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Abstract

Information Retrieval (IR) develops complex systems, constituted of several components, which aim at re-
turning and optimally ranking the most relevant documents in response to user queries. In this context,
experimental evaluation plays a central role, since it allows for measuring IR systems effectiveness, increas-
ing the understanding of their functioning, and better directing the efforts for improving them. Current
evaluation methodologies are limited by two major factors: (i) IR systems are evaluated as “black boxes”,
since it is not possible to decompose the contributions of the different components, e.g., stop lists, stemmers,
and IR models; (ii) given that it is not possible to predict the effectiveness of an IR system, both academia
and industry need to explore huge numbers of systems, originated by large combinatorial compositions of
their components, to understand how they perform and how these components interact together.

We propose a Combinatorial visuaL Analytics system for Information Retrieval Evaluation (CLAIRE)
which allows for exploring and making sense of the performances of a large amount of IR systems, in order
to quickly and intuitively grasp which system configurations are preferred, what are the contributions of the
different components and how these components interact together.

The CLAIRE system is then validated against use cases based on several test collections using a wide
set of systems, generated by a combinatorial composition of several off-the-shelf components, representing
the most common denominator almost always present in English IR systems. In particular, we validate
the findings enabled by CLAIRE with respect to consolidated deep statistical analyses and we show that
the CLAIRE system allows the generation of new insights, which were not detectable with traditional
approaches.

Keywords: information retrieval systems evaluation, visual analytics, visual component-based evaluation,
grid of points

1. Introduction

Search engines, and Information Retrieval (IR) systems in general [17], deal with vague and imprecise
user information needs and try to retrieve relevant documents while at the same time suppressing noisy and
not relevant ones.

These systems are consisting of “pipelines” of components, like stop lists, stemmers, IR models, and so
on, which are stacked together in order to process both documents and user queries and to match them
returning a ranked result list of documents in decreasing order of estimated relevance.

Due to the intrinsic vagueness of user queries and to the uncertainty in the matching process, the
performance of an IR system in terms of effectiveness, i.e., its ability to retrieve (only) relevant documents
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and rank them higher, cannot be predicted [28] but, instead, you need to experimentally evaluate it, after
the system has been already built. Hence, experimental evaluation [31] is a pillar for advancing IR research
and state-of-the-art, because it allows researchers and developers to assess, explore, and tune their systems.

An IR system can consist of many alternative components and, since it is not possible to determine the
effectiveness of each individual component separately, the only option to measure their impact on the overall
performances is to test all the different combinations of such components. This leads to an explosion in
the number of cases to be considered, making the space of system combinations very large and complex to
explore. This is what typically happens today not only in academia but also in large-scale search companies.

Besides requiring a great deal of effort and resources to be produced, these combinatorial compositions
constitute a challenge when it comes to explore, analyze, and make sense of the experimental results with
the goal of understanding how different components contribute to the overall performances and interact
together. Indeed, to this end, it is typically needed to resort to complex statistical tools requiring a careful
experimental design and producing results which call for a considerable extent of expertise to be interpreted.

The main goal of this work is to design and develop a Visual Analytics (VA) system, called CLAIRE,
which allows researchers and developers to explore combinatorial compositions of IR system components in
order to quickly and intuitively understand which combinations perform best under specific criteria, how
components behave across a wide range of cases, and how they interact together. Note that our aim is not
to analyse the effects of any possible kind of components, such as word compounding, entity extraction,
parser or query expansion, just to name a few, which you may find in an operational IR system.

CLAIRE is a remarkably simple, yet powerful, VA system based on multiple coordinated views approach
where different views allow the user to explore simultaneously multiple facets of the data while maintaining
an overview of the possible system configurations.

We have experimented with the CLAIRE system on an extensive set of 612× 6 = 3, 672 systems, arising
from the combinatorial composition of several open-source publicly available components such as stop lists,
stemmers, and IR models, and run against 6 different public test collections shared by the Text REtrieval
Conference (TREC) international evaluation initiative; these collections comprise both news search and Web
search tasks. This allowed for validating the findings devised by using the CLAIRE system with respect to
previous deep statistical analyses conducted on the same test collections [24, 25].

Summarizing, the main contribution of the paper is a VA system designed for analyzing and comparing
a complex set of measures associated with a large combinatorial space of IR systems. CLAIRE addresses a
fundamental IR evaluation problem for both industry and academia, i.e., the exploration and understanding
of a combinatorial space of configurations, and it is characterized by the following key features:

• a seamless visualization of both the solution space parameters and the associated measures;

• the availability of a set of visual and analytical components that allow for making sense and getting
insights on a large number of solutions, identifying trends, common patterns, and outliers;

• a simple visual encoding that allows for a quick identification and a better understanding of statistical
properties of the analyzed systems, which in traditional IR evaluation are the result of complex and
hard to digest statistical analyses.

The paper is organized as follows: Section 2 introduces the application domain, i.e., IR and its evaluation
methodology; Section 3 discusses related works; Section 4 presents the experimental setup used by the
CLAIRE system and in the validation use cases; Section 5 describes the CLAIRE system; Section 6 presents
the validation use cases; finally, Section 7 wraps up the discussion and presents an outlook of future work.

2. Problem Definition

Experimental evaluation [60] is based on the Cranfield methodology [14] which makes use of experimental
collections C = (D,T,GT ) consisting of: a set of documents D representing the domain of interest; a set of
topics T , which simulate and abstract actual user information needs; and, the ground-truth GT , i.e., a kind
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of “correct” answer, where for each topic t ∈ T the documents d ∈ D relevant to it are determined. System
outputs are then scored with respect to the ground-truth using a whole breadth of performance measures.

Experimental evaluation is a demanding activity in terms of effort and requires resources that benefits
from using shared datasets, which allow for repeatability of the experiments and comparison among state-
of-the-art approaches. Therefore, over the last 25 years, experimental evaluation has been carried out in
large-scale evaluation campaigns at international level, such as the Text REtrieval Conference (TREC)1 in
the US, the Conference and Labs of the Evaluation Forum (CLEF)2 in Europe, or the NII Testbeds and
Community for Information access Research (NTCIR)3 in Japan and the other Asian countries.

Understanding and interpreting the results produced by experimental evaluation is a non-trivial task,
due to the complex interactions among the components of an IR system. Nevertheless, succeeding in this
task is fundamental for detecting where systems fail and hypothesizing possible fixes and improvements. As
a consequence, this task is mostly manual and requires huge amounts of time and effort.

However, a limitation of the current experimental methodology is that it allows to evaluate IR systems
only as “black-boxes”, without an understanding of how their different components interact with each other
and contribute to the overall performances. In other terms, the current experimental methodology considers
system performances as indivisible and it cannot break them down into the contributions of the different
components constituting an IR system. This severe impediment has been pointed out a long time ago
by Robertson [55]: “if we want to decide between alternative indexing strategies for example, we must use
these strategies as part of a complete information retrieval system, and examine its overall performance
(with each of the alternatives) directly”.

This limitation has several additional drawbacks: it prevents from gaining a deep comprehension of IR
system performances; it precludes the possibility of knowing ahead which mix of components is best suited
for a specific search task or collection of documents [28]; and, it hampers the possibility of determining on
which components is more convenient to invest effort and resources because they or their combination have
the highest impact in terms of performance gains.

The impossibility of testing a single component by setting it aside from the complete IR system is a long-
standing and well-known problem in IR experimentation. Component-based evaluation methodologies Ferro
and Harman [22], Hanbury and Müller [30] mixed different components in order to avoid to build an IR
system from scratch; but, even though these approaches allowed researchers to focus on the components of
their own interest, they have not delivered estimates of the performance figures of each component.

A statistical methodology able to address this issue and to allow for decomposing the effects of different
components has been proposed in Ferro and Silvello [24, 25]. The methodology is based on General Linear
Mixed Model (GLMM) and ANalysis Of VAriance (ANOVA) [58] and it makes use of a Grid of Points (GoP),
i.e., a set of systems originating from all the possible combinations of the targeted components.

The idea of creating all the possible combinations of components has been proposed by Ferro and Harman
[22], who noted that a systematic series of experiments on standard collections would have created a GoP,
where (ideally) all the combinations of retrieval methods and components are represented, allowing us to
gain more insights about the effectiveness of the different components and their interaction; this would have
called also for the identification of suitable baselines with respect to which all the comparisons have to be
made.

A GLMM explains the variation of a dependent variable (“Data”) in terms of a controlled variation of
independent variables (“Model”) in addition to a residual uncontrolled variation (“Error”): Data = Model
+ Error. In GLMM terms, ANOVA attempts to explain data (the dependent variable scores) in terms of
the experimental conditions (the model) and an error component. Typically, ANOVA is used to determine
which experimental condition dependent variable score means differ and what proportion of variation in the
dependent variable can be attributed to differences between specific experimental groups or conditions, as
defined by the independent variable(s).

1http://trec.nist.gov/
2http://www.clef-initiative.eu/
3http://research.nii.ac.jp/ntcir/
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In this context, the focus is both on single independent variables, i.e., the main effects of the different
components alone, and on their combinations, i.e., the interaction effects between components. Note that
some independent variables are considered fixed effects – i.e., they have precisely defined levels, and inferences
about its effect apply only to those levels – which in our case are different kinds of systems and components;
and, some others are considered random effects – i.e., they describe a randomly and independently drawn
set of levels that represent variation in a clearly defined wider population – which in our case are the topics.

A Type I error occurs when a true null hypothesis is rejected and the significance level α is the probability
of committing a Type I error. When performing multiple comparisons, the probability of committing a Type
I error increases with the number of comparisons and we keep it controlled by applying the Tukey Honestly
Significant Difference (HSD) test [35] with α = 0.05. Tukey’s method is used in ANOVA to create confidence
intervals for all pairwise differences between factor levels, while controlling the family error rate.

The main effects plot, as in Figure 12, graphs the response mean for each factor level connected by a
solid line and, by means of this plot, we can easily determine the impact of the different levels of a factor.

An interaction effects plot, as in Figure 13, displays the levels of one factor on the X axis and has a
separate line for the means of each level of the other factor on the Y axis; it allows to understand whether the
effect of one factor depends on the level of the other factor. Two parallel lines indicate that no interaction
occurred, whereas nonparallel lines indicate an interaction between factors; the more nonparallel the lines
are, the greater the strength of the interaction.

Finally, in the Tukey HSD plots, as in Figure 16, each point represents the mean performances of a
component. Vertical dotted lines in grey represent the range, according to the Tukey HSD test, within which
approaches are not significantly different; blue dots represent approaches in the top group, i.e., approaches
not significantly different from the top performing one.

The goal of this paper is to consider the lay of the land in experimental evaluation from a new visual
analytics perspective by developing a system, CLAIRE, which allows us not only to intuitively obtain the
findings resulting from the complex statistical analyses described above but also to get new ones, which are
typically difficult or impossible to obtain with the traditional approaches.

3. Related work

The problem of exploring a large combinatorial space associated with several configuration parameters
has long been addressed by VA solutions, with the typical goal of solving (multi-objective) optimization
problems. Typical solutions rely on simulations and on the use of ad-hoc linear regression models (see,
e.g., [64]) to define the solution space and compute measures relevant to the actual application domain.
Measures are visually plotted, allowing the user to explore them, with the goal of finding suboptimal solutions
and looking for correlations among them. To this aim, most proposals use the idea of presenting the user with
multiple coordinated views (see, e.g., the seminal proposal by Tweedie et al. [68], and more recent approaches
coming from the demanding automotive field [45] or fishery [12]), allowing interactive coordinated brushing
to explore solutions and relationships among measures. Other proposals, instead, rely on the idea of visually
navigating the space associated with multi-objective optimization functions in order to find the desired
solution (see, e.g., [19]) or visually validating the selected regression model, (see, e.g., [52]).

