖ = 1}, and Co(A) indicates the
convex hull of the set A. Given a point x and a scalar ρ > 0, B(x, ρ) = {y ∈ R

n : ‖x − y‖ ≤ ρ}.
We denote

Γ = {µ ∈ R
q : µ ≥ 0,

q
∑

i=1

µi = 1}.

Finally, by 1 we denote the vector of all ones of dimension q.
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When dealing with several objective functions at a time, the concept of Pareto dominance is usually
considered in the comparison of two points.

Definition 1.1 (Pareto dominance). Given two points, x, y ∈ F , we say that x dominates y if
F (x) ≤ F (y).

Anyway, when coming to optimality, it may not be possible to find a point which is optimal for all
the objectives simultaneously. This is the reason why the concept of Pareto dominance is also used
to characterize global and local optimality into a multiobjective framework. More specifically, by
means of the following two definitions, we are able to identify a set of nondominated points (the so
called Pareto front or frontier) which represents the (global or local) optimal solutions of a given
multiobjective problem.

Definition 1.2 (Global Pareto optimality). A point x⋆ ∈ F is a global Pareto optimizer of
Problem (1.1) if it does not exist a point y ∈ F such that F (y) ≤ F (x⋆).

Definition 1.3 (Local Pareto optimality). A point x⋆ ∈ F is a local Pareto optimizer of Problem
(1.1) if it does not exist a point y ∈ F ∩ B(x⋆, ρ) such that F (y) ≤ F (x⋆), for some ρ > 0.

2. The derivative-free algorithm. In this section, we introduce our derivative-free algo-
rithm for the solution of problem (1.1), namely Algorithm DFMO. It extends to the multiobjective
case the approach proposed in [10], and, similarly to DMS in [7], generates a set of points at each
iteration. We stress that the algorithm produces a sequence of sets of points {Lk} (rather than a
sequence of points as it is common in the single objective case). More specifically, for each k, Lk

is a finite set that can be described as

Lk = {(xi, αi), xi ∈ X, αi > 0, i = 1, . . . , rk},

where rk = |Lk| and αi is the trial stepsize associated with point xi. Other relevant features of
the algorithm are:

- a linesearch approach that takes into account the presence of multiple objectives;
- an exact penalty approach for dealing with the nonlinear constraints.

More specifically, given the constrained problem (1.1) and a parameter ǫ > 0, we introduce the
following penalty functions

Zj(x; ǫ) = fj(x) +
1

ǫ

m
∑

i=1

max {0, gi(x)} , for all j = 1, . . . , q,

and define the penalized bound constrained multiobjective problem

(2.1)
min Z(x; ǫ) = (Z1(x; ǫ), . . . , Zq(x; ǫ))

⊤

s.t. x ∈ X.

We report the detailed scheme of Algorithm DFMO.
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Algorithm DFMO

Data. γ > 0, θ ∈ (0, 1), ǫ > 0, L0 = {(xi, αi), xi ∈ X, αi > 0, i = 1, . . . , |L0|}, a sequence
{dk} ⊂ R

n such that ‖dk‖ = 1, for all k.

For k = 0, 1, . . .
Set L̃k = Lk.
For i = 1, 2, . . . , |Lk|

Let (xi, αi) be the i-th couple of Lk.

If
(

Z([xi + αidk][l,u]; ǫ) 6> Z(xj ; ǫ)− γα2
i1
)

∀ xj ∈ L̃k then

Set L̃k = Projected Expansion(xi, αi, dk, L̃k, γ).

Else

(Failure Step) If (xi, αi) ∈ L̃k Set L̃k =
(

L̃k \ {(xi, αi)}
)

∪ {(xi, θαi)}

Endif

End For

Set Lk+1 = L̃k

End For

At iteration k, for each point in the set Lk, the algorithm starts a linesearch along direction dk. If dk
guarantees sufficient decrease (i.e. there exists at least one objective function that reduces enough
at the new point generated along dk for each point in L̃k, then a “sufficiently” large movement
along this direction is performed (by means of a Projected Expansion Procedure) and a new set
of points is generated.

Add&Filter (L, (x,αx))

Set L̃ = {(x, αx)}

For each (y,αy) ∈ L
If Z(x; ǫ) 6≤ Z(y; ǫ) then L̃ = L̃ ∪ {(y, αy)}

End For

Return L̃.

The Add&Filter procedure, given a list of nondominated pairs L and a pair (x, αx) which is
nondominated by any pair in L, produces the list L̃ of nondominated pairs among those in L ∪
{(x, αx)}.
Finally, we describe the Projected Expansion procedure.

Projected Expansion (y, α̂, p, L̃, γ).

Data. δ ∈ (0, 1).
Step 1. Set α = α̂.
Step 2. Let β = α/δ.

Step 3. If
(

Z([y + βp][l,u]; ǫ) 6< Z([y + αp][l,u]; ǫ)− γ
(

β2 − α2
)

1
)

then

Set L̃ = Add&Filter(L̃, ([y + αp][l,u], α)).
Endif

Step 4. If
(

Z([y + βp][l,u]; ǫ) 6> Z(xj ; ǫ)− γβ2
1
)

∀ xj ∈ L̃ then

Set α = β and go to Step 2.
Endif

Step 5. Return L̃.
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The Projected Expansion Procedure performs a “sufficiently” large movement along direction dk
and updates L̃ by adding and filtering a set of points.

The reader who is particularly interested in computational issues can completely skip Section 3
and directly go to Section 4 where numerical results of Algorithm DFMO and a comparison with
a state-of-the-art code are reported and commented.

3. Convergence analysis of DFMO. This section is devoted to the convergence analysis
of Algorithm DFMO. In particular, we prove under some suitable conditions that DFMO produces
(in the limit) “stationary” points of the constrained Problem (1.1). To this aim, we need to:

- define necessary optimality conditions for problem (1.1) that explicitly take into account
the bound constraints (see subsection 3.1);

- show that (at least for sufficiently small values of ǫ) solving problem (2.1) is “equivalent”
to solving problem (1.1) (see subsection 3.2);

- (finally) prove that Algorithm DFMO converges to stationary points of problem (1.1) (see
subsection 3.3).

Throughout the paper we require the following assumption.
Assumption 1. The functions fj, j = 1, . . . , q, and gi, i = 1, . . . ,m, are Lipschitz in X with
constants Lfj > 0, j = 1, . . . , q, and Lgi > 0, i = 1, . . . ,m.

Observe that, since fj , j = 1, . . . , q, and gi, i = 1, . . . ,m, are Lipschitz continuous, the penalty
functions Zj(x; ǫ), j = 1, . . . , q, are Lipschitz continuous too, with Lipschitz constants

Lj ≤ Lfj +
1

ε

m
∑

i=1

Lgi .

We denote ∂f(x) = {s ∈ R
n : fCl(x; d) ≥ dT s, ∀ d ∈ R

n} the generalized gradient of f at x, where

(3.1) fCl(x; d) = lim sup
y → x, t ↓ 0

f(y + td)− f(y)

t
.

Taking into account the results reported in [3], we can write

(3.2) fCl(x̄; d) = max
ξ∈∂f(x̄)

ξ⊤d.

Now we introduce some useful definitions that will be used in the description of our derivative-free
algorithm. First, we define the cone of feasible directions related to a point in the set X .

Definition 3.1 (Cone of feasible directions). Given a point x ∈ X, let

D(x) = {d ∈ R
n : di ≥ 0 if xi = li, di ≤ 0 if xi = ui, di ∈ R if li < xi < ui, i = 1, . . . , n}

be the cone of feasible directions at x with respect to the simple bound constraints.

Then, given a point x ∈ X , the Clarke-Jahn generalized directional derivative of a function f along
the direction d ∈ D(x) is given by (see [16, Section 3.5]):

(3.3) f◦(x; d) = lim sup
y → x, y ∈ X

t ↓ 0, y + td ∈ X

f(y + td)− f(y)

t
.

Recall that, according to definitions (3.1) and (3.3), we have, for any d ∈ R
n,

(3.4) fCl(x; d) ≥ f◦(x; d).

