

Electronics 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics

Article 1

Customizable vector acceleration in extreme-edge 2

computing: a RISC-V software/hardware architecture 3

study on VGG-16 implementation 4

Stefano Sordillo1, Abdallah Cheikh1, Antonio Mastrandrea1, Francesco Menichelli1, Mauro 5
Olivieri1,* 6

1 DIET, Sapienza University of Rome 7
* Correspondence: mauro.olivieri@uniroma1.it 8

Received: date; Accepted: date; Published: date 9

Abstract: Computing in the cloud-edge continuum, as opposed to cloud computing, relies on high 10

performance processing on the extreme edge of the IoT hierarchy. Hardware acceleration is a 11
mandatory solution to achieve the performance requirements, yet it can be tightly tied to particular 12
computation kernels, even within the same application. Vector-oriented hardware acceleration has 13
gained renewed interest to support AI applications like convolutional networks or classification 14
algorithms. We present a comprehensive investigation of the performance and power efficiency 15
achievable by configurable vector acceleration subsystems, obtaining evidence of both the high 16
potential of the proposed microarchitecture and the advantage of hardware customization in total 17
transparency to the software program. 18

Keywords: edge-computing, processors, hardware acceleration 19

 20

1. Introduction 21

The cloud-edge continuum computing paradigm relies on the possibility of local processing in 22
the edge of the IoT whenever it is convenient for reasons of energy efficiency, reliability, or data 23
security. As a consequence, there is a gradual shift of artificial intelligence (AI) algorithm execution 24
from the cloud down low power embedded IoT devices on the edge, to be used in real-time for 25
example to take voice commands or extract image features, for biometric, security, or filtering 26
purposes [5]. 27

The resultant demand for very high processing speed on extreme edge computing devices turns 28
into unprecedented design challenges, especially because of the usually limited energy budget. 29
Therefore, the implementation of hardware acceleration on edge devices in the IoT hierarchy has 30
become a major trend to reach the speed and energy efficiency requirements. 31

Vector computing acceleration was a major stream in high performance computing systems for 32
decades and is gaining renewed interest in recent development in the supercomputing sector [22]. 33
Yet, it is easy to note that the vector computing paradigm can also be applied to AI computing kernels 34
that are run in embedded IoT devices on the edge. Nonetheless, the limited hardware budget usually 35
available in edge devices makes it interesting to explore the possibility of configurable acceleration 36
sub-systems to optimally exploit the available hardware resources according to the specific 37
computation kernels being run during the application execution. 38

We implemented such exploration addressing the execution of the VGG-16 deep convolutional 39
neural network inference, widely known for its image recognition performance as well as for the high 40
computing power and storage demand. The VGG-16 execution is composed of consecutive layers 41
having different computational characteristics. Therefore, it well represents a stress-test of the 42
hardware micro-architecture with a time-variant workload profile. Our target micro-architecture is 43

Electronics 2020, 9, x FOR PEER REVIEW 2 of 23

an open-source RISC-V [3] processor core supporting multi-threaded execution and featuring a 44
highly customizable vector acceleration subsystem [23]. 45

The contributions of this work to the reader interested in advanced embedded system design for 46
IoT extreme-edge computing, are manifold: 47

 we report the quantitative evidence of the trade-offs in vector co-processor design and 48
configuration targeting simple edge-computing soft-cores; 49

 we present details on the small custom RISC-V compliant instruction extension 50
sufficient to support typical vector operations in a tiny soft-core; 51

 we present a complete yet very simple library of intrinsic functions to support 52
application development, and we discuss the full detail of source code exploiting the co-53
processor instructions in each VGG-16 layer execution; 54

 we give insights into the open-source Klessydra processor core microarchitecture. 55
The rest of this article is organized as follows: Section 2 covers the related works on hardware 56

acceleration for embedded computing on the IoT edge, including configurable solutions, Section 3 57
introduces the Klessydra T1 processor soft-core featuring configurable hardware acceleration 58
subsystem. Section 4 describes the fundamental features of the VGG-16 application case and its 59
implementation on Klessydra T1. Section 5 reports and discusses the results obtained for the different 60
sub-parts of the chosen application cases, and Section 6 summarizes the outcomes of the work. 61

2. Related works 62

Several previous works reported the design of hardware accelerated microcontroller cores 63
implemented in edge-computing silicon chips. In [6], a RISC-V processor with DSP hardware support 64
is presented, targeting near-threshold voltage operation. The Diet-SODA design implements a similar 65
approach by running its DSP accelerator in near-threshold regime [7]. In [8,9,10,11] application 66
specific accelerators are reported, based on highly parallel operation and minimized off-chip data 67
movements for energy efficiency. 68

All of the above works focus on silicon implementation of units tailored to specific 69
computations. As opposed to this view, the proposed hardware architecture study is independent of 70
technology assumptions, such as the supply voltage, and addresses any physical implementation, 71
particularly soft-cores on commercial FPGA devices, in the view of exploiting application-driven 72
configurability. Regarding FPGA-based implementations, in [12] the authors present a cluster of 73
RISC-V cores connected to a tightly-coupled scratchpad memory and a special purpose engine 74
dedicated to convolutions only. Thanks to FPGA implementation, the convolution engine can be 75
configured at synthesis time to optimize the execution of each convolutional layers, yet exhibiting a 76
severe performance degradation when executing layers it was not built to optimize. 77

A recently published work [13] presents a SIMD configurable CNN coprocessor connected to a 78
32-bit RV32IM RISC-V processor. Compared to the pure SIMD Klessydra configuration, that uses 79
11678 LUTs and takes 824 clock cycles for a 4x4 matrix convolution, the work in [13] reports 12872 80
LUTs and 2070 clock cycles. 81

In [14] the authors present a coprocessor soft-core at the edge of IoT, designed to be energy 82
efficient in executing CNN as well as other machine learning algorithms. In particular, they explore 83
the potential impact of data parallelism on the energy efficiency due the increased memory 84
bandwidth. In our study, memory traffic as well as the memory static power consumption are taken 85
into account in energy estimations. 86

The works in [15][16] present a pipelined CNN coprocessor capable of accelerating convolutions 87
based on the extremely high parallelism in the coprocessor, yet limited to convolutional computation 88
kernels. 89

In [17] the authors present different coprocessor configurations integrated with a parallel cluster 90
of RISC-V cores and evaluated which of the configurations is the fastest and most energy efficient. 91
They introduce special co-processing cores dedicated to the standard instruction subset RV32M, 92
without exploring more sophisticated co-processor operations. 93

Electronics 2020, 9, x FOR PEER REVIEW 3 of 23

In [18] the authors provide a DCNN accelerator for IoT. The accelerator itself is designed to work 94
with 3x3 kernels, and being not configurable, in order to support larger kernels they use a technique 95
called kernel decomposition, which in fact increases the waste in computational resources and 96
decreases in the energy efficiency, similarly to the convolution engine in [12]. 97

The coprocessor architecture proposed in this work is general purpose in nature, being based on 98
vector operations, and can be tailored to support a given computation kernel in the most efficient 99
way. Our work builds on the preliminary developments reported in [2,4] and complements the 100
analysis presented in [23]. 101

The standard “V” vector extension of RISC-V – supported for example by SiFive products [24] 102
and by the EPAC accelerator within the European Processor Initiative project [22]– is a large and 103
complex instruction set extension, to cover applications ranging from embedded systems to HPC, 104
which goes far beyond the scope of the lightweight Klessydra soft-core vector extension. Also, the 105
standard “V” extension adopts a vector processing scheme based on a Vector Register File, while we 106
explicitly chose to use generic Scratchpad Memories (SPMs) as local storage for more flexibility, at 107
the price of losing compliance with any standard ISA extension. Rather than identifying vectors with 108
a vector number chosen among 32 vector registers, we use pointers within the SPM address space to 109
address vectors or portions of vectors. Also, as the number of SPMs available to the programmer in 110
the microarchitecture is configurable. 111

