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Abstract. This paper includes a twofold result for the Nonlinear Conjugate Gradient (NCG) method,
in large scale unconstrained optimization. First we consider a theoretical analysis, where precondi-
tioning is embedded in a strong convergence framework of an NCG method from the literature. Mild
conditions to be satisfied by the preconditioners are defined, in order to preserve NCG convergence.
As a second task, we also detail the use of novel matrix—free preconditioners for NCG. Our proposals
are based on quasi-Newton updates, and either satisfy the secant equation or a secani—like condition
at some of the previous iterates. We show that, in some sense, the preconditioners we propose also
approximate the inverse of the Hessian matrix. In particular, the structures of our preconditioners
depend on low-rank updates used, along with different choices of specific parameters. The low—rank
updates are obtained as by—product of NCG iterations. The results of an extended numerical experi-
ence using large scale CUTEst problems is reported, showing that our preconditioners can considerably
improve the performance of NCG methods.

Keywords: Nonlinear Conjugate Gradient method, Large Scale optimization, Secant equation, Low—
rank updates.

1 Introduction

Several iterative methods have been proposed in the literature, for the solution of the large scale
unconstrained problem mingecgr f(z), where f : R” — R (see e.g. [11, 21, 28]). Among them, the NCG
along with quasi—Newton methods are undoubtedly the most commonly used, since they both proved
to be really effective in practice and show mature convergence properties (see e.g. [28, 29]).

In the case we consider the minimization of a convex quadratic function, then the NCG and
the BFGS quasi—-Newton method show a well studied correspondence of the search directions they
respectively generate [26]. This spots some light on the relation between the latter two classes of
methods, and in this paper we want to partially exploit benefits from possibly coupling their respective
underlying ideas.



On this purpose let us first consider a Preconditioned Nonlinear Conjugate Gradient (PNCG)
method, where essentially three choices at current step k strongly determine both the effectiveness
and the efficiency of the overall method. In particular, the first choice refers to the linesearch procedure,
which selects the steplength oy > 0 used to compute the next iterate xy,1, being

Th41 = Tk + QP

Then, the second choice refers to the selection of the parameter 8y 1, which determines the next search
direction as
Pk+1 = —Gk+1 + Be+1Dk-

Finally, a proper choice M1 € R™ " for a preconditioner may also be part of the computation of
Dk+1, as in

Pe+1 = —M19k+1 + Br+1Pk-
The latter three choices are not independent, inasmuch as for instance an improper preconditioner
risks to possibly destroy both convergence properties and numerical performance of the PNCG. This
observation imposes some care before adopting a preconditioner, in order to first verify that it complies
with the requirements claimed by the convergence analysis.

In the first part of this paper we show that, given a theoretically strong convergence framework of a
well-known NCG method, under mild assumptions on a preconditioning strategy, we can easily obtain
a PNCG scheme which preserves convergence properties. Then, we report rather efficient proposals of
our preconditioners, which actually ensure convergence for the PNCG.

Observe that addressing good preconditioners for NCG methods still remains an intriguing research
issue, in particular when the solution of large scale problems is sought and no structure of the problem
is known in advance [6, 9, 12, 21, 29, 30]. Similarly, matrix—free preconditioning for linear systems or
sequences of linear systems is currently an appealing research topic, too (see e.g. [4, 5, 13, 14]).

On this guideline, this work is devoted to investigate ideas from quasi—-Newton updates, in order to
build possible preconditioners for NCG. In particular, we are interested both to obtain a numerically
efficient preconditioner, and to analyze its theoretical properties. The preconditioners we propose are
iteratively constructed and based on satisfying a modified secant equation, and partially recover the

structure of quasi—-Newton updates. To sum up, we definitely remark that our preconditioners are
designed for the PNCG and

e do not rely on the structure of the minimization problem in hand;
e are matrix—free, hence they are naturally conceived for large scale problems;
e are built drawing inspiration from quasi-Newton schemes;

e convey information from previous iterations of the PNCG.

Finally, for the sake of completeness we urge to recall that the idea of using a quasi—-Newton update
as a possible preconditioner, within NCG algorithms, is not new; examples of such an approach can
be found for instance in [3, 8, 24].

The paper is organized as follows: in Section 2 some preliminaries on PNCG are reported. In Sec-
tion 3 we give theoretical results on the global convergence of an effective PNCG algorithm. Section 4
reports a description of a recent preconditioner from the literature. In Section 5 we describe a novel
preconditioner which is based on a modified secant equation. Section 6 details a numerical experience
which refers to our preconditioner described in Section 5. Finally, Section 7 reports some concluding
remarks. An Appendix completes the paper.