We finally introduce the following definition of a dense subsequence of directions.
Definition 3.2 (Dense sequence). Let K be an infinite subset of integers (possibly K = {0, 1, . . .}).
The subsequence of normalized directions {dk}k∈K is said to be dense in the unit sphere S(0, 1), if
for any d̄ ∈ S(0, 1) and for any ǫ > 0 there exists an index k ∈ K such that ‖dk − d̄‖ ≤ ǫ.
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3.1. Necessary optimality conditions. In this subsection, we extend classic optimality
conditions for multiobjective optimization problems (see e.g. Chapter 7 in [17]). In particular,
we describe some results concerning Lipschitz continuous multiobjective problems with explicit
handling of the bound constraints (apart from general nonlinear constraints). These conditions
allow us to define stationary points of problem (1.1) which are our desired solutions.
The following proposition extends the result in [13] to the case where additional convex inequality
constraints are present beside an additional convex set of constraints. In particular, we want to
propose optimality conditions for problem (1.1) which explicitly take into account the feasible
directions of the set defined by the bound constraints.

Proposition 3.3 (Pareto-Clarke FJ Necessary Optimality Conditions). Let x⋆ ∈ F be a local
Pareto point of the problem (1.1). Then, there exist multipliers σ⋆

1 , . . . , σ
⋆
q , λ

⋆
1, . . . , λ

⋆
m ∈ R, not all

zero and such that

(3.5)
σ⋆
i ≥ 0, i = 1, . . . , q,

λ⋆
j ≥ 0, λ⋆

jgj(x
⋆) = 0, j = 1, . . . ,m,

and a vector

(3.6) ξ̄ ∈

q
∑

i=1

σ⋆
i ∂fi(x

⋆) +

m
∑

j=1

λ⋆
j∂gj(x

⋆),

such that

(3.7) ξ̄⊤d ≥ 0 for every d ∈ D(x⋆).

Proof. Let us introduce the following functional

Φ(x) = max{fi(x) − fi(x
⋆), gj(x), (lh − xh), (xh − uh) : i = 1, . . . , q, j = 1, . . . ,m, h = 1, . . . , n}

and show that a ρ > 0 exists such that, for all x ∈ B(x⋆, ρ), Φ(x) ≥ 0. Indeed, by contradiction,
let us suppose that, for every ρ > 0, x̂ ∈ B(x⋆, ρ) exists such that Φ(x̂) < 0. This implies that
g(x̂) < 0 and l < x̂ < u yielding x̂ ∈ F . Further, for all i = 1, . . . , q, fi(x̂) < fi(x

⋆). These latter
conditions contradict the local Pareto optimality of x⋆.
Since x⋆ ∈ F and Φ(x⋆) = 0, we know that x⋆ is a local minimum of Φ(x) onto B(x⋆, ρ). Hence,
by definition of Clarke stationarity,

0 ∈ ∂Φ(x⋆),

and from [3, Proposition 2.3.12], we have

(3.8) 0 ∈

q
∑

i=1

σ̂i∂fi(x
⋆) +

∑

j∈I0(x⋆)

λ̂j∂gj(x
⋆)−

∑

h∈Il(x⋆)

µ̂heh +
∑

w∈Iu(x⋆)

µ̂wew,

with I0(x
⋆) = {j : gj(x

⋆) = 0}, Il(x
⋆) = {h : x⋆

h = lh}, Iu(x
⋆) = {w : x⋆

w = uw}, σ̂i ≥ 0,

i = 1, . . . , q, λ̂j ≥ 0, j ∈ I0(x
⋆), µ̂h ≥ 0, h ∈ Il(x

⋆), µ̂w ≥ 0, w ∈ Iu(x
⋆), and

(3.9)

q
∑

i=1

σ̂i +
∑

j∈I0(x⋆)

λ̂j +
∑

h∈Il(x⋆)

µ̂h +
∑

w∈Iu(x⋆)

µ̂w = 1.

Observe that by the linear independence of the set {eh, ew, h ∈ Il(x
⋆), w ∈ Iu(x

⋆)}, we deduce
that

q
∑

i=1

σ̂i +
∑

j∈I0(x⋆)

λ̂j 6= 0,
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since, otherwise, we would have from (3.8) that

0 = −
∑

h∈Il(x⋆)

µ̂heh +
∑

w∈Iu(x⋆)

µ̂wew,

which can be satisfied if and only if µ̂h = 0, h ∈ Il(x
⋆) and µ̂w = 0, w ∈ Iu(x

⋆), contradicting
(3.9).
Hence, we can normalize multipliers in (3.8) as in

(3.10) 0 ∈

q
∑

i=1

σi∂fi(x
⋆) +

∑

j∈I0(x⋆)

λj∂gj(x
⋆)−

∑

h∈Il(x⋆)

µheh +
∑

w∈Iu(x⋆)

µwew,

where now (setting
∑q

i=1 σ̂i +
∑

j∈I0(x⋆) λ̂j = Λ 6= 0)

σi =
σ̂i

Λ
, λj =

λ̂j

Λ
, ∀ j ∈ I0(x

⋆), µh =
µ̂h

Λ
, ∀ h ∈ Il(x

⋆), µw =
µ̂w

Λ
, ∀ w ∈ Iu(x

⋆),

and

(3.11)

q
∑

i=1

σi +
∑

j∈I0(x⋆)

λj = 1.

As a consequence, by (3.11), there exists a vector

ξ ∈

q
∑

i=1

σi∂fi(x
⋆) +

∑

j∈I0(x⋆)

λj∂gj(x
⋆)

which satisfies, from (3.10)

ξ =
∑

h∈Il(x⋆)

µheh −
∑

w∈Iu(x⋆)

µwew.

Recalling the definition of D(x), we have

ξ⊤d ≥ 0

for all d ∈ D(x⋆). ✷

By introducing a constraint qualification, we can give KKT optimality conditions for the multiob-
jective problem (1.1).

Proposition 3.4 (Pareto-Clarke KKT Necessary Optimality Conditions).
Let x⋆ ∈ F be a local Pareto minimum of the problem (1.1) and assume that a direction d ∈ D(x⋆)
exists such that for all j ∈ {1, . . . ,m : gj(x

⋆) = 0} :

(ξgj )⊤d < 0, for all ξgj ∈ ∂gj(x
⋆).(3.12)

Then, there exist multipliers σ⋆
1 , . . . , σ

⋆
q , λ

⋆
1, . . . , λ

⋆
m ∈ R, such that

σ⋆
i ≥ 0, σ⋆ 6= 0, i = 1, . . . , q,

λ⋆
j ≥ 0, λ⋆

jgj(x
⋆) = 0, j = 1, . . . ,m,
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and a vector

ξ̄ ∈

q
∑

i=1

σ⋆
i ∂fi(x

⋆) +
m
∑

j=1

λ⋆
j∂gj(x

⋆),

such that

ξ̄⊤d ≥ 0, for every d ∈ D(x⋆).

Proof. By Proposition 3.3, there exist multipliers σ⋆
i ≥ 0, i = 1, . . . , q, λ⋆

j ≥ 0, j = 1, . . . ,m, with

λ⋆
j = 0 when gj(x

⋆) < 0, and a vector ξ ∈

q
∑

i=1

σ⋆
i ∂fi(x

⋆) +

m
∑

j=1

λ⋆
j∂gj(x

⋆) such that (3.6) and (3.7)

hold. In order to prove the proposition, we proceed by contradiction and assume that σ⋆
i = 0,

i = 1, . . . , q. In this case, we would have

ξ ∈
∑

j∈I0(x⋆)

λ⋆
j∂gj(x

⋆),

where I0(x
⋆) = {j : gj(x

⋆) = 0}.
Note that the multipliers λ⋆

j , j = 1, . . . ,m, cannot be all zero, since in this case all the multipliers
would be zero thus contradicting Proposition 3.3. Then, we can define new multipliers

λ̄j = λ⋆
j/β, j ∈ I0(x

⋆),

where β =
∑

j∈I0(x⋆) λ
⋆
j > 0 and a vector ξ̄ = ξ/β such that

ξ̄ ∈
∑

j∈I0(x⋆)

λ̄j∂gj(x
⋆).