The Ara processor [25], as well as the Xuantie-910 processor [26] and the dual core presented in 112
[27], are all silicon ASIC implementations (thus not configurable as a soft-core is) of micro-113
architectures, which are actually not compliant with the “V” standard extension, yet they are still 114
based on fixed Vector Register Files. Also, the Xuantie-910 processor addresses high performance 115
superscalar execution of general-purpose non-vectorizable code, which is out of the scope of the 116
Klessydra architecture. 117

The processor reported in [29] adopts an interesting approach based on directly converting ARM 118
SVE vectorized code into a non-standard vector RISC-V extension, thus it is explicitly based on the 119
same operation and storage scheme of ARM SVE. Klessydra diverges from this approach, favoring a 120
broader exploration through configurability. The processor presented in [28] is a soft-core as 121
Klessydra is, but it is again based on a Vector Register File rather than on a configurable SPM-based 122
acceleration. 123

3. The Klessydra T1 customizable architecture 124

Hardware microarchitecture 125

Klessydra is a family of open-source, RISC-V compliant and PULPino [20] compatible cores, 126
which includes basic processors (T0 sub-family), hardware accelerated processors (T1 sub-family), 127
and fault-tolerant processors (F0 sub-family) [21]. A characteristic feature of all Klessydra cores is the 128
hardware support for interleaved multi-threading on a single core [1]. 129

 130

Electronics 2020, 9, x FOR PEER REVIEW 4 of 23

 131

Figure 1. Klessydra T0 core microarchitecture 132

 133
The hardware accelerated T1 cores are an extension of the basic T0 core, that is sketched in Figure 1. 134
The T0 microarchitecture resembles a classic four-stage RISC pipeline, except for having multiple 135
Program Counters to support multi-threading, and replicated register files and Control/Status 136
Registers. Differently from a multi-core implementation, an interleaved multi-threading single core 137
shares all the combinational logic constituting the instruction processing pipeline among the 138
hardware threads (“harts” [3]), by interleaving threads in time, while maintaining separate PCs and 139
registers to keep the state of each thread. 140
In each clock cycle a different Program Counter is used for instruction fetching, on a rotation basis. 141
As a result, instructions belonging to different threads of execution are interleaved in the core 142
pipeline, so that it is never possible that any two instructions in the pipeline manifest any register, 143
structural or branch dependency. By fetching an instruction from a new thread in each clock cycle, 144
pipeline hazards are eliminated, while if the same thread run for several clock cycles, its own data 145
hazard or branching hazard would impose introducing dependency-check logic and pipeline stalling. 146
The only dependency in the instruction pipeline can occur between two threads on explicit shared 147
memory access, which is responsibility of the programmer. 148
The supported number of interleaved threads is a parameter of the synthesizable RTL code of the 149
core. 150

 151

LSU

Regfile Decode

FetchPC
PC

CSR

Data Memory

WB

Debug
Updater

Hart
Updater

hart a

hart b,

or c

hart c

Program Memory

EXECUTE

Electronics 2020, 9, x FOR PEER REVIEW 5 of 23

LSU

Regfile Decode

FetchPC
PC

CSR

Data Memory

WB

Debug
Updater

Hart
Updater

hart a

hart a,

b, or c

hart c

Input Mapping

Add
Sub

Shft Mul Accum Cmp

M
F

U

Output Mapping

M
F

U
 C

tr
l

SPM Access

Handler

FU

Enabler

FU Contention

Handler

MFU_busyMFU_req

FU

HW-Loops
Exception

Handler

MFU

 Config

MFU Init

Intermediate Mapping

Bank Intrlv

Bank1Bank0 BankN

S
P

M
I

Data Rotate

S
P

M

SPM I/O

Mapping

SPM Contention

Handler Halt

Access

LSU Rd / Wr Bus 32-bit

xF

xD

xM

xM

xN xD
xM

MFU

SPMI

Program Memory

EXECUTE

xM xM

vs1 32b xM

vs2 32b xM

vd 32b xM

Halt MFU

Halt LSU

 152

Figure 2. Klessydra T1 core microarchitecture 153

 154
The T1 microarchitecture (Figure 2) is derived from the T0 by adding two execution units, 155

namely the Load-Store Unit (LSU) and the Vector Co-processing Unit (VCU), the latter being 156
internally comprised of Multi-Purpose Functional Units (MFU) and Scratch-Pad Memory Interface 157
(SPMI). 158

At the instruction level, the T1 architecture supports the parallel execution of instructions of 159
different types, belonging to the same hart. In fact, the LSU works in parallel with the other units 160
when executing memory store instructions, that cannot cause a write-back conflict on the register file. 161
The MFU is allowed to read operands from the register file but can only write its results to local 162
scratchpad memories (SPMs), thus keeping the SPMs and the Registerfile decoupled and allowing 163
parallel execution between instructions writing to each of these memories simultaneously. Scalar 164
instructions of a hart are processed by the “Execution” unit and operate on data in the Register File, 165
while vector instructions are processed by the VCU and operate on data in the SPMs. Data transfers 166
to/from the data memory from/to the SPMs are managed by the LSU via dedicated instructions. 167

The MFUs execute vector arithmetic instructions, whose latency is proportional to the vector 168
length. In an in-order interleaved-multi-threading pipeline, a hart requesting access to the busy MFUs 169
may result in stalling the whole pipeline, stalling other harts that may not need to access the MFU. 170
To circumvent this, in the T1 architecture, the waiting hart executes a self-referencing jump so that 171
the PC for that hart does not advance until the MFU becomes free, avoiding unnecessary stalls of 172
harts that are independent from the MFU being busy. Figure 3 demonstrates a cycle accurate diagram 173
of the mechanism. 174

 175

 176

Figure 3. Hart interleaving and hart stall timing diagram 177

Electronics 2020, 9, x FOR PEER REVIEW 6 of 23

 178
When deploying Klessydra T1 in a IoT edge device, one can configure the number of parallel 179

lanes D in the MFU, the number of MFUs F, the SPM capacity, the number of independently 180
accessible SPMs N in each SPMI, the number of SPMIs M, as well as the way the MFUs and SPMI are 181
shared between the harts. Representative configurations are the following: 182
 Thread-Shared coprocessor: All harts in the core share a single MFU/SPM subsystem. Harts in 183

this scheme are required to execute an infinite jump when trying to access the MFU when its 184
busy. In this approach, instruction level parallelism is limited to occur only between coprocessor 185
instructions writing to the SPM and non-coprocessor instructions writing to the main memory 186
or register file. To mitigate the delays on a hart executing an infinite jump, the coprocessor here 187
may exploit pure data level parallelism (DLP) acceleration, by SIMD execution. 188

 Thread-Dedicated coprocessor: Each hart is appointed a full MFU/SPM subsystem, eliminating 189
inter-hart coprocessor contention and allowing inter-coprocessor parallel execution. Stalls can 190
only happen if the next instruction of the same hart that is using the MFU requests an MFU 191
operation. DLP by SIMD execution can still be exploited in this approach, but also thread level 192
parallelism (TLP) by fully symmetric MIMD execution, allowing execution of multiple vector 193
instructions in parallel, . 194

 Thread-Dedicated SPMIs with a Shared MFU: The harts here maintain a dedicated SPM address 195
space, yet they share the functional units in the MFU. This scheme still allows inter-hart parallel 196
execution of coprocessor instructions, provided they use different internal functional units of 197
the MFU (e.g, adder, multiplier). Harts that request a busy internal unit in the MFU will be 198
stalled, and their access will be serialized until the contended unit becomes free, while harts that 199
request a free functional unit can work in parallel with the other active harts in the MFU. DLP 200
by SIMD execution can still be exploited in this approach, but also TLP by heterogeneous MIMD 201
execution. 202

Table 1 summarizes the design parameters and corresponding configurations, whose names will be 203
used as references in reporting performance results. 204

 205

Programming paradigm 206

By default, a Klessydra core runs the maximum number of hardware threads (which is a 207
synthesis parameter) allowed by the microarchitecture. The function Klessydra_get_coreID() can read 208
the id number of the thread executing the function from the MHARTID CSR register, so this allows 209
to distinguish threads and possibly have each thread to execute a different piece of program. Figure 210
4 shows a generic C program skeleton in which each of three threads executes its own instruction 211

Table 1. Summary of explored hardware configurations.

