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Abstract

In this paper, an optimization technique for medium-high frequency dynamic problems based on Statistical Energy
Analysis (SEA) method is presented. Using a SEA model, the subsystem energies are controlled by internal loss
factors (ILF) and coupling loss factors (CLF), which in turn depend on the physical parameters of the subsystems. A
preliminary sensitivity analysis of subsystem energy to CLF’s is performed to select CLF’s that are most effective on
subsystem energies. Since the injected power depends not only on the external loads but on the physical parameters of
the subsystems as well, it must be taken into account under certain conditions. This is accomplished in the optimization
procedure, where approximate relationships between CLF’s, injected power and physical parameters are derived. The
approach is applied on a typical aeronautical structure: the cabin of a helicopter.
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1. Introduction

Statistical Energy Analysis (SEA) allows to solve medium-high frequency dynamic problems because only the
energy averaged on each subsystem is needed when too many DoF’s are involved and eigenvalues and eigenvectors
loose their significance due to high modal density [1, 2, 3, 4, 5]. Therefore, while classical (FEM, BEM) techniques fail
to solve this kind of dynamic problems, SEA gives the energy stored in each subsystem and the energy flow between
coupled subsystems. Using a SEA model, the subsystem energies are controlled by coupling loss factors (CLF),
internal loss factors (ILF) and injected power, which in turn depend on the physical parameters of the subsystems.

In this paper, an optimization technique for medium-high frequency dynamic problems based on SEA method is
presented. A preliminary version of the procedure was presented in conference papers [6, 7]. There have been some
attempts to use SEA models in order to control noise: for instance in [8] an analysis of the effect of damping treatment
to control noise on offshore platforms is performed, but no optimization procedure is devised. In a previous paper by
the authors [9], a sensitivity approach was proposed in order to analyze the propagation of parametric uncertainties in
SEA models. The same sensitivity concept is used in this paper to set up an optimization procedure. In literature there
are several works [10, 11] dealing with parametric uncertainties of hybrid SEA models using a sensitivity approach:
the sensitivity to model parameters can probably be used in an optimization procedure, but this possible development
is not foreseen.

The optimization procedure is developed here by considering that CLF’s and injected power depend on the phys-
ical parameters of the subsystems. Therefore an approximate relation between CLF’s, injected power and physical
parameters is determined, for instance, by using Design of Experiment (DoE). This relation is the core of the opti-
mization procedure formulated in order to bring the subsystem energies under prescribed levels. Injected power must
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be taken into account under certain conditions, i.e. whenever the physical parameters of subsystems through which
power is injected are modified. To decrease the subsystem energies, it is proposed to proceed according to the follow-
ing steps. (Here it is assumed to use a commercial software for SEA: therefore explicit relations among CLF’s and
physical parameters are not available). First, the effect of changes to CLF’s and ILF’s is modeled by using a sensitivity
approach [12, 13, 6, 9]. The sensitivity of the energies stored into the subsystems is calculated by considering varia-
tions of ILF’s and CLF’s. The goal is to preliminarily understand how much the energies (SEA solution) depend on
changes to CLF’s and ILF’s. At this stage, it is difficult and unpractical to consider the contribution due to variations
of the injected power.

After choosing CLF’s and ILF’s that are most effective on subsystem energies, a model of the selected loss factors
and of the injected powers as function of some chosen physical parameters is developed. The selected physical
parameters are those which can be modified to affect the loss factors. Subsequently, a simple mathematical model
(Response Surface Model) of how they affect CLF’s and ILF’s can be obtained using Design of Experiments [14, 15].
Finally, a multi-objective optimization problem is formulated in order to bring the subsystem energies under prescribed
levels for any desired frequency band. The variables of the problem are the relative deviations of the selected physical
parameters from their nominal value. Upper and lower bounds of these design variables are defined.

In section 4, the procedure described previously is applied to reduce noise inside a helicopter cabin. First, a prelim-
inary sensitivity analysis is performed in order to select the most significant CLF’s, to which the considered energies
are more sensitive. Then, by using Design of Experiments, an approximate relation between the most sensitive CLF’s,
the injected powers and the selected physical parameters is obtained. Finally, the results of the optimization provide
the values of the physical parameters yielding the desired energy level reduction.