Some proposals share the idea of sampling the parameter spaces to cope with high-dimensional domain
problems and to reduce the number of simulation runs, (see, e.g., [11], [62]); in order to increase the precision
of the solutions space, some systems try to increase the number of sampling points to cover as many of the
possible combinations as needed within a continuous parameter space, balancing computational time and
approximation generated by the sampling (see, e.g., [10]).

Other solutions, closer to our approach, deal with categorical parameters that may reduce the design
space cardinality (w.r.t., continuous parameters); however, they still need effective means for representing
their categorical values and the associated relevant measures. Some proposals deal with On-Line Analytical
Processing (OLAP) applications, but typically they do not deal with the issue of providing an overview of
the data by focusing on the visual inspection of the result of a query or on the visual query specification
and exploratory analysis, see, e.g., [44]. With a different approach, Padua et al. [50] use decision trees for
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exploring categorical decisions, while others still rely on multiple coordinated views to represent categorical
parameters (see, e.g., [45]) or use bi-dimensional data projections (see, e.g., [69]). Other solutions focus
on parallel exploration interfaces, investigating means to allow designers to work at the same time with
multiple design variations (see, e.g., [63]). However, such solutions fail to scale with the cardinality of the
possible combinations that is one of the issue this work deals with; indeed, the composition of the available
open-source IR components when applied to several collections generates thousands of possible solutions and
CLAIRE has been designed to allow the user to interactively navigate this complex solution space, explicitly
keeping track of the components used to build each system.

Indeed, one of the main difference between CLAIRE and the aforementioned proposals is the way in
which it deals with the design space itself, the Grid of Points (GoP), that contrasts the widely adopted
approach that allows the user to deal with the measures associated with each configuration and to look
for correlations among them and (sub-)optimal configurations, disregarding the configurations that are
behind them. CLAIRE, instead, in order to fulfill the task of comparing configurations, looking for trends,
similarities, and outliers, treats configurations as first class objects, allowing the user to inspect the difference
in measures associated with the solutions while keeping track of the configurations that generated them.
An additional issue CLAIRE has to deal with is that collected measures depend not only on the selected
open source components but also on the actual inspected collection and topics; this adds an additional level
of complexity to the analysis process. Such a complexity is further increased by the consideration that
CLAIRE deals with families of measures computed by aggregating values coming from value distributions,
e.g., calculating the confidence interval and the mean of a selected measure computed over hundreds of
topics.

CLAIRE addresses the necessity to analyse large combinations of system components due to the prolif-
eration of open source IR systems [65] which allow researchers to easily run systematic experiments. Indeed,
the community started to investigate reproducible baselines [20, 21, 40]. For instance, Trotman et al. [66]
conducted a vertical exploration of variations of two IR models while the “Open-Source Information Re-
trieval Reproducibility Challenge” [8, 40] provided several reproducible baselines over TREC and CLEF
collections. Overall, both these efforts added a few points to the GoP mentioned above, but they do not
propose any methodology for estimating the component effects. On the other hand, CLAIRE leverages on
a new methodology which allowed a better estimation of component effects and produced a much more
fine-grained GoP both in terms of the number of components and IR models experimented [24, 25].

VA techniques are typically exploited for the presentation and exploration of the documents managed by
an IR system [72]. Some examples are: identification of the objects and their attributes to be displayed [27];
different ways of presenting the data [48]; the definition of visual spaces and visual semantic frameworks [71].
The development of interactive means for IR is an active field which focuses on search user interfaces [32, 33],
displaying of results [16] and browsing capabilities [38].

However, much less attention has been devoted to applying visual analytics techniques to the analysis and
exploration of the performances of IR systems; the way in which visual analytics can help the interpretation
and exploration of system performances has been explored by Ferro et al. [23]. This preliminary work led
to the development of Visual Information Retrieval Tool for Upfront Evaluation (VIRTUE), a fully-fledged
visual analytics prototype which specifically supports performance and failure analysis [4] dealing with large-
scale evaluation campaigns, a context in which evaluators do not have access to the tested systems but they
can only examine the final outputs.

Therefore, in Angelini et al. [5] is presented an analytical framework trying to learn the behavior of a
system just from its outputs, in order to obtain a rough estimation of the possible effects of a modification
to the system, while Angelini et al. [6] presents a formal and structured way to explore the complex data
set of measures produced along an evaluation campaign. Similarly, an information visualization Web-
based integrated information retrieval performance evaluation platform for the evaluation of an IR system
is presented in Ioannakis et al. [36]; however, it does not explicitly focus on comparison among different
IR systems. Recently, Lipani et al. [41] presented an information visualization system to explore pooling
strategies to build the ground truth of a test collection.

However, even if the above information visualization and visual analytics approaches successfully dealt
with the goal of supporting the evaluation and comparison of IR systems, to the best of our knowledge
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no solution exists dealing with large sets of IR systems generated by the combinatorial composition of IR
components allowing the inspection of both configurations and measures.

4. Experimental Setup

The following sections describe the experimental collections, the Grid of Points (GoP) and the evaluation
measures we used to showcase and validate the CLAIRE system.

4.1. Collections

We considered the following standard and shared collections, each track using 50 different topics:

• TREC Adhoc tracks T07 and T08: they focus on a news search task and adopt a corpus of about 528K
news documents.

• TREC Web tracks T09 and T10: focus on a Web search task and adopt a corpus of 1.7M Web pages.

• TREC Terabyte tracks T14 and T15: focus on a Web search task and adopt a corpus of 125M Web
pages.

4.2. Grid of Points (GoP)

We considered three main components of an IR system: stop list, stemmer, and IR model. We selected
a set of alternative implementations of each component and, by using the Terrier v.4.04 open source system,
we created a run for each system defined by combining the available components in all possible ways. The
selected components are:

• Stop list : nostop, indri, lucene, snowball, smart, terrier;

• Stemmer : nolug, weakPorter, porter, snowballPorter, krovetz, lovins;

• Model : bb2, bm25, dfiz, dfree, dirichletlm, dlh, dph, hiemstralm, ifb2, inb2, inl2, inexpb2,
jskls, lemurtfidf, lgd, pl2, tfidf.

Overall, these components define a 6× 6× 17 factorial design with a GoP consisting of 612 system runs.
They represent nearly all the state-of-the-art components which constitute the common denominator almost
always present in any IR system for English retrieval and thus they are a good account of what can be found
in many different operational settings.

The stop lists differ from each other by the number of terms composing them; specifically, indri has 418
terms, lucene has 33 terms, snowball has 174 terms, smart has 571 terms and terrier 733 terms.

Since for the Lexical Unit Generator (LUG) component we may have considered two distinct methods,
i.e. stemmers and n-grams, we indicate the absence of the stemmer as nolug to specify that both no stemmer
and no n-gram technique are employed. Stemmers can be classified into aggressive and weak stemmers. One
of the first stemmers developed for IR systems is Lovins [43]; this is an iterative affix removal stemmer which
removes the longest possible string of characters from a word, according to a set of rules. Lovins is the most
aggressive stemmer amongst those we consider. The Porter algorithm [53] and its variants (snowball and
a weaker version weakPorter that only applies the first two steps of the Porter’s algorithm by focusing
on plurals and suffixes) is inspired by the Lovins algorithm, but it adds well-defined rules for morphology;
Porter-based stemmers are weaker than Lovins.

The Krovetz algorithm [39] adds a word-disambiguation algorithm to the Porter stemmer in order to
stem the words which not only have a similar morphology, but also a similar meaning; basically, it is as
aggressive as Porter and weaker than Lovins. experiments.

4http://www.terrier.org/
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The models we employ are classified into the three main approaches currently adopted by search en-
gines [57]: (i) the vector space model [59]: TFIDF and LemurTFIDF (the Lemur variant of tf*idf); (ii)
the probabilistic model – including the BM25 models [56] and the Divergence From Randomness (DFR)
models [3], and in particular5: BB2 (Bose-Einstein model for randomness), DFIZ, DFRee (hyper-geometric
model which takes an average of two information measures), DLH (parameter free hyper-geometric DFR
model), DPH (hyper-geometric DFR model with Popper’s normalization), IFB2 (Inverse Term Frequency
model for randomness using the ratio of two Bernoulli’s processes for normalisation), InL2 (IDF model for
randomness using Laplace succession for normalisation), InexpB2 (Inverse expected document frequency
model for randomness using the ratio of two Bernoulli’s processes for normalisation), PL2 (Poisson estima-
tion for randomness using Laplace succession for normalisation), and InB2 (a variant of the PL2); and, (iii)
the language models [70], and in particular: DirichletLM (Language Modelling with Bayesian smoothing
and a Dirichlet Prior), HiemstraLM (Hiemstra’s language model [34]), Js KLs (Jeffreys’ divergence with the
Kullback Leibler’s divergence [42]) and the LGD loglogistic model [15]. Note that the parameters of the
models employed are set to their default values as predefined by the Terrier system; the parameters setting
may have a sizable impact over a model performances, thus they could be object of a dedicated GoP and
component-based evaluation.

To give a feeling of how valuable these GoP are, consider that their preparation required many weeks
of processing on high-performance machines, such as an IBM Power7 with 6 CPUs (3.1 GHz) with 8 cores
each and 512 Gbytes of RAM.

4.3. Measures

We evaluate the GoPs by employing 8 different evaluation measures: AP, P@10, Rprec, RBP, nDCG,
nDCG@20, ERR6, and Twist.

Average Precision (AP) [17] represents the “gold standard” measure in IR, known to be stable and
informative, with a natural top-heavy bias and an underlying theoretical basis as approximation of the area
under the recall-precision curve.

Precision at Ten (P@10) [17] is the classic precision measure with cut-off at the first 10 retrieved docu-
ments.

Rprec [17] is precision calculated with cut-off at the recall base – i.e., the total number of relevant
documents for a given topic. It is an highly informative measure which shares with AP the geometric
interpretation as approximation of the area under the recall-precision curve.

Rank-Biased Precision (RBP) [47] is built around a user model based on the utility a user can achieve by
using a system: the higher, the better. The model implied by this measure is that a user always starts from
the first document in the list and then s/he progresses from one document to the next with a probability
p. We calculated RBP by setting p = 0.8 which represent a good trade-off between a very persistent and a
remitting user.

Normalized Discounted Cumulated Gain (nDCG) [37] is the normalized version of the widely-known
DCG which discounts the gain provided by each relevant retrieved document proportionally to the rank at
which it is retrieved. nDCG is defined for graded relevance judgments and it is one of the most common
measures used for evaluating Web search tasks. For T07 and T08, we calculate nDCG in a binary relevance
setting by giving gain 0 to non-relevant documents and gain 5 to the relevant ones; whereas, for T09, T10,
T13, T14, and T15 we assign a weight 0 to non-relevant documents, 5 to the relevant ones and 10 to the highly
relevant ones. Furthermore, we use a log10 discounting function, which accounts for a reasonably persistent
user. nDCG is calculated up to the last relevant retrieved document, whereas nDCG@20 is calculated up
to rank position 20.