M

(number of

SPMI units)

F

(Number of

FMUs)

D

(number of

lanes in FMU)

Execution paradigm

1 1 1 SISD

1 1 2, 4, 8 Pure SIMD

3 3 1 Symmetric MIMD

3 3 2 ,4, 8 Symmetric MIMD + SIMD

3 1 1 Heterogenous MIMD

3 1 2, 4, 8 Heterogenous MIMD + SIMD

Electronics 2020, 9, x FOR PEER REVIEW 7 of 23

flow. The functions sync_barrier_thread_registration() and sync_barrier() allow implementing a 212
synchronization barrier by based on inter-thread software interrupts, to synchronize thread 213
execution at certain points of the program. 214

 215

 216

Figure 4. Code for multi-threaded execution on Klessydra-T1 217

 218
 219

 220

Figure 5 Klessydra T1 memory map. 221
 222

sync_barrier_thread_registration(); //Executed by all threads

if (Klessydra_get_coreID()==0){

// thread_0 subroutine

}

if (Klessydra_get_coreID()==1){

// thread_1 subroutine

}

if (Klessydra_get_coreID()==2){

// thread_2 subroutine

}

sync_barrier(); //Executed by all threads

UART regs

GPIO regs

SPI MASTER regs

TIMER regs

EVENT UNIT regs

I2C regs

FLL regs

SoC CONTROL regs
1A10 7000

1A10 6000

1A10 5000

1A10 4000

1A10 3000

1A10 2000

1A10 1000

1A10 0000

SPM(0)

SPM(N)

Hart 0 Stack 128KB

Hart 1 Stack 128KB

Hart h Stack 128KB

Shared Data 1MB

SPM(1)

Hart 0 MIP reg 4b

Hart 1 MIP reg 4b

Hart h MIP reg 4b

Program

Code

Int Vector Table

MTVEC point
32KB RAM

512B ROM

MIP regs

32KB RAM

SPM

Section

Program

Memory

Boot Memory

Data

Memory

Mem

 Mapped CSR

SPM

Memory

Peripherals

0100 0000

0010 0000

000F FF00

0000 8000

001F FFFF

0000 7FFF

0000 0094

0000 0000

1 MB RAM

Electronics 2020, 9, x FOR PEER REVIEW 8 of 23

Figure 5 gives a representation of the memory map assumed by the Klessydra T1 operation. 223
The SPM local storage is visible to the programmer as a specific address region in the memory 224

map. The programmer can move data to/from any point of the SPM address space with no constraint 225
except the total capacity of the SPMs, which in turn is a parameter of the microarchitecture design. 226

Inter-thread data transfers may happen via shared global static variables allocated in the main 227
data memory or, in the case of a shared coprocessor configuration, via shared SPM address space. As 228
in any multi-threading execution scheme, access to shared data must be accompanied by explicit 229
thread synchronization, which is available in Klessydra by means of specific intrinsic functions 230
implementing semaphore locks compliant with RISC-V atomic instructions, not in the scope of this 231
work. 232

The custom instruction extension supported by the VCU and LSU is summarized in Table 2. The 233
instructions supported by the coprocessor sub-system are exposed to the programmer in the form of 234
very simple intrinsic functions, fully integrated in the RISC-V gcc compiler toolchain. The compiler 235
does not have knowledge of the hardware configuration, so it only translates the intrinsic functions 236
into the corresponding dedicated vector instructions, which are then executed by the hardware 237
according to the chosen hardware configuration. The instructions implement vector operations 238
working on the memory space mapped on the local SPMs. The vector length applied by MFU 239
operations is encoded in a user accessible custom control/status register (CSR) named MVSIZE. 240

 241

Table 1. RISC-V instruction set custom extension for Klessydra-T processors

Assembly syntax – (r) denotes memory

addressing via register r

Function declaration Short description

kmemld (rd),(rs1),(rs2) kmemld((void*) rd, (void*) rs1, (int) rs2); load vector into scratchpad region

kmemstr (rd),(rs1),(rs2) kmemstr((void*) rd, (void*) rs1, (int) rs2); store vector into main memory

kaddv (rd),(rs1),(rs2) kaddv((void*) rd, (void*) rs1, (void*) rs2); adds vectors in scratchpad region

ksubv (rd),(rs1),(rs2) ksubv((void*) rd, (void*) rs1, (void*) rs2); subtract vectors in scratchpad region

kvmul (rd),(rs1),(rs2) kvmul((void*) rd, (void*) rs1, (void*) rs2); multiply vectors in scratchpad region

kvred (rd),(rs1) kvred((void*) rd, (void*) rs1); reduce vector by addition

kdotp (rd),(rs1),(rs2) kdotp((void*) rd, (void*) rs1, (void*) rs2); vector dot product into register

ksvaddsc (rd),(rs1),(rs2) ksvaddsc((void*) rd, (void*) rs1, (void*) rs2); add vector + scalar into scratchpad

ksvaddrf (rd),(rs1),rs2 ksvaddrf((void*) rd, (void*) rs1, (int) rs2); add vector + scalar into register

ksvmulsc (rd),(rs1),(rs2) ksvmulsc((void*) rd, (void*) rs1, (void*) rs2); multiply vector + scalar into scratchpad

ksvmulrf (rd),(rs1),rs2 ksvmulrf((void*) rd, (void*) rs1, (int) rs2); multiply vector + scalar into register

kdotpps (rd),(rs1),(rs2) kdotpps((void*) rd, (void*) rs1, (void*) rs2); vector dot product and post scaling

ksrlv (rd),(rs1),rs2 ksrlv((void*) rd, (void*) rs1, (int) rs2); vector logic shift within scratchpad

ksrav (rd),(rs1),rs2 ksrav((void*) rd, (void*) rs1, (int) rs2); vector arithmetic shift within scratchpad

krelu (rd),(rs1) krelu((void*) rd, (void*) rs1); vector ReLu within scratchpad

kvslt (rd),(rs1),(rs2) kvslt((void*) rd, (void*) rs1, (void*) rs2); compare vectors and create mask vector

ksvslt (rd),(rs1),rs2 ksvslt((void*) rd, (void*) rs1, (int) rs2); compare vector-scalar and create mask

kvcp (rd),(rs1) ksrlv((void*) rd, (void*) rs1); copy vector within scratchpad region

csr MVSIZE, rs1 mvsize((int) rs1); vector length setting

csr MVTYPE, rs1 mvtype((int) rs1); element width setting (8,16,32 bits)

csr MPSCLFAC, rs1 mpsclfac((int) rs1); post scaling factor (kdotpps instruction)

Electronics 2020, 9, x FOR PEER REVIEW 9 of 23

 242

4. VGG-16 implementation on Klessydra T1 243

Implementation workflow 244

VGG-16 is a deep Convolutional Neural Network (CNN) used in computer vision for 245
classification and detection tasks, consisting of 13 convolutional layers, 5 maxpooling layers, 2 fully-246
connected layers and one output/softmax layer. The original VGG-16 can label a 224x224 pixel RGB 247
image to one class out of 1000, using approximately 554MB space for 32-bit floating-point weights 248
and bias values. 249

 250
 251
 252
 253

Figure 6. Workflow for the VGG-16 implementation 254
 255
In the view of a realistic IoT edge embedded scenario, we implemented a VGG-16 derivation 256

based on the widely known CIFAR-10 dataset, targeting 10 classes and 32x32 pixel RGB images and 257
requiring 135 MB for weights and bias values. Table 3 reports the breakdown of the inference 258
algorithm layers constituting the Cifar-10 VGG-16. The layers 19 to 21 do not compute operations on 259
matrices, rather they implement dot-product operations between vectors of different sizes, similarly, 260
layer 22 implements a Softmax function on a vector of length 10. 261