2. SEA equations

In Statistical Energy Analysis, a subsystem is defined as a group of similar modes (i.e. having similar energy,
damping, coupling with the other subsystems and being excited by almost the same input power).

Under some hypotheses [3], the power exchanged between two subsystems is assumed to be proportional to a
weighted difference of the energies stored in the two subsystems, so that the power Pi j transmitted from subsystem i
to the subsystem j is:

Pi j = ω
(
ηi j Ei − η ji E j

)
(1)

where i and j are indexes of the subsystems, ηi j is the coupling loss factor (CLF), Ei is the energy in the i-th subsystem
and ω is the central frequency of the considered band.

The power Pi,d dissipated in the subsystem i is:

Pi,d = ωηi Ei (2)

where ηi is the internal loss factor (ILF).
Thus, the SEA equations of Nsub coupled subsystems can be written as:

Pi = ωηi Ei + ω

Nsub∑
j=1, j,i

(
ηi j Ei − η ji E j

)
i = 1, . . . ,Nsub (3)

where Pi is the power injected into the subsystem i. The set of equations (3) represents the energy balance of the
subsystems. The energy stored in each subsystem is provided by the solution of the linear system (3). A more
convenient notation for the set of equations (3) is adopted:

P = ωC E (4)

where P and E are vectors gathering the injected powers and the energies, and the coefficients of matrix C are combi-
nations of ILF’s and CLF’s as shown in the following equations:
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Ci j = −η ji i, j = 1 . . .Nsub, i , j

C j j = η j +
∑Nsub

i=1, i, j
η ji

(5)

The following reciprocity relationship holds:

ηi jni = η jin j (6)

where ni and n j are the modal densities of subsystems i and j.
By assuming that only the η ji with j > i are known, it is necessary to take advantage of the reciprocity relations (6),

so that Eq. (5) becomes: 

Ci j = −η ji

C ji = −ηi j = −η ji
n j

ni

 with j > i

C j j = η j −
∑Nsub

i=1, i, j
Ci j

(7)

3. Optimization of SEA model to reduce subsystems energies

In SEA equations, CLF’s are deterministic functions of the physical parameters. The solution of this deterministic
set of equations is given by the energies of the modal groups.

The optimization of the SEA model in order to reduce subsystems energies is performed in three steps. First,
a sensitivity analysis allows to identify the CLF’s that are the most effective in changing the subsystems energies.
Second, physical parameters that can be modified to vary the previously identified CLF’s are selected, and a simplified
model of CLF’s as functions of the selected physical parameters is derived. Third, an optimization procedure is used
to find the optimal values of the previously selected physical parameters.

3.1. Sensitivity to SEA parameter variation

The goal is to understand which are the CLF’s and ILF’s whose variations have significant effects on the subsystem
energies (SEA solution). The energy of each subsystem is calculated by solving equation (4), obtaining:

E =
1
ω

C−1 P (8)

with the obvious implication that energies depend on the CLF’s and the ILF’s of the considered system. By defining
a range of variability of CLF’s and ILF’s, a sensitivity approach is used to account for the dependence of the energy
on the variations of SEA parameters.

Sensitivity to loss factors is evaluated in correspondence to nominal values η̂ of the CLF’s and of the ILF’s.
To compare different sensitivities, it may be assumed that changes ∆ηkl in the coupling loss factors are a prescribed

fraction, for instance 10%, of the nominal values η̂:

∆Ekl =
∂E
∂ηkl

∣∣∣∣∣
η=η̂

∆ηkl (9)

and similarly for ILF’s.
To find ∂E/∂ηkl, it is necessary to differentiate Eq. (8):

∂E
∂ηkl

=
1
ω

(
∂C−1

∂ηkl
P + C−1 ∂P

∂ηkl

)
(10)

and similarly if internal loss factors ηk are considered instead of ηkl.
The derivative of C−1 can be easily obtained from the identity C C−1 = I

3



∂C−1

∂ηkl
= −C−1 ∂C

∂ηkl
C−1 (11)

where ∂C/∂ηkl can be computed from Eq. (7):

∂C
∂ηkl

= ekek
T − elek

T −
nk

nl
ekel

T +
nk

nl
elel

T (12)

where ek is the k-th standard unit vector, i.e. it is the k-th column of the unit matrix. Eq. (12) can be written in matrix
form, with the four non-zero elements highlighted by a frame. By assuming k > l, it is:

∂C
∂ηkl

=

col. l col. k

0 0 0 0
. . .