5Additional information about these models can be found in Terrier’s documentation available at the URL: http://terrier.
org/docs/v4.2/javadoc/org/terrier/matching/models/package-summary.html

6Due to the strong top heaviness of ERR, ERR@20 produces more or less the same scores as ERR. Therefore, we left it out
since it does not add any interesting contribution to correlation analysis.
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Figure 1: A comprehensive view of the CLAIRE system. We see a sequence of 6 tiles corresponding to the available stop lists;
each tile presents the 17 IR models on the x-axis and the 6 stemmers on the y-axis. The selected track is T08 and the evaluation
measure is AP.

Expected Reciprocal Rank (ERR) [13] is a measure defined for graded relevance judgments and for
evaluating navigational intents. It is particularly top-heavy since it highly penalizes systems placing not-
relevant documents in high positions. For ERR we used the same relevance weights as for nDCG.

Twist [26] is a measure for informational intents, which adopts a user model where the user scans the
ranked list from top to bottom until s/he stops, and returns an estimate of the effort required by the user to
traverse the ranked list. Twist evaluates systems from the viewpoint of the avoidable effort for their users
by accounting for their fatigue while visiting a non-ideal ranking of documents; thus, it evaluates IR systems
from a different angle, i.e., user effort, than other measures such as nDCG and ERR which are more focused
on user’s gain.

Overall, IR evaluation measures embed (possibly quite) different user models and they constitute different
ways of scoring systems according to the different viewpoints represented by their user model.

If you consider that we have a GoP consisting of 612 systems run against 6 collections with 50 topics
each and we compute 8 evaluation measures, this amount to 1,468,800 data points and provides an idea why
it is important to develop a visual analytics system to help us in exploring, comparing, and making sense of
them.

5. Description of the system

This section presents the CLAIRE system (available at http://awareserver.dis.uniroma1.it:11768/
claire/), detailing its visual and analytical components. The design of the system followed agreed solutions
in the field of Infovis: the CLAIRE main structure relies on multiple coordinated views that, according
to Roberts [54], ”by utilizing a visualization design environment [enables] the user to examine different
representations and also manages their interactions and automatically coordinates operations between views,
[in this way, users] may perceive new and insightful relationships and facts from their data.” Moreover the
selected tiles structure uses small multiples that have been introduced by Tufte [67] who described them
starting from resemblance of movie frames: a series of graphics, showing the same combination of variables,
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showing changes in another variable. Color scales have been selected using strongly distinguishable colors
and using a 5 value multi-hue colorbrewer scale 7 to make small multiple differences quickly graspable.

5.1. The Visual Component

CLAIRE comprises the three main areas shown in Figure 1:

1. The Parameters Selection area, dealing with the exploration coordinates, i.e., collections, stop lists,
stemmers, IR models, and measures;

2. The System Configurations Analysis area, enabling the performance analysis of the system configura-
tions using the actual evaluation measure;

3. The Overall Evaluation area, where the system configurations performances are evaluated on the
complete set of given evaluation measures.

CLAIRE relies on the multiple coordinated views design, which allows the user to propagate the results
of the analysis process steps among all the views.

5.1.1. Parameters Selection area

From the Parameters Selection area the user can customize the various families of components, generating
the different system configurations, selecting the track, the evaluation measure, and different subsets of IR
models, stemmers, and stop lists.

On the top-right the active number of system configurations is shown, providing numerical anchors
during the exploration and maintaining the awareness on how many configurations are under analysis. The
user can re-parametrize at any time (including or excluding) instances of different components and changing
the mapping between component families (in a drag&drop fashion), i.e., what is presented on the x-axis,
what on the y-axis, and what in the different tiles. After each parametrization step, CLAIRE dynamically
updates the visualizations contained in the two areas described in the following.

5.1.2. System Configurations Analysis area

In this area the user can analyze the performance of the selected system configurations. The area
is organized as follows: the central part presents a sequence of tiles containing a bi-dimensional matrix
representation of configurations performances. The mapping of the components with respect to the two
axes is managed by dragging & dropping the respective components family in the Parameters Selection
Area described above. At the beginning, the default mapping is set to present IR models on the x-axis,
stemmers on the y-axis and a stop list per tile. It is possible to alter this mapping in order to explore
different combinations of these three main component families, as shown in Figure 2.

Figure 3 shows the systems not using a stop list (nostop) following a matrix-like representation, with
the IR models on the x-axis and the stemmers on the y-axis. Each combination of IR model and stemmer
is identified by a square within the tile; the color scale of the squares ranges from white to deep blue, where
white represents a low mean value and deep blue represents a high mean value, averaged over the 50 topics
of a track. The size of the square represents the confidence interval (small sizes tied to low values), averaged
over the 50 topics of a track. The color and the size of each square are expressed on a discrete 5 values
scale (mouse overing shows the actual values). The choice of this visual encoding is driven by the goal of
representing many different configurations in a compact visualization.

Because values for all the possible components combinations exist, the resulting tile is regular and dense.
This remarkably simple matrix-like layout naturally and effectively highlights trends in the data. As an
example, in Figure 3, for the nostop component it is clearly visible that systems using the IR model bb2 –
the second column from the left – exhibits low performance (white squares) whatever choice of stemmer is
made.

The discrete values represented by the squares in the tiles are made explicit in the interactive legends
on the right side of the area. Each legend is composed of a discrete intervals bar encompassing the values of

7colorbrewer2.org
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Figure 2: Example of changing the components mapping. In this case, we see that the user mapped the x-axis to the stop lists,
the y-axis to the IR models and the tiles to the stemmers. The component mapping is updated by dragging and dropping the
component rows in the Parameters Selection area; the environment changes accordingly. With orange circle markers relative
best configurations are represented, while a green orange marker represents the overall best.

Figure 3: Detail of one tile of the System Configurations Analysis area. The tile is about stop-lists and on the y-axis there are
the stemmers and on the x-axis there are the models.

10



the current selection and an aligned box-plot representing the distribution of all system configurations. The
user can interact jointly with both legends and mouse overing a legend interval triggers an automatic filter,
which highlights all the systems within that interval. The information about the cardinality of systems
comprised within each interval is displayed aside the legend. At any time the user can select one specific
system by clicking on the relative square within a tile. This versatile and integrated mechanism allows for
defining complex filters and aggregations, resulting in a powerful way for discovering systems strengths and
weaknesses.

Figure 4: The figure shows the selection of a subset of system configurations based on interaction with the legend. Parallel
coordinates axes are rescaled with respect to maximum values on each measure.

As an example, Figure 4 shows an analysis pattern where the user first selects the system configurations
with high mean values, i.e., the upper limit of the box-plot on the left. This first selection updates the
available intervals in the confidence interval legend. The user then selects the best available confidence
interval by using the box-plot on the right, that in this case is the upper quartile.

In Figure 5 we apply two filters, one selecting the upper quartile of mean values and another selecting
the third quartile of confidence intervals. In this case the tiles represent the IR models and the applied filter
immediately highlights that the jskls model is one of the best models characterized by the highest mean
with small confidence intervals across different combinations of stop lists and stemmers.

Finally, in order to support data exploration, it is possible at any time to select or deselect elements
of the three components families by interacting with the corresponding check-boxes in the Parameters Se-
lection area. In this way, after the selection of the mapping and the filters, the user can evaluate systems
by the seamless application of the same analysis process to different solutions at no extra effort. An ex-
ample is shown in Figure 6, where the user chooses to explore only 12 out of the 17 supported IR models.
Visualizations change accordingly, devoting more space to the remaining systems.

While exploring large set of combinations, it is possible to focus on single solutions by clicking on the
zoom lens in the upper right corner of a tile. A zoomed in version will be displayed in the lower-right part
of the CLAIRE system for better visual exploration as shown in Figure 9.

5.1.3. Overall Evaluation area

The Overall Evaluation area represents each combination as an element in a parallel coordinates view,
where each axis represents a different evaluation measure, e.g., AP, RBP, nDCG and so on. The rationale
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Figure 5: The figure shows the good and robust behavior of the jskls model with respect to the other selected configurations.

of this view is to allow the user to relate the good or bad performances of a system configuration on a
single evaluation measure, performed in the System Configurations Analysis area, to all the other evaluation
measures.

Besides the very common interactions for parallel coordinates – axes reordering, selection by brushing
on multiple axes – the CLAIRE system further supports the comprehension of selected elements by allowing
the users to superimpose on the axes the distribution of the system configurations represented as box-plots,
as shown in Figure 7.

This helps in both relating elements selected from other visualizations to the distribution on all the
evaluation measures and improving guidance in the selection by brushing, aligning the brush area to one
or more of the quartiles of a box-plot. The analysis process can be started also from this view; indeed by
selecting the systems within a particular interval of scores we will see the selection propagated to the System
Configurations Analysis area.

5.2. The analytical engine

In order to automate the selection of relevant subsets of systems, CLAIRE uses the available measures to
select clusters of similar systems. As an example, assuming that the user wants to explore most promising
systems (i.e., performing and stable) in terms of AP, the analysis pattern focuses on systems with high AP
(AP above the upper quartile) and low confidence interval (AP confidence interval below the lower quartile),
i.e., systems with high performance and low variability. We have generalized this analysis pattern, allowing
to assess systems using all the available measures and relaxing the constraint of using the highest and lowest
quartiles to avoid empty results; as an example, if no systems exist with AP above the upper quartile and
confidence interval below the lower quartile, we relax the search by looking for AP above the median or
confidence interval below the median and so on, till we get a not empty answer.

More formally, let S be the set of all systems and M = 〈m1, ...,mk〉 the list of available k measures,
sorted by importance order according to their usage in IR evaluation analysis, e.g., AP is the most used
measure in IR thus it is the most important, followed by nDCG, P@10, ERR, RBP, and twist. For each
measure (the higher the better) we have a distribution of |S| values together with their confidence intervals
(the lower the better) and we consider the four intervals defined by the distribution box-plots (min-lower

12



Figure 6: The figure shows the management of the visual space with respect to the number of selected combinations. On
the top we see the possible system combinations (corresponding to 612 different systems) while on the bottom, after having
deselected 5 not promising IR models, we have the remaining 432 combinations.
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Figure 7: The figure shows a detail of the same selection made in figure 4, this time without rescaling the parallel coordinates
axes. Box-plots representing the measures distributions along all the selected systems are superimposed on the parallel coordi-
nates axes. It is visible that the selected subset of systems (in red) is contained in the box area for all the box-plots, denoting
comprehensive good relative performances for these system configurations (30) for all the evaluation measures.

quartile, lower quartile-median, median-upper quartile, upper quartile-max). Using such intervals we can
define for each measure m two partitions on S. The first partition 〈s1, s2, s3, s4〉 is built by using the four m
values distribution box-plot intervals: e.g., s1 contains the systems that, measured by m, belong to the first
box-plot interval (min-lower quartile). Analogously, the second partition 〈c1, c2, c3, c4〉 is built by using the
four confidence interval values distribution box-plot intervals. In the most general case, we are interested
in systems that are in the intersection of si and cj and we denote such intersection as m(i, j) = si ∩ cj .
The partition index values corresponds to increasing quality: e.g., s1 corresponds to poor systems with low
m values (below the lower quartile) and c1 corresponds to highly variable systems with high m confidence
interval values (above the upper quartile). As an example, the best subset of S, according to m, would be
m(4, 4); however, if such an intersection is empty we go either for m(4, 3) or m(3, 4) and so on, progressively
lowering i and j till m(i, j) is not empty.