Electronics 2020, 9, x FOR PEER REVIEW 10 of 23

 262

 263
 264
Figure 6 illustrates the workflow to implement a Cifar-10 VGG-16 application on the Klessydra 265

processor platform. Notably, since the target hardware platform supports fixed-point arithmetic, we 266
based the implementation on fixed-point weights and data. We set the integer part to 11 bits and the 267
fractional part to 21 bits, which leads an accuracy drop from 98.04% to 84.01% on the of output results 268
of the inference. We remark that re-training the network, as well as further algorithmic optimizations, 269
such as quantization and compression techniques, are not in the scope of the present work. The 270
verification phase of the network in fixed point arithmetic was done via Matlab Deep Learning 271
Toolbox. In order to be able to exploit the C language intrinsic functions of the Klessydra platform, 272
the original Matlab code for VGG-16 was ported to C code. This generic C code implementation was 273
used as the basis for the subsequent vectorization to exploit the hardware co-processor, and it was 274
also used to run the same algorithm on the reference platforms used for performance comparison. 275
We verified that no additional loss of quality is introduced by the proposed hardware architecture, 276
which produces an identical output to the C fixed-point version executed on a general purpose 277
computer. 278

Generic fixed-point C code porting 279

The generic C code used for convolutional layers is reported in Figure 7. Image convolutions are 280
implemented using the zero-padding technique: the feature map (FM) matrix is converted into a new 281

Table 2. Cifar-10 VGG-16 inference layers

Layer number Computation type Matrix size

1 Convolution 32x32

2 Convolution 32x32

3 Max Pool 16x16

4 Convolution 16x16

5 Convolution 16x16

6 Max Pool 8x8

7 Convolution 8x8

8 Convolution 8x8

9 Convolution 8x8

10 Max Pool 4x4

11 Convolution 4x4

12 Convolution 4x4

13 Convolution 4x4

14 Max Pool 2x2

15 Convolution 2x2

16 Convolution 2x2

17 Convolution 2x2

18 Max Pool 1x1

19 Fully connected 512x512

20 Fully connected 4096x4096

21 Fully connected 4096x4096

22 Softmax 10

Electronics 2020, 9, x FOR PEER REVIEW 11 of 23

matrix having two additional rows and columns of zeros on its borders, to avoid having filter 282
elements without corresponding pixel values when the centroid element of the 3x3 kernel slides along 283
the borders. As a general feature of the implementation, multiplications always need a pre-scaling 284
and post-scaling operation in order to re-align the fixed-point representation of the result. The 285
convolution2D() function performs the pre-scaling when creating the zero-padded matrix and also 286
pre-scales the kernel values. The convolution is carried out by nested for loops, by which the Kernel 287
map (KM) matrix slides across the input image with a stride of one element. The partial result of each 288
multiplication is pre-scaled and added to the corresponding output pixel, completing the multiply 289
and accumulate step. After the convolution is complete, a bias value is added to the output feature 290
map, and the ReLU non-linear activation function is executed across all the matrix elements to 291
conclude the convolutional layer. 292

 293
Figure 7. (a) Convolutional layer in generic C code; (b) Convolution2D function inner operations; (c) 294

Bias addition and ReLU function inner operations (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 295

 296
Figure 8 reports the C code adopted for Maxpool layers. The Maxpool layer halves the width and 297
height of the FMs, sliding across them a 2x2 window, with a stride equal to two, filtering all the values 298
except for the highest of the batch. In this way the most important features detected from the image 299
are passed at the successive layers. 300
 301

for (int i = 0; i < layer_outputs; i++){ //scan for every output matrix

output_pt = &output_fm[i][0][0];

for (int k = 0; k < layer_inputs ; k++){ //scan for every input matrix

for (int w=0; w<9; w++) kern.kernel_9[w]=layer_filters[(output_pt*9)+w];

convolution2D(MATRIX_SIZE, input_fm[k], kern.kernel_9, output_pt);

} //convolutions are completed

bias = layer_bias[i];

addBias(MATRIX_SIZE, output_pt, bias);

relu(MATRIX_SIZE, output_pt);

} //the output matrix is complete

for (i = 1; i < (size+2)-1; i++){

for (j = 1; j < (size+2)-1; j++){

output_pixel[(i-1)*size+(j-1)]

+= (FM_zeropad[i-1][j-1] * kernel[0]) >> post_scale ;

} //end of loop for first kernel element

//…

for (j = 1; j < (size+2)-1; j++){

output_pixel[(i-1)*size+(j-1)]

+= (FM_zeropad[i+1][j+1] * kernel[8]) >> post_scale ;

} //end of loop for last kernel element

} //end of loop "i"

//Adding the Bias value

for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)

matrix[j + size*i] += bias;

//ReLU function

for (int i = 0; i < size; i++)

for (int j = 0; j < size; j++)

if (input[j + size*i] < 0) {

input[j + size*i] = 0;

else continue;

a)

b) c)

Electronics 2020, 9, x FOR PEER REVIEW 12 of 23

 302

Figure 8. (a) Maxpool layer in generic C code; (b) Maxpool function inner operations (Layers: 3,6,10,14,18) 303

 304
 305

 306

Figure 9. (a) Fully-connected layer in generic C code; (b) Fully-connect inner operations; (c) Softmax 307

layer inner operations (Fully-connected Layer: 19,20,21; Softmax Layer: 22) 308
 309

The last three layers of the network are Fully Connected, corresponding to the code in Figure 9. 310
The fully-connected layer is implemented by a dot-product, doing the pre-scaling of the inputs and 311
post scaling of the results from every multiplication, needed for fixed point alignment. This is 312
accomplished by the fullyconnect() function after putting the weights into local buffers and adding a 313
bias to the output value. The results are passed through a Softmax layer, in which the network 314
produces the classification of the image with a given probability. 315

 316

Vectorized C code implementation 317

Program code vectorization targeting the Klessydra intrinsic function library is based on two 318
types of intervention: data movement to efficiently exploit the scratchpad memory sub-system, and 319
vector arithmetic operation exploiting the accelerator functional unit. 320

a) b)for (k = 0; k < layer_outputs; k++) {

input_pt = &input_fm[k][0][0];

output_pt = &output_fm[k][0][0];

maxpool(input_size, input_pt,

output_size, output_pt);

}

for (int m = 0; m < size_i; m+=2){

for (int n = 0; n < size_i; n+=2){

max = FM[n + size_i*m];

for (i = m; i < m+2; i++){

for (j = n; j < n+2; j++){

if (FM[j + size_i*i] > max)

max = FM[j + size_i*i];

}

}

output[index++] = max;

}

}

a)

b) c)

pt_layer_filters = &fully_connect_filter_array[0];

pt_layer_bias = &fully_connect_fibias_array[0];

input_pt = &input_vector[0];

for (i = 0; i < layer_outputs_elements; i++) {

getWeights(pt_layer_filters, number_of_elements, buffer);

output_vector[i] = fullyconnect(number_of_elements, input_pt, buffer);

bias = getBias(pt_layer_bias);

output_vector[i]+= bias;

} //the output vector is complete

for(int i=0; i<dim ; i++){

tmp1=vect_1[i]>>pre_scale;

tmp2=vect_2[i]>>pre_scale;

output += (tmp1*tmp2)>>post_scale;

}

return output;

for (int i = 0; i < vector_lenght; i++){

sum = sum + exp(output[i]);

}

for (int i = 0; i < vector_lenght; i++){

output[i] = exp(output[i])/SUM ;

}

Electronics 2020, 9, x FOR PEER REVIEW 13 of 23

A loop of kmemld() functions transfer the FM and KMs operands into two SPMs, that we refer to 321
as spmA and spmB, from the main memory. To implement zero-padding, when loading the feature 322
maps into spmA, we first reset the SPM content to zero and then proceed with loading bursts of data 323
from the FM rows, with exact offsets that grant the correctness of zero-padding. Figure 10(a) displays 324
the code executed to set up the FM in spmA. The offsets added to the pointers passed to the Kmemld() 325
function allow for the implementation zero-padding. The ksrav() function implements fixed-point 326
pre-scaling by performing an arithmetic right shift operation of a vector. It requires a pointer to the 327
vector, a pointer to store the resulting vector and a shift amount. Figure 10(b) similarly shows the 328
loading and pre-scaling of the 9-element KM into spmB and also the calling sequence of the 329
convolution2D() function. 330