As regards the notation, || - || denotes the Euclidean norm. Moreover, we indicate with A > 0 the
positive definiteness of matrix A € R™*"™, and we use tr(A) for its trace, while A, (A) [Aar(A)] is used
for the smallest [largest] eigenvalue of A. Finally, given the function f(xj) and its gradient g(xy) at
the iterate xy, we use respectively fr and gp to denote them.



2 General remarks on PNCG

Here we first recall a general scheme of a Preconditioned Nonlinear Conjugate Gradient (PNCG)
algorithm (see also [29] for a general survey). Then, we detail the description of the rationale behind
our proposal, namely the idea of using low—rank updates to satisfy a secant-like equation. In the
following PNCG scheme the matrix M € R™*™ denotes a possible positive definite preconditioner at
the iteration k.

Preconditioned Nonlinear Conjugate Gradient (PNCG) scheme

Step 1: Data r; € R” and M; > 0. Set p1 = —M1g1 and k = 1.

Step 2: Use a linesearch procedure to compute the steplength ay, which satisfies Wolfe
conditions, and set the next iterate as

Th+1 = Tk + QD

Step 3: If a stopping criterion is satisfied then STOP, else compute the coefficient Sx41,
along with the preconditioner My,1 > 0. Compute the search direction

Prt1 = —Mp119k+1 + Brs1Dk, (2.1)

set k =k + 1 and go to Step 2.

Evidently, in case My, = I for any k, the PNCG scheme reduces to the NCG method. As an alter-
native, in order to improve, at least partially, the efficiency of the NCG by introducing preconditioning
strategies (see also Section 3), the Step 3 of PNCG might be replaced by the next one.

Step 3: If a stopping criterion is satisfied then STOP, else compute the coefficient Sx41,
along with the preconditioner My 1. If Myy1 ¢ 0 or My11gx+1 = 0 then set
Mj.1 = I. Compute the search direction

Pr+1 = —Mp119k+1 + Br+1Dk,

set k =k + 1 and go to Step 2.

The steplength ag41 and the parameter Sy can be chosen in a variety of ways, in order to
ensure convergence properties or to improve the overall efficiency (see e.g. [19, 21]). Here we neither
intend to propose a novel choice of 8,1, nor we want to consider any specific linesearch procedure to
compute ay41 for PNCG algorithm. To this regards, Wolfe conditions are well-suited for our purposes,
inasmuch as they easily guarantee that the curvature condition

sfkryk >0
is fulfilled for all k, where
Sk = Thk+1 — Th = QkPk; Yk = Jk+1 — Gk- (2.2)

On the contrary, in this paper on one hand we justify in Section 3 the importance of positive definiteness
for preconditioners, also in order to prove global convergence results. This will indirectly provide



additional general requirements for the construction of potentially novel preconditioners. Then, we
show that our proposals comply with the latter requirements.

As already said, preconditioning is usually applied for increasing the efficiency of the NCG method.
In this regard, in this work we exploit some matrix updates and their capability to possibly mimic
quasi—-Newton schemes, in order to generate a ‘reasonable’ approximation of the inverse Hessian matrix
and use it as a preconditioner within a PNCG framework. As well known, quasi—-Newton methods are
iterative algorithms which generate at current step k£ the search direction

Pk = —Hygy,

being Hj, an approximation of the inverse Hessian matrix [V2f(z;)]~!. Then, the next iterate zy is
generated as xg1 = T + Pk, where oy is a steplength. The matrix Hy,; is obtained by a low-rank
modification of matrix Hy, in order to limit the computational effort.

Among the quasi-Newton schemes, L-BFGS method is usually considered much efficient for large
scale problems, provided that ill-conditioning of Hj is kept under control. This method is based on
exploiting curvature information obtained from the most recent iterations. The update Hy,, at the
k-th iteration of BFGS is given by the formula

Hk+1 = VkTHka + pksksg, (2.3)

being

1
Vi =1—peyrsy  and  pp= ——.
Yi. Sk
Among well known reasons for the success of the L-BFGS method we find that Hy; is the positive
definite matrix ‘as close as possible’ (in the sense of Frobenius norm) to the matrix Hy, and satisfying
the secant equation

HkJrlyk = Sk. (24)

Now, we explicitly focus on the case where f(z) is quadratic, i.e. f(z) = 1/227 Az — bTz, with
A € R™™ positive definite and b € R™. The latter case is particularly appealing to our purposes,
since it allows to exploit the strong relation between BFGS and the conjugacy of search directions
with respect to matrix A [26]. Indeed, the BFGS update (2.3) is explicitly given by

