
energies

Review

The Road to Developing Economically Feasible Plans for Green,
Comfortable and Energy Efficient Buildings

Seyedeh Farzaneh Mousavi Motlagh 1 , Ali Sohani 2 , Mohammad Djavad Saghafi 1, Hoseyn Sayyaadi 2

and Benedetto Nastasi 3,*

����������
�������

Citation: Mousavi Motlagh, S.F.;

Sohani, A.; Djavad Saghafi, M.;

Sayyaadi, H.; Nastasi, B. The Road to

Developing Economically Feasible

Plans for Green, Comfortable and

Energy Efficient Buildings. Energies

2021, 14, 636. https://doi.org/

10.3390/en14030636

Academic Editor: Jae-Weon Jeong

Received: 4 January 2021

Accepted: 24 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Architecture, Architecture School, College of Fine Arts, University of Tehran,
1415 564583 Tehran, Iran; farzanehmousavim@gmail.com (S.F.M.M.); djsaghafifr@yahoo.fr (M.D.S.)

2 Lab of Optimization of Thermal Systems’ Installations, Faculty of Mechanical Engineering-Energy Division,
K.N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq.,
1999 143344 Tehran, Iran; alisohany@yahoo.com (A.S.); sayyaadi@kntu.ac.ir (H.S.)

3 Department of Planning, Design, Technology of Architecture, Sapienza University of Rome, Via Flaminia 72,
00196 Rome, Italy

* Correspondence: benedetto.nastasi@outlook.com

Abstract: Owing to the current challenges in energy and environmental crises, improving buildings,
as one of the biggest concerns and contributors to these issues, is increasingly receiving attention
from the world. Due to a variety of choices and situations for improving buildings, it is important
to review the building performance optimization studies to find the proper solution. In this paper,
these studies are reviewed by analyzing all the different key parameters involved in the optimization
process, including the considered decision variables, objective functions, constraints, and case studies,
along with the software programs and optimization algorithms employed. As the core literature, 44
investigations recently published are considered and compared. The current investigation provides
sufficient information for all the experts in the building sector, such as architects and mechanical engi-
neers. It is noticed that EnergyPlus and MATLAB have been employed more than other software for
building simulation and optimization, respectively. In addition, among the nine different aspects that
have been optimized in the literature, energy consumption, thermal comfort, and economic benefits
are the first, second, and third most optimized, having shares of 38.6%, 22.7%, and 17%, respectively.

Keywords: daylighting; economic benefits; environmental impact; multi-objective simulation-based
optimization; retrofitting building energy consumption; thermal-visual comfort

1. Introduction

During recent years, the standard of living has raised increasingly [1–4]. Moreover,
the issues such as energy and environmental crises have led to growing concerns about
the future of human-beings on the planet [5–8]. Since there are a lot of buildings in
different applications all around the world, any improvement in the building sector, in
which all the previously mentioned parameters are involved, is greatly appreciated by the
entire world [9–11]. Different experts, including architects, energy engineers, mechanical
engineers, etc., with different points of view, corporate in the design process [12]. This
means that acquiring a desirable condition is a really challenging matter [13–16]. As a
solution, optimization approaches, which are systematic ways to deal with such problems,
have been increasingly applied [17].

Depending on the project goal and expected requirements, single-objective optimiza-
tion (SOO) or multi-objective optimization (MOO) can be employed. In SOO, only one
objective is minimized or maximized, whereas in MOO two or more than two objective
functions are enhanced, simultaneously.

Optimization problems can be categorized in different ways, for example, based on
the optimized objective functions, considered decision variables or constraints, and so on.
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In order to perform further studies, being well informed about the investigations done
in the past is of great importance. The more comprehensive information provided from the
literature, the higher quality the future studies will be.

Investigating the review studies in the field of building performance optimization
(BPO) clarified that, despite providing valuable information, these studies also have
some drawbacks. The main drawbacks of the review articles done recently are collected
in Table 1.

Table 1. List of the recent review studies in the field of building performance optimization (BPO).

Study Year The Main Drawbacks

Wong and Zhou [18] 2015
• The research aimed to provide an overview of the ways to improve buildings environmental

sustainability in their life cycle. The studies that optimized other objectives were
not investigated.

Carlucci et al. [19] 2015
• Visual comfort definitions, and its constraints and indicators were well defined; however,

details about other building aspects, decision variables, employed algorithms, and software
were not reported.

Shi et al. [20] 2016

• This paper discussed the literature from the architectural perspective. Other perspectives
were not taken into account.

• The investigation did not classify different optimization approaches.
• The constraints imposed to the optimization problems were not mentioned.
• Studies which employed both MOO and SOO were not compared to the ones which

conducted either MOO or SOO.

Bonyadi and
Michalewicz [21] 2017

• Only a brief description about the previous review studies was presented. It means that the
research papers were not taken into account.

• The review was limited to the particle swarm algorithm; other algorithms were not taken
into account.

• MOO problems were not studied.
• The information about decision variables, constraints, and other key parameters in an

optimization problem were not presented.

Kumar et al. [22] 2017 • Methods and software programs were the only investigated parameters.

Tian et al. [23] 2018

• The review merely covered passive design buildings.
• There is the lack of reviewing decision variables, objective functions, constraints, software,

and so on.
• The review was written from the architectural point of view and there is no sufficient

information for the other experts.

Ekici et al. [24] 2019

• Among all the key parameters, only the building aspects which were considered as the
objectives were discussed.

• Among evolutionary, juts swarm algorithms were investigated.
• The consideration of decision variables was restricted to form-finding ones.

Alothaimeen and
Arditi [25] 2019

• SOO studies were not reviewed.
• The investigated MOO publications were in the range of 2012–2016, which is not up to date.
• Explanations about some important parameters of an optimization problem, such as the

considered decision variables and employed software programs were not given.

Joench et al. [26] 2019
• The paper was dedicated to review the optimization methods; there was no explanation

about other involved aspects including the considered objective functions, decision
variables, constraints, etc.
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Considering the mentioned gap of study, which can be identified from Table 1, in this
paper, the investigations done in the field of BPO are discussed from different viewpoints:

• The optimization problems are classified to SOO and MOO, and they are compared to
each other. In addition, the studies that evaluated both SOO and MOO are also taken
into account.

• All the key parameters in an optimization problem are considered and the investi-
gations are analyzed based on each of them, separately. The key parameters include
objective functions, decision variables, and constraints. There have been nine dif-
ferent aspects from which objective functions have been selected so far. The review
investigates all the nine aspects completely and in detail.