...
... . .

.

0 0 0 0

0 · · · 0
nk

nl
0 · · · 0 -1 0 · · · 0

0 0 0 0
...

. . .
...

0 0 0 0

0 · · · 0 −
nk

nl
0 · · · 0 1 0 · · · 0

0 0 0 0

. .
. ...

...
. . .

0 0 0 0



row l

row k

and similarly for ∂C/∂ηk:

∂C
∂ηk

= ekek
T (13)

The derivative of P satisfies the following condition:

∂P
∂ηkl

= 0 if Pk = 0 and Pl = 0 (14)

and can be non zero only with respect to CLF’s of subsystems through which power is injected, because Pk depends
on the physical parameters of the subsystem k, and ηkl depends on physical parameters of subsystems k and l. For
instance, it is:

∂Pk

∂ηkl
, 0 and

∂Pl

∂ηkl
= 0 (15)

if Pk , 0 and only physical parameters of subsystem k are changed, while physical parameters of subsystem l are left
unchanged. In such cases, ∂Pk/∂ηkl can not be computed analytically, and finding appropriate numerical approxima-
tions is unpractical. Therefore, the contribution of ∂P/∂ηkl is usually neglected in Eq. (10). However, the subsystems
through which power is injected are always considered amenable to modifications, even if they are not highlighted by
sensitivity analysis. In fact, CLF’s involving these subsystems are always considered in the subsequent optimization
problem.
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3.2. CLF’s and ILF’s as functions of physical parameters
After neglecting CLF’s and ILF’s that are less effective on subsystem energies, it is necessary to develop a model

of the remaining SEA coefficients as function of selected physical parameters. Note that, as stated at the end of the
previous section, the CLF’s and ILF’s that are related to subsystems through which power is injected must not be
discarded. Therefore, a subset of CLF’s and ILF’s that are amenable to modification is obtained involving both CLF’s
and ILF’s highlighted by the sensitivity analysis and CLF’s and ILF’s of subsystems through which power is injected.

First of all, physical parameters are selected that affect CLF’s and ILF’s amenable to modifications; subsequently,
a simple mathematical model of how they affect CLF’s, ILF’s and injected powers can be obtained using Design of
Experiments (see Appendix A). Here DoE is used as an efficient numerical interpolation method: the ‘observations’
correspond to CLF’s, ILF’s and injected powers provided by the SEA software by changing the physical parameters,
and the interpolation model is such as to exactly reproduce the observations.

At the end of this stage, CLF’s and ILF’s that are amenable to modifications are expressed as:

η ji = η ji(x) (16)

where x contains the relative deviations of the selected physical parameters from their nominal values.
Therefore, from Eq. (5) or Eq. (7) it is possible to express C as:

C = C(x) (17)

and P as:
P = P(x) (18)

Finally, the subsystem energies can be obtained as functions of x as:

E(x) =
1
ω

C(x)−1 P(x) (19)

3.3. Modification of physical parameters to reduce subsystems energies
A constrained optimization problem can be defined in order to reduce the energy level Êlk of some critical sub-

systems l at frequency band k under a prescribed level E∗lk, by varying the selected physical parameters. Specifically,
a multi-objective goal attainment problem [16] can be defined, in which the objectives can be set as constraints that
can be under or over-achieved according to the value of an additional slack variable γ. According to the Matlab R©

implementation, the ‘fgoalattain’ function is used and the problem can be formulated as:

min
x,γ

γ

subject to

 Êlk(x) − wlkγ ≤ E∗lk l = 1, . . . ,NE k = 1, . . . ,N f

xLi ≤ xi ≤ xUi i = 1, . . . ,Np

(20)

where:

• the slack variable γ indicates the degree of goal attainment, i.e. if γ = 0 all objectives are satisfied exactly, if
γ > 0 all the objectives are under-achieved, if γ < 0 all the objectives are over-achieved (note that γ depends on
x, but its dependence is not explicitly known);

• Êlk(x) is the energy of subsystem l at the frequency band k that must be lower than a prescribed value, E∗lk,
where

– l = 1, . . . ,NE , being NE the number of subsystems for which it is required to reduce or control the energy
level;

– k = 1, . . . ,N f , being N f the number of frequency bands;

• the weights wlk (≥ 0) control the relative degree of under or over-achievement of each goal, i.e. if wlm < wrs and
γ > 0, then the goal defined for subsystem l and frequency band m is better attained than the goal defined for
subsystem r and frequency band s;
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• x is a vector that contains the relative deviations of the selected physical parameters from their nominal values;

• Np is the total number of physical parameters that can be modified;

• xL and xU are the upper and lower bounds of the design variables x, so that the solution is always in the range
xL ≤ x ≤ xU .

4. Results

A simplified model of a helicopter is considered. The SEA model is built by the software VA One of Esi Group.
The SEA subsystems are: 17 external aluminum shells 1 mm thick, 8 glass windows 5 mm thick, 3 acoustic cavities
and 4 internal aluminum bulkheads 1 mm thick. Table 1 reports the list of subsystems with associated numbers and
names.

1 Front Cavity 17 Left Fuselage Bottom
2 Back Cavity 18 Right Fuselage Bottom
3 Cabin Cavity 19 Floor Bulkhead
4 Tail Bulkhead 20 Left Front Panel
5 Left Tail 21 Right Front Panel
6 Right Tail 22 Back Bulkhead
7 Left Cockpit Window 23 Bottom Front Bulkhead
8 Right Cockpit Window 24 Top Front Bulkhead
9 Left Front Cabin Window 25 Left Cockpit Door
10 Right Front Cabin Window 26 Right Cockpit Door
11 Left Back Cabin Window 27 Left Front Cabin Door
12 Right Back Cabin Window 28 Right Front Cabin Door
13 Left Nose 29 Left Back Cabin Door
14 Right Nose 30 Right Back Cabin Door
15 Left Windshield Frame 31 Left Roof
16 Right Windshield Frame 32 Right Roof

Table 1: Subsystems numbering.

Figures 1-3 are the sketches of the system where the numbers of the subsystems are shown. Front Bulkheads
(systems 23, 24) separate Front Cavity and Cabin Cavity, Back Bulkhead (system 22) separates Cabin Cavity and
Back Cavity.

Let us assume to be interested in studying the helicopter cabin in correspondence with the pilots and the passengers
accommodation. Figure 4 shows the coupling between SEA subsystems in graph format. Figure 5 shows the same
reduced graph involving only the cabin subsystems. Using VA One, the CLF’s of the SEA model are calculated.
The vibroacoustic solution (the energy of each subsystem) and the injected powers are also computed by VA One, by
assuming a point force of amplitude of 1 N applied both on the Right Roof and the Left Roof in the frequency range
1000–10000 Hz.

Using the proposed sensitivity approach, the variation of the energy of the subsystem 3 and 19 is considered when
changes of the CLF’s of ±10% around the nominal values are taken into account.

To show the sensitivities in a compact form, their norm over all the frequency bands is computed. The result
is shown in figures 6 and 7: the most significant sensitivity values, together with the CLF index and the involved
subsystems are also reported in Table 2. A first observation is that, being the model almost symmetric with respect to
the longitudinal mid-plane, the sensitivities are almost symmetric too. For instance, the sensitivity of cabin cavity to
CLF denoted by index 105, involving the junction among subsystems 3 (Cabin Cavity) and 31 (Left Roof) is almost
equal to the sensitivity to the CLF denoted by index 115, involving the junction among subsystems 3 (Cabin Cavity)
and 32 (Right Roof). A second observation is that the most effective CLF’s involve the following subsystems:

• 3 (Cabin Cavity)
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Figure 1: VA One - SEA model of a helicopter: acoustic cavities

Figure 2: VA One - SEA model of a helicopter: left side external shells and bulkheads

Figure 3: VA One - SEA model of a helicopter: right side external shells
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Figure 4: Graph sketch of the whole system: nodes represent the subsystems and edges are the couplings between subsystems (thick dashed
contour: source(s), thick continuous contour: receiver(s)).
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Figure 5: Sketch of the cabin subsystem (thick dashed contour: source(s), thick continuous contour: receiver(s)).
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index η ji ∆E3 ∆E19

49 22 19 5.17E-09 3.75E-07
95 29 19 5.70E-09 2.22E-07

102 30 19 5.60E-09 2.21E-07
105 31 3 7.74E-06 6.35E-08
112 31 22 2.14E-07 2.13E-07
115 32 3 7.70E-06 5.91E-08
122 32 22 2.12E-07 2.12E-07

Table 2: Selected results of the sensitivity analysis

• 19 (Floor Bulkhead)

• 22 (Back Bulkhead)

• 29 and 30 (Back Cabin Door, Left and Right)

• 31 and 32 (Roof, Left and Right)

A third observation is that the most effective CLF’s do involve the subsystems 31 (Left Roof) and 32 (Right Roof)
through which power is injected into the system. If subsystems 31 and 32 were not highlighted by sensitivity analysis,
they should have been considered anyway.

Therefore, the physical parameters that are considered amenable to modifications are:

• x1: relative deviation from nominal value of the thickness of the Roof, Left and Right

• x2: relative deviation from nominal value of the thickness of the Back Bulkhead

A single parameter, x1, is selected for the right and left side of the roof to enforce symmetric modifications,
because the original system is almost symmetric.

In order to determine the relationships between CLF’s, injected powers and physical parameters, a DoE analysis
is performed using Central Composite Design (see Eq. A.3) with p = 2, giving rise the following model:

η ji = α
( ji)
0 + α

( ji)
1 x1 + α

( ji)
2 x2 + α

( ji)
11 x2

1 + α
( ji)
12 x1x2 + α

( ji)
22 x2

2

Pi = α(i)
0 + α(i)

1 x1 + α(i)
2 x2 + α(i)

11x2
1 + α(i)

12x1x2 + α(i)
22x2

2

(21)

Being p = 2, 2p + 2p + 1 = 9 observations are necessary. The values of x1 and x2 according to Central Composite
Design are shown in Table 3.

Factors Values
x1 -1 +1 -1 +1 0 -1 +1 0 0
x2 -1 -1 +1 +1 0 0 0 -1 +1

Table 3: Observations in 2-factors Central Composite Design

By considering a variation of the physical parameters of ±10% around their nominal value, the value x1 = 1 is
associated with a +10% variation of the roof thickness, x1 = −1 with a −10% variation of the roof thickness, and
similarly for x2. CLF’s and injected powers in each frequency band are evaluated using VA One software for each pair
of physical parameters. Results are stored and used to identify the coefficients α appearing in equation (21) through
Eq. (A.6).

The multi-objective optimization technique described in section 3.3 is performed in order to cut 20% off the energy
of the subsystems 3 (Cabin Cavity), and 19 (Floor Bulkhead). The weights wlk are selected all equal to one because
all energy reduction objectives are considered equally important. The starting values of the xl parameters are the
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Figure 6: Sensitivity of cabin cavity to CLF changes
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Figure 7: Sensitivity of floor bulkhead to CLF changes
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nominal values. The upper and lower bounds for the xl parameters are ±10% of the nominal values. The result of
the optimization procedure is an increase of the Roof thickness (subsystems 31 and 32) by 10% and a decrease of
the Floor Bulkhead thickness (subsystem 22) by 10%. It can be noticed (see Table 4) that the goal of decreasing the
energy level by 20% can not be completely attained, because both the optimization variables, x1 and x2, reach their
bounds. However, for the cabin cavity, the decrease up to 1.6 kHz is almost equal to the desired goal, there is a less
significant decrease up to 6.3 kHz, but there is an increase at 8 and 10 kHz; for the floor bulkhead, there is an overall
decrease around 15%, evenly spread throughout all the third octave bands. Energy values are shown in Figures 8 and 9
for subsystems 3 and 19. It can be noticed that the energy values provided by the approximate model (coupling loss
factors and injected powers given by Eq. 21) are practically identical to those computed by introducing the modified
physical parameters into the VA-One model.

