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Abstract: Computing in the cloud-edge continuum, as opposed to cloud computing, relies on high 10 

performance processing on the extreme edge of the IoT hierarchy. Hardware acceleration is a 11 
mandatory solution to achieve the performance requirements, yet it can be tightly tied to particular 12 
computation kernels, even within the same application. Vector-oriented hardware acceleration has 13 
gained renewed interest to support AI applications like convolutional networks or classification 14 
algorithms. We present a comprehensive investigation of the performance and power efficiency 15 
achievable by configurable vector acceleration subsystems, obtaining evidence of both the high 16 
potential of the proposed microarchitecture and the advantage of hardware customization in total 17 
transparency to the software program. 18 
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 20 

1. Introduction 21 

The cloud-edge continuum computing paradigm relies on the possibility of local processing in 22 
the edge of the IoT whenever it is convenient for reasons of energy efficiency, reliability, or data 23 
security. As a consequence, there is a gradual shift of artificial intelligence (AI) algorithm execution 24 
from the cloud down low power embedded IoT devices on the edge, to be used in real-time for 25 
example to take voice commands or extract image features, for biometric, security, or filtering 26 
purposes [5]. 27 

The resultant demand for very high processing speed on extreme edge computing devices turns 28 
into unprecedented design challenges, especially because of the usually limited energy budget. 29 
Therefore, the implementation of hardware acceleration on edge devices in the IoT hierarchy has 30 
become a major trend to reach the speed and energy efficiency requirements.  31 

Vector computing acceleration was a major stream in high performance computing systems for 32 
decades and is gaining renewed interest in recent development in the supercomputing sector [22]. 33 
Yet, it is easy to note that the vector computing paradigm can also be applied to AI computing kernels 34 
that are run in embedded IoT devices on the edge. Nonetheless, the limited hardware budget usually 35 
available in edge devices makes it interesting to explore the possibility of configurable acceleration 36 
sub-systems to optimally exploit the available hardware resources according to the specific 37 
computation kernels being run during the application execution.  38 

We implemented such exploration addressing the execution of the VGG-16 deep convolutional 39 
neural network inference, widely known for its image recognition performance as well as for the high 40 
computing power and storage demand. The VGG-16 execution is composed of consecutive layers 41 
having different computational characteristics. Therefore, it well represents a stress-test of the 42 
hardware micro-architecture with a time-variant workload profile. Our target micro-architecture is 43 
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an open-source RISC-V [3] processor core supporting multi-threaded execution and featuring a 44 
highly customizable vector acceleration subsystem [23]. 45 

The contributions of this work to the reader interested in advanced embedded system design for 46 
IoT extreme-edge computing, are manifold: 47 

 we report the quantitative evidence of the trade-offs in vector co-processor design and 48 
configuration targeting simple edge-computing soft-cores; 49 

 we present details on the small custom RISC-V compliant instruction extension 50 
sufficient to support typical vector operations in a tiny soft-core; 51 

 we present a complete yet very simple library of intrinsic functions to support 52 
application development, and we discuss the full detail of source code exploiting the co-53 
processor instructions in each VGG-16 layer execution;  54 

 we give insights into the open-source Klessydra processor core microarchitecture. 55 
The rest of this article is organized as follows: Section 2 covers the related works on hardware 56 

acceleration for embedded computing on the IoT edge, including configurable solutions, Section 3 57 
introduces the Klessydra T1 processor soft-core featuring configurable hardware acceleration 58 
subsystem. Section 4 describes the fundamental features of the VGG-16 application case and its 59 
implementation on Klessydra T1. Section 5 reports and discusses the results obtained for the different 60 
sub-parts of the chosen application cases, and Section 6 summarizes the outcomes of the work. 61 

2. Related works 62 

Several previous works reported the design of hardware accelerated microcontroller cores 63 
implemented in edge-computing silicon chips. In [6], a RISC-V processor with DSP hardware support 64 
is presented, targeting near-threshold voltage operation. The Diet-SODA design implements a similar 65 
approach by running its DSP accelerator in near-threshold regime [7]. In [8,9,10,11] application 66 
specific accelerators are reported, based on highly parallel operation and minimized off-chip data 67 
movements for energy efficiency. 68 

All of the above works focus on silicon implementation of units tailored to specific 69 
computations. As opposed to this view, the proposed hardware architecture study is independent of 70 
technology assumptions, such as the supply voltage, and addresses any physical implementation, 71 
particularly soft-cores on commercial FPGA devices, in the view of exploiting application-driven 72 
configurability. Regarding FPGA-based implementations, in [12] the authors present a cluster of 73 
RISC-V cores connected to a tightly-coupled scratchpad memory and a special purpose engine 74 
dedicated to convolutions only. Thanks to FPGA implementation, the convolution engine can be 75 
configured at synthesis time to optimize the execution of each convolutional layers, yet exhibiting a 76 
severe performance degradation when executing layers it was not built to optimize. 77 

A recently published work [13] presents a SIMD configurable CNN coprocessor connected to a 78 
32-bit RV32IM RISC-V processor. Compared to the pure SIMD Klessydra configuration, that uses 79 
11678 LUTs and takes 824 clock cycles for a 4x4 matrix convolution, the work in [13] reports 12872 80 
LUTs and 2070 clock cycles. 81 

In [14] the authors present a coprocessor soft-core at the edge of IoT, designed to be energy 82 
efficient in executing CNN as well as other machine learning algorithms. In particular, they explore 83 
the potential impact of data parallelism on the energy efficiency due the increased memory 84 
bandwidth. In our study, memory traffic as well as the memory static power consumption are taken 85 
into account in energy estimations. 86 

The works in [15][16] present a pipelined CNN coprocessor capable of accelerating convolutions 87 
based on the extremely high parallelism in the coprocessor, yet limited to convolutional computation 88 
kernels.  89 

In [17] the authors present different coprocessor configurations integrated with a parallel cluster 90 
of RISC-V cores and evaluated which of the configurations is the fastest and most energy efficient. 91 
They introduce special co-processing cores dedicated to the standard instruction subset RV32M, 92 
without exploring more sophisticated co-processor operations. 93 
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In [18] the authors provide a DCNN accelerator for IoT. The accelerator itself is designed to work 94 
with 3x3 kernels, and being not configurable, in order to support larger kernels they use a technique 95 
called kernel decomposition, which in fact increases the waste in computational resources and 96 
decreases in the energy efficiency, similarly to the convolution engine in [12].  97 

The coprocessor architecture proposed in this work is general purpose in nature, being based on 98 
vector operations, and can be tailored to support a given computation kernel in the most efficient 99 
way. Our work builds on the preliminary developments reported in [2,4] and complements the 100 
analysis presented in [23]. 101 