• The studies are also categorized and investigated based on other criteria, such as
optimization algorithms and software programs. Moreover, software programs are
divided into building simulation-based and optimization tools.

• The review is written in a way that it provides information for not only architects but
also other experts in the building sector.

Therefore, this study serves as a reference to acquire brief but detailed information
for researchers in the future to achieve better results in their further studies. Having the
information about the previously done investigations reported in this review will help the
researchers who are going to conduct BPO studies to select the key parameters in a more
efficient and comprehensive way. Moreover, they will not forget some points which make
the optimization results unfavorable from some aspects.

This paper has the following structure. After this part, i.e., the introduction, the
core literature is introduced. Then, it is analyzed from different aspects, including the
considered objective functions, decision variables, constraints, and the case study. Next,
the algorithms employed for optimization and the software used are reviewed, and after
that, conclusions are presented.

2. Paper Searching Methodology

This review concentrates on investigations within the building performance opti-
mization (BPO) framework found from Scopus and Science Direct databases. Since the
optimization algorithms and computer infrastructure have been significantly enhanced
during these years, the studies done in the years before 2015 were usually simple, and for
that reason, only recent studies that were published in the period of 2015 to 2019 were
taken into account. Moreover, some keywords, such as “multi-objective optimization”,
“single-objective optimization”, “simulation-based optimization”, “zero-energy buildings”,
“energy consumption”, “thermal comfort”, “daylighting”, “visual comfort”, and “life cycle
cost” were used to select the relevant studies. This search method resulted in collecting 44
studies that were considered as the core literature.

3. Overview of the Studies Selected

Here, a general classification of the core literature is presented based on the year
and the optimization approach. As is seen in Table 2, two different approaches have
been followed in the optimization processes of these studies, including single-objective
optimization (SOO) and multi-objective optimization (MOO). Moreover, in some of the
reviewed studies, the results of these two approaches have been compared with each other.
Such investigations are presented in the category of “single-objective versus multi-objective
approach” in Section 3.3.
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Table 2. The core literature.

Study Year
Optimization Approach

SOO MOO

Abdallah and El-Rayes [27] 2015
√

Mangkuto et al. [28] 2016
√

Ferdyn-Grygierek and Grygierek [29] 2017
√

Baglivo et al. [30] 2017
√

Bamdad et al. [31] 2017
√

Zhou et al. [32] 2018
√

Li et al. [33] 2018
√

Sghiouri et al. [34] 2018
√

Xue et al. [35] 2019
√

Echenagucia et al. [36] 2015
√

Yu et al. [37] 2015
√

Carlucci et al. [38] 2015
√

Ascione et al. [39] 2015
√

Zhang et al. [40] 2016
√

Gadelhak and Lang [41] 2016
√

Pan et al. [42] 2016
√

Ascione et al. [43] 2017
√

Bingham et al. [44] 2017
√

Zhang et al. [45] 2017
√

Mostavi et al. [46] 2017
√

Bre and Fachinotti [47] 2017
√

Hamdy and Mauro [48] 2017
√

Wu et al. [49] 2018
√

Lin et al. [50] 2018
√

Grygierek and Ferdyn-Grygierek [51] 2018
√

Schito et al. [52] 2018
√

Gou et al. [53] 2018
√

Harkouss et al. [54] 2018
√

Sohani et al. [55] 2019
√

Zemero et al. [56] 2019
√

Yi [57] 2019
√

Hong et al. [58] 2019
√

Kirimtat et al. [59] 2019
√

Ascione et al. [60] 2019
√

Zhai et al. [61] 2019
√

Si et al. [62] 2019
√

Sharif and Hammad [63] 2019
√

Fang and Cho [64] 2019
√

Sohani et al. [65] 2019
√

Lu et al. [66] 2015
√ √

Delgarm et al. [67] 2016
√ √

Delgarm et al. [68] 2016
√ √

Delgarm et al. [69] 2016
√ √

Xiong et al. [70] 2019
√ √

As is shown in Figure 1, about 30% of the selected studies were done in 2019. This
demonstrates that there is a growing interest in the BPO topics among researchers worldwide.

3.1. Single-Objective Optimization (SOO)

In the optimization process, based on the SOO approach, only one aspect is optimized.
In order to achieve better results, the researcher may consider other aspects than the
constraints which are very likely to have the readers confused with the objective functions
(e.g., [27,30,33,35]). It should be noted that Mangkuto et al. [28] claimed the MOO approach
was proposed in their paper. In fact, in that paper, in the optimization process minimizing
lighting energy demand was subjected to the limitation of five daylight indicators. This
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means that lighting energy demand was the only objective function, and the five daylight
indicators were the constraints of the SOO.

Energies 2021, 14, x FOR PEER REVIEW 5 of 28 
 

 

Sharif and Hammad [63] 2019  √ 
Fang and Cho [64] 2019  √ 
Sohani et al. [65] 2019  √ 

Lu et al. [66] 2015 √ √ 
Delgarm et al. [67] 2016 √ √ 
Delgarm et al. [68] 2016 √ √ 
Delgarm et al. [69] 2016 √ √ 

Xiong et al. [70] 2019 √ √ 

 
Figure 1. Comparing the number of applicable studies done in each year. 

3.1. Single-Objective Optimization (SOO) 
In the optimization process, based on the SOO approach, only one aspect is opti-

mized. In order to achieve better results, the researcher may consider other aspects than 
the constraints which are very likely to have the readers confused with the objective func-
tions (e.g., [27,30,33,35]). It should be noted that Mangkuto et al. [28] claimed the MOO 
approach was proposed in their paper. In fact, in that paper, in the optimization process 
minimizing lighting energy demand was subjected to the limitation of five daylight indi-
cators. This means that lighting energy demand was the only objective function, and the 
five daylight indicators were the constraints of the SOO. 

3.2. Multi-Objective Optimization (MOO) 
MOO is used to optimize different objectives at the same time. Reviewing the studies 

belong to this group shows that, in such investigations, two, three, or four objectives were 
optimized simultaneously. In order to choose the objective functions, three different types 
of approaches have been employed:  
• Type 1: optimizing two or more than two indicators of one aspect (e.g., [36,40]); 
• Type 2: optimizing one indicator of two or more than two aspects (e.g., [37,39,41]); 
• Type 3: a mixture of both (e.g., [38,55,57]). 

Figure 2 represents that the majority of the reviewed studies, with the share of 77%, 
employed type 2 of MOO.  

0 2 4 6 8 10 12 14

2015

2016

2017

2018

2019

Number of Papers

Y
ea

r

Figure 1. Comparing the number of applicable studies done in each year.