Table 4: Results of optimization procedure

[Hz] ∆E3[%] ∆E19[%]

Overall 0.27 -14.91
1000 -18.59 -17.10
1250 -18.56 -15.90
1600 -18.08 -14.66
2000 -11.67 -14.69
2500 -9.27 -14.85
3150 -9.31 -14.57
4000 -9.62 -14.31
5000 -9.17 -14.10
6300 -5.77 -13.96
8000 5.12 -13.84
10000 107.92 -16.05

5. Discussion

One could try to attain the required 20% energy decrease by broadening the upper and lower bounds. An attempt is
made by considering a variation of the physical parameters up to ±30%. In this case, a new DoE must be performed,
although the approximate model provided by DoE with Central Composite Design might be unable to reproduce
strong non-linearities of the CLF’s with physical parameters. The result of the optimization is an increase of the
Roof thickness (subsystems 31 and 32) by 7.2% and a decrease of the Back Bulkhead thickness (subsystem 22) by
30%. Energy values are shown in Figures 10 and 11 for subsystems 3 and 19. The goal seems to be fully attained
for subsystem 19 and partly for subsystem 3 (see Table 5). By visually comparing (Figures 10 and 11) the energy
levels computed by introducing the modified physical parameters into the VA-One model with those given by the
approximate model, one would conclude that the approximation provided by DoE is satisfactory. However, this is a
lucky circumstance, because one of the physical parameters varies less than 10%, whilst the other reaches its bound:
at the bound, which is an observation point, the CCD provides the correct value and no error appears. In fact, as
shown in Figs. 12 and 13, the behaviour of CLF’s η22,19 and η19,22 is strongly nonlinear and could not be described by
Central Composite Design at intermediate points.

6. Conclusion

Since optimization techniques based on classical FE models or BE models can not be applied at medium high
frequencies, a SEA model is used to formulate an optimization procedure in order to bring the subsystem energies
under prescribed levels. In this paper a multi-objective optimization problem is defined on a simplified helicopter
model. The variables of the problem are the relative deviations of the selected physical parameters from the nominal
values. Upper and lower bounds of these design variables are defined. Finally, the energy of the subsystems are
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Figure 8: Energy of subsystem 3: nominal (—∗—), goal (—H—), after optimization approximate model (—◦—), after optimization VA-One model
(—+—)
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Figure 9: Energy of subsystem 19: nominal (—∗—), goal (—H—), after optimization approximate model (—◦—), after optimization VA-One
model (—+—)
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Figure 10: Energy of subsystem 3 with ±30% bounds: nominal (—∗—), goal (—H—), after optimization approximate model (—◦—), after
optimization VA-One model (—+—)
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Figure 11: Energy of subsystem 19 with ±30% bounds: nominal (—∗—), goal (—H—), after optimization approximate model (—◦—), after
optimization VA-One model (—+—)
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Figure 12: η22,19 (—�—) and η19,22 (—•—) computed by VA-One at 1 kHz 3rd octave band, for variations of the Back Bulkhead thickness in the
range ±30% with ±10% steps.
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range ±30% with ±10% steps.
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Table 5: Results of optimization procedure with ±30% bounds.