The standard “V” vector extension of RISC-V – supported for example by SiFive products [24] 102 
and by the EPAC accelerator within the European Processor Initiative project [22]– is a large and 103 
complex instruction set extension, to cover applications ranging from embedded systems to HPC, 104 
which goes far beyond the scope of the lightweight Klessydra soft-core vector extension. Also, the 105 
standard “V” extension adopts a vector processing scheme based on a Vector Register File, while we 106 
explicitly chose to use generic Scratchpad Memories (SPMs) as local storage for more flexibility, at 107 
the price of losing compliance with any standard ISA extension. Rather than identifying vectors with 108 
a vector number chosen among 32 vector registers, we use pointers within the SPM address space to 109 
address vectors or portions of vectors. Also, as the number of SPMs available to the programmer in 110 
the microarchitecture is configurable. 111 

The Ara processor [25], as well as the Xuantie-910 processor [26] and the dual core presented in 112 
[27], are all silicon ASIC implementations (thus not configurable as a soft-core is) of micro-113 
architectures, which are actually not compliant with the “V” standard extension, yet they are still 114 
based on fixed Vector Register Files. Also, the Xuantie-910 processor addresses high performance 115 
superscalar execution of general-purpose non-vectorizable code, which is out of the scope of the 116 
Klessydra architecture.  117 

The processor reported in [29] adopts an interesting approach based on directly converting ARM 118 
SVE vectorized code into a non-standard vector RISC-V extension, thus it is explicitly based on the 119 
same operation and storage scheme of ARM SVE. Klessydra diverges from this approach, favoring a 120 
broader exploration through configurability. The processor presented in [28] is a soft-core as 121 
Klessydra is, but it is again based on a Vector Register File rather than on a configurable SPM-based 122 
acceleration. 123 

3. The Klessydra T1 customizable architecture 124 

Hardware microarchitecture 125 

Klessydra is a family of open-source, RISC-V compliant and PULPino [20] compatible cores, 126 
which includes basic processors (T0 sub-family), hardware accelerated processors (T1 sub-family), 127 
and fault-tolerant processors (F0 sub-family) [21]. A characteristic feature of all Klessydra cores is the 128 
hardware support for interleaved multi-threading on a single core [1].  129 

 130 
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Figure 1. Klessydra T0 core microarchitecture 132 

 133 
The hardware accelerated T1 cores are an extension of the basic T0 core, that is sketched in Figure 1. 134 
The T0 microarchitecture resembles a classic four-stage RISC pipeline, except for having multiple 135 
Program Counters to support multi-threading, and replicated register files and Control/Status 136 
Registers. Differently from a multi-core implementation, an interleaved multi-threading single core 137 
shares all the combinational logic constituting the instruction processing pipeline among the 138 
hardware threads (“harts” [3]), by interleaving threads in time, while maintaining separate PCs and 139 
registers to keep the state of each thread. 140 
In each clock cycle a different Program Counter is used for instruction fetching, on a rotation basis. 141 
As a result, instructions belonging to different threads of execution are interleaved in the core 142 
pipeline, so that it is never possible that any two instructions in the pipeline manifest any register, 143 
structural or branch dependency. By fetching an instruction from a new thread in each clock cycle, 144 
pipeline hazards are eliminated, while if the same thread run for several clock cycles, its own data 145 
hazard or branching hazard would impose introducing dependency-check logic and pipeline stalling. 146 
The only dependency in the instruction pipeline can occur between two threads on explicit shared 147 
memory access, which is responsibility of the programmer.  148 
The supported number of interleaved threads is a parameter of the synthesizable RTL code of the 149 
core. 150 

 151 
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Figure 2. Klessydra T1 core microarchitecture 153 

 154 
The T1 microarchitecture (Figure 2) is derived from the T0 by adding two execution units, 155 

namely the Load-Store Unit (LSU) and the Vector Co-processing Unit (VCU), the latter being 156 
internally comprised of Multi-Purpose Functional Units (MFU) and Scratch-Pad Memory Interface 157 
(SPMI).  158 

At the instruction level, the T1 architecture supports the parallel execution of instructions of 159 
different types, belonging to the same hart. In fact, the LSU works in parallel with the other units 160 
when executing memory store instructions, that cannot cause a write-back conflict on the register file. 161 
The MFU is allowed to read operands from the register file but can only write its results to local 162 
scratchpad memories (SPMs), thus keeping the SPMs and the Registerfile decoupled and allowing 163 
parallel execution between instructions writing to each of these memories simultaneously. Scalar 164 
instructions of a hart are processed by the “Execution” unit and operate on data in the Register File, 165 
while vector instructions are processed by the VCU and operate on data in the SPMs. Data transfers 166 
to/from the data memory from/to the SPMs are managed by the LSU via dedicated instructions. 167 

The MFUs execute vector arithmetic instructions, whose latency is proportional to the vector 168 
length. In an in-order interleaved-multi-threading pipeline, a hart requesting access to the busy MFUs 169 
may result in stalling the whole pipeline, stalling other harts that may not need to access the MFU. 170 
To circumvent this, in the T1 architecture, the waiting hart executes a self-referencing jump so that 171 
the PC for that hart does not advance until the MFU becomes free, avoiding unnecessary stalls of 172 
harts that are independent from the MFU being busy. Figure 3 demonstrates a cycle accurate diagram 173 
of the mechanism. 174 

 175 

 176 

Figure 3. Hart interleaving and hart stall timing diagram 177 
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When deploying Klessydra T1 in a IoT edge device, one can configure the number of parallel 179 

lanes D in the MFU, the number of MFUs F, the SPM capacity, the number of independently 180 
accessible SPMs N in each SPMI, the number of SPMIs M, as well as the way the MFUs and SPMI are 181 
shared between the harts. Representative configurations are the following: 182 
 Thread-Shared coprocessor: All harts in the core share a single MFU/SPM subsystem. Harts in 183 

this scheme are required to execute an infinite jump when trying to access the MFU when its 184 
busy. In this approach, instruction level parallelism is limited to occur only between coprocessor 185 
instructions writing to the SPM and non-coprocessor instructions writing to the main memory 186 
or register file. To mitigate the delays on a hart executing an infinite jump, the coprocessor here 187 
may exploit pure data level parallelism (DLP) acceleration, by SIMD execution. 188 

 Thread-Dedicated coprocessor: Each hart is appointed a full MFU/SPM subsystem, eliminating 189 
inter-hart coprocessor contention and allowing inter-coprocessor parallel execution. Stalls can 190 
only happen if the next instruction of the same hart that is using the MFU requests an MFU 191 
operation. DLP by SIMD execution can still be exploited in this approach, but also thread level 192 
parallelism (TLP) by fully symmetric MIMD execution, allowing execution of multiple vector 193 
instructions in parallel, .  194 

 Thread-Dedicated SPMIs with a Shared MFU: The harts here maintain a dedicated SPM address 195 
space, yet they share the functional units in the MFU. This scheme still allows inter-hart parallel 196 
execution of coprocessor instructions, provided they use different internal functional units of 197 
the MFU (e.g, adder, multiplier). Harts that request a busy internal unit in the MFU will be 198 
stalled, and their access will be serialized until the contended unit becomes free, while harts that 199 
request a free functional unit can work in parallel with the other active harts in the MFU. DLP 200 
by SIMD execution can still be exploited in this approach, but also TLP by heterogeneous MIMD 201 
execution. 202 

Table 1 summarizes the design parameters and corresponding configurations, whose names will be 203 
used as references in reporting performance results. 204 

  205 

Programming paradigm 206 

By default, a Klessydra core runs the maximum number of hardware threads (which is a 207 
synthesis parameter) allowed by the microarchitecture. The function Klessydra_get_coreID() can read 208 
the id number of the thread executing the function from the MHARTID CSR register, so this allows 209 
to distinguish threads and possibly have each thread to execute a different piece of program. Figure 210 
4 shows a generic C program skeleton in which each of three threads executes its own instruction 211 

Table 1. Summary of explored hardware configurations. 