3.2. Multi-Objective Optimization (MOO)

MOO is used to optimize different objectives at the same time. Reviewing the studies
belong to this group shows that, in such investigations, two, three, or four objectives were
optimized simultaneously. In order to choose the objective functions, three different types
of approaches have been employed:

• Type 1: optimizing two or more than two indicators of one aspect (e.g., [36,40]);
• Type 2: optimizing one indicator of two or more than two aspects (e.g., [37,39,41]);
• Type 3: a mixture of both (e.g., [38,55,57]).

Figure 2 represents that the majority of the reviewed studies, with the share of 77%,
employed type 2 of MOO.
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3.3. Single-Objective Versus Multi-Objective Optimization

In these studies, different objectives have been optimized independently by SOO. Since
different objectives usually behave contrary to each other, the impact of other objectives
might be considered as the constraints of SOO (e.g., [70]). On the other hand, MOO has
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been also conducted, and the results of SOO considering different objective functions are
compared to the MOO outcome.

4. Overview of the Selected Studies

In this part, the core literature is analyzed based on three key parameters in an
optimization process, namely, objective functions, decision variables, and constraints. As
is shown in Figure 3, in the BPO procedure, there is a strong connection among these
three parameters.
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4.1. Objective Functions

Reviewing the studies shows that nine different aspects have been considered in the
optimization process. Each of these aspects has been assessed with some indicators, and
the objective functions have been chosen among them. In the MOO approach, two or more
than two indicators were chosen and defined. As it was mentioned in Section 3.2, these
indicators might belong to the same aspects or not.

These aspects have been taken into account in the reviewed studies:

• Energy consumption (E.C);
• Thermal comfort (T.C);
• Economic benefit (E.B);
• Visual comfort (V.C);
• Environmental impact (E.I);
• Shape (S.);
• Artwork preservation risk (A.P.R);
• Aesthetical perception (A.P);
• Water consumption (W.C).

As it is shown in Figure 4, energy consumption indicators were the dominant objec-
tives in the reviewed studies, accounting for 38.6%. Thermal comfort and economic benefit
indicators, with 22.7% and 17.0%, were the second and third most-optimized objectives,
respectively. The aspects and objective functions considered in each study are presented
in Table 3.
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Table 3. The aspects which have been considered as the optimization objective functions in the core literature.

Study
Considered Aspect

Objective Function
E.C T.C E.B V.C E.I S. A.P.R A.P W.C

Abdallah and El-Rayes [27] 3 3
Min. Building Environmental

Impacts Index

Mangkuto et al. [28] 3
Min. Total Annual Lighting

Energy Demand

Ferdyn-Grygierek and
Grygierek [29] 3 Min. Life-Cycle Cost

Baglivo et al. [30] 3 Opt. The Operative Temperature

Bamdad et al. [31] 3
Min. Annual End Use
Energy Consumption

Zhou et al. [32] 3
Min. Annual Heating
Energy Consumption

Li et al. [33] 3
Min. Total Energy Consumption
(Heating + Cooling + Lighting)

Sghiouri et al. [34] 3 Min. Discomfort Degree-hours

Xue et al. [35] 3 Min. Annual Cooling Load

Echenagucia et al. [36] 3

(1) Min. Heating Energy Need
(2) Min. Cooling Energy Need
Min. Lighting Energy Need

Yu et al. [37] 3 3

(1) Min. Annual Energy
Consumption.

(2) Max. Percentage of Thermal
Comfort Hours throughout
the Year
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Table 3. Cont.

Study
Considered Aspect

Objective Function
E.C T.C E.B V.C E.I S. A.P.R A.P W.C

Carlucci et al. [38] 3 3

(1) Min. Long-term Percentage of
Dissatisfied Calculated
for Summer

(2) Min. Long-term Percentage of
Dissatisfied Calculated
for Winter

(3) Min. Percentage of Time
Exceeding the Discomfort
Glare Index

(4) Max. Useful
Daylight Illuminance

Ascione et al. [39] 3 3

(1) Min. Annual Primary Energy
for Space Conditioning

(2) Min. Percentage of Thermal
Discomfort Hours

Zhang et al. [40] 3

(1) Max. Solar Radiation Gain
(2) Max. Space Efficiency
Min. Shape Coefficient

Gadelhak and Lang [41] 3 3 3

(1) Max. Spatial
Daylight Autonomy

(2) Min. Annual Energy Use
(3) Min. Percentage of

Discomfort Hours

Pan et al. [42] 3 3

(1) Min. Annual Source
Energy Consumption

(2) Min. Percent of
People Dissatisfied

Ascione et al. [43] 3 3

(1) Min. Annual Primary
Energy Consumption

(2) Min. Annual Percentage of
Discomfort Hours

(3) Min. Global Cost

Bingham et al. [44] 3 3

(1) Min. Total
Energy Consumption

(2) Min. Life Cycle Cost

Zhang et al. [45] 3 3 3

(1) Min. Heating + Lighting
Energy Demand

(2) Min. Summer Thermal
Discomfort Time

(3) Max. Average Useful
Daylight Illuminance

Mostavi et al. [46] 3 3 3

(1) Min. Life Cycle Cost
(2) Min. Life Cycle Emission
(3) Max. Occupants’ Thermal

Comfort Index

Bre and Fachinotti [47] 3 3

(1) Min. Annual Energy
Consumption (Heating +
Cooling)

(2) Min. Heating and Cooling
Degree-hours
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Table 3. Cont.

Study
Considered Aspect

Objective Function
E.C T.C E.B V.C E.I S. A.P.R A.P W.C

Hamdy and Mauro [48] 3 3

(1) Min. Carbon Dioxide
Equivalent Emissions

(2) Min. Discounted
Payback Time

Wu et al. [49] 3 3

(1) Min. Life Cycle
Energy Consumption

(2) Min. Life Cycle Cost

Lin et al. [50] 3 3

(1) Min. Annual Cooling and
Heating Load

(2) Min. Total Number of
Discomfort Degree Hours

Grygierek and
Ferdyn-Grygierek [51] 3 3

(1) Min. Life Cycle Cost
(2) Min. Number of Hours with

Thermal Discomfort

Schito et al. [52] 3 3

(1) Min. Total Energy Needs at
The HVAC System

(2) Min. Predicted Percentage
of Dissatisfied

(3) Max. Lifetime Multiplier

Gou et al. [53] 3 3

(1) Min. Annual Energy Demands
for Heating and Cooling

(2) Max. Annual Indoor Thermal
Comfort Time Ratio

Harkouss et al. [54] 3 3
(1) Min. Electrical Consumption
(2) Min. Life Cycle Cost