According to this idea, we consider all the 16 combinations (si, cj) to compute the set D(m) of the not
empty m(i, j), each of them having a simple quality score q(m(i, j)) = i+ j given by the sum of the indexes;
so, given the partition index values set P = {1, 2, 3, 4}:

D(m) = {m(i, j) | i, j ∈ P ∧ m(i, j) 6= ∅} (1)

The quality score q imposes a partial order on the elements in D(m) and those sharing the max(q) value
(in general, more than one) represent the highest quality subsets of systems; according to the user input,
we either select their union, bias toward more systems or we prefer the union of systems in which i > j, bias
towards performance, or in which i < j, bias toward stability, or i = j, bias toward balanced systems, see the
radio-buttons on the top-right part of Figure 1. In order to evaluate systems using more than one measure,
we combine the D(mi) sets, with mi ∈M, |M | = k, in all possible not empty combinations:

DM(M) = {(d1, . . . , dk) | di ∈ D(mi) ∧
k⋂
i=1

di 6= ∅} (2)

We define the quality score of an element dm ∈ DM(M) as the sum of the quality of its k components di:

Q(dm) =

k∑
i=1

q(di) (3)

The quality score Q imposes a partial order on the elements in DM(M) and those sharing the max(Q)
value represent the highest quality subsets of systems. Thus, we present the user with their union since,
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Algorithm 1: Greedy Get Most Promising algorithm

M = ordered list of metrics;
k = |M |;
maxQuality = minQuality = 0 ;
Res = ∅;
foreach m in M do

compute the not empty intersections D(m) (eq. 2);
POD(m)← get the Partial Order of D(m) using q(m(i, j));

end
foreach m in M do

maxQuality = maxQuality + q(POD(m)[0]);
end
minQuality = 2× k;
currentQuality = maxQuality;
while Res == ∅ do

if currentQuality < minQuality then
% DM(M) generated only empty sets;
remove the less relevant measure mk from M;
foreach m in M do

maxQuality+ = q(POD(m)[0]);
end
currentQuality = maxQuality;
k = k − 1;
minQuality = 2× k;

end
compute from the k POD(mi) the combinations DM ′(M) that have Q(dm) = currentQuality;
foreach dm′ in DM ′(M) do

compute the intersections of the k di I =
⋂k

i=1 di;
Res = Res ∪ I;

end
currentQuality = currentQuality − 1;

end
return Res;

when mixing all measures together a finer grain analysis makes no sense. If DM(M) is empty, we iteratively
remove the less important measure from M , i.e., M = M −mk, recompute DM(M) using the new M , and
so on, till we get a not empty result.

The maximum cardinality of DM(M) is 16k (much less in real cases); the cost of computing the inter-
sections is O(n× log(n)) in term of number of systems, while computing the sets sharing max(Q) is linear
in terms of DM(M) cardinality and that calls for a good scalability of the method; in the actual imple-
mentation the response time does not affect the user interaction fluidity. However, in order to better scale
with larger IR combinatorial spaces, we have designed a greedy algorithm that computes the partial orders
of D(mi) and use them to build the DM combinatorial space for decreasing quality values starting from
max(Q), providing the user with an early result as soon as it returns a non empty set, see algorithm 1. In
words, instead of exploring all the possible combinations in a blind fashion, the algorithm starts from those
belonging to local optima; if one ore more non empty solutions exist, the algorithm will terminate selecting
a (sub) optimal solution that can be used by the user as a starting point, while the system computes better
solutions (if any). It is out of the scope of the paper to fully discuss this process: however it is worth
mentioning that it belongs to field of Incremental Visualizations (see, e.g., [61]) and we are exploring how
to update the initial early result with improved solutions that are computed in the background, estimating
the response times and approximation errors figures to include them in the CLAIRE interface, increasing
the user understanding of the computation approximation and progress, using techniques that are emerging
in the field of Progressive Visual Analytics (see, e.g., [7]).

Moreover, we can run the same process using only measures values, disregarding confidence interval
values, i.e., the most performing systems or focusing only on confidence intervals, disregarding measure
values, i.e., the most stable systems.
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6. Validation use cases

This section validates CLAIRE by discussing the three main analyses allowed by it – the analysis of
IR models, stop lists, and stemmers. We show how CLAIRE leads to the discovery of findings previously
obtained by the means of complex statistical analyses and also to new findings, which it is not possible to
obtain with the traditional statistical approaches.

6.1. Use case 1: Study of the IR models

In order to analyze the IR models the user needs to change the axes of the tiles from the default settings,
dragging the IR model row in the Parameters Selection area on top of the other components so that CLAIRE
shows one tile for each model with the stop lists on the x-axis and the stemmers on the y-axis. Collection
T08 and the AP measure are used as the basis for the analysis.

Figure 8: System Configurations Analysis area, encompassing 6 model tiles; stop lists are on the x-axis and stemmers are on
the y-axis.

The tiles allow for estimating the performances of each single model at a glance: tiles where darker
squares are the majority indicate IR models that perform better than those with a majority of lighter
squares.

Figure 8 details the System Configuration Analysis area, showing 6 IR model tiles and the legend (the
darker the color the higher the AP). Within these 6 IR models, it is straightforward to assess that inexpb2
is the best model since all the squares in its tile are dark blue and that diricheletlm is the worst model
since it presents many light blue squares (finding 1 ).

Moreover, since the squares in the tile are almost color invariant, we understand that this IR model
almost does not interact with the other two components, since it performs poorly no matter which stop lists
and stemmers are employed by the system (finding 2 ).

We can analyze the diricheletlm model more in detail by clicking on the zoom lens in the upper right
corner of its tile. CLAIRE presents the user with a bigger model tile placed on the right side of the parallel
coordinates plot in the overall evaluation area as shown in Figure 9. By selecting the squares within the tile,
CLAIRE highlights in red the lines corresponding to the selected systems in the parallel coordinates view.
It is possible to see that all the systems using the diricheletlm model are performing poorly consistently
across all the evaluation measures; moreover, it is possible to see that all the selected lines in the parallel
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Figure 9: Zoom on the diricheletlm model tile and the parallel coordinates plot, where we can see that this IR model performs
consistently across different evaluation measures.

coordinates view are within the third and fourth quartile of the square-plots reported on the axes (finding
3 ).

It is easy to verify if this model performs consistently across collections by selecting a different collection
on the Parameters Selection area on the top of the screen. It is quite evident that the diricheletlm model
is consistently one of the worst performing models across all the test collections: T07, T09, T10, T14 and
T15; this indicates that the model is not much influenced by the characteristics of the collection at hand
(finding 4 ).

By looking at all the model tiles in the System Configurations Analysis area, it is possible to see that
there are IR models with problems when not paired up with a stop list – the model tile presents a light
column of squares for the nostop component – models which need to be paired up with a stemmer – the
model tile presents a light row of squares for the nolug component – and, models manifesting problems both
if they do not work in conjunction with a stop list and a stemmer – the model tile presents a light column
of squares for the nostop component and a light row of squares for the nolug component.

Figure 10 reports 3 model tiles corresponding to the aforementioned visual archetypes: (a) the bb2 model
needs a stop list to function well (finding 5 ), (b) the tfidf model works better with a stemmer (finding 6 ),
and (c) the bm25 model suffers the absence of the stop list and also, even though the effect is less marked,
the absence of a stemmer (finding 7 ); It is also possible to see that the three models need a stop list and/or
a stemmer, but they do not discriminate between different stop lists and stemmers.

Figure 10: Three visual archetypes that can be identified from the model tiles: (a) a lighter column shows a problem with a
stop list; (b) a lighter row shows a problem with a stemmer; (c) a lighter cross shows a problem with both a stop list and a
stemmer.

In order to further investigate the measures of the bm25 model the user explores the enlarged tile and the
parallel coordinates plot. He selects the squares composing the light cross on the bm25 tile and discovers that
the problem with the absence of the stop list and stemmer is less marked for the more top-heavy measures
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as for instance RBP. So, he examines the tiles for RBP by selecting the measure on the Parameter Selection
area and sees that the absence of the stop list is still a problem, but the absence of the stemmer is not a
problem anymore. The same goes for the other measures as shown in Figure 11.

Figure 11: The bm25 model tiles for different measures. We see that the lighter cross is present only for AP, whereas for more
top-heavy measures there is only a lighter column.

This discussion shows how with very few interactions, CLAIRE allows us to quickly and easily make sense
of a large amount of data, comparing across several configurations and evaluation measures in one shot. As
it will be clarified in the next section, using traditional approaches this would have meant inspecting many
different tables and plots to try to recognize some trends.

6.1.1. Statistical Validation

Finding 1: inexpb2 is the best model and diricheletlm is the worst model for T08 by using AP as
evaluation measure.
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Figure 12: T08 collection and AP measure main effects plots (see Ferro and Silvello [25]).

Figure 12 shows the main effects plots for the T08 collection and the AP measure. By looking at the
third plot about the model effects, it is possible to see that diricheletlm is the worst model and that
inexpb2 is the best one. This statistical evidence confirms the CLAIRE findings.

Finding 2: the diricheletlm model has little interaction with stop lists and stemmers.
Figure 13 shows the interaction plots for the T08 collection and the AP measure. In the two plots showing

the model*stop list (i.e., plot in row one and column three) and the model*stemmer (i.e., plot in row
two and column three) interactions, it is possible to see that the lines of the diricheletlm model are one
close to the other showing that little changes when different stop lists or different stemmers are used. This
statistical evidence confirms the finding visually discovered with CLAIRE.

Finding 3: the diricheletlm model performs poorly across all the evaluation measures.
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Figure 13: T08 collection and AP measure interaction plots (see Ferro and Silvello [25]).

To validate this finding a main effects plot for each measure has been generated, checking whether the
diricheletlm model is amongst the (four) worst performing models in all the cases. This analysis can be
validated by consulting the electronic appendix where all the main effect plots and the Tukey HSD test plots
for the considered measures based on T08 are reported.

Finding 4: the diricheletlm model performs consistently across all the considered collections.
To validate this finding a separate main effects plot for each collection for the considered measure has

been generated, checking whether the diricheletlm model is among the worst performing models in all
the cases. It is possible to verify that by checking the main effect plots reported in the electronic appendix
where we can see that the diricheletlm model is often the worst or the second worst model for all the
considered collections. This confirms the visual finding obtained by using the CLAIRE system.

Finding 5: the bb2 model works badly without a stop list and it performs equally well with different stop
lists.

By referring to the interaction plot in row one and column three of Figure 13 showing the model*stop

list interaction, it is possible to see that the bb2 model performs very poorly when no stop list is applied,
whereas it performs much better when a stop list is used; it is also evident that the performances do not
change consistently when using different stop lists. This statistical evidence validates the visual discovery
obtained by using CLAIRE.

Finding 6: the tfidf model works better with a stemmer rather than without it.
By referring to the interaction plot in row two and column three of Figure 13 showing the model*stemmer

interaction, it is possible to see that the tfidf model performs poorly without stemmer, whereas it performs
better when a stemmer is used – indeed, the blue line corresponding to the absence of the stemmer is below
all the other lines in the plot. This statistical evidence validates the visual discovery obtained by using
CLAIRE.