 

M  

(number of 

SPMI units) 

F 

(Number of 

FMUs) 

D 

(number of 

lanes in FMU) 

Execution paradigm 

1 1 1 SISD 

1 1 2, 4, 8 Pure SIMD 

3 3 1 Symmetric MIMD 

3 3 2 ,4, 8 Symmetric MIMD + SIMD 

3 1 1 Heterogenous MIMD  

3 1 2, 4, 8 Heterogenous MIMD + SIMD 
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flow. The functions sync_barrier_thread_registration() and sync_barrier() allow implementing a 212 
synchronization barrier by based on inter-thread software interrupts, to synchronize thread 213 
execution at certain points of the program.  214 

 215 

 216 

Figure 4. Code for multi-threaded execution on Klessydra-T1 217 

 218 
 219 

 220 

Figure 5 Klessydra T1 memory map. 221 
 222 

sync_barrier_thread_registration(); //Executed by all threads

if (Klessydra_get_coreID()==0){

// thread_0 subroutine

}

if (Klessydra_get_coreID()==1){

// thread_1 subroutine

}

if (Klessydra_get_coreID()==2){

// thread_2 subroutine

}

sync_barrier(); //Executed by all threads
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Figure 5 gives a representation of the memory map assumed by the Klessydra T1 operation.  223 
The SPM local storage is visible to the programmer as a specific address region in the memory 224 

map. The programmer can move data to/from any point of the SPM address space with no constraint 225 
except the total capacity of the SPMs, which in turn is a parameter of the microarchitecture design.  226 

Inter-thread data transfers may happen via shared global static variables allocated in the main 227 
data memory or, in the case of a shared coprocessor configuration, via shared SPM address space. As 228 
in any multi-threading execution scheme, access to shared data must be accompanied by explicit 229 
thread synchronization, which is available in Klessydra by means of specific intrinsic functions 230 
implementing semaphore locks compliant with RISC-V atomic instructions, not in the scope of this 231 
work. 232 

The custom instruction extension supported by the VCU and LSU is summarized in Table 2. The 233 
instructions supported by the coprocessor sub-system are exposed to the programmer in the form of 234 
very simple intrinsic functions, fully integrated in the RISC-V gcc compiler toolchain. The compiler 235 
does not have knowledge of the hardware configuration, so it only translates the intrinsic functions 236 
into the corresponding dedicated vector instructions, which are then executed by the hardware 237 
according to the chosen hardware configuration. The instructions implement vector operations 238 
working on the memory space mapped on the local SPMs. The vector length applied by MFU 239 
operations is encoded in a user accessible custom control/status register (CSR) named MVSIZE. 240 

 241 

Table 1. RISC-V instruction set custom extension for Klessydra-T processors 

 

Assembly syntax – (r) denotes memory 

addressing via register r 

Function declaration Short description 

kmemld (rd),(rs1),(rs2) kmemld( (void*) rd, (void*) rs1, (int) rs2); load vector into scratchpad region 

kmemstr (rd),(rs1),(rs2) kmemstr( (void*) rd, (void*) rs1, (int) rs2); store vector into main memory  

kaddv (rd),(rs1),(rs2) kaddv( (void*) rd, (void*) rs1, (void*) rs2); adds vectors in scratchpad region 

ksubv (rd),(rs1),(rs2) ksubv( (void*) rd, (void*) rs1, (void*) rs2); subtract  vectors in scratchpad region 

kvmul (rd),(rs1),(rs2) kvmul( (void*) rd, (void*) rs1, (void*) rs2); multiply vectors in scratchpad region 

kvred (rd),(rs1) kvred( (void*) rd, (void*) rs1); reduce vector by addition  

kdotp (rd),(rs1),(rs2) kdotp( (void*) rd, (void*) rs1, (void*) rs2); vector dot product into register 

ksvaddsc (rd),(rs1),(rs2) ksvaddsc( (void*) rd, (void*) rs1, (void*) rs2); add vector + scalar into scratchpad 

ksvaddrf (rd),(rs1),rs2 ksvaddrf( (void*) rd, (void*) rs1, (int) rs2); add vector + scalar into register 

ksvmulsc (rd),(rs1),(rs2) ksvmulsc( (void*) rd, (void*) rs1, (void*) rs2); multiply vector + scalar into scratchpad 

ksvmulrf (rd),(rs1),rs2 ksvmulrf( (void*) rd, (void*) rs1, (int) rs2); multiply vector + scalar into register 

kdotpps (rd),(rs1),(rs2) kdotpps( (void*) rd, (void*) rs1, (void*) rs2); vector dot product and post scaling 

ksrlv (rd),(rs1),rs2 ksrlv( (void*) rd, (void*) rs1, (int) rs2); vector logic shift within scratchpad 

ksrav (rd),(rs1),rs2 ksrav( (void*) rd, (void*) rs1, (int) rs2); vector arithmetic shift within scratchpad 

krelu (rd),(rs1) krelu( (void*) rd, (void*) rs1); vector ReLu within scratchpad 

kvslt (rd),(rs1),(rs2) kvslt( (void*) rd, (void*) rs1, (void*) rs2); compare vectors and create mask vector 

ksvslt (rd),(rs1),rs2 ksvslt( (void*) rd, (void*) rs1, (int) rs2); compare vector-scalar and create mask  

kvcp (rd),(rs1) ksrlv( (void*) rd, (void*) rs1); copy vector within scratchpad region 

csr MVSIZE, rs1 mvsize( (int) rs1 ); vector length setting 

csr MVTYPE, rs1 mvtype( (int) rs1 ); element width setting (8,16,32 bits) 

csr MPSCLFAC, rs1 mpsclfac( (int) rs1 ); post scaling factor (kdotpps instruction) 
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4. VGG-16 implementation on Klessydra T1 243 

Implementation workflow 244 

VGG-16 is a deep Convolutional Neural Network (CNN) used in computer vision for 245 
classification and detection tasks, consisting of 13 convolutional layers, 5 maxpooling layers, 2 fully-246 
connected layers and one output/softmax layer. The original VGG-16 can label a 224x224 pixel RGB 247 
image to one class out of 1000, using approximately 554MB space for 32-bit floating-point weights 248 
and bias values. 249 