Hence, we have that λ̄j ≥ 0 and
∑

j∈I0(x⋆) λ̄j = 1.
Then, by Proposition 3.3, the following system

−ξ̄⊤d > 0,

−e⊤h d ≤ 0, ∀ h ∈ Il(x
⋆),

e⊤wd ≤ 0, ∀ w ∈ Iu(x
⋆),

with Il(x
⋆) = {h : x⋆

h = lh}, and Iu(x
⋆) = {w : x⋆

w = uw}, does not have a solution. It is easy to
notice that the latter two sets of constraints imply d ∈ D(x⋆). As a consequence, by the Farkas’
theorem (see e.g. [22, Chapter 2]), we have that scalars not all zero αh ≥ 0, h ∈ Il(x

⋆), and
αw ≥ 0, w ∈ Iu(x

⋆), exist such that

(3.13) 0 = ξ̄ −
∑

h∈Il(x⋆)

αheh +
∑

w∈Iu(x⋆)

αwew.

Now, by using condition (3.12), we know that a direction d̄ ∈ R
n exists such that

(ξgj )⊤d̄ < 0,∀ ξgj ∈ ∂gj(x
⋆), ∀ j ∈ I0(x

⋆),

−e⊤h d̄ ≤ 0,∀ h ∈ Il(x
⋆),

e⊤w d̄ ≤ 0,∀ w ∈ Iu(x
⋆).
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Now, by the alternative theorem in [23, Theorem 2.3.4] and [15], there cannot exist multipliers

λ̂j ≥ 0, j ∈ I0(x
⋆), µ̂h ≥ 0, h ∈ Il(x

⋆), µ̂w ≥ 0, w ∈ Iu(x
⋆), with

∑

j∈I0(x⋆)

λ̂j = 1,

such that

0 ∈
∑

j∈I0(x⋆)

λ̂j∂gj(x
⋆)−

∑

h∈Il(x⋆)

µ̂heh +
∑

w∈Iu(x⋆)

µ̂wew.

This is in contradiction with (3.13). ✷

Now, we can formally define Pareto-Clarke stationary points of problem (1.1).
Definition 3.5 (Pareto-Clarke Stationary Point). Given problem (1.1), a feasible point x⋆ ∈ F is
a Pareto-Clarke stationary point of (1.1) if there exist multipliers σ⋆

1 , . . . , σ
⋆
q , λ

⋆
1, . . . , λ

⋆
m ∈ R, such

that

σ⋆
i ≥ 0, σ⋆ 6= 0, i = 1, . . . , q,

λ⋆
j ≥ 0, λ⋆

jgj(x
⋆) = 0, j = 1, . . . ,m,

and a vector

ξ̄ ∈

q
∑

i=1

σ⋆
i ∂fi(x

⋆) +
m
∑

j=1

λ⋆
j∂gj(x

⋆),

such that ξ̄⊤d ≥ 0, for every d ∈ D(x⋆).

3.1.1. The bound constrained case. In this subsection we restrict our attention to the
following bound constrained problem

(3.14)
min F (x) = (f1(x), . . . , fq(x))

⊤

s.t. x ∈ X.

This is done in order to get some results that will be used in the theoretical analysis of the exact
penalty approach described in the next section.

The definition of Pareto-Clarke stationary point for problem (3.14) can be straightforwardly ob-
tained from Definition 3.5.

Definition 3.6. Given problem (3.14), a feasible point x⋆ ∈ X is a Pareto-Clarke stationary point
of (3.14) if there exist non-negative multipliers σ⋆

1 , . . . , σ
⋆
q ∈ R not all zero and a vector

ξ̄ ∈

q
∑

i=1

σ⋆
i ∂fi(x

⋆),

such that ξ̄⊤d ≥ 0, for every d ∈ D(x⋆).

We now report a result that characterizes the Pareto-Clarke stationary points in the bound con-
strained case.

Proposition 3.7. A point x̄ ∈ X is a Pareto-Clarke stationary point of (3.14), if and only if for
all d ∈ D(x̄), an index jd ∈ {1, . . . , q} exists such that:

(3.15) fCl
jd

(x̄; d) ≥ 0.
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Proof. First, we assume that x̄ ∈ X is a Pareto-Clarke stationary point of (3.14), and we prove
that condition (3.15) holds. From the definition of Pareto-Clarke stationary point, there exist

non-negative multipliers µ̄1, . . . , µ̄q ∈ R, not all zero, and a vector ξ̄ ∈

q
∑

i=1

µ̄i∂fi(x̄) such that, for

any d ∈ D(x̄),

ξ̄Td ≥ 0.

Then, we can define new multipliers

µ̃i = µ̄i/β, i = 1, . . . , q,

where β =
∑q

i=1 µ̄i > 0 (note that µ̃i ≥ 0 and
∑q

i=1 µ̃i = 1) and a vector ξ̃ = ξ̄/β such that

ξ̃ ∈

q
∑

i=1

µ̃i∂fi(x̄),

and

(3.16) ξ̃⊤d ≥ 0, for all d ∈ D(x̄).

From (3.16), we have that the following system

−ξ̃⊤d > 0,

e⊤i d ≤ 0, ∀ i ∈ Iu(x̄),

−e⊤i d ≤ 0, ∀ i ∈ Il(x̄),

does not have a solution. By using Farkas Lemma, we have

ξ̃ +
∑

i∈Iu(x̄)

ρiei −
∑

i∈Il(x̄)

σiei = 0,

with ρi ≥ 0, i ∈ Iu(x̄), and σi ≥ 0, i ∈ Il(x̄), and so that,

0 ∈

q
∑

i=1

µ̃i∂fi(x̄) +
∑

i∈Iu(x̄)

ρiei −
∑

i∈Il(x̄)

σiei.

Now, by considering the alternative theorem in [23, Theorem 2.3.4] and [15], we have that the
system

max
{

ξ⊤d : ξ ∈ ∂fi(x̄)
}

< 0, ∀ i = 1, . . . , q,

e⊤i d ≤ 0, ∀ i ∈ Iu(x̄),

−e⊤i d ≤ 0, ∀ i ∈ Il(x̄),

where Iu(x̄) = {i : x̄i = ui} and Il(x̄) = {i : x̄i = li}, does not have solution. This can be
equivalently expressed by saying that no direction d ∈ D(x̄) exists such that for all i = 1, . . . , q,

max
{

ξ⊤d : ξ ∈ ∂fi(x̄)
}

< 0,

which means that, for every d ∈ D(x̄), there exist an index jd ∈ {1, . . . , q} such that

max
{

ξ⊤d : ξ ∈ ∂fjd(x̄)
}

≥ 0.
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Then by recalling equation (3.2), we can equivalently say that for all d ∈ D(x̄), an index jd ∈
{1, . . . , q} exists such that:

fCl
jd

(x̄; d) ≥ 0.

Now, let us suppose that for all d ∈ D(x̄) there exists a jd such that condition (3.15) holds.

This fact can be equivalently expressed by saying that no direction d ∈ D(x̄) exists such that for
all i = 1, . . . , q,

max
{

ξ⊤d : ξ ∈ ∂fi(x̄)
}

< 0.

Hence, by recalling the definition of D(x), the preceding means that the following system has no
solution:

max
{

ξ⊤d : ξ ∈ ∂fi(x̄)
}

< 0, ∀ i = 1, . . . , q,(3.17)

e⊤i d ≤ 0, ∀ i ∈ Iu(x̄),(3.18)

−e⊤i d ≤ 0, ∀ i ∈ Il(x̄),(3.19)

where Iu(x̄) = {i : x̄i = ui} and Il(x̄) = {i : x̄i = li}. Now, by considering the alternative theorem
in [23, Theorem 2.3.4] and [15], we have that multipliers µ ∈ Γ, i.e., µ ≥ 0,

∑q
i=1 µi = 1, and

ρi ≥ 0, i ∈ Iu(x̄), σi ≥ 0, i ∈ Il(x̄), exist such that

0 ∈

q
∑

i=1

µi∂fi(x̄) +
∑

i∈Iu(x̄)

ρiei −
∑

i∈Il(x̄)

σiei.

Hence, there exists a vector ξ̄ ∈
∑q

i=1 µi∂fi(x̄) such that

ξ̄ = −





∑

i∈Iu(x̄)

ρiei −
∑

i∈Il(x̄)

σiei



 .