Finding 7: the bm25 model suffers from the absence of the stop list and the stemmer.
This is an interaction of the third order (stop list*stemmer*model): it cannot be visualized by any

of the standard statistical plots and it is also hard to determine from a numerical analysis. Indeed, the
interaction plots of Figure 13 allows us to say that bm25 suffers from the absence of a stop list and that it
suffers from the absence of a stemmer but not that the joint absences of a stop list and a stemmer is the
most critical case. Hence, CLAIRE allows for capturing a facet of the bm25 model that could not be grasped
by the statistical analysis conducted in [25].

6.2. Use case 2: Study of the stop lists

In order to analyze the stop lists the user sets up the axes in the Parameters Selection area to obtain a
tile for each stop list with the models on the x-axis and the stemmers on the y-axis.

The tiles allow to estimate the performances of each single stop list at a glance. The tiles where darker
squares are the majority perform better than those with a majority of lighter squares, consistently with
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what we discussed above for the models.
It is quite straightforward to see that the absence of a stop list is detrimental to many IR models; indeed,

as it emerges by looking at the tiles shown in Figure 1, the second tile on the first row presents a higher
number of light squares than the other tiles. In particular, it is possible to easily determine that the IR
models suffering the most by the absence of a stop list are bb2, bm25, dfiz, ifb2 and pl2 just by looking
at the columns of light squares within the tile (finding 1 ). The tiles reported in Figure 1 for T08 allow us
to assess the interaction between stop lists and stemmers for a given model. For instance, it is possible to
see that the inb2 and inexpb2 are not influenced by the choice of the stemmer; indeed, they present a dark
blue column in all the tiles, also in the nostop case, where many other IR models suffer from the absence
of a stop list (finding 2 ).

Even though the lucene stop list is the shortest one, its use improves the performances of almost all the
models with respect to the nostop case, but it suffers from the absence of a stemmer. This is highlighted by
the lighter row for the nolug case in the lucene tile (finding 3 ). There are only three exceptions: bb2, inb2
and inexpb2; these are the IR models insensitive to the use of a stemmer as we noted above. Moreover, it
is possible to see that the lucene stop list performs poorly with any stemmer for the diricheletlm model;
zooming over the tile and selecting the cross formed by the lighter squares reveals on the parallel coordinates
that this behaviour is consistent across all the measures (finding 4 ), as shown in Figure 14.

Figure 14: The lucene stop list tile with the lighter cross highlighted and the parallel coordinates view showing that this stop
list suffers the absence of a stemmer consistently across evaluation measures.

Overall, we see that the indri, smart, snowball and terrier stop lists are very close one to the other,
since their tiles present very similar square patterns; they all show a vast majority of dark blue squares and
a minority of lighter blue ones (finding 5 ).

Lastly, we check that stop lists behave consistently across collections. By looking at the stop list tiles
for T07, T08, T09 and T10 we see that: T07 and T08 behave similarly; for T09 and T10 the absence of the
stemmer has a bigger impact on all the stop lists and we can also see a reduction of the overall variance
(especially on T10), i.e. the size of the squares. This is shown in Figure 15.
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Figure 15: The indri stop list tiles of collections T07, T08, T09, T10.

6.2.1. Statistical Validation

Finding 1: the bb2, bm25, dfiz, ifb2 and pl2 models require the presence of a stop list to work well.
In Figure 13 we can see the interaction plots for the T08 collection and the AP measure. In the plot

showing the model*stop list (i.e., plot in row one and column three) we can see that the blue line
(indicating the nostop component) drops for the bb2, bm25, dfiz, ifb2 and pl2 models indicating that
they suffer from the absence of the stop list. This statistical evidence validate the visual discovery obtained
by using the CLAIRE system.

Finding 2: the inb2 and inexpb2 models are not influenced by the choice of the stemmer for whatever
stop list is applied.

This is a third order interaction (stop list*stemmer*model) and it is hard to grasp by using the
traditional statistical analysis, as previously discussed. Figure 13 shows that the inb2 and inexpb2 models
are not influenced by the stop list but it is not possible to assess the behaviour of an IR model with respect
to different stemmers given a specific stop list as instead it is possible to do by using CLAIRE.

Finding 3: the lucene stop list improves the performances for all the models with respect to the nostop

case, but it suffers from the lack of a stemmer.
The first part of this finding can be validated by the stop list*model interaction plot in Figure 13 where

the red dashed line of the lucene stop list is consistently above the blue line of the nostop component. The
second part of this finding requires an analysis of third order interactions which, as explained above, cannot
be visually validated with the traditional statistical analysis as we can do with CLAIRE.

Finding 4: the lucene stop list suffers from the absence of a stemmer and it does not perform well for
the diricheletlm model no matter of what stemmer is applied.

This finding requires an analysis of third order interactions, which, as explained above, cannot be val-
idated with the statistical analysis at hand. Hence, CLAIRE allows for having a visual intuition of third
order interactions which otherwise could not be grasped.

Finding 5: the indri, smart, snowball and terrier stop lists can be considered equivalent.
In the left part of Figure 16, we report the Tukey HSD plot of the stop lists for the T08 collection and AP

measure. It is possible to see that there is no statistical significant differences between the indri, smart,
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Figure 16: On the left, the Tukey plot of the stop lists for the T08 collection and AP measure and on the right the Tukey plot
of the stemmers.

snowball and terrier stop lists as visually outlined by CLAIRE.

6.3. Use case 3: Study of the stemmers

In order to analyze the stemmers the axes in the Parameters Selection area are combined to obtain a
tile for each stemmer with the models on the x-axis and the stop lists on the y-axis.

Figure 17 shows that the absence of the stemmer is detrimental for the performances of all the systems
(finding 1 ) with the solely exception of the inb2 and inexpb2 models, as described above.

It is possible to see that the presence of a stemmer has an impact, but the interaction with the other
components is low (finding 2 ). Indeed, excluding the two corner cases analyzed above (i.e., the diricheletlm
model and the nostop components), the tiles present a vast majority of dark blue squares.

By acting on the square plot on the right end side of the stemmer tiles, it is possible to select the third and
fourth quartile in order to examine the top systems. By examining the remaining dark blue squares in the
stemmer tiles, it is possible to see that the porter, weakPorter, snowballPorter and krovetz stemmers
are well performing and quite close one to the other where weakPorter is slightly under-performing, whereas
the lovins stemmer, while performing better than nolug, performs poorly.

6.3.1. Statistical Validation

Finding 1: the absence of the stemmer is detrimental for the performances of most of the systems.
This is validated by the stemmer main effects plot in Figure 12, where it is possible to see that the

marginal mean for the nolug component is lower than all the other ones.
Finding 2: the interaction between the stemmer and the other components is low.
This is validated by the statistical analysis (the p-values) reported in the electronic appendix and in [25],

where it is possible to see that the stop list*stemmer, stemmer*model and stop list*stemmer*model

interactions are not statistically significant.
Finding 3: the porter, weakPorter, snowballPorter and krovetz stemmers are the top performing

stemmers, nolug and lovins are the worst performing, and krovetz is the best performing stemmer.
In the Tukey HSD plot on the right part of Figure 16 it is possible to see that nolug is by any means

the worst performing component followed by lovins. The krovetz, porter, snowballPorter stemmers are
good performing stemmers, but they are in the same equivalence class so they do not present any significant
statistical difference.
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Figure 17: System configuration analysis area: we can see the stemmer tiles; IR models are on the x-axis and stop lists are on
the y-axis.

6.4. Use case 4: The analytical engine

The analytical engine enables the selection of the “most performing” systems by weighting in all the
available measures and it allows for filtering out models that are well performing on AP as we have seen
above, but which are not consistently well performing across all the other measures. Figure 18 shows that
the inexpb2 model presents the highest number of highly performing systems (Figure 18 a) and that their
performances are consistent across all the considered measures (Figure 18 b); moreover, it is possible to see
that inb2 and inl2 are good models with performances across measures close to those of inexpb2 (finding
1 ).

In particular, the analytical engine enables the selection of the “most promising” systems with a bias
towards performance. These systems share a fixed high performance values range (fourth quartile) across
measures and as little variance as possible across topics for all the considered measures. This automated
analysis allows for understanding that for T08 the most promising system is composed of the jskls model
equipped with a snowball stop list and a porter stemmer (finding 2 ).

The very same analysis can be carried out very easily across collections, thus determining the most
promising (with a bias towards performances) for all the available test collections and across all measures.
We see that the most promising systems vary quite a lot between test collections; indeed, for T07 the most
promising combination of components is the tfidf model combined with the terrier stop list and the
porter or snowball porter stemmers, for T09 is the lgd model combined with the indri stop list and the
porter or snowball porter stemmers, for T10 is the inexpb2 model combined with the terrier stop list
and the porter or snowball porter stemmers, for T14 is the inl2 model combined with the terrier stop
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(a)

(b)

Figure 18: (a) The model-oriented view of the tiles where the most performing systems are highlighted. (b) The parallel
coordinates plot of the top performing systems using the inexpb2 model.
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list and the porter stemmer and for T15 are the bm25 model combined with the snowball stop list and the
porter or snowball porter stemmers and the tfidf model combined with the snowball or smart stop
lists and the snowball porter stemmer (finding 3 ).

6.4.1. Statistical Validation

Finding 1: inexpb2 is the most performing model across all measures and inb2 and inl2 are close to
inexpb2.

The electronic appendix reports six Tukey HSD plots, one for each measure considered by CLAIRE
analytical component, for T08 where the marginal means of the IR models are reported. It is possible to see
that inexpb2 and inb2 are the only two models belonging to the top performing groups for all the measures
and that inl2 belongs to the top group for the most impacting measures (i.e., AP, nDCG and P@10). This
evidence confirms the CLAIRE findings.

Finding 2: the jskls model equipped with a snowball stop list and a porter stemmer is the most
promising system for T08.

This can be partially validated by the three T08 Tukey HSD plots reported in the electronic appendix,
where it is possible to see that the jskls model is amongst the first or the second top performing groups for
all the measures, the snowball stop list is in the top performing group across all measures as well as porter
for the stemmers. The statistical analysis does not provide information about third order interactions
(stop list*stemmer*model), thus it is not possible to assess how these three components interact one
with each other. It is possible to analyze second order interaction by referring to Figure 13 where it is
possible to see that for the stemmer*model interaction plot (second row, third column), the jskls model
and porter form the most performing pair of components; the stop list*model interaction plot (first
row, third column) makes evdident that the jskls model and snowball stop list pair is amongst the top
performing ones as well as the pair snowball stop list and porter stemmer (first row, second column plot).
These results are consistent with the interaction plots for T08 adopting the other measures reported in
the electronic appendix. Nevertheless, the statistical analysis does not allow for combining these evidences
with the confidence intervals as well as to have a unique view of second order interactions across measures.
Hence, CLAIRE provides a very deep intuition about third order interactions among components, about
the behaviour of the systems (second and third order interactions) by considering more than one measure
at a time and variance between topics across multiple measures, which otherwise could not be fully grasped
by using any of the commonly available statistical tools.