 250 
 251 
 252 
 253 

Figure 6. Workflow for the VGG-16 implementation 254 
 255 
In the view of a realistic IoT edge embedded scenario, we implemented a VGG-16 derivation 256 

based on the widely known CIFAR-10 dataset, targeting 10 classes and 32x32 pixel RGB images and 257 
requiring 135 MB for weights and bias values. Table 3 reports the breakdown of the inference 258 
algorithm layers constituting the Cifar-10 VGG-16. The layers 19 to 21 do not compute operations on 259 
matrices, rather they implement dot-product operations between vectors of different sizes, similarly, 260 
layer 22 implements a Softmax function on a vector of length 10.  261 
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 263 
 264 
Figure 6 illustrates the workflow to implement a Cifar-10 VGG-16 application on the Klessydra 265 

processor platform. Notably, since the target hardware platform supports fixed-point arithmetic, we 266 
based the implementation on fixed-point weights and data. We set the integer part to 11 bits and the 267 
fractional part to 21 bits, which leads an accuracy drop from 98.04% to 84.01% on the of output results 268 
of the inference. We remark that re-training the network, as well as further algorithmic optimizations, 269 
such as quantization and compression techniques, are not in the scope of the present work. The 270 
verification phase of the network in fixed point arithmetic was done via Matlab Deep Learning 271 
Toolbox. In order to be able to exploit the C language intrinsic functions of the Klessydra platform, 272 
the original Matlab code for VGG-16 was ported to C code. This generic C code implementation was 273 
used as the basis for the subsequent vectorization to exploit the hardware co-processor, and it was 274 
also used to run the same algorithm on the reference platforms used for performance comparison. 275 
We verified that no additional loss of quality is introduced by the proposed hardware architecture, 276 
which produces an identical output to the C fixed-point version executed on a general purpose 277 
computer. 278 

Generic fixed-point C code porting 279 

The generic C code used for convolutional layers is reported in Figure 7. Image convolutions are 280 
implemented using the zero-padding technique: the feature map (FM) matrix is converted into a new 281 

Table 2. Cifar-10 VGG-16 inference layers 

Layer number Computation type Matrix size 

1 Convolution  32x32 

2 Convolution  32x32 

3 Max Pool  16x16 

4 Convolution  16x16 

5 Convolution 16x16 

6 Max Pool   8x8 

7 Convolution  8x8 

8 Convolution  8x8 

9 Convolution  8x8 

10 Max Pool   4x4 

11 Convolution  4x4 

12 Convolution  4x4 

13 Convolution  4x4 

14 Max Pool   2x2 

15 Convolution  2x2 

16 Convolution  2x2 

17 Convolution  2x2 

18 Max Pool   1x1 

19 Fully connected 512x512 

20 Fully connected 4096x4096 

21 Fully connected 4096x4096 

22 Softmax 10 
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matrix having two additional rows and columns of zeros on its borders, to avoid having filter 282 
elements without corresponding pixel values when the centroid element of the 3x3 kernel slides along 283 
the borders. As a general feature of the implementation, multiplications always need a pre-scaling 284 
and post-scaling operation in order to re-align the fixed-point representation of the result. The 285 
convolution2D() function performs the pre-scaling when creating the zero-padded matrix and also 286 
pre-scales the kernel values. The convolution is carried out by nested for loops, by which the Kernel 287 
map (KM) matrix slides across the input image with a stride of one element. The partial result of each 288 
multiplication is pre-scaled and added to the corresponding output pixel, completing the multiply 289 
and accumulate step. After the convolution is complete, a bias value is added to the output feature 290 
map, and the ReLU non-linear activation function is executed across all the matrix elements to 291 
conclude the convolutional layer.  292 

 293 
Figure 7. (a) Convolutional layer in generic C code; (b) Convolution2D function inner operations; (c) 294 

Bias addition and ReLU function inner operations (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 295 

 296 
Figure 8 reports the C code adopted for Maxpool layers. The Maxpool layer halves the width and 297 
height of the FMs, sliding across them a 2x2 window, with a stride equal to two, filtering all the values 298 
except for the highest of the batch. In this way the most important features detected from the image 299 
are passed at the successive layers. 300 
 301 

for (int i = 0; i < layer_outputs; i++){ //scan for every output matrix

output_pt = &output_fm[i][0][0];

for (int k = 0; k < layer_inputs ; k++){ //scan for every input matrix

for (int w=0; w<9; w++) kern.kernel_9[w]=layer_filters[(output_pt*9)+w];

convolution2D(MATRIX_SIZE, input_fm[k], kern.kernel_9, output_pt);

} //convolutions are completed

bias = layer_bias[i];

addBias(MATRIX_SIZE, output_pt, bias);

relu(MATRIX_SIZE, output_pt);

} //the output matrix is complete

for (i = 1; i < (size+2)-1; i++){

for (j = 1; j < (size+2)-1; j++){

output_pixel[(i-1)*size+(j-1)] 

+= ( FM_zeropad[i-1][j-1] * kernel[0] ) >> post_scale ;

} //end of loop for first kernel element

//…

for (j = 1; j < (size+2)-1; j++){

output_pixel[(i-1)*size+(j-1)] 

+= ( FM_zeropad[i+1][j+1] * kernel[8] ) >> post_scale ;

} //end of loop for last kernel element

} //end of loop "i"

//Adding the Bias value

for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)

matrix[j + size*i] += bias;

//ReLU function

for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)

if (input[j + size*i] < 0) {

input[j + size*i] = 0;

else continue;

a)

b) c)
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Figure 9. (a) Fully-connected layer in generic C code; (b) Fully-connect inner operations; (c) Softmax 307 

layer inner operations (Fully-connected Layer: 19,20,21; Softmax Layer: 22) 308 
 309 

The last three layers of the network are Fully Connected, corresponding to the code in Figure 9. 310 
The fully-connected layer is implemented by a dot-product, doing the pre-scaling of the inputs and 311 
post scaling of the results from every multiplication, needed for fixed point alignment. This is 312 
accomplished by the fullyconnect() function after putting the weights into local buffers and adding a 313 
bias to the output value. The results are passed through a Softmax layer, in which the network 314 
produces the classification of the image with a given probability.  315 

 316 

Vectorized C code implementation 317 

Program code vectorization targeting the Klessydra intrinsic function library is based on two 318 
types of intervention: data movement to efficiently exploit the scratchpad memory sub-system, and 319 
vector arithmetic operation exploiting the accelerator functional unit. 320 

a) b)for (k = 0; k < layer_outputs; k++) {

input_pt = &input_fm[k][0][0];

output_pt = &output_fm[k][0][0];

maxpool(input_size, input_pt, 

output_size, output_pt);

} 

for (int m = 0; m < size_i; m+=2){

for (int n = 0; n < size_i; n+=2){

max = FM[n + size_i*m];

for (i = m; i < m+2; i++){

for (j = n; j < n+2; j++){

if (FM[j + size_i*i] > max)

max = FM[j + size_i*i];

}

}

output[index++] = max;

}

}

a)

b) c)

pt_layer_filters = &fully_connect_filter_array[0];

pt_layer_bias = &fully_connect_fibias_array[0];

input_pt = &input_vector[0];

for (i = 0; i < layer_outputs_elements; i++) {

getWeights(pt_layer_filters, number_of_elements, buffer);

output_vector[i] = fullyconnect(number_of_elements, input_pt, buffer);

bias = getBias(pt_layer_bias);

output_vector[i]+= bias;