Then, for all d ∈ R
n, we can write

ξ̄⊤d = −





∑

i∈Iu(x̄)

ρiei −
∑

i∈Il(x̄)

σiei





⊤

d.

So that, by considering (3.18) and (3.19), for all d ∈ D(x̄) we can write

ξ̄⊤d ≥ 0

so that x̄ is a Pareto-Clarke stationary point of (3.14). ✷

Finally, with reference to problem (3.14), we can introduce the following slightly stronger definition
of stationarity.

Definition 3.8 (Pareto-Clarke-Jahn Stationary Point). Given the problem (3.14), x̄ is a Pareto-
Clarke-Jahn stationary point of (3.14) if, for all d ∈ D(x̄), an index jd ∈ {1, . . . , q} exists such
that:

f◦
jd
(x̄; d) ≥ 0.
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3.2. Exact penalization of the constraints. In this subsection we analyze the equivalence
between the original constrained problem (1.1) and the (penalized) bound constrained problem
(2.1).

More specifically, we prove that there exists a correspondence between Pareto-Clarke stationary
points of the penalized problem and Pareto-Clarke stationary points of the original constrained
problem we want to solve. Furthermore, we show that the two problems share the same global
Pareto optimal solutions.
These results are at the basis of Algorithm DFMO which makes use of the penalty approach to
manage the hard nonlinear constraints, and that explicitly handles the simple bound constraints
defining the set X .
In order to prove the main results, we also need an extended version of the Mangasarian-Fromowitz
Constraint Qualification (EMFCQ) condition for nonsmooth problems.

Assumption 2 (EMFCQ). Given problem (1.1), for any x ∈ X\
◦

F a direction d ∈ D(x) exists
such that

(ξgi)⊤d < 0,

for all ξgi ∈ ∂gi(x), i ∈ {1, . . . ,m : gi(x) ≥ 0}.

We remark that the above assumption is an extension to the nonsmooth case of the extended
Mangasarian-Fromowitz Constraint Qualification for differentiable problems (see e.g. [12, 21]). It
concerns the behavior of the constraint functions outside the feasible set and is somewhat connected
to the feasibility of the original problem. In particular, it is a sufficient condition to guarantee that
the feasible set is not empty, which becomes necessary for convex feasible sets (see [21]). We further
note that this assumption is particularly important to study convergence properties of algorithms
that approach a solution by (possibly) producing infeasible points.
Proposition 3.9. Let Assumption 2 hold. Given problem (1.1) and considering problem (2.1), a
threshold value ǫ⋆ > 0 exists such that, for every ǫ ∈ (0, ǫ⋆], Problem (2.1) has no Pareto-Clarke
stationary points in X \ F .

Proof. We proceed by contradiction and assume that for any integer k an ǫk ≤ 1/k and a
stationary point for problem (2.1) xk ∈ X \ F exist. Then, let us consider a limit point of this

sequence x̄ belonging to the closure of X \ F (hence x̄ 6∈
◦

F) and let us relabel the corresponding
subsequence again {xk}.

Since x̄ 6∈
◦

F , Assumption 2 guarantees that a direction d̄ ∈ D(x̄) exists such that

(ξgi)
⊤
d̄ < 0, for all ξgi ∈ ∂gi(x̄), i ∈ I(x̄),

where I(x) = {i ∈ {1, . . . ,m} : gi(x) ≥ 0}. The above property can be equivalently expressed by
saying that a positive scalar η > 0 exists, such that

(3.20) max
ξgi ∈ ∂gi(x̄)
i ∈ I(x̄)

(ξgi)
⊤
d̄ = −η.

Recalling that, for k sufficiently large, D(x̄) ⊆ D(xk) (see e.g. [19]), so that d̄ ∈ D(xk), we get, by
considering Proposition 3.7 and that xk is a Pareto-Clarke stationary point of Problem (2.1), that
an index jk ∈ {1, . . . , q} (depending on d̄ and xk) must exist such that

(3.21) ZCl
jk (xk; ǫ, d̄) ≥ 0.

Since, by definition ZCl
jk
(x; ǫ, d̄) = maxξ∈∂Z

jk
(x;ǫ) ξ

⊤d̄, and we know that

∂Zjk(x; ǫ) ⊆ ∂fjk(x) +
1

ǫ

m
∑

i=1

∂(max {0, gi(x)})
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and, by recalling the definition of I(x), we have

∂fjk(x) +
1

ǫ

m
∑

i=1

∂(max {0, gi(x)}) ⊆ ∂fjk(x) +
1

ǫ

∑

i∈I(x)

∂gi(x).

Thus, inequality (3.21) can be written as

(3.22)



ξ
(fjk)
k +

1

ǫk

∑

i∈I(xk)

ξgik





⊤

d̄ ≥ 0.

with ξ
(fjk )
k ∈ ∂fjk(xk), ξ

gi
k ∈ ∂gi(xk).

Now, recalling that q and m are finite numbers, there exist ̄ ∈ {1, . . . , q} and Ī ⊆ {1, . . . ,m}, and
we can consider the subsequence of {xk} where jk = ̄ and I(xk) = Ī.
Then, since the generalized gradient of a locally Lipschitz continuous function is locally bounded,

we have that all the considered sequences {ξ
f̄
k }, {ξgik }, i ∈ Ī, where ξ

f̄
k ∈ ∂f̄(xk), ξ

gi
k ∈ ∂gi(xk),

xk ∈ X , are bounded1. Hence, we get that

ξ
f̄
k → ξ̄f̄ ,(3.23a)

ξgik → ξ̄gi , for all i ∈ Ī .(3.23b)

Further, since ∂f̄ and ∂gi, i ∈ Ī are upper semicontinuous at x̄ (see Proposition 2.1.5 in [3]), it
results ξ̄f̄ ∈ ∂f̄(x̄), ξ̄

gi ∈ ∂gi(x̄), i ∈ Ī.
Now, since by continuity of the problem functions we have for k sufficiently large

{i : gi(x̄) < 0} ⊆ {i : gi(xk) < 0},

we have, for k sufficiently large,

{i : gi(xk) ≥ 0} = I(xk) ⊆ I(x̄) = {i : gi(x̄) ≥ 0},

so that

(3.24) Ī ⊆ I(x̄).

Now, by considering that, for all i ∈ Ī,

(ξgik )
⊤
d̄ ≤ max

ϑgi
k ∈ ∂gi(xk)

i ∈ Ī

(ϑgi
k )

⊤
d̄,

by (3.20), (3.23), and (3.24), we get, for k sufficiently large,

(3.25) (ξgik )
⊤
d̄ ≤ −

η

2
, ∀ i ∈ Ī .

Now, by multiplying (3.22) by ǫk we have



ǫkξ
f̄
k +

∑

i∈Ī

ξgik





⊤

d̄ ≥ 0,

1This result follows by considering that a finite covering of X by bounded sets exists and that any ξ
f̄
k
, ξ

gi
k
, i ∈ Ī

are bounded on the latter sets.
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which, by (3.25), yields

0 ≤



ǫkξ
f̄
k +

∑

i∈Ī

ξgik





⊤

d̄ ≤
(

ǫkξ
f̄
k

)⊤

d̄−
η

2
.

Finally, the above expression, considering (3.23a), gives raise to a contradiction when ǫk → 0. ✷

In order to give stationarity results for Problem (2.1), we have the following proposition.

Proposition 3.10. Let Assumption 2 hold. Then, for any ǫ > 0, every Pareto-Clarke stationary
point x̄ of Problem (2.1), such that x̄ ∈ F , is also a Pareto-Clarke stationary point of Problem
(1.1).

Proof. Since x̄ is, by assumption, a Pareto-Clarke stationary point of Problem (2.1), then by
Definition 3.6 we know that a vector of non-negative multipliers µ ∈ Γ, i.e., µ ≥ 0,

∑q
i=1 µi, not

all zero, and a vector ξ⋆ ∈
∑q

i=1 µi∂Zi(x̄, ǫ) exist such that, for all d ∈ D(x̄),

(ξ⋆)⊤d ≥ 0.