Finding 3 could be partially validated in the same way as described above, but it requires to compare
all the Tukey HSD plots for all the six considered test collections (i.e., 36 Tukey HSD plots) as well their 36
interaction plots (6 plots for 6 test collections). Nevertheless, this complex analysis would make evident only
a hint (as discussed for the finding 2 above) about the most promising systems for each collection. Hence,
CLAIRE proved to be highly effective and to overcome some of the limitations of the demanding statistical
analyses that are usually adopted to make sense of the complex results of the experimental evaluation in IR.

7. Conclusions and future work

IR systems are the aggregation of several components that interact together to return the most relevant
documents, within a given collection, to respond a user query. There is no viable method to estimate the
performances of IR systems before implementing and testing them on several real-world scenarios. This
process, though resource and time consuming, has been adopted since the 60s and proved to be an essential
means to understand and improve IR systems. On the other hand, experimental evaluation allows for
assessing the performances of IR systems as a whole and does not provide any insight about the performances
and the interactions of single components. To this end, the common practice for large research laboratories
and search engine companies is to experiment with all possible combinations of available components and
then explore the very large resulting space of IR systems to individuate patterns and component interactions
that may provide some insights about the internals of IR systems. The manual inspection of thousands of
measures can be aided by the use of statistical analyses such as GLMM and multi-way ANOVA. These
methods are resource demanding as well and require an extended knowledge to be interpreted.
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We presented a relevant case implying the exploration of almost 1.5M data points – i.e., the GoP –
corresponding to different performance measures of hundreds of IR systems. We detailed the characteristics
of the GoP at hand, the process that lead to its creation and the statistical analyses we performed. The
paper goal was to ease the GoP exploration and to make sense of this huge amount of data without a
demanding and complex statistical analyses.

To this end, we developed a novel VA system, CLAIRE, that supports the analysis of a large set of IR
systems. Distinguishing system features are its capability of presenting the user with both the solution space
parameters and the associated measures and of shortening the statistical analysis providing a quick way for
comparing different configurations and getting insights on the analyzed systems.

CLAIRE has been demonstrated against a comprehensive and representative set of open source compo-
nents, collecting measures on six relevant and standard test collections widely used by the IR community
both at the academic and industrial level. Statistical analyses have been conducted on such measures and
used in the paper to validate the visual insights raising from the use of the system; this deep analysis led
us to conclude that CLAIRE allows for visually discovering many insights that were determined with deep
statistical analyses and also for getting additional insights not possible with traditional approaches so far.

As future work, we will extend the CLAIRE system by allowing users to upload their proprietary systems
and components and compare them against the standard open-source baselines present in the CLAIRE
GoP; something like this has been proposed also in Agosti et al. [1], Agosti and Ferro [2], Armstrong
et al. [9], Di Nunzio and Ferro [18], Gollub et al. [29], Ioannakis et al. [36] even though in a traditional IR
evaluation setting rather than for component-based evaluation. In this way, users will be able both to better
break down the performance of their own systems and to understand whether their constituting components
outperform standard open-source solutions. Moreover, we will extend the GoP in order to include other IR
components such as parsers or query expansion modules. That will have a strong influence on the design of
the visual system: adding just one additional dimension will produce a four dimensions GoP that requires
a carefully design; possible solutions will rely on very simple 3D visualizations (occlusion problems strongly
discourage this approach unless it is quite minimalist) or smart projection mechanisms, likely using the
result of dimensionality reduction techniques as a steering mechanism to locate cluster of similar systems
and project them in the actual CLAIRE fashion using the 3 most relevant components. Another extension
of the paper in this direction is to study the effect of model parameters since they have a sizable impact
on model performances; this will lead to an increased complexity and size of the GoP to be analysed and
visualized.
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Access Evaluation. Multilinguality, Multimodality, and Visual Analytics. Proceedings of the Third International Conference
of the CLEF Initiative (CLEF 2012). Lecture Notes in Computer Science (LNCS) 7488, Springer, Heidelberg, Germany,
pp. 88–99.

[2] Agosti, M., Ferro, N., 2009. Towards an Evaluation Infrastructure for DL Performance Evaluation. In: Tsakonas, G.,
Papatheodorou, C. (Eds.), Evaluation of Digital Libraries: An insight into useful applications and methods. Chandos
Publishing, Oxford, UK, pp. 93–120.

[3] Amati, G., van Rijsbergen, C. J., 2002. Probabilistic Models of Information Retrieval based on measuring the Divergence
From Randomness. ACM Transactions on Information Systems (TOIS) 20 (4), 357–389.

[4] Angelini, M., Ferro, N., Santucci, G., Silvello, G., August 2014. VIRTUE: A visual tool for information retrieval perfor-
mance evaluation and failure analysis. Journal of Visual Languages & Computing (JVLC) 25 (4), 394–413.

[5] Angelini, M., Ferro, N., Santucci, G., Silvello, G., 2016. A Visual Analytics Approach for What-If Analysis of Information
Retrieval Systems. In: [51], pp. 1081–1084.

[6] Angelini, M., Ferro, N., Santucci, G., Silvello, G., 2017. Visual Analytics for Information Retrieval Evaluation Campaigns.
In: Sedlmair, M., Tominski, C. (Eds.), Proc. 8th International Workshop on Visual Analytics (EuroVA 2017). Eurographics
Association, Goslar, Germany, pp. 25–30.

[7] Angelini, M., Santucci, G., october 2017. The dark side of progressive visual analytics. In: Ferreira, N., Nonato, L. G.,
Sadlo, F. (Eds.), Workshop on Visual Analytics, Information Visualization and Scientific Visualization (WVIS) in the
30th Conference on Graphics, Patterns and Images (SIBGRAPI’17). Niteri, RJ, Brazil.
URL http://sibgrapi2017.ic.uff.br/

26



[8] Arguello, J., Crane, M., Diaz, F., Lin, J., Trotman, A., December 2015. Report on the SIGIR 2015 Workshop on Repro-
ducibility, Inexplicability, and Generalizability of Results (RIGOR). SIGIR Forum 49 (2), 107–116.

[9] Armstrong, T. G., Moffat, A., Webber, W., Zobel, J., 2009. EvaluatIR: an Online Tool for Evaluating and Comparing IR
Systems. In: Allan, J., Aslam, J. A., Sanderson, M., Zhai, C., Zobel, J. (Eds.), Proc. 32nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2009). ACM Press, New York, USA, p.
833.

[10] Bachthaler, S., Weiskopf, D., 2008. Continuous scatterplots. IEEE Transactions on Visualization and Computer Graphics
14 (6), 1428–1435.
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Electronic appendix

In this appendix we report the detailed statistical analyses conducted on the Grid of Points (GoP)
defined on the six test collections considered in the paper: TREC 07 Adhoc, TREC 08 Adhoc, TREC 09
Web, TREC 10 Web, TREC 14 Terabyte and TREC 15 Terabyte. This appendix is meant to be used as a
statistical counterpart of the validation use cases presented in the paper.

7.1. GLMM and effect size

We use a three-way GLMM to carry out the analysis of IR GoP. In this three factors design we manipulate
factors A, B and C corresponding to the stop lists, the Lexical Unit Generator (LUG) and the IR models
respectively; with this design we can also study the interaction between component pairs as well as the third
order interaction between them even though we cannot visualize them by means of main and interaction
effect plots.

The systems are decomposed into the three main constituents delined in the paper: (i) factor A (stop
lists) with p levels where, for instance, A1 corresponds to the absence of a stop list, A2 to the indri stop
list, A3 to the terrier stop list and so on; (ii) factor B (stemmer) with q levels where B1 corresponds to the
absence of a stemmer, B2 to the Porter stemmer, B3 to the Krovetz stemmer and so on; (iii) factor C (IR
models) with r levels where C1 corresponds to BM25, C2 to TF*IDF and so on.

The full GLMM for the described factorial ANOVA design for repeated measures with three fixed factors
(A, B, C) and a random factor (T

′
) is:

Yijkl = µ···· + τi + αj + βk + γl︸ ︷︷ ︸
Main Effects

+

αβjk + αγjl + βγkl + αβγjkl︸ ︷︷ ︸
Interaction Effects

+ εijkl︸︷︷︸
Error

(4)

where: Yijkl is the score of the i-th subject in the j-th, k-th, and l-th factors; µ···· is the grand mean; τi
is the effect of the i-th subject τi = µi··· − µ···· where µi··· is the mean of the i-th subject; αj = µ·j·· − µ····
is the effect of the j-th factor, where µ·j·· is the mean of the j-th factor; βk = µ··k· − µ···· is the effect of the
k-th factor, where µ··k· is the mean of the k-th factor; and, γl = µ···l − µ···· is the effect of the l-th factor
where µ···l is the mean of the l-th factor; εijkl is the error committed by the model in predicting the score
of the i-th subject in the three factors j, k, l. It consists of all the interaction terms between the random
subjects and the fixed factors, such as (τα)ij , (τβ)ik and so on, plus the error εijkl which is any additional
error due to uncontrolled sources of variance. As in the single factor design to calculate interaction effects
with the subjects, you need to have replicates; when there is only one score per subject per factor the factor
εijkl cannot be separated from the interaction effects with the random subjects.

The estimators of the main effects can be derived by extension from those of the single factor design;
for instance, the grand mean is µ̂···· = 1

rqpn

∑r
l=1

∑q
k=1

∑p
j=1

∑n
i=1 Yijkl, the mean of the k-th effect is

µ̂··k· = 1
rpn

∑r
l=1

∑p
j=1

∑n
i=1 Yijkl and its estimator is β̂k = µ̂··k· − µ̂····.

The estimators of the interaction factors are calculated as follows, let us consider (αβ)jk:

α̂βjk = µ̂·jk· − (µ̂···· + α̂j + β̂k) (5)

where µ̂·jk· = 1
nr

∑n
i=1

∑r
l=1 Yijkl; α̂j = µ̂·j·· − µ̂····; and, β̂k = µ̂··k· − µ̂····.

Similarly, we calculate the estimators for all the other interaction factors – i.e. α̂γjl and β̂γkl; α̂βγjkl is
calculated by extending equation (5):

α̂βγjkl = µ̂·jkl − (µ̂···· + α̂j + β̂k + γ̂l) (6)

where µ̂·jkl = 1
n

∑n
i=1 Yijkl and γ̂l = µ̂···l − µ̂····.
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In this design the error εijkl = Yijkl−Ŷijkl contains the variance not explained by the main and interaction
effects discussed above and it is composed by all the interactions of the subjects τj with the other factors in
the model, in addition to the uncontrolled sources of variance.

We are not only interested in determining whether a factor effect is significant, but also which proportion
of the variance is due to it, that is we need to estimate its effect-size measure or Strength of Association
(SOA). The SOA is a “standardized index and estimates a parameter that is independent of sample size
and quantifies the magnitude of the difference between populations or the relationship between explanatory
and response variables” [49].

ω̂2
〈fact〉 =

dffact(Ffact − 1)

dffact(Ffact − 1) +N
(7)

is an unbiased estimator of the variance components associated with the sources of variation in the design,
where Ffact is the F-statistics and dffact are the degrees of freedom for the factor while N is the total
number of samples.