 331
 332

 333

Figure 10. (a) Zero-padded, pre-scaled FM setup in SPM; (b) Pre-scaled KM collection in SPM and 334

calling sequence of convolution2D() (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 335
 336
The Convolution2D() function requires the addresses of the FM and KM first elements in spmA 337

and spmB, an address pointing to a region in spmD for temporary value storage, and the address to 338
store the output matrix in spmC. Figure 11 reports the internal operations, which are built upon 339
knowing which vectors are to be multiplied as the kernel map slides across all the input map pixels. 340
Taking into account which elements will be multiplied when the kernel completely slides across a 341
row of the FM, and the fact that this process is replicated for every row, we can multiply the FM row 342
values with the corresponding scalar from the KM, and update the output matrix (OM) row with a 343
vector of partial results. This process is straightforward and allows to fully exploit the vector 344
coprocessor capabilities by using matrix rows as vector operands. 345

 346

a)
for (int i = th_output_first_OM; i < th_output_last_OM; i++) {

for (int k = 0 ; k < input_per_layer; k++){

// LOADING & PRESCALING Feature Maps (FM)

CSR_MVSIZE(Row_lenght*SIZE_OF_INT);

for (int row_pointer=0; row_pointer<Row_lenght; row_pointer++){

kmemld(

(void*) ((int*) spmA + spm_off_A + zeropadding_offset),

(void*) ((int*) input_fm[k] + row_pointer*Row_length),

SIZE_OF_INT*(Row_lenght)

);

ksrav(

(void*) ((int*) spmA + spm_off_A + zeropadding_offest),

(void*) ((int*) spmA + spm_off_A + zeropadding_offest),

(int*)conv2D_scaling_factor

);

} //end loop "row_pointer"

// LOADING&PRESCALING Kernel Maps

CSR_MVSIZE(9*SIZE_OF_INT);

kmemld(

(void*) ((int*) spmB + spm_off_B),

(void*) ((int*) pt_to_kmaps +

(9*(i*input_per_layer)+ 9*(k))),

(9*SIZE_OF_INT)

);

ksrav(

(void*) ((int*) spmB + spm_off_B),

(void*) ((int*) spmB + spm_off_B),

(int*)conv2D_scaling_factor

);

convolution2D(

(void*) ((int*) spmC + mem_off_C),

(void*) ((int*) spmA + mem_off_A),

(void*) ((int*) spmB + mem_off_B),

(Row_lenght+2)

);

b)

Electronics 2020, 9, x FOR PEER REVIEW 14 of 23

 347

Figure 11. Convolution2D inner loops operations (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 348
 349
Referring to Figure 11, after setting the vector length, the loop with index “i” scans the rows of 350

the output matrix (OM); the FM_row_pointer loop and the column_offset loop iterate three times each 351
to cover the necessary vector-scalar product required for the 3x3 kernel matrix. The FM_offset variable 352
points to the proper FM row in spmA, from which the source vector is fetched. The ksvmulsc() 353
function performs the scalar-vector multiplication between an FM row vector and a KM scalar, and 354
the result is post-scaled by the ksrav() function for fixed-point alignment. The kaddv() function 355
performs the vector addition, updating the OM row in spmC. 356

After the convolutions are done, the OM is updated with the addition of the bias value (Figure 357
12(a)). A kmemld() is required to have the single scalar value in the scratchpad memory, then the 358
whole matrix is updated by ksvaddsc_v2(), which performs the vector plus scalar operation and 359
includes a fourth parameter to adjust the vector length prior to doing the calculation. 360

 361

 362

Figure 12. (a) Adding the bias to the Output Matrix; (b) Applying the ReLu function to the Output 363

Matrix (Layers: 1,2,4,5,7,8,9,11,12,13,15,16,17) 364
 365

As the last part of the convolutional layers, the ReLU non-linear function is applied to all the 366
OM pixels, which is stored back in main memory. The SPM region is cleared for the next iteration of 367
the loop by broadcasting a zero value into the target memory region with kbcast() (Figure 12(b)). 368

CSR_MVSIZE(Row_size);

for(i=Zeropad_off; i Row_size-Zeropad_off; i++){

k_element=0;

for(FM_row_pointer=-Zeropad_off; FM_row_pointer <= Zeropad_off; FM_row_pointer++){

for (column_offset=0; column_offset < kernel_size; column_offset++){

FM_offset= (i+FM_row_pointer)*Row_size+column_offset;

ksvmulsc(SPM_D, (SPM_A+FM_offset), (SPM_B + k_element++));

ksrav(SPM_D, SPM_D, scaling_factor);

OM_offset = (Row_size*i)+Zeropad_off;

kaddv((SPM_C+OM_offset),(SPM_C+OM_offset),SPM_D);

}

}

}

a) b)

//Preload the spm_B with the bias value

kmemld(

(void*)((int*)spmB + mem_off_B),

(void*)(pt_to_bs+offset),

(SIZE_OF_INT)

);

//update the whole matrix with the bias

ksvaddsc_v2(

(void*) ((int*) spmC + mem_off_C),

(void*) ((int*) spmC + mem_off_C),

(void*) ((int*) spmB + mem_off_B),

((Row_lenght+2)*(Row_lenght+2)

*SIZE_OF_INT)

);

krelu(

(void*)((int*)spmC + mem_off_C),

(void*)((int*)spmC + mem_off_C)

); //perform the ReLU on the output matrix

for (int row_pt=0; row_pt<run_SIZE; row_pt++){

kmemstr(

(void*)(&output_fm[i][0][0] + (row_pt*run_SIZE)),

(void*)((int*)spmC + mem_off_C +

((row_pt+1)*(run_SIZE+2)+1)),

SIZE_OF_INT*(run_SIZE)

);

} //end kmemstr loop for retrieving of the OM in main memory

kbcast((void*)((int*)spmC + mem_off_C), (void*)zero_value);

Electronics 2020, 9, x FOR PEER REVIEW 15 of 23

The maxpooling layer is executed on the OM in main memory, through conventional scalar 369
instructions, following the same implementation of the generic C code. 370

The fully-connected layer is comprised of a computation kernel based on dot products (Figure 371
13(a)). The source vector is moved into spmA as a single burst of data using the kmemld() function, 372
and pre-scaled by ksrav(). A loop handles the properly transposed loading of the neurons parameters 373
into spmB. The two vectors in the SPMs are processed by the dot-product function kdotpps(), which 374
includes a post-scaling of the product before accumulation for fixed point alignment. 375

After the end of the loop, the vector of bias values is moved into spmD then added to the output 376
vector of the layer. The result vector is processed by the krelu() function, and then it is stored back to 377
the main memory. The kbcast() function clears the spmC memory space (Figure 13(b)). 378

The softmax layer is executed in main memory through conventional scalar instructions, with 379
the same implementation of the generic C code. 380

 381

Figure 13. Fully-connected layer operations. (a) Dot-product kernel; (b) Bias addition and ReLu (Fully-382

connected Layer: 19,20,21). 383

 384
The exact execution of the vectorized VGG-16 inference program running on Klessydra T1 cores 385

was verified by comparing the full output produced by RTL simulation against the general purpose 386
VGG-16 fixed-point C code running on an X86 server. 387

 388

5. Performance and Power analysis 389

Setup 390

All Klessydra cores are compatible with the PULPino processor platform [20]. Yet, the 391

original PULPino memory subsystem cannot support the execution of the full VGG-16 392

inference algorithm, which requires 255 MB storage for the constant data consisting of the 393

neural network weights, and at least 1 MB memory space for global and local variables. Thus, 394

we extended the PULPino memory sub-system to include 256 MB of addressable physical 395

a)

b)

kmemld((void*)spmA, (void*)((int*)pt_to_vector), vector_lenght*SIZE_OF_INT);

CSR_MVSIZE(vector_lenght*SIZE_OF_INT);

ksrav((void*)spmA, (void*)spmA, scaling factor);

for (int loop_index = 0; loop_index < divisor_0; loop_index++){

kmemld(

(void*)((int*)spmB + mem_off_B),

(void*)((int*)pt_to_wh + (loop_index*vector_lenght)),

(vector_lenght*SIZE_OF_INT));