Now, we recall that

∂Zi(x, ǫ) ⊆ ∂fi(x) +
1

ǫ

∑

j∈I(x)

∂gj(x),

where I(x) = {i : gi(x) ≥ 0}. Hence, we have that ξ∗ ∈
∑q

i=1 µi

(

∂fi(x̄) +
1
ǫ

∑

j∈I(x̄) ∂gj(x̄)
)

,

µ ∈ Γ. Then, denoting λj = (
∑q

i=1 µi) /ǫ,

max







ξ⊤d : ξ ∈

q
∑

i=1

µi∂fi(x̄) +
∑

j∈I(x̄)

λj∂gj(x̄)







≥ 0

for all d ∈ D(x̄) with λj ≥ 0, j ∈ I(x̄). The above condition shows that a ξ̄ ∈

q
∑

i=1

µi∂fi(x̄) +

∑

j∈I(x̄)

λj∂gj(x̄) exists such that ξ̄⊤d ≥ 0, for all d ∈ D(x̄). Hence, by recalling that x̄ ∈ F and

I(x̄) = I0(x̄) when x̄ ∈ F , and setting λj = 0 when j 6∈ I0(x̄), it is proved that x̄ is a Pareto-Clarke
stationary point of Problem (1.1). ✷

Now, we introduce an intermediate result which basically states that, for ǫ sufficiently small,
every Pareto-Clarke-Jahn stationary point of Problem (2.1) is a Pareto-Clarke stationary point of
Problem (1.1).

Proposition 3.11. Let Assumption 2 hold. Given problem (1.1) and considering problem (2.1),
a threshold value ǫ⋆ > 0 exists such that, for every ǫ ∈ (0, ǫ⋆], every Pareto-Clarke-Jahn-stationary
point of Problem (2.1) is a Pareto-Clarke stationary point of Problem (1.1).

Proof. Let x̄ ∈ X be Pareto-Clarke-Jahn stationary for Problem (2.1). By (3.4), we also have that
x̄ is Pareto-Clarke stationary for Problem (2.1). Now, the proof follows by considering Propositions
3.9 and 3.10. ✷

Finally, we show the correspondence between the global Pareto minimizers of Problem (1.1) and
those of Problem (2.1).
Lemma 3.12. Given Problem (1.1), if a feasible point x̂ is not a global Pareto minimizer, then a
global Pareto minimizer x∗ exists that dominates x̂.
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Proof. Since x̂ is not a global Pareto minimizer, a feasible point y exists such that

fi(y) ≤ fi(x̂), for all i ∈ {1, . . . , q},(3.26a)

fℓ(y) < fℓ(x̂), for some ℓ ∈ {1, . . . , q}.(3.26b)

Then, let us define the following (single objective) optimization problem

(3.27)
min

q
∑

i=1

fi(x)

s.t. fi(x) ≤ fi(x̂), i = 1, . . . , q,
x ∈ F .

We recall that x̂ is a feasible solution of the above problem. Furthermore, since the feasible set is
compact and the objective function is continuous, the above problem admits a global solution x∗

such that

q
∑

i=1

fi(x
∗) <

q
∑

i=1

fi(x̂),

where the above inequality yields from (3.26). We claim that x∗ is a global Pareto minimizer of
Problem (1.1). Indeed, if this was not the case, a point x̄ ∈ F would exist such that

fi(x̄) ≤ fi(x
∗), for all i ∈ {1, . . . , q},

fj(x̄) < fj(x
∗), for some j ∈ {1, . . . , q}.

But this would imply that

q
∑

i=1

fi(x̄) <

q
∑

i=1

fi(x
∗),

thus contradicting the fact that x∗ is the global minimizer of (3.27). Hence, the proof is concluded.
✷

Proposition 3.13. Let Assumption 2 hold. Then, given Problem (1.1) and considering Problem
(2.1), a threshold value ǫ⋆ > 0 exists such that, for every ǫ ∈ (0, ǫ⋆], any global Pareto minimizer
of Problem (2.1) is a global Pareto minimizer of Problem (1.1), and conversely.

Proof. Let us first suppose that x∗ is a global Pareto minimizer of Problem (2.1). We proceed
by contradiction and assume that, for any integer k and ǫk ≤ 1/k, a point xk, which is a global
Pareto minimizer of Problem (2.1) but not of Problem (1.1), exists. From the definition of global
Pareto optimality, it follows that it cannot exist any y ∈ X such that

Z(y, ǫk) ≤ Z(xk, ǫk).

In particular, the above inequality must not hold for any y ∈ F which, considering that Z(y, ǫk) =
F (y) for y ∈ F , yields

F (y) ≤ Z(xk, ǫk).

Further, from Proposition 3.9 and considering that xk is also a stationary point of Problem (2.1),
for k sufficiently large, we have that xk ∈ F . Hence, it cannot exist y ∈ F such that

F (y) ≤ F (xk),
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that is xk is a global Pareto minimizer of Problem (1.1).

Let us now suppose that x̂ ∈ F is a global Pareto minimizer of Problem (1.1). Let us assume that
it is not a global Pareto minimizer of Problem (2.1). Then, by Lemma 3.12 applied to Problem
(2.1), a global Pareto minimizer x∗ of Problem (2.1) exists such that x∗ dominates x̂. If x∗ ∈ F ,
then Z(x∗, ǫ) = F (x∗) and this would contradict the fact that x̂ is a global Pareto minimizer of
(1.1). Otherwise, if x∗ ∈ X \ F , for ǫ sufficiently small, this would be in contrast with Proposition
3.9, thus concluding the proof. ✷

3.3. Stationarity result for DFMO. With reference to Algorithm DFMO, we give a defi-
nition that will be used throughout the subsection.

Definition 3.14. Let {Lk} with Lk = {(xj , αj), j = 1, . . . , |Lk|} be the sequence of sets of
nondominated points produced by DFMO. We define a linked sequence as a sequence {(xjk , αjk)}
such that for any k = 1, 2, . . . , the pair (xjk , αjk) ∈ Lk is generated at iteration k− 1 of DFMO by
the pair (xjk−1

, αjk−1
) ∈ Lk−1.

We highlight that one of the following two cases can happen.

1. Success step: the point
[

xjk−1
+

αjk−1

δ
sk−1

dk−1

]

[l,u]
is such that, for an integer sk−1 > 0, it

results

Z

(

[

xjk−1
+

αjk−1

δsk−1+1
dk−1

]

[l,u]
; ǫ

)

6< Z

(

[

xjk−1
+

αjk−1

δsk−1

dk−1

]

[l,u]
; ǫ

)

(3.28)

−γ

(

( αjk−1

δsk−1+1

)2

−
(αjk−1

δsk−1

)2
)

1.

In this case we have

xjk =
[

xjk−1
+

αjk−1

δsk−1

dk−1

]

[l,u]
(3.29a)

αjk =
αjk−1

δsk−1

(3.29b)

2. Failure step: we have

(3.30) Z([xjk−1
+ αjk−1

dk−1][l,u]; ǫ) > Z(xℓj ; ǫ)− γ(αjk−1
)21,

for at least a point xℓj ∈ L̃k−1, that is, Z([xjk−1
+ αjk−1

dk−1][l,u]; ǫ) is dominated by
Z(xℓj ; ǫ)− γ(αjk−1

)21. This implies that [xjk−1
+ αjk−1

dk−1][l,u] is a “bad” point so that
the step αjk−1

associated to xjk−1
is shrunk by the constant factor θ, i.e.

xjk = xjk−1
(3.31a)

αjk = θαjk−1
;(3.31b)

Now we state a simple theoretical result.

Lemma 3.15. Let α, β ∈ R, with α, β 6= 0, be such that sign(α) = sign(β) and let x ∈ X and
p ∈ R

n. Then, we have

[x+ (α+ β)p][l,u] =
[

[x+ αp][l,u] + βp
]

[l,u]
.

Proof. We first recall that

[xi + αpi][li,ui]







li if xi + αpi < li
xi + αpi if li ≤ xi + αpi ≤ ui

ui if xi + αpi > ui

,
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for all i = 1, . . . , n. In case li ≤ xi + αpi ≤ ui it is easy to see that

[xi + (α+ β)pi][li,ui]
=
[

[xi + αpi][li,ui]
+ βpi

]

[li,ui]
.