Sohani et al. [55] 3 3

(1) Min. Operating Cost
(2) Min. Water Cost
(3) Max. Energy Performance

Zemero et al. [56] 3 3

(1) Min. Annual
Energy Consumption

(2) Min. Constructive Cost

Yi [57] 3 3

(1) Max. Average Value of Spatial
Daylight Autonomy

(2) Min. Average Value of Annual
Sun Exposure

(3) The Preference Look of a
Building Skin

Hong et al. [58] 3 3 3 3

(1) Min. Predicted Mean Vote
(2) Min. Initial Investment Cost
(3) Min. Thermal Energy

consumption + Net Present
Value + Global
Warming Potential

Kirimtat et al. [59] 3 3

(1) Min. Total Energy
Consumption

(2) Max. Average Value of Useful
Daylight Illuminance

Ascione et al. [60] 3 3 3

(1) Min. Primary Energy
Consumption

(2) Min. Global Cost
(3) Min. Discomfort Hours
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Table 3. Cont.

Study
Considered Aspect

Objective Function
E.C T.C E.B V.C E.I S. A.P.R A.P W.C

Zhai et al. [61] 3 3 3

(1) Min. Annual Total Energy
Consumptions for Heating,
Cooling and Lighting

(2) Min. Total Number of
Discomfort Degree hours

(3) Max. Useful
Daylight Illuminance

Si et al. [62] 3 3

(1) Min. Annual Energy Demand
for Cooling and Heating and
Artificial Lighting

(2) Min. Annual Average
Predicted
Percentage Dissatisfied

Sharif and Hammad [63] 3 3 3

(1) Min. Global
Warming Potential

(2) Min. Life Cycle Cost
(3) Min. Total

Energy Consumption

Fang and Cho [64] 3 3

(1) Max. Useful
Daylight Illuminance

Min. Energy Use Intensity

Sohani et al. [65] 3 3 3 3

(1) Min. Life Cycle Cost
(2) Min. Annual Carbon

Dioxide Emission
(3) Min. Annual Water

Consumption
(4) Max. Annual

Energy Performance

Lu et al. [66] 3 3 3

(1) Min. Total Cost
(2) Min. Carbon

Dioxide Emissions
(3) Min. Grid Interaction Index

Delgarm et al. [67] 3

(1) Min. Annual Heating
Electricity Consumption

(2) Min. Annual Cooling
Electricity Consumption

(3) Min. Annual Lighting
Electricity Consumption

Delgarm et al. [68] 3 3

(1) Min. Total Energy
Consumption.

(2) Min. Predicted Percentage
Dissatisfied

Delgarm et al. [69] 3

(1) Min. Annual Cooling Energy
Consumption.

(2) Min. Annual Lighting Energy
Consumption

Xiong et al. [70] 3 3
(1) Max. Satisfaction Utility
(2) Max. Energy Saving

4.1.1. Energy Consumption

To the best of our knowledge, researchers have used 13 indicators to minimize energy
consumption in buildings. These indicators are shown in Figure 5. In some studies
(e.g., [42,61,62]), the three most used indicators, heating, cooling, and lighting energy
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consumption, have been optimized as one objective function, named the total energy
demand. That is usually done to simplify the computational difficulties of the optimization
process caused by the increase in the number of objective functions. In addition, for more
simplification, the combination of two of these three indicators might be taken into account,
depending on the parameters such as location and function of the case study. As an
example to clarify the impact of climate on choosing the energy related objective functions,
Zhang et al. [45], studied the performances of school buildings in the cold climate of China
by investigating heating and lighting energy demands as one objective to describe the
energy performance for thermal and visual comfort indicators. In that work, due to the
climatic conditions, the energy demand for cooling was not considered.

Moreover, the function of the case study can also help to simplify the optimization
process in temporarily occupied buildings, such as office buildings. This means that if
the building is only occupied during the day, the main concerns are about cooling and
lighting energy consumption. It should be pointed out that reviewing some other studies
(e.g., [36,67,69]) has made it clear that the best condition is achieved while the energy
demands for heating, cooling, and lighting are optimized together and independently.
However, Mangkuto et al. [28], Zhou et al. [32], and Xue et al. [35], have optimized lighting,
heating, and cooling energy demands using the SOO approach, respectively.

4.1.2. Thermal Comfort

Figure 6 shows the eight different indicators that have been taken into account in the
reviewed studies to investigate thermal comfort. These indicators can also be assessed
for different seasons, independently. In the work published by Carlucci et al. [38], the
percentages of dissatisfied people in summer and winter were optimized as two inde-
pendent objectives, using the MOO approach. In another study [30], the operative air
temperature was considered as the thermal comfort-describing objective function. Based
on the definition, the operative air temperature is dependent on the season. It means that
in the cooling and heating periods, it should be minimized and maximized, respectively.

4.1.3. Economic Benefit

In the reviewed studies, the optimum solution for this aspect has been achieved by
optimizing nine different indicators imposed on both SOO and MOO. Among all these
indicators mentioned in Figure 7, life cycle cost has been the most optimized. In the process
of evaluating the life cycle cost, the significance of minor costs such as water cost might
be disregarded. To avoid that, Sohani et al. [55] considered operating costs and water
costs separately.

4.1.4. Visual Comfort

Despite the importance of visual comfort to both occupants’ behavior and energy use,
only five indicators describing this aspect have been considered in the reviewed studies.
These indicators are introduced in Figure 8. In the research done by Mangkuto et al. [28],
other metrics such as daylight factor, uniformity, and daylight glare probability have been
taken into account as the constraints imposed on the SOO.

4.1.5. Environmental Impact

The growing concern for the environmental impacts of buildings has built a strong
urge in researchers to consider this aspect in the optimization studies. Figure 9 shows
the four indicators used in the studies we reviewed. It should be noted that there is a
huge difference between carbon dioxide emissions and the equivalent carbon dioxide
emissions, as two of the four indicators that describe the environmental impact. In the
equivalent carbon dioxide emissions, unlike carbon dioxide emissions, other types of
emissions besides carbon dioxide have been also taken into account.
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4.1.6. Others

Here are the four other aspects that have been rarely studied in the reviewed investigations:

• Shape;
• Artwork preservation risk;
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• Aesthetic perception;
• Water consumption.