CSR_MVSIZE(vector_lenght*SIZE_OF_INT);

ksrav((void*)((int*)spmB + mem_off_B), (void*)((int*)spmB + mem_off_B), scaling factor);

kdotpps((void*)spmC + loop_index, (void *)((int*)spmA), (void*)((int*)spmB + mem_off_B

));

}

kmemld((void*)spmD, (void*)(pt_to_bs), (vector_lenght*SIZE_OF_INT));

kaddv((void*)spmC, (void*)spmC, (void*)spmD);

punt_out = &layer_output[0];

krelu((void*)spmC, (void*)spmC);

kmemstr((void*)punt_out, (void*)spmC, (vector_lenght*SIZE_OF_INT));

kbcast((void*)spmC, (void*)zero);

Electronics 2020, 9, x FOR PEER REVIEW 16 of 23

data memory, partitioned into a 1 cycle latency 1 MB RAM to be mapped on the FPGA 396

BRAM, and a 6 cycle latency 255MB space mapped on an external flash memory device, 397

connected via SPI interface. The 1 MB RAM is the physical mapping of the portion of the 398

data memory address space that is dedicated to dynamically allocated data. 399

The program memory is 32 KB mapped in the FPGA BRAM. 400

The modified PULPino platform featuring Klessydra T1 processor cores was synthesized on 401

a Kintex7 FPGA board using the Vivado tool flow. The design entry was the RTL 402

VHDL/SystemVerilog description of the platforms under analsysis. The C code of the 403

VGG16 application was compiled by the RISC-V gcc tool chain to produce the binary code 404

chain to produce the binary code executable by the target processors. The execution of the 405

application on the target processors was simulated both as RTL and post-synthesis gate level, 406

to verify the correct functionality and to extract the signal activity for power estimation in 407

Vivado. Table 4 reports the hardware resource utilization and the maximum clock frequency 408

producing zero or positive slack, for all the processor configurations under analysis. 409
 410

 411
The VGG-16 inference fixed-point code was also implemented on the following alternative 412

computing systems, to accomplish a comprehensive comparative analysis: 413
 An FPGA board featuring a soft-processor comprised of the extended PULPino platform 414

equipped with the DSP-accelerated RI5CY core, reaching 65 MHz clock frequency; 415
 An FPGA board featuring a soft-processor comprised of the extended PULPino platform 416

equipped with a Zeroriscy core [19], reaching 77 MHz clock frequency; 417
 An STM32 single board computer featuring an 84 MHz ARM Cortex M4 core with DSP 418

extension, 96 KB data memory; 419

Table 3. Area and frequency summary of the Klessydra-T cores equipped with to 1MB Data Mem.

Configuration
Hardware Utilization Top Freq.

[MHz] FF LUT DSP B-RAM LUT-RAM

SISD (M=1,F=1,D=1) 2482 7083 11 88 264 132.1

Pure SIMD (M=1,F=1,D=2) 2664 9010 15 88 264 127.0

Pure SIMD (M=1,F=1,D=4) 3510 11678 23 88 264 125.5

Pure SIMD (M=1,F=1,D=8) 4904 18531 39 88 264 112.6

Symmetric MIMD (M=3,F=3,D=1) 3509 10701 19 120 264 114.2

Symmetric MIMD+SIMD (M=3,F=3,D=2) 4659 16556 31 120 264 113.9

Symmetric MIMD+SIMD (M=3,F=3,D=4) 6746 27485 55 120 264 108.9

Symmetric MIMD+SIMD (M=3,F=3,D=8) 11253 52930 103 120 264 96.3

Heterogenous MIMD (M=3,F=1,D=1) 3025 10655 11 120 264 119.9

Heterogenous MIMD+SIMD (M=3,F=1,D=2) 3741 17161 15 120 264 115.7

Heterogenous MIMD+SIMD (M=3,F=1,D=4) 4767 25535 23 120 264 110.4

Heterogenous MIMD+SIMD (M=3,F=1,D=8) 7303 48066 39 120 264 91.5

No accl 1409 4079 7 72 176 194.6

RI5CY 1307 6351 6 72 0 65.1

Zeroriscy 1605 2834 1 72 0 77.2

Electronics 2020, 9, x FOR PEER REVIEW 17 of 23

 A Raspberry-PI 3b+ single board computer featuring a 1.4 GHz ARM Cortex A53 quad-420
core CPU, 16 KB L1 cache and 512 KB L2 cache, 1 GB LPDDR2 main memory; 421

 An x86 single board computer featuring a 3 GHz exa-core, 12-thread i7 CPU, 384 KB L1 422
cache, 1.5 MB L2 cache, 9 MB LLC, 8 GB DDR4 main memory. 423

 424

 425

Figure 14. System architecture organization of the compared boards 426

 427
The system architecture organization corresponding to the devices under comparison are sketched 428
in Figure 14. The read-only storage space dedicated to the VGG-16 weights is hosted by an SPI-429
connected Flash memory expansion board in all the considered architectures, and the weights are 430
preemptively loaded into the main RAM space for the inference algorithm execution. 431

Results 432

The first phase of performance analysis targeted the detailed account of the performance of each 433
coprocessor hardware microarchitecture. 434

 435

Figure 15 Absolute execution time [s] of the best performing accelerated configuration and of the non-436

accelerated T0 core, per layer. 437
 438
 439

Figure 15 shows the execution time obtained by the best performing of all the explored T1 440
coprocessor configurations and by the non-accelerated T0 core, for each VGG-16 layer. The results 441
give evidence to the fact that the performance of the coprocessor hardware configurations varies with 442
the algorithm layer it executes. The Symmetrical MIMD configurations with D ranging between 2 443

FLASH

D Mem

L2

L1

co
re

co
re

co
re

co
re

co
re

co
re

FLASH

D Mem

L2

L1

FLASH

D Mem

co
re

co
re

co
re

co
re

co
re

D
SP

FLASH

D Mem

co
re

V
EC

SPM

FLASH

D Mem

co
re

FLASH

D Mem

co
re

D
SP

i7 A53
M4
(STM32)

RI5CY
(PULPino)

Zeroriscy
(PULPino)

Klessydra T1
(PULPino)

L3

0.000

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total

ex
ec

u
ti

o
n

 ti
m

e
 [

s]

layer

Best performing coprocessor config. T0 (non-accelerated core)

(M
=3

,F
=3

,D
=2

)

(M
=3

,F
=3

,D
=2

)

(M
=3

,F
=3

,D
=2

)

(M
=

3
,F

=
3

,D
=

2
)

(M
=3

,F
=3

,D
=2

)

(M
=3

,F
=3

,D
=8

)

(M
=3

,F
=3

,D
=8

)

(M
=1

,F
=1

,D
=1

)

(M
=3

,F
=3

,D
=4

)

(M
=3

,F
=3

,D
=4

)

(M
=1

,F
=1

,D
=1

)

(M
=3

,F
=3

,D
=8

)

(M
=1

,F
=1

,D
=1

)

(M
=3

,F
=3

,D
=4

)

(M
=3

,F
=3

,D
=4

)

(M
=3

,F
=3

,D
=4

)

(M
=

1
,F

=
1

,D
=1

)

(M
=

1
,F

=
1

,D
=

1
)

(M
=3

,F
=3

,D
=1

)

(M
=1

,F
=1

,D
=4

)

(M
=3

,F
=1

,D
=1

)

(M
=

1
,F

=
1

,D
=

4
)

(M
=3

,F
=3

,D
=4

)