T
T T T
18 —18 Sk—18
He= 1= 22500 g (- 2% ) St (2.5)
Yi_15k—1 Ye_15k—1 Yi_1Sk—1
and recalling the expression of f(x), along with relation y; = As, we can set
Aspst
Vi =1— k 2.6
F s%Ask (2:6)
where the vectors {p1, ..., px} are mutually conjugate with respect to A. Then, using BFGS recursion
(2.5), we can write
T
Sk—1Sg_
Hk = VkT—lHk—IVk;—l + Tikl
Yp—15k—1
T (T T Sh-25h s Sk—154_1
= Vea(VeeoHp 2V 2)Vi1 + Vg —— Vi1 + ———. (2.7)
Yi._oSk—2 Yi._15k—1

Finally, the conjugacy among vectors {p1,...,pr} with respect to A implies that for any &

T
T Asyst
Vi sk-1= 1 — Sk—1 = Sk—1,
skoAsk

4



and again recalling that y = Asy, relation (2.7) yields

Sisgj

s;fFAsi ’

k-1
H, = VLV, VITHW - ViV + ) (2.8)
=1

Remark 2.1 To our purposes the importance of formula (2.8) relies on the fact that, as proved in
Proposition 1 of [10] (see also [17]), when f(x) is quadratic the rightmost term in (2.8) may be treated
as an approximation of the inverse Hessian A~!. This may represent an appealing tool to build possible
preconditioners, as revealed in Sections 4 and 5.

3 Global convergence for an effective PNCG

Several preconditioned NCG schemes were proposed in the literature, with a strong focus on efficiency
(see e.g. [29]). The latter schemes also include algorithms where the Nonlinear Conjugate Gradient
method is often integrated with an ad hoc preconditioner, and is coupled with a linesearch procedure
to compute the steplength «y. An example of recent methods where this approach was used are given
by CG-DESCENT and L-CG-DESCENT algorithms [19, 20, 22], which include a proper linesearch
procedure, along with a formula for the parameter [ specifically defined, to ensure both global
convergence and efficiency of the overall algorithm.

In this section we aim at using a globally convergent NCG scheme from the literature, endowed with
strong convergence properties, and studying how embedding a positive definite preconditioner in order
to preserve the global convergence. This approach on one hand provides an overall preconditioned
NCG scheme with strong convergence properties; on the other hand, it gives general clear guidelines
to build fruitful preconditioners.

On this purpose, we selected the NCG scheme in [18], since the authors prove rather strong and
appealing convergence results for it (further results can also be found in [1] and [2]). We remark
that the proposal in [18] (here addressed as PR-NCG since Polak-Ribieére method is considered)
also adopts a simple linesearch procedure (which devises results from the literature of derivative-free
optimization methods), whose implementation is, to some extent, simpler than the use of standard
Wolfe conditions. Then, in this section we show how introducing a very general preconditioner in
PR-NCG, still maintaining its global convergence.

Assumption 3.1 (see also [18])
a) Given the vector x1 € R™ and the function f € CY(R™), the level set L1 = {z € R": f(z) < f1}

18 compact.

b) There exists an open ball B, := {x € R" : ||z|| < r} containing L1 where f(x) is continuously
differentiable and its gradient g(x) is Lipschitz continuous. In particular, there exists L > 0
such that

lg(z) =gl < Lz —yl|  foral  z,y€B,. (3.1)

¢) There exist 61 > 0, d > 0 such that the preconditioner M (z), for any x € B,., is positive definite
with eigenvalues satisfying 0 < 01 < Ay [M(z)] < Ay [M(z)] < 0.

Note that by Assumption 3.1 there exists a value 2 (say € > 1) such that

llg(z)]] < Q, for all x € L. (3.2)
Moreover, due to technical reasons we assume that the radius r of B, is large enough to satisfy relation
r > sup ||z| + @Q, (3.3)

rE€EL] g



where o € (0,1) and pa > 0 (being the latter parameters used in the next Algorithm PR-NCG_M).

Now we report the algorithm PR-NCG_M, which represents our preconditioned version of the
algorithm PR-NCG in [18]. Then, we are going to prove that, under Assumption 3.1, PR-NCG_M
maintains the same global convergence properties of PR-NCG. For the sake of simplicity we indicate
M (zy) with My, being z, € B,.

Algorithm PR-NCG_M

Data: Choose py > p1 >0,v>0,0 € (0,1). Set k=1, 1 € R". For any k > 1 choose
M, such that 0 < 61 < )\m(Mk) < )\M(Mk) < 09.

Step 0: Set p1 = —Mig;.
Step 1: If g, =0 STOP.

T
Step 2: Set 7, = 195 P| and choose A € [p17k, P27k

[P ||?