} //the output vector is complete

for(int i=0; i<dim ; i++){

tmp1=vect_1[i]>>pre_scale;

tmp2=vect_2[i]>>pre_scale;

output += (tmp1*tmp2)>>post_scale;

}

return output;

for (int i = 0; i < vector_lenght; i++){

sum = sum + exp(output[i]);

}

for (int i = 0; i < vector_lenght; i++){

output[i] = exp(output[i])/SUM ;

}
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A loop of kmemld() functions transfer the FM and KMs operands into two SPMs, that we refer to 321 
as spmA and spmB, from the main memory. To implement zero-padding, when loading the feature 322 
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the code executed to set up the FM in spmA. The offsets added to the pointers passed to the Kmemld() 325 
function allow for the implementation zero-padding. The ksrav() function implements fixed-point 326 
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convolution2D() function. 330 

 331 
 332 

 333 

Figure 10. (a) Zero-padded, pre-scaled FM setup in SPM; (b) Pre-scaled KM collection in SPM and 334 

calling sequence of convolution2D() (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 335 
 336 
The Convolution2D() function requires the addresses of the FM and KM first elements in spmA 337 

and spmB, an address pointing to a region in spmD for temporary value storage, and the address to 338 
store the output matrix in spmC. Figure 11 reports the internal operations, which are built upon 339 
knowing which vectors are to be multiplied as the kernel map slides across all the input map pixels. 340 
Taking into account which elements will be multiplied when the kernel completely slides across a 341 
row of the FM, and the fact that this process is replicated for every row, we can multiply the FM row 342 
values with the corresponding scalar from the KM, and update the output matrix (OM) row with a 343 
vector of partial results. This process is straightforward and allows to fully exploit the vector 344 
coprocessor capabilities by using matrix rows as vector operands.  345 

 346 

a)
for (int i = th_output_first_OM;  i < th_output_last_OM;  i++) {

for (int k = 0 ;  k < input_per_layer;   k++){

// LOADING & PRESCALING Feature Maps (FM)

CSR_MVSIZE(Row_lenght*SIZE_OF_INT);

for (int row_pointer=0;  row_pointer<Row_lenght;  row_pointer++){

kmemld(

(void*) ((int*) spmA + spm_off_A + zeropadding_offset ),

(void*) ((int*) input_fm[k] + row_pointer*Row_length ),

SIZE_OF_INT*(Row_lenght)

);

ksrav(

(void*) ((int*) spmA + spm_off_A + zeropadding_offest ),

(void*) ((int*) spmA + spm_off_A + zeropadding_offest ),

(int*)conv2D_scaling_factor

);

} //end loop "row_pointer"

// LOADING&PRESCALING Kernel Maps

CSR_MVSIZE(9*SIZE_OF_INT); 

kmemld(

(void*) ((int*) spmB + spm_off_B ),

(void*) ((int*) pt_to_kmaps + 

(9*(i*input_per_layer)+ 9*(k)) ),

(9*SIZE_OF_INT)

);

ksrav(

(void*) ((int*) spmB + spm_off_B ),

(void*) ((int*) spmB + spm_off_B ),

(int*)conv2D_scaling_factor

);

convolution2D(

(void*) ((int*) spmC + mem_off_C ), 

(void*) ((int*) spmA + mem_off_A ), 

(void*) ((int*) spmB + mem_off_B ), 

(Row_lenght+2)

);

b)
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Figure 11. Convolution2D inner loops operations (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 348 
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Referring to Figure 11, after setting the vector length, the loop with index “i” scans the rows of 350 
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the result is post-scaled by the ksrav() function for fixed-point alignment. The kaddv() function 355 
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After the convolutions are done, the OM is updated with the addition of the bias value (Figure 357 
12(a)). A kmemld() is required to have the single scalar value in the scratchpad memory, then the 358 
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 362 

Figure 12.  (a) Adding the bias to the Output Matrix; (b) Applying the ReLu function to the Output 363 

Matrix (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 364 
 365 

As the last part of the convolutional layers, the ReLU non-linear function is applied to all the 366 
OM pixels, which is stored back in main memory. The SPM region is cleared for the next iteration of 367 
the loop by broadcasting a zero value into the target memory region with kbcast() (Figure 12(b)). 368 

CSR_MVSIZE(Row_size);

for(i=Zeropad_off; i Row_size-Zeropad_off; i++){

k_element=0;

for(FM_row_pointer=-Zeropad_off; FM_row_pointer <= Zeropad_off; FM_row_pointer++){

for (column_offset=0; column_offset < kernel_size; column_offset++){

FM_offset= (i+FM_row_pointer)*Row_size+column_offset;

ksvmulsc(SPM_D, (SPM_A+FM_offset), (SPM_B + k_element++));

ksrav(SPM_D, SPM_D, scaling_factor);

OM_offset = (Row_size*i)+Zeropad_off;

kaddv((SPM_C+OM_offset),(SPM_C+OM_offset),SPM_D);

}

}

}

a) b)

//Preload the spm_B with the bias value

kmemld(

(void*)((int*)spmB + mem_off_B ),

(void*)(pt_to_bs+offset),

(SIZE_OF_INT)

);

//update the whole matrix with the bias

ksvaddsc_v2(

(void*) ((int*) spmC + mem_off_C ),

(void*) ((int*) spmC + mem_off_C ),

(void*) ((int*) spmB + mem_off_B ),

((Row_lenght+2)*(Row_lenght+2)

*SIZE_OF_INT)

);

krelu( 

(void*)( (int*)spmC + mem_off_C ),

(void*)( (int*)spmC + mem_off_C )

); //perform the ReLU on the output matrix

for (int row_pt=0; row_pt<run_SIZE; row_pt++){

kmemstr(

(void*)(&output_fm[i][0][0] + (row_pt*run_SIZE) ),

(void*)((int*)spmC + mem_off_C + 

((row_pt+1)*(run_SIZE+2)+1) ),

SIZE_OF_INT*(run_SIZE)

);

} //end kmemstr loop for retrieving of the OM in main memory

kbcast((void*)((int*)spmC + mem_off_C ), (void*)zero_value );
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instructions, following the same implementation of the generic C code. 370 

The fully-connected layer is comprised of a computation kernel based on dot products (Figure 371 
13(a)). The source vector is moved into spmA as a single burst of data using the kmemld() function, 372 
and pre-scaled by ksrav(). A loop handles the properly transposed loading of the neurons parameters 373 
into spmB. The two vectors in the SPMs are processed by the dot-product function kdotpps(), which 374 
includes a post-scaling of the product before accumulation for fixed point alignment. 375 
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the main memory. The kbcast() function clears the spmC memory space (Figure 13(b)). 378 

The softmax layer is executed in main memory through conventional scalar instructions, with 379 
the same implementation of the generic C code. 380 