Now, we consider the case xi+αpi < li. Since x ∈ X , we have αpi < 0 and, consequently, βpi ≤ 0.
Thus, we can write

xi + αpi + βpi < li + βpi ≤ li,

which means

[xi + (α+ β)pi][li,ui]
=
[

[xi + αpi][li,ui]
+ βpi

]

[li,ui]
.

A similar reasoning can be done for the case xi + αpi > ui. ✷

By using Lemma 3.15 and (3.29a) and (3.29b), it results

[

xjk−1
+

αjk−1

δsk−1+1
dk−1

]

[l,u]
=

[

xjk +
(1− δ)αjk

δ
dk−1

]

[l,u]

,

so that (3.28) can be rewritten as

(3.32) Z

(

[

xjk +
(1 − δ)αjk

δ
dk−1

]

[l,u]

; ǫ

)

6< Z (xjk ; ǫ)− γ

(

1− δ2

δ2

)

α2
jk
1.

We show in the following proposition that the Projected Expansion cannot cycle.

Proposition 3.16. The Projected Expansion is such that:
i) the test at Step 4 is satisfied a finite number of times, i.e. the procedure cannot infinitely

cycle;
ii) the test at Step 3 is satisfied at least once, i.e. Add&Filter is called at least once

Proof. Point i). We proceed by contradiction and assume that the test at Step 4 is always satisfied,

i.e. a monotonically increasing sequence of positive numbers {βj} exists such that

Z([y + βjp][l,u]; ǫ) 6> Z(xi; ǫ)− γ(βj)21, for all xi ∈ L̃,

and, in particular,

Z([y + βjp][l,u]; ǫ) 6> Z(y; ǫ)− γ(βj)21.

This means that, for any given j, and index i ∈ {1, . . . , q} exists such that

Zi([y + βjp][l,u]; ǫ) ≤ Zi(y; ǫ)− γ(βj)2.

Then, since q is finite, we can extract a subsequence of {βj} such that i = ı̄, i.e. we have

Zı̄([y + βjp][l,u]; ǫ) ≤ Zı̄(y; ǫ)− γ(βj)2.

The above relation contradicts the compactness of set X .

Point ii). Let us consider a generic iteration of the Projected Expansion. Then, either α = α̂ or
α = α̂/δr (with r ∈ N, r ≥ 1) and

(

Z([y + αp][l,u]; ǫ) 6> Z(xj ; ǫ)− γα21
)

∀ xj ∈ L̃.
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The above relations imply that, for all xj ∈ L̃, and index ℓj ∈ {1, . . . , q} exists such that

(3.33) Zℓj ([y + αp][l,u]; ǫ) ≤ Zℓj (xj ; ǫ)− γα2.

Furthermore, let us assume that the test at Step 3 is not satisfied, which means that

Z([y + βp][l,u]; ǫ) < Z([y + αp][l,u]; ǫ)− γ
(

β2 − α2
)

1

and, in particular, in view of (3.33), for all xj ∈ L̃, and index ℓj ∈ {1, . . . , q} exists such that

Zℓj ([y + βp][l,u]; ǫ) < Zℓj ([y + αp][l,u]; ǫ)− γ
(

β2 − α2
)

≤ Zℓj (xj ; ǫ)− γβ2.

The above relation implies that the test at Step 4 is satisfied so that the procedure will perform a
further iteration.
Now, let us assume by contradiction that the test at Step 3 is never satisfied. Then, the above
reasoning would imply that the procedure infinitely cycles, which contradicts Point i). ✷

Now, we prove a result concerning convergence to zero of the stepsizes produced by algorithm
DFMO.

Proposition 3.17. Let {Lk} with Lk = {(xj , αj), j = 1, . . . , |Lk|} be the sequence of sets
of nondominated pairs produced by Algorithm DFMO. Then every linked sequence {(xjk , αjk)} is
such that

lim
k→∞

αjk = 0.

Proof. Let us first define the following set:

χǫ = {z ∈ R
q : z = Z(x; ǫ), for all x ∈ X}.

Note that the compactness of X and the continuity of the penalty functions Zj(x; ǫ), j = 1, . . . , q,
imply that χǫ is compact as well.
Now, we split the iteration sequence in two sets, namely K1 and K2 such that

1. for every k ∈ K1, a success step is performed, i.e. (3.29) holds;
2. for every k ∈ K2, a failure step is performed, i.e. (3.31) holds.

We carry out the proof by showing that:

lim
k→∞,k∈K1

αjk = 0, provided that K1 is infinite

lim
k→∞,k∈K2

αjk = 0, provided that K2 is infinite.

First, note that K1 and K2 cannot be both finite. Then, let us first assume that K1 is infinite and
assume by contradiction that a subsequence K̄ ⊆ K1 such that, for all k ∈ K̄ sufficiently large,
αjk ≥ ᾱ > 0. If this is the case, the algorithm generates infinitely many iterates xjk such that
(3.32) is satisfied. This implies that the corresponding points Z(xjk ; ǫ) ∈ χǫ have a distance not
smaller than γ(ᾱ)2 from each other. In this case, considering the compactness of χǫ, we have

(3.34) lim
k→∞,k∈K1

αjk = 0

Now, let us suppose that K2 is an infinite subset and let mk be the biggest integer such that
mk < k, with mk ∈ K1. Then αjk = θk−mkαjmk

(we can assume mk = 0 if the index mk does not
exist, that is, K1 is empty). Now we can distinguish two cases:
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• mk → ∞ (namely, K1 is an infinite subset). Then, by (3.34) and αjk = θk−mkαjmk
, we

obtain

(3.35) lim
k→∞,k∈K2

αjk = 0.

• (k −mk) → ∞ (namely, K1 is finite, i.e. mk is finite). Then θk−mk → 0, so that again

(3.36) lim
k→∞,k∈K2

αjk = 0.

Hence, the proof is concluded by considering (3.34), (3.35) and (3.36). ✷

Then, we report the following technical lemma that is used in the convergence proof of Algorithm
DFMO.

Lemma 3.18 (See [10, Lemma 2.6]). Let {xk} be a sequence of points, {dk} be the sequence of
search directions used by DFMO and let {ηk} be a sequence such that ηk > 0, for all k. Further,
let K be a subset of indices such that

lim
k→∞,k∈K

xk = x̄,

lim
k→∞,k∈K

dk = d̄,

lim
k→∞,k∈K

ηk = 0.

with x̄ ∈ X and d̄ ∈ D(x̄), d̄ 6= 0. Then,
(i) for all k ∈ K sufficiently large,

[xk + ηkdk][l,u] 6= xk,

(ii) the following limit holds

lim
k→∞,k∈K

vk = d̄,

where

(3.37) vk =
[xk + ηkdk][l,u] − xk

ηk
.

Finally, we can prove the main convergence result related to Algorithm DFMO. We would like
to highlight the fact that, according to the following proposition, any accumulation point of any
linked sequence generated by DFMO is a Pareto-Clarke KKT stationary point for Problem (1.1).

Proposition 3.19. Let Assumption 2 hold. Let {Lk} with Lk = {(xj , αj), j = 1, . . . , |Lk|} be the
sequence of sets of nondominated pairs produced by Algorithm DFMO. Let {(xjk , αjk)} be a linked
sequence and x̄ be any limit point of {xjk}, i.e.,

lim
k→∞,k∈K

xjk = x̄,

for a subset K of indices. Then, an ǫ⋆ > 0 exists such that for all ǫ ∈ (0, ǫ⋆], if the subsequence
{dk}k∈K is dense in the unit sphere, x̄ is a Pareto-Clarke KKT stationary point for Problem (1.1).
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Proof. First we recall that, by Definition 3.8, x̄ is a Pareto-Clarke-Jahn stationary point for
Problem 2.1 if, for all d̄ ∈ D(x̄), an index jd̄ exists such that the following condition holds

Z◦
jd̄
(x̄; ǫ, d̄) = lim sup

y → x̄, y ∈ X,

t ↓ 0, y + td̄ ∈ X

Zjd̄
(y + td̄; ǫ)− Zjd̄

(y; ǫ)

t
≥ 0.

Taking into account Proposition 3.17, we have

lim
k→∞

αjk = 0.