Electronics 2020, 9, x FOR PEER REVIEW 18 of 23

and 8 result to be the best performing for the convolutional layers, while the pure SIMD 444
configurations with D = 4 results to be the optimal choice for the largest Fully Connected layers. 445
Notably, the Maxpool and Softmax layers exhibit worse execution time in the accelerated cores than 446
with in the non-accelerated T0 core, because in the present software implementation they are 447
executed as scalar computation, and so the data transfer to/from the SPMs constitutes an overhead 448
with no corresponding vector computation acceleration. Nonetheless, the relative impact of those 449
layers on the overall execution time is negligible, as shown by the logarithmic scale. 450
Figure 16 presents the total VGG16 inference execution time speed-up obtained by each coprocessor 451
configuration over the non-accelerated T0 core. The diagram also includes the ideal speed-up 452
obtained assuming to use the optimal configuration for each layer. Figure 17 represents the hardware 453
cost of the configurations that exhibit the highest speed-up, normalized to the non-accelerated T0 454
core hardware cost, for a direct comparison. The resulting hardware utilization efficiency is notable, 455
as the maximum speed-up is over 50X, while the maximum hardware cost overhead is well below 456
15X. 457

 458
 459

 460

Figure 16. Total execution time speed-up over non-accelerated core obtained by each coprocessor 461

configuration, along with the speed-up obtained by using the optimal configuration for each layer 462
 463
 464
 465
 466
 467

1.0

25.7

31.6

35.4
33.1

45.3

51.9
53.5

50.0

44.1

49.2
50.9

43.6

56.2

0

10

20

30

40

50

60

Execution time speed-up

Electronics 2020, 9, x FOR PEER REVIEW 19 of 23

 468

Figure 17 Hardware overhead normalized to the non-accelerated T0 core. 469
 470

Figure 18 shows the total energy consumed by the most efficient of all the explored T1 coprocessor 471
configurations and by the non-accelerated T0 core, for each VGG-16 layer. Again, the optimal 472
coprocessor configuration for energy efficiency depends on the layer being executed. Optimal energy 473
efficiency, unlike absolute performance, swings between Pure SIMD and Symmetrical MIMD 474
configurations. Similarly to the execution time analysis, for pure scalar computation layers the energy 475
consumption worsens in the vector-accelerated microarchitecture, due to the SPM data transfer 476
overhead. Yet, the overall impact of those layers on the total energy is negligible as shown by the 477
logarithmic scale. 478

Figure 19 gives significance of the total energy saving obtained by each coprocessor 479
configuration over the non-accelerated T0 core. The energy saving is expressed as the fraction of the 480
energy consumed in the accelerated core over the energy consumed in the non-accelerated core, 481
obtaining energy consumption between 6.4% and 4% of the non-accelerated core (energy saving 482
between 93.6% and 96%). The diagram also includes the ideal energy reduction obtained assuming 483
to use the optimal configuration for each layer. 484

Figure 16 and Figure 19 evidence the ideal performance limit achievable by dynamically 485
changing the coprocessor microarchitecture at no overhead, via software controlled Dynamic Partial 486
Reconfiguration (DPR) of the FPGA, so that the system always uses the optimal hardware scheme for 487
speed or energy efficiency according to the computation kernel being executed. The storage, power 488
and time overhead associated to DPR is not included in the analysis, and should be the subject of 489
specific experiments. 490

The second phase of performance analysis aimed at comparing the efficiency of the proposed 491
soft-processor architecture with the alternative hardware architecture solutions for the execution of 492
the same application. In this analysis, the proposed solution consisted of the extended PULPino 493
platform equipped with the Klessydra T1 core + optimal vector coprocessor for each layer being 494
executed. 495

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

01.
76

1.
74

1
.5

7

1.
22 1.
50

3.
48

4.
54 5.

57

1.
22 1.
50

5
.1

8

11
.7

8

5.
57

1.
67

1.
50

7
.9

9

12
.9

8 14
.7

1

1.
67

1.
50

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

FF LUT DSP B-RAM LUT-RAM

N
O

R
M

A
LI

ZE
D

 H
W

 C
O

ST

FPGA ELEMENTS

T0 (non-accelerated core) SISD SIMD=8 Het. MIMD=8 Symm. MIMD=8

Electronics 2020, 9, x FOR PEER REVIEW 20 of 23

 496
 497

Figure 18 Total energy consumption [J] of the most energy efficient coprocessor configuration and of the 498

non-accelerated T0 core, per layer 499
 500
 501

 502

Figure 19. Energy reduction factor with respect to non-accelerated core (lower is better) obtained by each 503

coprocessor configuration, along with the energy obtained by using the optimal configuration for each layer 504
 505

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total

To
ta

l E
n

er
gy

 [
J]

layer

Most energy efficient coprocessor config. T0 (non-accelerated core)

(M
=3

,F
=3

,D
=2

)

(M
=

3
,F

=
3

,D
=2

)

(M
=3

,F
=3

,D
=2

)

(M
=3

,F
=3

,D
=2

)

(M
=3

,F
=3

,D
=2

)

(M
=1

,F
=1

,D
=8

)

(M
=1

,F
=1

,D
=8

)

(M
=1

,F
=1

,D
=1

)

(M
=

3
,F

=
3

,D
=4

)

(M
=3

,F
=3

,D
=4

)

(M
=1

,F
=1

,D
=1

)

(M
=

3
,F

=
3

,D
=

2
)

(M
=

1
,F

=
1

,D
=

1
)

(M
=3

,F
=3

,D
=4

)

(M
=3

,F
=3

,D
=4

)

(M
=3

,F
=3

,D
=4

)

(M
=1

,F
=1

,D
=1

)

(M
=1

,F
=1

,D
=1

)

(M
=

3
,F

=
3

,D
=

1
)

(M
=1

,F
=1

,D
=4

)

(M
=3

,F
=1

,D
=1

)

(M
=

1
,F

=
1

,D
=4

)

(M
=3

,F
=3

,D
=4

)

100.0%

6.3%

5.1%
4.7%

5.5% 5.1%
4.4% 4.4%

5.7% 5.5%
4.8% 5.0%

6.6%

4.0%

1.0%

10.0%

100.0%

Energy reduction factor

Electronics 2020, 9, x FOR PEER REVIEW 21 of 23

Table 5 summarizes the performance comparison results, expressed as total execution time, total 506
energy consumption, and average energy consumed per algorithmic operation. Algorithmic 507
operations are the data multiplications and additions that are inherent to the algorithm being 508
computed, and do not depend on the actual software implementation. The absolute execution time 509
obviously favors high-end computing devices, yet the results give evidence of the effectiveness of the 510
Klessydra T1 customizable vector coprocessor sub-system with respect to other single-core PULPino 511
soft-processor FPGA implementations. Also, the energy efficiency results show the potential 512
advantage of a Klessydra T1 vector-accelerated soft-processor FPGA implementation, with respect to 513
general purpose single-board computers. 514

 515

6. Conclusion 516

The validation of the VGG-16 inference output data produced by Klessydra processors against 517
conventional processors demonstrated how the Klessydra open-source infrastructure can be used for 518
implementing configurable RISC-V soft-cores equipped with hardware acceleration for vector 519
computing on FPGA. The detailed porting of the target application routines has been documented in 520
this work.Performance results show the effectiveness of the Klessydra microarchitecture scheme, 521
built upon interleaved multi-threading and vector coprocessor hardware acceleration, with respect 522
to other FPGA-based single-core solutions. Looking at energy efficiency, the Klessydra FPGA soft-523
core solution shows superior performance with respect to commercial single-board computers that 524
may be used as IoT extreme-edge devices. 525

The results of the performance analysis conducted on the Klessydra T1 vector coprocessor 526
schemes demonstrate the dependency of the optimal hardware configuration on the algorithm layer 527
being executed. This evidence opens the way to the development of software configurable 528
accelerators and further to the implementation of self-adapting coprocessor microarchitectures in IoT 529
extreme-edge nodes. 530

Supplementary Materials: The Klessydra processor core family and accelerators are openly available online at 531
https://www.github.com/klessydra 532

References 533

1. Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F. and Olivieri, M., 2017, September. The 534
microarchitecture of a multi-threaded RISC-V compliant processing core family for IoT end-nodes. In 535
International Conference on Applications in Electronics Pervading Industry, Environment and 536
Society(pp. 89-97). Springer, Cham. 537

2. Olivieri, M., Cheikh, A., Cerutti, G., Mastrandrea, A., and Menichelli, F., "Investigation on the optimal 538
pipeline organization in RISC-V multi-threaded soft processor cores", In 2017 New Generation of CAS 539
(NGCAS), pp. 45-48. IEEE, 2017. 540