The indicators that have been used to optimize these aspects are introduced in Figure 10.
Shape, artwork preservation risk, and aesthetic perception are well defined aspects in architec-
ture; however, water consumption is popularly used in energy engineering. Zhang et al. [40]
presented a three-objective optimization method to enhance the shape of a free-form
building by maximizing solar radiation gain and shape efficiency and simultaneously
minimizing the shape coefficient.
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Moreover, artwork perseveration risk is an important aspect that should be considered
where the damage to sensitive objects is needed to be decreased [71]. Light, for example,
can cause damage to artifacts, but it is critical for displaying them in museums; thus, an
optimal solution should be presented [71]. In the study done by Schito et al. [52], artwork
preservation risk was promoted by evaluating a lifetime multiplier to avoid artwork
degradation; and an Italian museum was simulated as the case study where assessing
artwork preservation risk is more effective.

Furthermore, reviewing a very recent study [57] that considered aesthetic perception as
a qualitative aspect and changed it into a measurable goal has opened up a new perspective
for future investigations. Additionally, Sohani et al. [72] optimized the water consumed
during a year in a residential building.

4.1.7. Summary Report

Based on the review conducted, these different ranges of improvements have been
achieved for each building aspect:

• E.C has been reduced in the range of 1.6% [67] to 60.1% [65] with an average of 26.13%.
• T.C has been improved in the rage of 1.5% [37] to 60.0% [52] with an average of 25.61%.
• E.B has been enhanced in the range of 4.6–39.56% [54] with an average of 24.0%.
• V.C has been increased in the range of 15.0–63.0% [45] with an average of 35.0%.
• The three indicators of the shape aspect, including solar radiation gain, shape coef-

ficient, and space efficiency have been enhanced by 30–53%, 15–20%, and less than
10% [40], respectively.

• A.P.R and W.C have been improved less than 10% [52] and 153.2–390.0% [65], respectively.

It should be underlined that these wide ranges were attributed to case study factors
(function and location), optimization approaches, and key parameters considered (decision
variables, objective function, and constraints), which are all investigated in different parts
of this review. Moreover, since A.P is a qualitative aspect, it was not possible to report its
enhancement in a numerical format.
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4.2. Decision Variables

In the simulation-based optimization, achieving the best solution is done by adjusting
decision variables [73–75]. The decision variables are chosen among a group of parameters
that affect the value of each objective function; they are called effective parameters [76].
In general, the decision variables reported in Table 4 are classified into two groups: ar-
chitectural and mechanical. It should be noted that, in order to find the highest possible
performance enhancement in the optimization, the decision variables from both groups
should be taken into account.

4.3. Constraints

According to the limitations that come from technical or economic issues, some
constraints are usually imposed on the optimization problem [77–79]. Constraints have
been considered in 50% of the core literature. Technically, constraints are sorted out into
two groups, equality and inequality [80–82]. Equality constraints are those that bind the
optimization to satisfy the equations. In contrast, inequality constraints are not enforced
to be at their limits [83–85]. Due to the computational difficulties caused by employing
equality constraints, the constraints are usually considered in the form of inequality.

In some studies, several aspects that are mentioned in Section 4.1 have been taken
into account as the constraints. As it was described before, this usually happens to reduce
the number of objective functions and subsequently simplify the optimization process.
For instance, Ascione et al. [60], Gadelhak and Lang [41], and Li et al. [33], have imposed
thermal comfort, visual comfort, and energy consumption constraints, respectively. It
should be underlined that the range of the decision variables (called as bound) has not
been considered among the constraints, which are reported in Table 5.

4.4. The Considered Case Studies

In order to show the application of the proposed multi-objective optimization proce-
dure, a case study has been usually considered in each investigation. The case study is a
parameter which has substantial impacts on the values of objective functions and decision
variables in the optimal condition, and it also might lead to adding or removing a number
of objective functions, decision variables, and constraints.

Table 4. Decision variables which have been considered in the core literature.

Study Decision Variables

Abdallah and El-Rayes [27]
• All energy and water consuming building equipment and fixtures
• Energy-saving measures
• Parameters related to solid waste management plans

Mangkuto et al. [28]
• Window to wall ratio
• Wall reflectance
• Window orientation

Ferdyn-Grygierek and Grygierek [29]

• Window type
• Window area
• Building orientation
• Insulation of external wall, roof and ground floor
• Infiltration

Baglivo et al. [30] • Thermal characteristics affect the building load
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Table 4. Cont.

Study Decision Variables

Bamdad et al. [31]

• Roof emissivity
• Roof and wall solar absorptance
• Wall insulation
• Window height
• Overhang depth
• Heating and cooling set-point
• Building orientation

Zhou et al. [32] • Window opening for ventilation
• Indoor air temperature

Li et al. [33]

• Story number
• Dimensional characteristics
• Plan ratios
• Window to wall ratio
• Thermal characteristics of the building
• Solar heat gain through the transparent areas

Sghiouri et al. [34] • Overhanging projection in rooms

Xue et al. [35] • Window to wall ratio

Echenagucia et al. [36]
• Wall thickness
• Windows shape, placement and number
• Glazing characteristics

Yu et al. [37]

• Floor area.
• Building story
• Orientation
• Shape coefficient
• Heat transfer coefficient of wall, roof and window
• Thermal inertia index of wall and roof
• Window to wall ratio

Carlucci et al. [38]

• Glazing optical properties
• Windows orientation and extension
• Shading devices operation and typology
• Thermo-physical properties of external walls, roof, and floor

Ascione et al. [39]

• Solar absorptance and infrared emittance of the external plastering
• The thermal insulant thickness
• Brick thickness and density
• Windows thermal transmittance

Zhang et al. [40] • The curve and the surface control-point coordinates. Each of them is made up
of X, Y and Z coordinates.

Gadelhak and Lang [41]

• Window to wall ratio
• Insulation thickness
• Glazing system
• Shading systems
• Daylight systems
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Table 4. Cont.

Study Decision Variables

Pan et al. [42]

• Building azimuth
• Window to wall ratio
• Heat transfer coefficient of window
• Solar gain coefficient of window
• Insulation thickness

Ascione et al. [43]

• Roof and external walls solar absorptance
• Roof and external walls insulation thickness
• Window type
• Shading system
• Free cooling system
• Set-point temperature of heating and cooling
• Boiler and chiller type
• Photovoltaic roof coverage

Bingham et al. [44]

• Construction of roof and exterior wall
• Insulation type of exterior and interior wall and roof
• Glazing type
• Insulation thickness of wall and roof
• Lighting type.