 381 

Figure 13. Fully-connected layer operations. (a) Dot-product kernel; (b) Bias addition and ReLu (Fully-382 

connected Layer: 19,20,21). 383 

 384 
The exact execution of the vectorized VGG-16 inference program running on Klessydra T1 cores 385 

was verified by comparing the full output produced by RTL simulation against the general purpose 386 
VGG-16 fixed-point C code running on an X86 server. 387 

 388 

5. Performance and Power analysis 389 

Setup 390 

All Klessydra cores are compatible with the PULPino processor platform [20]. Yet, the 391 

original PULPino memory subsystem cannot support the execution of the full VGG-16 392 

inference algorithm, which requires 255 MB storage for the constant data consisting of the 393 

neural network weights, and at least 1 MB memory space for global and local variables. Thus, 394 

we extended the PULPino memory sub-system to include 256 MB of addressable physical 395 

a)

b)

kmemld( (void*)spmA, (void*)((int*)pt_to_vector), vector_lenght*SIZE_OF_INT);

CSR_MVSIZE(vector_lenght*SIZE_OF_INT);

ksrav( (void*)spmA, (void*)spmA, scaling factor);

for (int loop_index = 0; loop_index < divisor_0; loop_index++){

kmemld(

(void*)((int*)spmB + mem_off_B),

(void*)((int*)pt_to_wh + (loop_index*vector_lenght)),

(vector_lenght*SIZE_OF_INT));

CSR_MVSIZE(vector_lenght*SIZE_OF_INT);

ksrav( (void*)((int*)spmB + mem_off_B), (void*)((int*)spmB + mem_off_B), scaling factor);

kdotpps( (void*)spmC + loop_index, (void *)((int*)spmA), (void*)((int*)spmB + mem_off_B

));

}

kmemld( (void*)spmD, (void*)(pt_to_bs), (vector_lenght*SIZE_OF_INT) );

kaddv( (void*)spmC, (void*)spmC, (void*)spmD );

punt_out = &layer_output[0];

krelu( (void*)spmC, (void*)spmC );

kmemstr( (void*)punt_out, (void*)spmC, (vector_lenght*SIZE_OF_INT) );

kbcast( (void*)spmC, (void*)zero );
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data memory, partitioned into a 1 cycle latency 1 MB RAM to be mapped on the FPGA 396 

BRAM, and a 6 cycle latency 255MB space mapped on an external flash memory device, 397 

connected via SPI interface. The 1 MB RAM is the physical mapping of the portion of the 398 

data memory address space that is dedicated to dynamically allocated data. 399 

The program memory is 32 KB mapped in the FPGA BRAM. 400 

The modified PULPino platform featuring Klessydra T1 processor cores was synthesized on 401 

a Kintex7 FPGA board using the Vivado tool flow. The design entry was the RTL 402 

VHDL/SystemVerilog description of the platforms under analsysis. The C code of the 403 

VGG16 application was compiled by the RISC-V gcc tool chain to produce the binary code 404 

chain to produce the binary code executable by the target processors. The execution of the 405 

application on the target processors was simulated both as RTL and post-synthesis gate level, 406 

to verify the correct functionality and to extract the signal activity for power estimation in 407 

Vivado. Table 4 reports the hardware resource utilization and the maximum clock frequency 408 

producing zero or positive slack, for all the processor configurations under analysis.  409 
 410 

 411 
The VGG-16 inference fixed-point code was also implemented on the following alternative 412 

computing systems, to accomplish a comprehensive comparative analysis: 413 
 An FPGA board featuring a soft-processor comprised of the extended PULPino platform 414 

equipped with the DSP-accelerated RI5CY core, reaching 65 MHz clock frequency; 415 
 An FPGA board featuring a soft-processor comprised of the extended PULPino platform 416 

equipped with a Zeroriscy core [19], reaching 77 MHz clock frequency; 417 
 An STM32 single board computer featuring an 84 MHz ARM Cortex M4 core with DSP 418 

extension, 96 KB data memory; 419 

Table 3. Area and frequency summary of the Klessydra-T cores equipped with to 1MB Data Mem.  

Configuration 
Hardware Utilization Top Freq. 

[MHz] FF LUT DSP B-RAM LUT-RAM 

SISD (M=1,F=1,D=1) 2482 7083 11 88 264 132.1 

Pure SIMD (M=1,F=1,D=2) 2664 9010 15 88 264 127.0 

Pure SIMD (M=1,F=1,D=4) 3510 11678 23 88 264 125.5 

Pure SIMD (M=1,F=1,D=8) 4904 18531 39 88 264 112.6 

Symmetric MIMD (M=3,F=3,D=1) 3509 10701 19 120 264 114.2 

Symmetric MIMD+SIMD (M=3,F=3,D=2) 4659 16556 31 120 264 113.9 

Symmetric MIMD+SIMD (M=3,F=3,D=4) 6746 27485 55 120 264 108.9 

Symmetric MIMD+SIMD (M=3,F=3,D=8) 11253 52930 103 120 264 96.3 

Heterogenous MIMD (M=3,F=1,D=1) 3025 10655 11 120 264 119.9 

Heterogenous MIMD+SIMD (M=3,F=1,D=2) 3741 17161 15 120 264 115.7 

Heterogenous MIMD+SIMD (M=3,F=1,D=4) 4767 25535 23 120 264 110.4 

Heterogenous MIMD+SIMD (M=3,F=1,D=8) 7303 48066 39 120 264 91.5 

No accl 1409 4079 7 72 176 194.6 

RI5CY 1307 6351 6 72 0 65.1 

Zeroriscy 1605 2834 1 72 0 77.2 
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 A Raspberry-PI 3b+ single board computer featuring a 1.4 GHz ARM Cortex A53 quad-420 
core CPU, 16 KB L1 cache and 512 KB L2 cache, 1 GB LPDDR2 main memory; 421 

 An x86 single board computer featuring a 3 GHz exa-core, 12-thread i7 CPU, 384 KB L1 422 
cache, 1.5 MB L2 cache, 9 MB LLC, 8 GB DDR4 main memory. 423 

 424 

 425 

Figure 14.  System architecture organization of the compared boards 426 

 427 
The system architecture organization corresponding to the devices under comparison are sketched 428 
in Figure 14. The read-only storage space dedicated to the VGG-16 weights is hosted by an SPI-429 
connected Flash memory expansion board in all the considered architectures, and the weights are 430 
preemptively loaded into the main RAM space for the inference algorithm execution. 431 

Results 432 

The first phase of performance analysis targeted the detailed account of the performance of each 433 
coprocessor hardware microarchitecture.   434 