Then we prove that x̄ is a Pareto-Clarke-Jahn stationary point according to Definition 3.8. To this
aim, we proceed by contradiction and assume that a direction d̄ ∈ D(x̄) ∩ S(0, 1) exists such that,
for all indices j ∈ {1, . . . , q},

(3.38) Z◦
j (x̄; ǫ, d̄) = lim sup

xjk → x̄, xjk ∈ X,

t ↓ 0, xjk + td̄ ∈ X

Zj(xjk + td̄; ǫ)− Zj(xjk ; ǫ)

t
< 0.

Moreover, by Proposition 3.17, and recalling that, by assumption, {dk}k∈K is dense in the unit
sphere and limk→∞,k∈K xjk = x̄, a subset K̆ ⊆ K exists such that

lim
k→∞,k∈K̆

xjk−1
= x̄,(3.39a)

lim
k→∞,k∈K̆

dk−1 = d̄,(3.39b)

lim
k→∞,k∈K̆

αjk = 0,(3.39c)

where dk−1 ∈ D(xjk−1
). Considering a Failure Step, and taking into account (3.30) and (3.31), we

can write

(3.40) Zj

(

[

xjk +
αjk

θ
dk−1

]

[l,u]
; ǫ

)

> Zj(xℓj ; ǫ)− γ
(αjk

θ

)2

,

for xℓj ∈ L̃k−1 and for all j ∈ {1, . . . , q}.
Furthermore, considering a Success Step, and taking into account (3.32), we have that there exists
an index j ∈ {1, . . . , q} such that

(3.41) Zj

(

[

xjk +
(1− δ)αjk

δ
dk−1

]

[l,u]

; ǫ

)

≥ Zj (xjk ; ǫ)− γ

(

1− δ2

δ2

)

α2
jk
,

which can be rewritten as

Zj

(

[

xjk +
(1− δ)αjk

δ
dk−1

]

[l,u]

; ǫ

)

≥ Zj (xjk ; ǫ)− γ
1− δ2

(1− δ)2
(1− δ)2

δ2
α2
jk
,

Then, we can define

ηjk =







αjk

θ
if (3.40) holds,

(1− δ)αjk

δ
if (3.41) holds,

and, considering expression (3.37) of Lemma 3.18, we also define

vjk =
[xjk + ηjkdk−1][l,u] − xjk

ηjk
.
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Furthermore, by point (i) of Lemma 3.18, we have, for all k sufficiently large, that

vjk 6= 0,

and, by point (ii) of Lemma 3.18,

lim
k→∞,k∈K̆

vjk = d̄.

Hence, for all k ∈ K̆, the instructions of the Algorithm DFMO imply that, for at least an index
j ∈ {1, . . . , q},

Zj(xjk + ηjkvjk ; ǫ) ≥ Zj(xjk ; ǫ)− γ′η2jk ,

where γ′ = γ if jk is a failure step and γ′ = γ(1 − δ2)/(1 − δ)2 if jk is a success step. Now,
by considering that q is finite, we can extract a further subset of indices K̄ ⊂ K̆ and an index
̄ ∈ {1, . . . , q}, such that

Z̄(xjk + ηjkvjk ; ǫ) ≥ Z̄(xjk ; ǫ)− γ′η2jk ,

that is

(3.42)
Z̄(xjk + ηjkvjk ; ǫ)− Z̄(xjk ; ǫ)

ηjk
≥ −γ′ηjk .

Then,

lim sup
y → x̄, y ∈ X,

t ↓ 0, y + td̄ ∈ X

Z̄(y + td̄; ǫ)− Z̄(y; ǫ)

t
≥ lim sup

k→∞, k∈K̄

Z̄(xjk + ηjk d̄; ǫ)− Z̄(xjk ; ǫ)

ηjk
=

lim sup
k→∞, k∈K̄

Z̄(xjk + ηjk d̄; ǫ) + Z̄(xjk + ηjkvjk ; ǫ)− Z̄(xjk + ηjkvjk ; ǫ)− Z̄(xjk ; ǫ)

ηjk
≥

lim sup
k→∞, k∈K̄

Z̄(xjk + ηjkvjk ; ǫ)− Z̄(xjk ; ǫ)

ηjk
− L̄‖d̄− vjk‖,

where L̄ is the Lipschitz constant of Z̄. By (3.39a–b) and (3.42) and the above relation, we get,

lim sup
y → x̄, y ∈ X,

t ↓ 0, y + td̄ ∈ X

Z̄(y + td̄; ǫ)− Z̄(y; ǫ)

t
≥ 0

which contradicts (3.38) and proves that x̄ is a Pareto-Clarke-Jahn stationary point of Problem
(2.1). Then the proof follows by recalling Proposition 3.11. ✷

4. Numerical Results. This Section is devoted to the numerical experimentation of the
DFMO algorithm both on bound constrained and nonlinearly constrained problems. The DFMO
code is freely available at the URL http://www.dis.uniroma1.it/∼lucidi/DFL. The aim of the
tests on bound constrained problems is to understand if the theoretical properties of our linesearch
approach (i.e. the fact that any accumulation point of any linked sequence is a Pareto stationary
point) have some practical interest. For this reason the comparison is carried out with the globally
convergent version of DMS [7], namely the one using asymptotically dense sets of directions. In the
second part, the effectiveness of the exact penalization technique for general constraints is analyzed.
Again we study the behavior of DFMO in comparison with DMS. To this aim, since the original
version of the DMS code cannot handle nonlinear constraints, we embedded the penalty approach
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in the DMS framework. This also enabled us to show the versatility of the penalty approach, in
that it can be easily used within algorithms for bound constraints multiobjective problems.
In algorithm DFMO, each couple (xi, αi) ∈ L̃k is explored by using the set of directions {Dk,
−Dk}, where Dk is an orthonormal basis in R

n constructed starting from dk, in place of the
direction dk alone. The directions belonging to Dk are used as in Algorithm CS-DFN from [10]. In
particular, they are explored one after the other in search for a sufficent improvement. When such
improvement cannot be obtained along dk, −dk is explored before passing to the next direction.
Obviously, using a positive basis rather than the single random direction dk should enable us to
get a better sampling of the functions and hence to guarantee better performance.
We also implemented a simplified version of DFMO, called DFMO⊕, which consists in always
setting Dk = {I}, thus (possibly) considering the set of directions {I,−I}.

4.1. Bound constrained problems. We used the collection of problems defined in [7], i.e.,
a set of 100 multiobjective problems with number of variables n ∈ [1, 30] and number of objectives
q = 2, 3 and 4 (note that q = 4 only for one test problem, namely FES3). The problems coded in
FORTRAN90 are available at the URL http://www.dis.uniroma1.it/∼lucidi/DFL (the original
problems in AMPL format can be found at the URL http://www.mat.uc.pt/dms).
All the results described in this subsection have been obtained by allowing a maximum number of
20,000 function evaluations.
The comparison that we report is between version 0.2 of DMS [7] and DFMO. We remark that
DMS has been run by using its default2 settings except for: tol stop = 10−9 and dir dense = 1.
Hence, the variant of DMS we are using is the one referenced as DMS(n,line) in [7].
The results are reported in Figure 1 in terms of the purity [2], spread metrics Γ and ∆ (both
metrics as defined in [7]), and the hypervolume metric [25] by using performance profiles [9].
By taking a look at the figures, we notice that DFMO gives good performances in terms of purity,
spread metric Γ and hypervolume metric (both in terms of efficiency and robustness), while DMS is
more efficient when considering spread ∆. This could be explained by the fact that the theoretical
properties of our algorithm somehow help to generate a larger number of nondominated points
(with respect to DMS). As a consequence this enables to get a higher percentage of nondominated
points (purity and hypervolume) and to reduce the maximum size of the holes in the Pareto front
(spread Γ). On the other hand, the selection and the updating strategies used by DMS to evolve
the list of nondominated points seem to allow a better distribution of the points in the Pareto front
(spread ∆). A possible explanation of this feature is that the computational burden (in terms of
function evaluations) connected with the exploration carried out by DMS is better balanced than
the one related to exploration used in DFMO (which is anyway needed to guarantee the theoretical
properties of the algorithm). More specifically, at each iteration DMS analyzes a single point before
updating the list, while DFMO must visit all the points in the list before the updating.
As a further experiment, we run DMS(n,line) in its default settings, except for tol stop = 10−9

(that is we leave dir dense = 0). This variant of DMS, which we denote by DMS(n,line)⊕, is the
one using the coordinate directions as search directions. Then, we adopt the same strategy and use
algorithm DFMO⊕. The results of this comparison are reported in Figure 2. As it can be seen,
the situation is rather different than the previous one. Indeed, now DMS(n,line)⊕ is better than
DFMO⊕ except that DFMO⊕ is slightly more robust in terms of the Purity metric. Hence, it is
clear that the choice of search directions has a considerable impact on the performance of the two
algorithms. Then, to better understand the influence of the search directions on the algorithms
we did a further comparison which we report in Figure 3. Namely, we compare the four methods,
DMS(n,line), DMS(n,line)⊕, DFMOdense and DFMO⊕, against each other. As it can be noted,
the use of the constant set of coordinate directions as search directions, at least in the case of
bound constrained problems, seems to be sufficient to collect enough information on the objective
functions.