The common rule of thumb [58] when classifying ω̂2
〈fact〉 effect size is: 0.14 and above is a large size

effect, 0.06–0.14 is a medium size effect, and 0.01–0.06 is a small size effect. ω̂2
〈fact〉 values could happen to

be negative and in such cases they are considered as zero.
A Type I error occurs when a true null hypothesis is rejected and the significance level α is the probability

of committing a Type I error. When performing multiple comparisons, the probability of committing a Type
I error increases with the number of comparisons and we keep it controlled by applying the Tukey HSD
test [35] with a significance level α = 0.05. Tukey’s method is used in ANOVA to create confidence intervals
for all pairwise differences between factor levels, while controlling the family error rate; it is an effective
method generally more powerful than other popular statistical methods like the Bonferroni one [46]. Two
levels u and v of a factor are considered significantly different when

|t| = |µ̂u − µ̂v|√
MSerror

(
1
nu

+ 1
nv

) > 1√
2
qα,k,N−k (8)

where µ̂u and µ̂v are the marginal means, i.e. the main effects, of the two factors; nu and nv are the sizes
of levels u and v; qα,k,N−k is the upper 100 ∗ (1− α)th percentile of the studentized range distribution with
parameter k and N −k degrees of freedom; k is the number of levels in the factor and N is the total number
of observations.

A Type 2 error occurs when a false null hypothesis is accepted and it is concerned with the capability of
the conducted experiment to actually detect the effect under examination. Type 2 errors are often overlooked
because if they occur, although a real effect is missed, no misdirection occurs and further experimentation
is very likely to reveal the effect.

7.2. Detailed results of the statistical analyses

We present a table for each collection reporting the estimated ω2 SOA for all the main and interaction
effects and, within parentheses, the p-values for all the ANOVA three-way tests we conducted (see Table
1–6); the color coding of the cells is the following: not significant effects are in light grey; small size effects
are in light blue; medium size effects are in blue; and large size effects are in dark blue.

Moreover, we report the main effect plots (see Figure 19 for the main effect plots based on AP for
the different test collections and Figure 20 for the main effect plots of different measures over TREC 08
test collection) and the interaction plots (see Figures 21, 22, 23, 24, 25 and 26) for all the considered test
collections based on AP. Moreover in Figures 27, 28 and 29 we report the Tukey plot of the marginal means
for the models, stemmers and stop lists over TREC 08.
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Figure 19: Main effects for the AP measure on TREC 07, TREC 08, TREC 09, TREC 10, TREC 14, TREC 15 test collections.
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Figure 20: Main effects for the all the considered measures (AP, ERR, nDCG, RBP, P@10, twist) on TREC 08, 1999, Adhoc
test collection; we can see that the diricheletlm model is amongst the worst performing models for all the measures.
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Effects ap p10 rprec rbp ndcg20 ndcg err20 err twist

ω̂2
〈Stop Lists〉 0.0564

(0.00)
0.0611
(0.00)

0.0740
(0.00)

0.0704
(0.00)

0.0750
(0.00)

0.1502
(0.00)

0.0564
(0.00)

0.0569
(0.00)

0.1010
(0.00)

ω̂2
〈Stemmers〉 0.0195

(0.00)
0.0126
(0.00)

0.0164
(0.00)

0.0123
(0.00)

0.0120
(0.00)

0.0432
(0.00)

0.0036
(0.00)

0.0036
(0.00)

0.0306
(0.00)

ω̂2
〈IR Models〉 0.0393

(0.00)
0.0418
(0.00)

0.0509
(0.00)

0.0475
(0.00)

0.0505
(0.00)

0.0877
(0.00)

0.0426
(0.00)

0.0428
(0.00)

0.0638
(0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0002

(0.79)
0.0001
(0.30)

-0.0001
(0.71)

-0.0002
(0.75)

0.0001
(0.31)

-0.0000
(0.55)

-0.0002
(0.86)

-0.0002
(0.85)

-0.0003
(0.88)

ω̂2
〈Stop Lists×IR Models〉 0.0987

(0.00)
0.1316
(0.00)

0.1512
(0.00)

0.1479
(0.00)

0.1579
(0.00)

0.2897
(0.00)

0.1280
(0.00)

0.1299
(0.00)

0.2161
(0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0012

(1.00)
0.0007
(0.04)

-0.0012
(1.00)

0.0001
(0.38)

-0.0010
(1.00)

-0.0017
(1.00)

0.0018
(0.00)

0.0018
(0.00)

-0.0004
(0.83)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0127

(1.00)
-0.0117
(1.00)

-0.0124
(1.00)

-0.0126
(1.00)

-0.0123
(1.00)

-0.0123
(1.00)

-0.0120
(1.00)

-0.0120
(1.00)

-0.0120
(1.00)

Table 1: Topic/Component Effects on TREC 07, 1998, Adhoc. Each cell reports the ω2 SoA for the speficied effects and,
within parentheses, the p-value.

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

no
st
op in
dr
i

lu
ce
ne

sm
ar
t

sn
ow

ba
ll

te
rri
er

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

bb
2

bm
25

df
iz

df
re
e

di
ric
hl
et
lm

dl
h

dp
h

hi
em

st
ra
lm

ifb
2

in
b2

in
l2

in
ex
pb
2

js
kl
s

le
m
ur
tfi
df

lg
d

pl
2

tfi
df

0.05

0.1

0.15

0.2

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

IR Models
IR Models = bb2

IR Models = bm25

IR Models = dfiz

IR Models = dfree

IR Models = dirichletlm

IR Models = dlh

IR Models = dph

IR Models = 

hiemstralm IR Models 

= ifb2

IR Models = inb2

IR Models = inl2

IR Models = inexpb2

IR Models = jskls

IR Models = lemurtfidf

IR Models = lgd

IR Models = pl2

IR Models = tfidf

Stemmers

Stemmers = nolug

Stemmers = krovetz

Stemmers = lovins

Stemmers = porter

Stemmers = snowballPorter

Stemmers = weakPorter

Stop Lists

Stop Lists = nostop

Stop Lists = indri

Stop Lists = lucene

Stop Lists = smart

Stop Lists = snowball

Stop Lists = terrier

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

no
st
op in
dr
i

lu
ce
ne

sm
ar
t

sn
ow

ba
ll

te
rri
er

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

0.05

0.1

0.15

0.2

bb
2

bm
25

df
iz

df
re
e

di
ric
hl
et
lm

dl
h

dp
h

hi
em

st
ra
lm

ifb
2

in
b2

in
l2

in
ex
pb
2

js
kl
s

le
m
ur
tfi
df

lg
d

pl
2

tfi
df

0.05

0.1

0.15

0.2

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

IR Models
IR Models = bb2

IR Models = bm25

IR Models = dfiz

IR Models = dfree

IR Models = dirichletlm

IR Models = dlh

IR Models = dph

IR Models = 

hiemstralm IR Models 

= ifb2

IR Models = inb2

IR Models = inl2

IR Models = inexpb2

IR Models = jskls

IR Models = lemurtfidf

IR Models = lgd

IR Models = pl2

IR Models = tfidf

Stemmers

Stemmers = nolug

Stemmers = krovetz

Stemmers = lovins

Stemmers = porter

Stemmers = snowballPorter

Stemmers = weakPorter

Stop Lists

Stop Lists = nostop

Stop Lists = indri

Stop Lists = lucene

Stop Lists = smart

Stop Lists = snowball

Stop Lists = terrier

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

no
st
op in
dr
i

lu
ce
ne

sm
ar
t

sn
ow

ba
ll

te
rri
er

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

bb
2

bm
25

df
iz

df
re
e

di
ric
hl
et
lm

dl
h

dp
h

hi
em

st
ra
lm

ifb
2

in
b2

in
l2

in
ex
pb
2

js
kl
s

le
m
ur
tfi
df

lg
d

pl
2

tfi
df

0.05

0.1

0.15

0.2

0.25

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

IR Models
IR Models = bb2

IR Models = bm25

IR Models = dfiz

IR Models = dfree

IR Models = dirichletlm

IR Models = dlh

IR Models = dph

IR Models = 

hiemstralm IR Models 

= ifb2

IR Models = inb2

IR Models = inl2

IR Models = inexpb2

IR Models = jskls

IR Models = lemurtfidf

IR Models = lgd

IR Models = pl2

IR Models = tfidf

Stemmers

Stemmers = nolug

Stemmers = krovetz

Stemmers = lovins

Stemmers = porter

Stemmers = snowballPorter

Stemmers = weakPorter

Stop Lists

Stop Lists = nostop

Stop Lists = indri

Stop Lists = lucene

Stop Lists = smart

Stop Lists = snowball

Stop Lists = terrier

St
op

 L
is

ts

Stemmers IR Models

St
op

 L
is

ts

IR Models

St
em

m
er

s

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

no
st
op in
dr
i

lu
ce
ne

sm
ar
t

sn
ow

ba
ll

te
rri
er

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

bb
2

bm
25

df
iz

df
re
e

di
ric
hl
et
lm

dl
h

dp
h

hi
em

st
ra
lm

ifb
2

in
b2

in
l2

in
ex
pb
2

js
kl
s

le
m
ur
tfi
df

lg
d

pl
2

tfi
df

0.05

0.1

0.15

0.2

0.25

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

IR Models
IR Models = bb2

IR Models = bm25

IR Models = dfiz

IR Models = dfree

IR Models = dirichletlm

IR Models = dlh

IR Models = dph

IR Models = 

hiemstralm IR Models 

= ifb2

IR Models = inb2

IR Models = inl2

IR Models = inexpb2

IR Models = jskls

IR Models = lemurtfidf

IR Models = lgd

IR Models = pl2

IR Models = tfidf

Stemmers

Stemmers = nolug

Stemmers = krovetz

Stemmers = lovins

Stemmers = porter

Stemmers = snowballPorter

Stemmers = weakPorter

Stop Lists

Stop Lists = nostop

Stop Lists = indri

Stop Lists = lucene

Stop Lists = smart

Stop Lists = snowball

Stop Lists = terrier
no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

no
st
op in
dr
i

lu
ce
ne

sm
ar
t

sn
ow

ba
ll

te
rri
er

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

bb
2

bm
25

df
iz

df
re
e

di
ric
hl
et
lm

dl
h

dp
h

hi
em

st
ra
lm

ifb
2

in
b2

in
l2

in
ex
pb
2

js
kl
s

le
m
ur
tfi
df

lg
d

pl
2

tfi
df

0.05

0.1

0.15

0.2

0.25

no
lu
g

kr
ov
et
z

lo
vi
ns

po
rte
r

sn
ow

ba
llP
or
te
r

w
ea
kP
or
te
r

IR Models
IR Models = bb2

IR Models = bm25

IR Models = dfiz

IR Models = dfree

IR Models = dirichletlm

IR Models = dlh

IR Models = dph

IR Models = 

hiemstralm IR Models 

= ifb2

IR Models = inb2

IR Models = inl2

IR Models = inexpb2

IR Models = jskls

IR Models = lemurtfidf

IR Models = lgd

IR Models = pl2

IR Models = tfidf

Stemmers

Stemmers = nolug

Stemmers = krovetz

Stemmers = lovins

Stemmers = porter

Stemmers = snowballPorter

Stemmers = weakPorter

Stop Lists

Stop Lists = nostop

Stop Lists = indri

Stop Lists = lucene

Stop Lists = smart

Stop Lists = snowball

Stop Lists = terrier

Figure 21: Interaction effects for the AP measure on TREC 07, 1998, Adhoc test collection.