Zhang et al. [45]

• Orientation
• Room and corridor depth
• Window to wall ratio
• Glazing material
• Shading type

Mostavi et al. [46] • Construction materials in different building components

Bre and Fachinotti [47]

• Building azimuth
• Shading size
• External walls solar absorptance
• Infiltration rate
• Area fraction of window for natural ventilation
• Window width
• Roof, wall, window and floor (the first floor) types

Hamdy and Mauro [48]

• Walls, roof and floor insulation
• Window and shading type
• Tightness level of building
• Heat recovery, primary energy system and HVAC system type

Wu et al. [49]
• Wall material thickness
• Window and outside door heat transfer coefficient
• Area of photovoltaic

Lin et al. [50]

• Concrete thickness
• Insulation thickness
• Solar radiation absorptance
• Window to wall ratio
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Table 4. Cont.

Study Decision Variables

Grygierek and Ferdyn-Grygierek [51]

• Glazing type
• Windows area
• Building orientation
• External wall, ground floor and roof insulation
• Infiltration

Schito et al. [52] • Set-point values of temperature
• Set-point values of relative humidity

Gou et al. [53]

• Building orientation
• Window to wall ratio
• Window U-value
• Window SHGC
• Airtightness of window and door
• Control type of window opening
• External shading
• Solar absorptance of building surface
• Thickness of XPS board
• Type of exterior wall

Harkouss et al. [54]

• Thickness of roof and external walls insulation
• Glazing type
• Cooling/heating set point
• Solar collectors Number
• Photovoltaic array
• Windows width

Sohani et al. [55] • The specification of the HVAC system

Zemero et al. [56]

• Building shape
• Materials of interior and exterior wall
• Materials of roof and floor
• Window materials
• Shadings
• Building orientation

Yi [57] • Building skin’s geometry elements: amplitude and period of the waves,
openings size

Hong et al. [58]
• Window type
• Heating and cooling set-point
• Type of ventilation and window opening

Kirimtat et al. [59] • Shading parameters

Ascione et al. [60]

• Heating and cooling set-point
• Roof and external walls solar absorptance
• Insulation layer position
• Vertical walls, floor and roof insulation thickness
• Thickness, thermal conductivity and density of the construction materials
• Windows type
• Building orientation
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Table 4. Cont.

Study Decision Variables

Zhai et al. [61]
• WWR
• Orientation
• Glazing material

Si et al. [62]

• Roofs and opaque walls thermal properties
• Window types
• Eaves shape
• Thermostat set-points

Sharif and Hammad [63]

• External walls, window frame, façade and roof types
• Glazing template
• Window to wall ratio
• HVAC and lighting systems
• Operation schedules of heating and cooling
• Open percentage of external window
• Mechanical Ventilation Rate
• Airtightness

Fang and Cho [64]

• Building depth
• Location of roof ridge
• Skylight width, length, location and orientation
• Width of south and north window
• Louver length

Sohani et al. [65] • The specification of the HVAC system

Lu et al. [66]
• Photovoltaic power generation capacity
• Wind turbine power generation capacity
• Bio-diesel generator capacity

Delgarm et al. [67]

• Orientation.
• Shading overhang characteristics
• Window size
• Glazing and wall material properties

Delgarm et al. [68]

• Orientation
• Window size
• Air-conditioning system set-point temperature
• Glazing and wall material properties

Delgarm et al. [69]
• Orientation
• Window size
• Characteristics of overhangs

Xiong et al. [70] • The shading position

In each optimization project, two factors about the case study have to be defined,
including its function and location. As it is shown in Table 6, 13 different functions and
a variety of locations have been taken into account in the core literature. These different
functions and the number of papers in which each one has been studied are presented
in Figure 11.
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Figure 11. Different functions which have been considered as the case studies in the core literature in addition to the number
of papers in which each one has been studied.

As two examples of the mentioned point about the impacts of the function and
location of the case study on the selection of the objective functions, the investigations
done by Schito et al. [52] and Zhang et al. [45] are considered, respectively. Schito et al. [52]
chose a museum as the case study, which resulted in adding artwork preservation risk
as one of the objective functions. In addition, considering the case study in Tianjin in
China, Zhang et al. [45] eliminated the energy consumption for cooling because of its small
portion of the total energy demand in the cold climate of China compared to the heating
and lighting energy demands.

In order to provide more extensive insights, the graphical representation of the fre-
quency of objective functions is given in the tree map format in Figure 12. The branches
in this figure demonstrate a hierarchy view of the considered building functions in differ-
ent colors. Moreover, the frequency of the building aspects in each of these functions is
illustrated in the form of sub-branches.
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Table 5. Constraints which have been considered in the core literature.

Study Constraints

Abdallah and El-Rayes [27] • Budget
• Operational performance

Mangkuto et al. [28] • Daylight metrics
Ferdyn-Grygierek and Grygierek [29] • The cost of insulation

Baglivo et al. [30] • Thermal comfort condition
Bamdad et al. [31] • N.M.

Zhou et al. [32] • Different energy efficiency standards.
Li et al. [33] • The energy consumption constraint

Sghiouri et al. [34] • N.A.
Xue et al. [35] • Daylighting performance

Echenagucia et al. [36] • N.A.
Yu et al. [37] • N.A.

Carlucci et al. [38] • Minimum air change rate
Ascione et al. [39] • N.M.
Zhang et al. [40] • The functional requirements

Gadelhak and Lang [41] • Annual Sunlight Exposure
Pan et al. [42] • N.A.

Ascione et al. [43] • The investment cost
Bingham et al. [44] • Percentage of Persons Dissatisfied

Zhang et al. [45] • N.M.
Mostavi et al. [46] • N.M.

Bre and Fachinotti [47] • N.A.
Hamdy and Mauro [48] • Overheating in summer

Wu et al. [49] • Heat transfer coefficient constraint
Lin et al. [50] • N.A.

Grygierek and Ferdyn-Grygierek [51] • Infiltration-related constraint
Schito et al. [52] • N.M.
Gou et al. [53] • N.A.

Harkouss et al. [54] • The average predicted mean vote
Sohani et al. [86] • Supply air constraint

• Thermal comfort
Zemero et al. [56] • N.A.

Yi [57] • N.M.
Hong et al. [58] • Indoor environmental quality

• Budget
Kirimtat et al. [59] • N.A.
Ascione et al. [60] • The maximum number of discomfort

hours
Zhai et al. [61] • N.A.

Si et al. [62] • N.A.
Sharif and Hammad [63] • N.A.

Fang and Cho [64] • N.A.

Sohani et al. [65]
• Supply air constraint
• Thermal comfort
• Geometrical limitation for channels’

height
Lu et al. [66] • Zero annual energy balance

Delgarm et al. [67] • N.A.
Delgarm et al. [68] • N.A.
Delgarm et al. [69] • N.A.