[Hz] ∆E3[%] ∆E19[%]

Overall 19.86 -24.84
1000 -17.03 -21.46
1250 -16.88 -22.18
1600 -21.49 -23.43
2000 -14.48 -24.00
2500 -10.84 -25.02
3150 -11.04 -24.96
4000 -11.33 -25.01
5000 -10.90 -25.16
6300 -8.23 -25.37
8000 10.77 -25.80
10000 329.89 -30.87

constrained to be lower than prescribed values. A preliminary sensitivity analysis is performed in order to select the
more significant CLF’s. By using DoE, an approximate relation between the more sensitive CLF’s and the selected
physical parameters is obtained. Finally, not all energies satisfy the prescribed constraints because some optimization
variables reach the upper or lower bounds.
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Appendix A. A brief reminder on Design of Experiment

In Design of Experiments (DoE) [14], the values of the variables that affect an output response are appropriately
modified by a series of tests, to identify the reasons for changes in the response. This does not prevent from per-
forming numerical tests whenever this may be convenient for a better understanding of the numerical problem under
investigation.

Since many experiments involve the study of the effects of two or more variables or factors, it is necessary to
investigate all possible combinations of the levels of the factors. This is performed by factorial designs which are very
efficient for this task.

A regression model representation of a factorial experiment with two factors A and B at two levels could be written
as:

f = α0 + α1x1 + α2x2 + α12x1x2 + ε (A.1)

where the α’s are parameters whose values are to be determined, the variables x1 and x2 are defined on a coded scale
from −1 to +1 (the low and high levels of A and B) and ε is an error term.

Specifically, if p factors at two levels are considered, a complete series of experiments requires 2p observations
and is called a two-level 2p full factorial design. Usually, each series of experiments should be replicated several times
using the same value of the factors to average out the effects of noise. Of course, this is unnecessary if experiments
are numerical.

A feature of two-level factorial design is the assumption of linearity in the effect of each single factor and of
multi-linearity in interactions among factors, see for instance the term α12x1x2 in Eq. (A.1). To account for possible
non linear effects, quadratic terms can be introduced, as in the following regression model for two factors:

f = α0 + α1x1 + α2x2 + α12x1x2 + α11x2
1 + α22x2

2 + ε (A.2)
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where the α’s are parameters whose values are to be determined, the variables x1 and x2 are defined on a coded scale
from −1 to +1 (the low and high levels of the two factors) and ε is an error term.

Of course, a three level (low level −1, intermediate level 0, high level +1) factorial design, involving 3p obser-
vations, is a possible option if quadratic terms are important. However, a more efficient alternative is the Central
Composite Design (CCD) that starts from the 2p design augmented with the center point i.e. a single observation with
all factors at intermediate level, and axial runs where each factor is considered at two levels (the low level −1 and the
high level +1) while the remaining factors are at the intermediate level, for a total of 2p observations (Fig. A.14).
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Figure A.14: Central Composite Design for p = 3

Overall, a central composite design for p factors requires n = 2p + 2p + 1 observations instead of 3p observations
required by the three level factorial design, with advantages for p ≥ 3.

For p control factors, the experimental response can be expressed as a regression model representation of a 2p full
factorial experiment (involving 2p terms), augmented with p quadratic terms:

f = α0 +

p∑
i=1

αixi +

p∑
i=1

i−1∑
j=1

α jix jxi + . . .+

+

p∑
i=1

i−1∑
j=1

· · ·

m−1∑
n=1

αnm··· ji xnxm · · · x jxi +

p∑
i=1

αiix2
i + ε

(A.3)

The expression contains 2p + p parameters α, each one providing an estimate of the effect of a single factor (linear
or quadratic) or of a combination of them.

Note that Eq. (A.3) is linear in the parameters α, and it can be rewritten as:

f =
[
1 x1 · · · x2

p

] 
α0
α1...
αpp

 + ε (A.4)

having arranged the parameters in a vector α. A different equation can be written for each observation by varying the
factors (x1, . . . , xp) as indicated by CCD.

By arranging the experimental responses in a vector f, a linear relationship between f and α can be expressed in
matrix notation as:

f = Xα + ε (A.5)
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where X is a (2p + 2p + 1) × (2p + p) matrix. The least square estimate of α is:

α̂ = (XT X)−1XT f ⇒ f̂ = Xα̂ (A.6)

where f̂ is the fitted regression model.
The difference between the actual observations vector f and the corresponding fitted model f̂ is the vector of

residuals e = f − f̂. The residuals account both for the modelling error ε and for the fitting error due to the least square
estimation.
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