Effects ap p10 rprec rbp ndcg20 ndcg err20 err twist

ω̂2
〈Stop Lists〉 0.0796

(0.00)
0.0744
(0.00)

0.0899
(0.00)

0.0835
(0.00)

0.0786
(0.00)

0.1340
(0.00)

0.0603
(0.00)

0.0610
(0.00)

0.1063
(0.00)

ω̂2
〈Stemmers〉 0.0394

(0.00)
0.0165
(0.00)

0.0344
(0.00)

0.0168
(0.00)

0.0255
(0.00)

0.0656
(0.00)

0.0047
(0.00)

0.0047
(0.00)

0.0372
(0.00)

ω̂2
〈IR Models〉 0.0542

(0.00)
0.0561
(0.00)

0.0695
(0.00)

0.0648
(0.00)

0.0711
(0.00)

0.0832
(0.00)

0.0452
(0.00)

0.0449
(0.00)

0.0784
(0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0004

(0.98)
-0.0005
(1.00)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0005
(1.00)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0005
(1.00)

ω̂2
〈Stop Lists×IR Models〉 0.1337

(0.00)
0.1544
(0.00)

0.1728
(0.00)

0.1749
(0.00)

0.1722
(0.00)

0.2606
(0.00)

0.1362
(0.00)

0.1379
(0.00)

0.2165
(0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0016

(1.00)
-0.0004
(0.86)

-0.0012
(1.00)

-0.0012
(1.00)

-0.0011
(1.00)

-0.0015
(1.00)

-0.0013
(1.00)

-0.0013
(1.00)

-0.0012
(1.00)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0124

(1.00)
-0.0116
(1.00)

-0.0122
(1.00)

-0.0124
(1.00)

-0.0122
(1.00)

-0.0122
(1.00)

-0.0117
(1.00)

-0.0117
(1.00)

-0.0120
(1.00)

Table 2: Topic/Component Effects on TREC 08, 1999, Adhoc. Each cell reports the ω2 SoA for the speficied effects and,
within parentheses, the p-value.

Effects ap p10 rprec rbp ndcg20 ndcg err20 err twist

ω̂2
〈Stop Lists〉 0.0603

(0.00)
0.0448
(0.00)

0.0443
(0.00)

0.0551
(0.00)

0.0795
(0.00)

0.1907
(0.00)

0.0334
(0.00)

0.0338
(0.00)

0.0723
(0.00)

ω̂2
〈Stemmers〉 0.0063

(0.00)
0.0013
(0.00)

0.0016
(0.00)

0.0014
(0.00)

0.0016
(0.00)

0.0122
(0.00)

0.0007
(0.00)

0.0008
(0.00)

0.0027
(0.00)

ω̂2
〈IR Models〉 0.0865

(0.00)
0.0738
(0.00)

0.0691
(0.00)

0.0938
(0.00)

0.0804
(0.00)

0.1847
(0.00)

0.0734
(0.00)

0.0728
(0.00)

0.0688
(0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0005

(0.99)
-0.0003
(0.96)

-0.0005
(0.99)

-0.0007
(1.00)

-0.0006
(1.00)

-0.0004
(0.98)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0005
(0.99)

ω̂2
〈Stop Lists×IR Models〉 0.0957

(0.00)
0.1099
(0.00)

0.0953
(0.00)

0.1306
(0.00)

0.1409
(0.00)

0.3350
(0.00)

0.0861
(0.00)

0.0879
(0.00)

0.1371
(0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0015

(1.00)
-0.0015
(1.00)

-0.0009
(0.99)

-0.0015
(1.00)

-0.0006
(0.92)

-0.0011
(1.00)

-0.0009
(0.99)

-0.0008
(0.99)

-0.0009
(0.99)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0125

(1.00)
-0.0118
(1.00)

-0.0116
(1.00)

-0.0125
(1.00)

-0.0121
(1.00)

-0.0127
(1.00)

-0.0117
(1.00)

-0.0117
(1.00)

-0.0113
(1.00)

Table 3: Topic/Component Effects on TREC 09, 2000, Web. Each cell reports the ω2 SoA for the speficied effects and, within
parentheses, the p-value.
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Effects ap p10 rprec rbp ndcg20 ndcg err20 err twist

ω̂2
〈Stop Lists〉 0.0643

(0.00)
0.0505
(0.00)

0.0511
(0.00)

0.0569
(0.00)

0.0624
(0.00)

0.1391
(0.00)

0.0295
(0.00)

0.0300
(0.00)

0.0742
(0.00)

ω̂2
〈Stemmers〉 0.0072

(0.00)
0.0025
(0.00)

0.0053
(0.00)

0.0018
(0.00)

0.0044
(0.00)

0.0259
(0.00)

0.0027
(0.00)

0.0027
(0.00)

0.0063
(0.00)

ω̂2
〈IR Models〉 0.0948

(0.00)
0.0777
(0.00)

0.0576
(0.00)

0.1001
(0.00)

0.0877
(0.00)

0.1314
(0.00)

0.0674
(0.00)

0.0669
(0.00)

0.0801
(0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0007

(1.00)
-0.0004
(0.99)

-0.0006
(1.00)

-0.0005
(1.00)

-0.0005
(1.00)

-0.0004
(0.96)

-0.0001
(0.63)

-0.0001
(0.58)

-0.0004
(0.99)

ω̂2
〈Stop Lists×IR Models〉 0.0862

(0.00)
0.1027
(0.00)

0.0839
(0.00)

0.1160
(0.00)

0.1344
(0.00)

0.2607
(0.00)

0.0863
(0.00)

0.0880
(0.00)

0.1444
(0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0006

(0.95)
-0.0006
(0.94)

-0.0001
(0.62)

-0.0011
(1.00)

-0.0014
(1.00)

-0.0008
(0.98)

-0.0013
(1.00)

-0.0013
(1.00)

-0.0000
(0.49)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0126

(1.00)
-0.0117
(1.00)

-0.0116
(1.00)

-0.0125
(1.00)

-0.0121
(1.00)

-0.0127
(1.00)

-0.0114
(1.00)

-0.0114
(1.00)

-0.0116
(1.00)

Table 4: Topic/Component Effects on TREC 10, 2001, Web. Each cell reports the ω2 SoA for the speficied effects and, within
parentheses, the p-value.

Effects ap p10 rprec rbp ndcg20 ndcg err20 err twist

ω̂2
〈Stop Lists〉 0.0951

(0.00)
0.0568
(0.00)

0.1027
(0.00)

0.0657
(0.00)

0.0749
(0.00)

0.1476
(0.00)

0.0327
(0.00)

0.0329
(0.00)

0.1111
(0.00)

ω̂2
〈Stemmers〉 0.0220

(0.00)
0.0045
(0.00)

0.0194
(0.00)

0.0048
(0.00)

0.0039
(0.00)

0.0224
(0.00)

0.0019
(0.00)

0.0018
(0.00)

0.0179
(0.00)

ω̂2
〈IR Models〉 0.1810

(0.00)
0.1261
(0.00)

0.1721
(0.00)

0.1429
(0.00)

0.1604
(0.00)

0.2030
(0.00)

0.1001
(0.00)

0.0994
(0.00)

0.1666
(0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0001

(0.66)
-0.0004
(0.98)

-0.0002
(0.84)

-0.0004
(0.97)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0005
(1.00)

-0.0005
(1.00)

-0.0002
(0.82)

ω̂2
〈Stop Lists×IR Models〉 0.1408

(0.00)
0.1322
(0.00)

0.1946
(0.00)

0.1486
(0.00)

0.1713
(0.00)

0.2647
(0.00)

0.1051
(0.00)

0.1067
(0.00)

0.2000
(0.00)

ω̂2
〈Stemmers×IR Models〉 0.0017

(0.00)
0.0004
(0.19)

0.0014
(0.00)

0.0004
(0.18)

0.0004
(0.17)

0.0008
(0.04)

0.0009
(0.03)

0.0009
(0.02)

0.0012
(0.01)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0127

(1.00)
-0.0115
(1.00)

-0.0124
(1.00)

-0.0121
(1.00)

-0.0119
(1.00)

-0.0127
(1.00)

-0.0109
(1.00)

-0.0109
(1.00)

-0.0114
(1.00)

Table 5: Topic/Component Effects on TREC 14, 2004, Terabyte. Each cell reports the ω2 SoA for the speficied effects and,
within parentheses, the p-value.

Effects ap p10 rprec rbp ndcg20 ndcg err20 err twist

ω̂2
〈Stop Lists〉 0.0804

(0.00)
0.0454
(0.00)

0.0933
(0.00)

0.0462
(0.00)

0.0594
(0.00)

0.1701
(0.00)

0.0326
(0.00)

0.0329
(0.00)

0.0940
(0.00)

ω̂2
〈Stemmers〉 0.0064

(0.00)
0.0022
(0.00)

0.0045
(0.00)

0.0035
(0.00)

0.0026
(0.00)

0.0172
(0.00)

0.0038
(0.00)

0.0038
(0.00)

0.0057
(0.00)

ω̂2
〈IR Models〉 0.1949

(0.00)
0.1165
(0.00)

0.1686
(0.00)

0.1126
(0.00)

0.1432
(0.00)

0.2233
(0.00)

0.0876
(0.00)

0.0866
(0.00)

0.1726
(0.00)

ω̂2
〈Stop Lists×Stemmers〉 -0.0006

(1.00)
-0.0006
(1.00)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0006
(1.00)

-0.0005
(1.00)

-0.0005
(1.00)

-0.0005
(1.00)

-0.0007
(1.00)

ω̂2
〈Stop Lists×IR Models〉 0.1552

(0.00)
0.1362
(0.00)

0.1960
(0.00)

0.1407
(0.00)

0.1653
(0.00)

0.3512
(0.00)

0.0943
(0.00)

0.0963
(0.00)

0.2294
(0.00)

ω̂2
〈Stemmers×IR Models〉 -0.0001

(0.58)
-0.0008
(0.99)

-0.0003
(0.77)

-0.0011
(1.00)

-0.0003
(0.74)

-0.0005
(0.89)

-0.0008
(0.99)

-0.0008
(0.99)

0.0007
(0.05)

ω̂2
〈Stop Lists×Stemmers×IR Models〉 -0.0128

(1.00)
-0.0121
(1.00)

-0.0126
(1.00)

-0.0126
(1.00)

-0.0125
(1.00)

-0.0126
(1.00)

-0.0119
(1.00)

-0.0119
(1.00)

-0.0118
(1.00)

Table 6: Topic/Component Effects on TREC 15, 2005, Terabyte. Each cell reports the ω2 SoA for the speficied effects and,
within parentheses, the p-value.
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Figure 22: Interaction effects for all the considered measures on TREC 08, 1999, Adhoc test collection.
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Figure 23: Interaction effects for the AP measure on TREC 09, 2000, Web test collection.
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Figure 24: Interaction effects for the AP measure on TREC 10, 2001, Web test collection.
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Figure 25: Interaction effects for the AP measure on TREC 14, 2004, Terabyte test collection.
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Figure 26: Interaction effects for the AP measure on TREC 15, 2005, Terabyte test collection.
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Figure 27: Tukey HSD test plots of the models for the TREC 08 test collection. This shows that diricheletlm model is always
amongst the worst performing models and that inexpb2 and inb2 always belong to the top performing group.
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Figure 28: Tukey HSD test plots of the stemmers for the TREC 08 test collection. This shows that the porter stemmer is
amongst the top performing stemmers for all the considered measures.
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Figure 29: Tukey HSD test plots of the stop lists for the TREC 08 test collection. This shows that the snowball stop list is
amongst the top performing stop lists for all the considered measures.
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