2It should be noted that by “default” setting we mean the setting of DMS given by the file parameters dms.m

included in the DMS software package.
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Fig. 1. Comparison between DFMO and DMS(n,line) on the bound constrained problems by using performance
profiles and by means of the four metrics, i.e. Purity (left), Spread(Γ) (center), Spread(∆) (right), and hypervolume
(bottom).
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Fig. 2. Comparison between DFMO⊕ and DMS(n,line)⊕ on the bound constrained problems by using perfor-
mance profiles and by means of the three metrics, i.e. Purity (left), Spread(Γ) (center), Spread(∆) (right), and
hypervolume (bottom).
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Fig. 3. Comparison between DMS(n,line), DMS(n,line)⊕, DFMOdense and DFMO⊕ on the bound constrained
problems by using performance profiles and by means of the three metrics, i.e. Purity (left), Spread(Γ) (center),
Spread(∆) (right), and hypervolume (bottom).

4.2. Nonlinearly constrained problems. To the best of our knowledge, in the literature
there is no standard collection of nonlinearly constrained multiobjective test problems. Hence, we
defined a new collection by coupling a subset of the bound constrained problems [7] used in the
preceding subsection with six families of constraints proposed in [18]. More in details, we selected
51 bound constrained problems, i.e. all the problems with n ≥ 3 variables. Then, we defined a set
of 306 constrained multiobjective problems by adding to each problem the following six families of
nonlinear constraints, namely

gj(x) = (3− 2xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, for all j = 1, . . . ,m, m = n− 2;
gj(x) = (3− 2xj+1)xj+1 − xj − 2xj+2 + 2.5 ≤ 0, for all j = 1, . . . ,m, m = n− 2;
gj(x) = x2

j + x2
j+1 + xjxj+1 − 2xj − 2xj+1 + 1 ≤ 0, for all j = 1, . . . ,m, m = n− 1;

gj(x) = x2
j + x2

j+1 + xjxj+1 − 1 ≤ 0, for all j = 1, . . . ,m, m = n− 1;
gj(x) = (3− 0.5xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, for all j = 1, . . . ,m, m = n− 2;

gj(x) =
∑n+1

i=1 ((3 − 0.5xj+1)xj+1 − xj − 2xj+2 + 1) ≤ 0, for all j = 1, . . . ,m, m = 1.

Finally, by a preliminary investigation we found out that 92 problems out of the 306 are inherently
infeasible, thus we dropped them from the test set. This is due to the combination of the nonlinear
constraints with the bound constraints of the original problems. Hence, we have a set of 214
nonlinearly constrained multiobjective problems with n ∈ [3, 30], m ∈ [1, 29] and q ∈ [2, 4].

In order to manage the general constraints, we used a vector of penalty parameters ǫ ∈ R
m and

considered the penalty functions

Zj(x; ǫ) = fj(x) +

m
∑

i=1

1

ǫi
max{0, gi(x)}, for all j = 1, . . . , q,
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Fig. 4. Comparison between DFMO and DMS(n,line) - Number of nondominated feasible solutions.

which trivially preserve all the theoretical results proved in Section 3.2. The vector of penalty
parameters is set as follows

ǫi =

{

10−3 if max{0, gi(x0)} < 1,
10−1 otherwise,

i = 1, . . . ,m.

Once again, all the results have been obtained by allowing a maximum number of 20,000 function
evaluations.
We embed in both DFMO and DMS(n,line) the penalty function. Also in this case DMS(n,line)
has been run by using its default settings except for: tol stop = 10−9 and dir dense = 1. First of
all, we notice that both DFMO and DMS(n,line) exhibit a considerable ability to produce feasible
points on all the considered problems. This is confirmed by the box plots, reported in Figure 4,
which are related to the distribution of the number of nondominated feasible solutions found by
each algorithms. On each box, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers,
and outliers were dropped out. By observing the figure, we notice that both methods are able to
find a consistent number of nondominated feasible solutions, which, in our opinion, confirms the
efficiency of the proposed penalty approach.
In Figure 5, we report the results in terms of the purity, spread metrics Γ and ∆, and hypervolume
metric by using performance profiles. The figures show that DFMOdense and DMS(n,line) have
a behavior similar to the bound constrained case. Anyway, we notice an improvement of the
performances of DMS. This, in our opinion, could be due to the fact that, as noticed in the
previous subsection, DMS has the ability to uniformly distribute the points on the Pareto front.
As a further experiment, we compared DFMO⊕ and DMS(n,line)⊕, i.e. the versions using constant
set of coordinate directions as set of search directions. The results of this latter comparison are
reported in Figure 6. Looking at the figure, we provide some observations. First of all, it still
emerges, as in the bound constrained case, the good ability of DMS(n,line)⊕ to uniformly spread
the generated points on the computed Pareto front. Second, it can be noted that, for constrained
problems, DFMO⊕ is better than DMS(n,line)⊕ at generating nondominated points.
Finally, to better understand the influence of the search directions on the algorithms in Figure
3 we report the comparison of the four methods, DMS(n,line), DMS(n,line)⊕, DFMOdense and
DFMO⊕, against each other. The first thing that we note is that, in the constrained case, the use
of a richer set of search directions considerably helps the methods to produce good nondominated
points.

5. Conclusions. In this paper, we described a new exact-penalty-based derivative free ap-
proach (based on linesearches with sufficient decrease) for nonlinearly constrained MOO problems.
In order to develop the method, we first analyzed the theoretical properties of the class of problems
to handle. In particular, we described new optimality conditions that take explicitly into account
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Fig. 5. Comparison between DFMOdense and DMS(n,line) on the constrained problems by using perfor-
mance profiles and by means of the three metrics, i.e. Purity (left), Spread(Γ) (center), Spread(∆) (right), and
hypervolume (bottom).
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the bound constraints and that are obtained by only assuming Lipschitz continuity of the prob-
lem functions. We further proved that the original problem is equivalent to a bound constrained
problem obtained by penalizing the nonlinear constraints with an exact merit function. Further-
more, thanks to this exact penalty, we were able to adapt the derivative-free approach in [10] to
the MOO case. The sufficient decrease gave us the chance to avoid the use of integer lattices.
The extrapolation phase also allowed us to prove, under some density assumptions on the search
directions, convergence to a set of Pareto stationary points (i.e. we prove that any accumulation
point of the sequences generated by our method is a Pareto stationary point). The exact penalty
approach gave us the freedom to choose an infeasible starting point (which can be a big advantage
in practice).

Finally, we tested our approach on both bound constrained and nonlinearly constrained problems.
The goal of the tests on bound constrained problems was understanding how much the theoretical
properties of our method are helpful in practice. On the other hand, the tests on nonlinearly
constrained problems were carried out to show the effectiveness of the exact penalty approach
when embedded on a DFO method for bound constrained multiobjective problems. The reported
results both showed that, when dealing with MOO problems, the linesearch approach can be very
helpful in practice in identifying a consistent number of good nondominated points, and that
the merit function introduced to handle the nonlinear constraints, when embedded on a globally
convergent DFO method, guarantees good performance and enables to find a significant number
of feasible points.
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