3. RISC-V Instruction Set specifications. [Online] “https://riscv.org/specifications/” 541

Table 5. Performance comparison with alternative solutions

Processor Time [s]
Energy

[J]

Energy per

op [pJ/op]

Core i7 PC board 0.08 2.90 21

Cortex A53 Raspberry Pi 3 0.89 2.32 17

Cortex M4 STM32 117.78 7.77 55

RI5CY PULPino on FPGA 444.30 40.06 285

Zeroriscy PULPino on FPGA 548.04 38.90 277

Klessydra-T1 PULPino on FPGA 7.91 1.74 12

https://riscv.org/specifications/

Electronics 2020, 9, x FOR PEER REVIEW 22 of 23

4. Cheikh, A., Sordillo, S., Mastrandrea, A., Menichelli, F. and Olivieri, M., 2019, September. Efficient 542
Mathematical Accelerator Design Coupled with an Interleaved Multi-threading RISC-V 543
Microprocessor. In International Conference on Applications in Electronics Pervading Industry, 544
Environment and Society (pp. 529-539). Springer, Cham. 545

5. Samie, F.; Bauer, L.; Henkel, J. “From Cloud Down to Things: An Overview of Machine Learning in 546
Internet of Things”. IEEE Internet Things J. 2019, 4662, 1. 547

6. Gautschi, M., Schiavone, P., Traber,A., Loi, I., Pullini,A., Rossi, D., Flamand, E., Gürkaynak, F., 548
Benini, L., "Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices." IEEE 549
Trans. on Very Large Scale Integration (VLSI) Systems 25, no. 10 (2017): 2700-2713. 550

7. Seo, S., Dreslinski, R.G., Woh, M., Chakrabarti, C., Mahlke, S. and Mudge, T., 2010, August. Diet SODA: 551
A power-efficient processor for digital cameras. In Proceedings of the 16th ACM/IEEE international 552
symposium on Low power electronics and design (pp. 79-84). 553

8. Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2016. Eyeriss: An energy-efficient reconfigurable 554
accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits, 52(1), pp.127-555
138. 556

9. Moini, S., Alizadeh, B., Emad, M. and Ebrahimpour, R., 2017. A resource-limited hardware accelerator 557
for convolutional neural networks in embedded vision applications. IEEE Transactions on Circuits and 558
Systems II: Express Briefs, 64(10), pp.1217-1221. 559

10. Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.C., Liu, C.C. and Chang, M.C.F., 2017. A reconfigurable streaming 560
deep convolutional neural network accelerator for Internet of Things. IEEE Transactions on Circuits 561
and Systems I: Regular Papers, 65(1), pp.198-208. 562

11. Conti, Francesco, and Luca Benini. "A ultra-low-energy convolution engine for fast brain-inspired 563
vision in multicore clusters." In 2015 Design, Automation & Test in Europe Conference & Exhibition 564
(DATE), pp. 683-688. IEEE, 2015. 565

12. Meloni, P., Deriu, G., Conti, F., Loi, I., Raffo, L. and Benini, L., 2016, May. Curbing the roofline: a 566
scalable and flexible architecture for CNNs on FPGA. In Proceedings of the ACM International 567
Conference on Computing Frontiers (pp. 376-383). 568

13. Wu, N., Jiang, T., Zhang, L., Zhou, F. and Ge, F., 2020. A Reconfigurable Convolutional Neural 569
Network-Accelerated Coprocessor Based on RISC-V Instruction Set. Electronics, 9(6), p.1005. 570

14. Watanabe, D., Yano, Y., Izumi, S., Kawaguchi, H., Takeuchi, K., Hiramoto, T., Iwai, S., Murakata, M. 571
and Yoshimoto, M., 2020. An Architectural Study for Inference Coprocessor Core at the Edge in IoT 572
Sensing. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems 573
(AICAS) (pp. 305-309). IEEE. 574

15. Wu, Y., Wang, J.J., Qian, K., Liu, Y., Guo, R., Hu, S.G., Yu, Q., Chen, T.P., Liu, Y. and Rong, L., 2020. 575
An energy-efficient deep convolutional neural networks coprocessor for multi-object detection. 576
Microelectronics Journal, p.104737. 577

16. Chang, M.C., Pan, Z.G. and Chen, J.L., 2017, October. Hardware accelerator for boosting convolution 578
computation in image classification applications. In 2017 IEEE 6th Global Conference on Consumer 579
Electronics (GCCE) (pp. 1-2). IEEE. 580

17. Lima, P., Vieira, C., Reis, J., Almeida, A., Silveira, J., Goerl, R. and Marcon, C., 2020, March. Optimizing 581
RISC-V ISA Usage by Sharing Coprocessors on MPSoC. In 2020 IEEE Latin-American Test Symposium 582
(LATS) (pp. 1-5). IEEE. 583

18. Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.C., Liu, C.C. and Chang, M.C.F., 2017. A reconfigurable streaming 584
deep convolutional neural network accelerator for Internet of Things. IEEE Transactions on Circuits 585
and Systems I: Regular Papers, 65(1), pp.198-208. 586

19. Schiavone P.D., Conti F., Rossi D., Gautschi M., Pullini A., Flamand E., Benini L., Slow and steady wins 587
the race? a comparison of ultra-low-power risc-v cores for internet-of-things applications. In 2017 27th 588
International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS) 589
2017 Sep 25 (pp. 1-8). IEEE. 590

20. Traber A, Gautschi M., PULPino: datasheet. ETH Zurich, University of Bologna. 2017 Jun 9. 591
21. Blasi L, Vigli F, Cheikh A, Mastrandrea A, Menichelli F, Olivieri M. A RISC-V Fault-Tolerant 592

Microcontroller Core Architecture Based on a Hardware Thread Full/Partial Protection and a Thread-593
Controlled Watch-Dog Timer. InInternational Conference on Applications in Electronics Pervading 594
Industry, Environment and Society 2019 Sep 11 (pp. 505-511). Springer, Cham. 595

Electronics 2020, 9, x FOR PEER REVIEW 23 of 23

22. European Processor Intiative (EPI), EU H2020 research and innovation programme GA No 826647, 596
[Online] “https://www.european-processor-initiative.eu/project/epi/”. 597

23. A. Cheikh, S. Sordillo, A. Mastrandrea, F. Menichelli, G. Scotti and M. Olivieri, "Klessydra-T: Designing 598
Vector Coprocessors for Multi-Threaded Edge-Computing Cores," in IEEE Micro, doi: 599
10.1109/MM.2021.3050962. 600

24. Online: https://www.sifive.com/blog/risc-v-vector-extension-intrinsic-support 601
25. M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner and L. Benini, "Ara: A 1-GHz+ Scalable and Energy-602

Efficient RISC-V Vector Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI," in 603
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 530-543, Feb. 2020 604

26. C. Chen et al., "Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High 605
Performance RISC-V Processor with Vector Extension : Industrial Product," 2020 ACM/IEEE 47th 606
Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 2020, pp. 52-64 607

27. J. C. Wright et al., "A Dual-Core RISC-V Vector Processor With On-Chip Fine-Grain Power 608
Management in 28-nm FD-SOI," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 609
28, no. 12, pp. 2721-2725, Dec. 2020 610

28. M. Johns and T. J. Kazmierski, "A Minimal RISC-V Vector Processor for Embedded Systems," 2020 611
Forum for Specification and Design Languages (FDL), Kiel, Germany, 2020 612

29. Y. Kimura, T. Kikuchi, K. Ootsu and T. Yokota, "Proposal of Scalable Vector Extension for Embedded 613
RISC-V Soft-Core Processor," 2019 Seventh International Symposium on Computing and Networking 614
Workshops (CANDARW), Nagasaki, Japan, 2019, pp. 435-439 615
 616

© 2021 by the authors. Submitted for possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

 617

https://www.european-processor-initiative.eu/project/epi/
https://www.sifive.com/blog/risc-v-vector-extension-intrinsic-support