Xiong et al. [70] • Satisfaction utility (Only in SOO)
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Table 6. Considered case studies in the core literature.

Study Building Function Location

Abdallah and El-Rayes [27] Rest Area N.M.

Mangkuto et al. [28] Office Bandung in Indonesia

Ferdyn-Grygierek and Grygierek [29] Residential Katowice in Poland

Baglivo et al. [30] Residential Southern Italy

Bamdad et al. [31] Commercial Brisbane, Darwin, Hobart and Melbourne,
in Australia

Zhou et al. [32] Residential Tianjin in China

Li et al. [33] Office Beijing, Shanghai and Guangzhou, in China

Sghiouri et al. [34] Residential Marrakech, Casablanca and Oujda, in Morocco

Xue et al. [35] Hotel Shanghai, Qionghai and Fuzhou, in China

Echenagucia et al. [36] Office Palermo, Torino, Frankfurt and Oslo

Yu et al. [37] Residential Chongqing in China

Carlucci et al. [38] Residential Mascalucia (CT) in Southern Italy

Ascione et al. [39] Residential Naples in Italy and Istanbul in Turkey

Zhang et al. [40] Community Center Shenyang in China

Gadelhak and Lang [41] Office Cairo in Egypt and Munich in Germany

Pan et al. [42] Residential Nanjing in China

Ascione et al. [43] Office Naples in South Italy

Bingham et al. [44] Residential Bahamas

Zhang et al. [45] School Tianjin in China

Mostavi et al. [46] Office Pennsylvania in The USA

Bre and Fachinotti [47] Residential Paraná in Argentine

Hamdy and Mauro [48] Residential Helsinki in Finland

Wu et al. [49] Residential Tianjin in China

Lin et al. [50] A two-star green building Wuhan in China.

Grygierek and Ferdyn-Grygierek [51] Residential Poland

Schito et al. [52] Museum Pisa in Italy

Gou et al. [53] Residential Shanghai in China

Harkouss et al. [54] Residential
Beirut, Qartaba, Zahle and Cedars in Lebanon,
Embrun, La Rochelle, Nice, Nancy and Limoges

in France

Sohani et al. [86] Residential Riyadh in Saudi Arabia, Ahmedabad in India,
Windsor in Canada, London in the UK

Zemero et al. [56] Commercial Curitiba, Florianópolis, Campo Grande and
Belém in Brazil

Yi [57] Hotel Barcelona in Spain

Hong et al. [58] Library Seoul in South Korea

Kirimtat et al. [59] Office Izmir in Turkey

Ascione et al. [60] Residential Palermo, Naples, Milan and Florence,
In Italy

Zhai et al. [61] Test room Xi’an in China
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Table 6. Cont.

Study Building Function Location

Si et al. [62] Tourist center Nanjing in China

Sharif and Hammad [63] University Montreal in Canada

Fang and Cho [64] Office Miami, Atlanta, Chicago in the USA

Sohani et al. [65] Residential Riyadh in Saudi Arabia, Ahmedabad in India,
Windsor in Canada, London in the UK

Lu et al. [66] Two types of buildings (LEB and
ZEB) Hong Kong in China

Delgarm et al. [67] A single thermal zone test case
room.

Tabriz, Tehran, Kerman and Bandar
Abbas, in Iran

Delgarm et al. [68] Office Tabriz, Tehran, Kerman and Bandar
Abbas, in Iran

Delgarm et al. [69] Office Tabriz, Tehran, Kerman and Bandar
Abbas, in Iran

Xiong et al. [70] Office West Lafayette in Indiana

4.5. Optimization Algorithm and Simulation Software

Based on the type of optimization approach, i.e., either SOO or MOO, different
algorithms have been used to acquire the optimum solution. The optimization algorithm
and the software which have been used in each study are shown in Table 7. For SOO,
the genetic algorithm is the most dominant method, whereas the non-dominated sorting
genetic algorithm II (NSGA-II) has been the mostly-used in the MOO. Both SOO and MOO
have been usually done using MATLAB.

Table 7. The optimization algorithms and the software which have been used in the core literature.

Study Optimization Algorithm
Software

Simulation Optimization

Abdallah and El-Rayes [27] Genetic Algorithm eQUEST N.M.

Mangkuto et al. [28] Graphical Optimisation
Method Radiance, Daysim N.M.

Ferdyn-Grygierek and
Grygierek [29] Genetic Algorithm EnergyPlus MATLAB

Baglivo et al. [30] Sequential Search Technique TRNSYS TRNSYS

Bamdad et al. [31] Ant Colony Optimisation for
continuous domain EnergyPlus GenOpt, MATALB

Zhou et al. [32] Measurement N.A. N.A.

Li et al. [33] Genetic Algorithm DesignBuilder, Radiance MATLAB

Sghiouri et al. [34] NSGA-II TRNSYS jEPlus + EA

Xue et al. [35] N.M. Radiance, EnergyPlus N.M.

Echenagucia et al. [36] NSGA-II EnergyPlus Python

Yu et al. [37] NSGA-II EnergyPlus MATLAB

Carlucci et al. [38] NSGA-II EnergyPlus GenOpt, Java Genetic
Algorithms Package

Ascione et al. [39] NSGA-II EnergyPlus MATLAB

Zhang et al. [40] Multi-objective Genetic
Algorithm

Rhinoceros and its plug-ins
Grasshopper, Ladybug, Octopus
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Table 7. Cont.

Study Optimization Algorithm
Software

Simulation Optimization

Gadelhak and Lang [41] Multi-Objective SPEA-2
Optimization Algorithm

Rhinoceros’s plug-ins Diva,
Grasshopper, Ladybug and

Honeybee
Octopus

Pan et al. [42] NSGA-II EnergyPlus MATLAB

Ascione et al. [43] Multi-objective Genetic
Algorithm EnergyPlus MATLAB

Bingham et al. [44] NSGA-II EnergyPlus jEPlus + EA

Zhang et al. [45] Multi-Objective SPEA-2
Optimization Algorithm

Rhinoceros and its plug-ins
Grasshopper, Ladybug,

Honeybee
Octopus

Mostavi et al. [46] A Harmony Search Based
Algorithm EnergyPlus C#

Bre and Fachinotti [47] NSGA-II EnergyPlus Python

Hamdy and Mauro [48] The optimization algorithm
PR_GA_RF IDA ICE MATLAB

Wu et al. [49] NSGA-II DesignBuilder MATLAB

Lin et al. [50] Multi-objective Genetic
Algorithm DesignBuilder MATLAB

Grygierek and
Ferdyn-Grygierek [51] NSGA-II EnergyPlus MATLAB

Schito et al. [52] N.M. TRNSYS MATLAB

Gou et al. [53] NSGA-II coupled with the
Artificial Neural Network EnergyPlus MATLAB,

jE-Plus

Harkouss et al. [54] NSGA-II TRNSYS MOBO

Sohani et al. [86] NSGA-II Carrier Hourly Analysis
Program MATLAB

Zemero et al. [56] PAES multi-objective
optimization algorithm EnergyPlus Python

Yi [57] NSGA-II
Rhinoceros and its plug-ins

DIVA, Grasshopper and
Human UI

MATLAB

Hong et al. [58] NSGA-II EnergyPlus Python

Kirimtat et al. [59]