 435 

Figure 15 Absolute execution time [s] of the best performing accelerated configuration and of the non-436 

accelerated T0 core, per layer. 437 
 438 
 439 

Figure 15 shows the execution time obtained by the best performing of all the explored T1 440 
coprocessor configurations and by the non-accelerated T0 core, for each VGG-16 layer. The results 441 
give evidence to the fact that the performance of the coprocessor hardware configurations varies with 442 
the algorithm layer it executes. The Symmetrical MIMD configurations with D ranging between 2 443 
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and 8 result to be the best performing for the convolutional layers, while the pure SIMD 444 
configurations with D = 4 results to be the optimal choice for the largest Fully Connected layers. 445 
Notably, the Maxpool and Softmax layers exhibit worse execution time in the accelerated cores than 446 
with in the non-accelerated T0 core, because in the present software implementation they are 447 
executed as scalar computation, and so the data transfer to/from the SPMs constitutes an overhead 448 
with no corresponding vector computation acceleration. Nonetheless, the relative impact of those 449 
layers on the overall execution time is negligible, as shown by the logarithmic scale.  450 
Figure 16 presents the total VGG16 inference execution time speed-up obtained by each coprocessor 451 
configuration over the non-accelerated T0 core. The diagram also includes the ideal speed-up 452 
obtained assuming to use the optimal configuration for each layer. Figure 17 represents the hardware 453 
cost of the configurations that exhibit the highest speed-up, normalized to the non-accelerated T0 454 
core hardware cost, for a direct comparison. The resulting hardware utilization efficiency is notable, 455 
as the maximum speed-up is over 50X, while the maximum hardware cost overhead is well below 456 
15X. 457 
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Figure 16. Total execution time speed-up over non-accelerated core obtained by each coprocessor 461 

configuration, along with the speed-up obtained by using the optimal configuration for each layer 462 
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Figure 17 Hardware overhead normalized to the non-accelerated T0 core.  469 
 470 

Figure 18 shows the total energy consumed by the most efficient of all the explored T1 coprocessor 471 
configurations and by the non-accelerated T0 core, for each VGG-16 layer. Again, the optimal 472 
coprocessor configuration for energy efficiency depends on the layer being executed. Optimal energy 473 
efficiency, unlike absolute performance, swings between Pure SIMD and Symmetrical MIMD 474 
configurations. Similarly to the execution time analysis, for pure scalar computation layers the energy 475 
consumption worsens in the vector-accelerated microarchitecture, due to the SPM data transfer 476 
overhead. Yet, the overall impact of those layers on the total energy is negligible as shown by the 477 
logarithmic scale. 478 

Figure 19 gives significance of the total energy saving obtained by each coprocessor 479 
configuration over the non-accelerated T0 core. The energy saving is expressed as the fraction of the 480 
energy consumed in the accelerated core over the energy consumed in the non-accelerated core, 481 
obtaining energy consumption between 6.4% and 4% of the non-accelerated core (energy saving 482 
between 93.6% and 96%). The diagram also includes the ideal energy reduction obtained assuming 483 
to use the optimal configuration for each layer. 484 

Figure 16 and Figure 19 evidence the ideal performance limit achievable by dynamically 485 
changing the coprocessor microarchitecture at no overhead, via software controlled Dynamic Partial 486 
Reconfiguration (DPR) of the FPGA, so that the system always uses the optimal hardware scheme for 487 
speed or energy efficiency according to the computation kernel being executed. The storage, power 488 
and time overhead associated to DPR is not included in the analysis, and should be the subject of 489 
specific experiments. 490 

The second phase of performance analysis aimed at comparing the efficiency of the proposed 491 
soft-processor architecture with the alternative hardware architecture solutions for the execution of 492 
the same application. In this analysis, the proposed solution consisted of the extended PULPino 493 
platform equipped with the Klessydra T1 core + optimal vector coprocessor for each layer being 494 
executed. 495 
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Figure 18  Total energy consumption [J] of the most energy efficient coprocessor configuration and of the 498 

non-accelerated T0 core, per layer 499 
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Figure 19. Energy reduction factor with respect to non-accelerated core (lower is better) obtained by each 503 
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Table 5 summarizes the performance comparison results, expressed as total execution time, total 506 
energy consumption, and average energy consumed per algorithmic operation. Algorithmic 507 
operations are the data multiplications and additions that are inherent to the algorithm being 508 
computed, and do not depend on the actual software implementation. The absolute execution time 509 
obviously favors high-end computing devices, yet the results give evidence of the effectiveness of the 510 
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soft-processor FPGA implementations. Also, the energy efficiency results show the potential 512 
advantage of a Klessydra T1 vector-accelerated soft-processor FPGA implementation, with respect to 513 
general purpose single-board computers. 514 

 515 

6. Conclusion 516 

The validation of the VGG-16 inference output data produced by Klessydra processors against 517 
conventional processors demonstrated how the Klessydra open-source infrastructure can be used for 518 
implementing configurable RISC-V soft-cores equipped with hardware acceleration for vector 519 
computing on FPGA. The detailed porting of the target application routines has been documented in 520 
this work.Performance results show the effectiveness of the Klessydra microarchitecture scheme, 521 
built upon interleaved multi-threading and vector coprocessor hardware acceleration, with respect 522 
to other FPGA-based single-core solutions. Looking at energy efficiency, the Klessydra FPGA soft-523 
core solution shows superior performance with respect to commercial single-board computers that 524 
may be used as IoT extreme-edge devices. 525 

The results of the performance analysis conducted on the Klessydra T1 vector coprocessor 526 
schemes demonstrate the dependency of the optimal hardware configuration on the algorithm layer 527 
being executed. This evidence opens the way to the development of software configurable 528 
accelerators and further to the implementation of self-adapting coprocessor microarchitectures in IoT 529 
extreme-edge nodes. 530 

Supplementary Materials: The Klessydra processor core family and accelerators are openly available online at 531 
https://www.github.com/klessydra 532 

References 533 

1. Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F. and Olivieri, M., 2017, September. The 534 
microarchitecture of a multi-threaded RISC-V compliant processing core family for IoT end-nodes. In 535 
International Conference on Applications in Electronics Pervading Industry, Environment and 536 
Society(pp. 89-97). Springer, Cham. 537 

2. Olivieri, M., Cheikh, A., Cerutti, G., Mastrandrea, A., and Menichelli, F., "Investigation on the optimal 538 
pipeline organization in RISC-V multi-threaded soft processor cores", In 2017 New Generation of CAS 539 
(NGCAS), pp. 45-48. IEEE, 2017. 540 

3. RISC-V Instruction Set specifications. [Online] “https://riscv.org/specifications/” 541 

Table 5. Performance comparison with alternative solutions 

Processor Time [s] 
Energy 

[J] 

Energy per 

op [pJ/op] 

Core i7 PC board 0.08 2.90 21 

Cortex A53 Raspberry Pi 3 0.89 2.32 17 

Cortex M4 STM32 117.78 7.77 55 

RI5CY PULPino on FPGA 444.30 40.06 285 

Zeroriscy PULPino on FPGA 548.04 38.90 277 

Klessydra-T1 PULPino on FPGA 7.91 1.74 12 

 

https://riscv.org/specifications/


Electronics 2020, 9, x FOR PEER REVIEW 22 of 23 

 

4. Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F. and Olivieri, M., 2019, September. Efficient 542 
Mathematical Accelerator Design Coupled with an Interleaved Multi-threading RISC-V 543 
Microprocessor. In International Conference on Applications in Electronics Pervading Industry, 544 
Environment and Society (pp. 529-539). Springer, Cham.  545 

5. Samie, F.; Bauer, L.; Henkel, J. “From Cloud Down to Things: An Overview of Machine Learning in 546 
Internet of Things”. IEEE Internet Things J. 2019, 4662, 1. 547 

6. Gautschi, M., Schiavone, P., Traber,A.,  Loi, I., Pullini,A.,  Rossi, D., Flamand, E., Gürkaynak, F., 548 
Benini, L., "Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices." IEEE 549 
Trans. on Very Large Scale Integration (VLSI) Systems 25, no. 10 (2017): 2700-2713. 550 

7. Seo, S., Dreslinski, R.G., Woh, M., Chakrabarti, C., Mahlke, S. and Mudge, T., 2010, August. Diet SODA: 551 
A power-efficient processor for digital cameras. In Proceedings of the 16th ACM/IEEE international 552 
symposium on Low power electronics and design (pp. 79-84).  553 

8. Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2016. Eyeriss: An energy-efficient reconfigurable 554 
accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits, 52(1), pp.127-555 
138.  556 

9. Moini, S., Alizadeh, B., Emad, M. and Ebrahimpour, R., 2017. A resource-limited hardware accelerator 557 
for convolutional neural networks in embedded vision applications. IEEE Transactions on Circuits and 558 
Systems II: Express Briefs, 64(10), pp.1217-1221.  559 

10. Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.C., Liu, C.C. and Chang, M.C.F., 2017. A reconfigurable streaming 560 
deep convolutional neural network accelerator for Internet of Things. IEEE Transactions on Circuits 561 
and Systems I: Regular Papers, 65(1), pp.198-208.  562 

11. Conti, Francesco, and Luca Benini. "A ultra-low-energy convolution engine for fast brain-inspired 563 
vision in multicore clusters." In 2015 Design, Automation & Test in Europe Conference & Exhibition 564 
(DATE), pp. 683-688. IEEE, 2015. 565 

12. Meloni, P., Deriu, G., Conti, F., Loi, I., Raffo, L. and Benini, L., 2016, May. Curbing the roofline: a 566 
scalable and flexible architecture for CNNs on FPGA. In Proceedings of the ACM International 567 
Conference on Computing Frontiers (pp. 376-383).  568 

13. Wu, N., Jiang, T., Zhang, L., Zhou, F. and Ge, F., 2020. A Reconfigurable Convolutional Neural 569 
Network-Accelerated Coprocessor Based on RISC-V Instruction Set. Electronics, 9(6), p.1005.  570 

14. Watanabe, D., Yano, Y., Izumi, S., Kawaguchi, H., Takeuchi, K., Hiramoto, T., Iwai, S., Murakata, M. 571 
and Yoshimoto, M., 2020. An Architectural Study for Inference Coprocessor Core at the Edge in IoT 572 
Sensing. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems 573 
(AICAS) (pp. 305-309). IEEE.  574 

15. Wu, Y., Wang, J.J., Qian, K., Liu, Y., Guo, R., Hu, S.G., Yu, Q., Chen, T.P., Liu, Y. and Rong, L., 2020. 575 
An energy-efficient deep convolutional neural networks coprocessor for multi-object detection. 576 
Microelectronics Journal, p.104737.  577 

16. Chang, M.C., Pan, Z.G. and Chen, J.L., 2017, October. Hardware accelerator for boosting convolution 578 
computation in image classification applications. In 2017 IEEE 6th Global Conference on Consumer 579 
Electronics (GCCE) (pp. 1-2). IEEE.  580 

17. Lima, P., Vieira, C., Reis, J., Almeida, A., Silveira, J., Goerl, R. and Marcon, C., 2020, March. Optimizing 581 
RISC-V ISA Usage by Sharing Coprocessors on MPSoC. In 2020 IEEE Latin-American Test Symposium 582 
(LATS) (pp. 1-5). IEEE.  583 

18. Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.C., Liu, C.C. and Chang, M.C.F., 2017. A reconfigurable streaming 584 
deep convolutional neural network accelerator for Internet of Things. IEEE Transactions on Circuits 585 
and Systems I: Regular Papers, 65(1), pp.198-208. 586 

19. Schiavone P.D., Conti F., Rossi D., Gautschi M., Pullini A., Flamand E., Benini L., Slow and steady wins 587 
the race? a comparison of ultra-low-power risc-v cores for internet-of-things applications. In 2017 27th 588 
International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS) 589 
2017 Sep 25 (pp. 1-8). IEEE. 590 

20. Traber A, Gautschi M., PULPino: datasheet. ETH Zurich, University of Bologna. 2017 Jun 9. 591 
21. Blasi L, Vigli F, Cheikh A, Mastrandrea A, Menichelli F, Olivieri M. A RISC-V Fault-Tolerant 592 

Microcontroller Core Architecture Based on a Hardware Thread Full/Partial Protection and a Thread-593 
Controlled Watch-Dog Timer. InInternational Conference on Applications in Electronics Pervading 594 
Industry, Environment and Society 2019 Sep 11 (pp. 505-511). Springer, Cham. 595 



Electronics 2020, 9, x FOR PEER REVIEW 23 of 23 

 

22. European Processor Intiative (EPI), EU H2020 research and innovation programme GA No 826647, 596 
[Online] “https://www.european-processor-initiative.eu/project/epi/”. 597 

23. A. Cheikh, S. Sordillo, A. Mastrandrea, F. Menichelli, G. Scotti and M. Olivieri, "Klessydra-T: Designing 598 
Vector Coprocessors for Multi-Threaded Edge-Computing Cores," in IEEE Micro, doi: 599 
10.1109/MM.2021.3050962. 600 

24. Online: https://www.sifive.com/blog/risc-v-vector-extension-intrinsic-support 601 
25. M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner and L. Benini, "Ara: A 1-GHz+ Scalable and Energy-602 

Efficient RISC-V Vector Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI," in 603 
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 530-543, Feb. 2020 604 

26. C. Chen et al., "Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High 605 
Performance RISC-V Processor with Vector Extension : Industrial Product," 2020 ACM/IEEE 47th 606 
Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2020, pp. 52-64 607 

27. J. C. Wright et al., "A Dual-Core RISC-V Vector Processor With On-Chip Fine-Grain Power 608 
Management in 28-nm FD-SOI," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 609 
28, no. 12, pp. 2721-2725, Dec. 2020 610 

28. M. Johns and T. J. Kazmierski, "A Minimal RISC-V Vector Processor for Embedded Systems," 2020 611 
Forum for Specification and Design Languages (FDL), Kiel, Germany, 2020 612 

29. Y. Kimura, T. Kikuchi, K. Ootsu and T. Yokota, "Proposal of Scalable Vector Extension for Embedded 613 
RISC-V Soft-Core Processor," 2019 Seventh International Symposium on Computing and Networking 614 
Workshops (CANDARW), Nagasaki, Japan, 2019, pp. 435-439 615 
 616 

 

© 2021 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 617 

https://www.european-processor-initiative.eu/project/epi/
https://www.sifive.com/blog/risc-v-vector-extension-intrinsic-support