Non-dominated Sorting
Genetic Algorithm and

Self-adaptive Continuous
Genetic Algorithm with
Differential Evolution

Radiance, EnergyPlus N.M.

Ascione et al. [60] NSGA-II EnergyPlus MATLAB

Zhai et al. [61] NSGA-II EnergyPlus MATLAB

Si et al. [62] NSGA-II EnergyPlus MATLAB, modeFrontier

Sharif and Hammad [63] NSGA-II DesignBuilder ATHENA

Fang and Cho [64] Multi-objective Genetic
Algorithm

Rhinoceros and its plug-ins
Grasshopper, Ladybug,

Honeybee
Octopus
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Table 7. Cont.

Study Optimization Algorithm
Software

Simulation Optimization

Sohani et al. [65] NSGA-II Carrier Hourly Analysis
Program MATLAB

Lu et al. [66] NSGA-II TRNSYS MATLAB

Delgarm et al. [67]
Multi-Objective Particle

Swarm Optimization
Algorithm

EnergyPlus MATLAB

Delgarm et al. [68]
Multi-Objective Artificial Bee

Colony Optimization
Algorithm

EnergyPlus MATLAB

Delgarm et al. [69] NSGA-II EnergyPlus MATLAB,
jE-Plus

Xiong et al. [70] N.M. N.M. MATLAB

For the simulation of the building, EnergyPlus has been the favorite software in the
reviewed investigations. EnergyPlus and OpenStudio, which is used as its graphical user
interface, are both open-source software programs, and that is a big advantage of them.
Moreover, EnergyPlus has the potential of being easily coupled with MATLAB. In addition
to EnergyPlus, Rhino has been increasingly used in recent studies. In fact, its user-friendly
environment accounted for its popularity among researchers, although it is not open-source.
Furthermore, among all the software programs that have been used in the literature, eQuest,
Radiance, and some of Rhino’s plugins, including Ladybug and Honeybee, are free to use.

Software programs in the future could be promoted by taking the following items into
account to become more helpful:

• Using artificial intelligence tools to provide predictions from changes in occupants’
behavior and climate change in the future years of building life.

• Adding more powerful economic databases for better evaluation of the building from
this point of view.

• Providing “tagging” possibility for each project done by an individual in a way that if
wanted, could enable the tags to be shared on an online database with other people.
In this way, researchers will have better interactions together.

• Applying the virtual reality to get the chance of understanding the graphical issues
related to works in a much more perfect way.

5. Conclusions

In order to provide a new perspective into the literature, the studies that have been
conducted to optimize the building performance were reviewed from different viewpoints.
The core literature consists of 44 recent studies that were investigated in detail and all
the key parameters involved in the optimization procedure were described individually.
The review showed that there is a strong connection among these parameters. Moreover,
selection of such parameters in the optimization should be done based on the function
and location of the case study, and the requirements of the experts who are involved in
the project practically. In addition, it is found that EnergyPlus and MATLAB have been
the most-used software programs for building simulation and optimization, respectively.
Among the nine various aspects that have been considered in the reviewed studies, energy
consumption has been taken into account as the objective function more than others,
accounting for 38.6%. Thermal comfort and economic benefits with shares of 22.7% and 17%
are the second and third mostly optimized aspects, respectively. Figure 13 demonstrates a
graphical view of the conclusion.
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In addition, based on the conducted review, a number of open questions could be
identified, which are:

• How could the policy makers help to put the results of BPO into practice for a town, a
city, or a country?

• How could changing the occupants’ behavior could affect the optimum values of
decision variables and objective functions?

• Could some dimensionless numbers be defined as the decision variables and objec-
tive functions to reach a general BPO method and provide the possibility of better
comparisons for various buildings?

• Would it be possible to find an updated procedure for BPO in which different buildings
are optimized altogether? How much further improvement will be achieved under
that condition?

• Could the current BPO procedure be modified to provide plans for adding renewable
energy resources?

• How many changes will be made to the results of BPO by the future changes in the
climate, buildings design techniques, and the employed masonry materials?

Moreover, as observed, in a large number of the studies, objective functions, decision
variables, and constraints have not been selected comprehensively. For instance, the
researchers who have a background in architecture have not considered the objective
functions, decision variables, or constraints from energy or mechanical sides and vice
versa. The reported information of this review will help the future researchers to avoid
such issues.

Furthermore, the following items can be suggested based on the conducted literature
review for future investigations:

• Conducting multi-objective optimization in which more aspects from different sides
are taken into account;

• Performing multi-objective optimization by considering the objective functions based
on the application and the climatic zone;

• Combining the efficient software programs and algorithms to have more effective and
faster calculations;
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• Selecting the case studies in which the multi-objective optimization has been done
less often, and taking the advantage of BPO for them;

• Identifying the aspects which have not been usually optimized in each application
and considering them;

• Studying the impacts of different strategies for giving incentives to implement the
results of BPO;

• Taking advantage of new optimization techniques like dynamic multi-objective opti-
mization to provide a better outcome.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SOO single-objective optimization
MOO multi-objective optimization
BPO building performance optimization
E.C energy consumption
T.C thermal comfort
E.B economic benefit
V.C visual comfort
E.I environmental impact
S. shape
A.P.R artwork preservation risk
A.P aesthetical perception
W.C water consumption
NSGA-II non-dominated sorting genetic algorithm II
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78. Köse, Ö.; Koç, Y.; Yağlı, H. Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and
triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine. Energy Convers. Manag. 2021,
227, 113604. [CrossRef]

79. Razmi, A.R.; Arabkoohsar, A.; Nami, H. Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorp-
tion/recompression refrigeration system. Energy 2020, 210, 118559. [CrossRef]
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