Step 3: Compute ap = max {ajAk,j =0,1,.. } such that the vectors xy4+1 = xr + axpr and

Y : (g —g0) " Myagryr L
Pe+1 = —Mpgr19k+1 + Br+1pk, with SBpi1 = , satisfy the conditions:

9 Mgy,

(C1) fri1 < fx —voqlprll?
(C2) —52H9k+1”2 < ggﬂpkﬂ < —51HQk+1H2-
Set k =k + 1 and go to Step 1.

Remark 3.1 Observe that here the parameters d; and d2 do not have to satisfy the condition d; <
1 < dy as in [18]. This additional generality of our proposal relies on the freedom to choose the
preconditioner. In this regard, since 1 and d9 are no more related to the unit value, no significant
bound on the condition number of the preconditioner is imposed (see ¢) of Assumption 3.1.

Now, we prove first that conditions (C1) and (C2) and the entire Step 3 of PR-NCG_M are well
defined.

Proposition 3.2 Suppose that g # 0 and ||pg|| < +oo for all k. Let Assumption 3.1 hold. Then, for
every k > 1 there exists a finite index jj, such that oy, = 07k Ay, satisfies conditions (C1) and (C2) at
Step 3.

Proof: First observe that as g p; < 0, using (C2) we have by induction that g} py < 0 for all k.
Now, by assuming g pr < 0, we prove that the number oy = Ago? satisfies conditions (C1) and
(C2) for all sufficiently large j.

By contradiction, assume first that there exists an infinite set J of the index j such that condition
(C1) is violated, i.e. for every j € J we have:

fW9) = fi

: > —yol A 2
STA vo! Ak lpi|

where y9) := z;, + 09 Agpi. Then, taking the limit for j € J,j — +o0, we have g,{pk > 0 which
contradicts the assumption g;fpk < 0.



Suppose now that by contradiction there exists an infinite set, say it again J, such that for j € J
condition (C2) is violated. This implies that by the boundedness of ||pg||, for all j € J at least one of
the following conditions holds (the subscript in M; denotes the fact that the preconditioner possibly
depends on the point y(j)):

, , ) — o YT M a(o) ,
oy (—Mjg<y<ﬂ>>+(g(y )~ 9x) Migly )pk>>—51|g<y<ﬂ>>u2,
ngkgk

) . Y — g VT M. a(y@) .
o(yNT (—Mjg<y<f>>+<g<y )= o) Migly )pk><—52\g<y<ﬂ>>u2.
ngkgk

Then, taking limits for j € J,j — +00, we obtain that at least one of the two inequalities — g,{M Lk >
—01|gkl|? and —gF Mg, < —02||g||> must be valid. But in both cases we get a contradiction to the
assumptions gr 7 0 and 0 < §1 < A (Mg) < Ayr(My) < da.

Therefore, under the assumption g,{pk < 0, we can conclude that Step 3 is well defined, by taking ji
as the largest index for which both conditions (C1) and (C2) are satisfied, and setting the parameters
as a = UjkAk. UJ

The main properties of the sequence of iterates produced by Algorithm PR-NCG_M, which are at
the basis of our convergence result, are stated in the next proposition.

Proposition 3.3 Let Assumption 3.1 hold. Suppose that g # 0 and ||pg|| < oo for all k > 1. Then
we have:

(i) x € Ly for all k> 1;

(ii) the sequence {fi} has a limit;
i)l _ 0.

(i) lim_a el = 0

(iv) oullpr|® < p202Q?, for all k > 1;

T
(v) for every k there exists a positive number 8 such that cy, > 9’|le IT(;’
Pk
Proof: Condition (C1) at Step 3 implies
fe = Fusr = voi [pel*. (3:4)

From (3.4) we have z; € Ly for all k, which establishes (i); then (ii) follows from (3.4) and the
compactness of £;. Recalling the expression of o and taking limits in (3.4) for j — +o00, then (i7)
yields (ii7). Now, the instructions at Step 2 and Step & imply

agllprll® < Allprl® < p2lgi | < p2dallgel? < p2da?,

so that we get (iv).
In order to establish (v) we distinguish the two cases: ap = Ay and o < Ay, where Ay is the
scalar defined at Step 2. In the first case, we have obviously

) |9¢ i
k|1

g > 1% (35)



Now suppose that oy < Ay, so that 2= violates at least one of the conditions at Step 3. Recalling
(3.3) we have that the point

g
Wi = Tk + —— Pk

o
belongs to the ball B, introduced in Assumption 3.1, being

\aF | o]l p2
, Jebl Pkl 12
lpxll? o o

ag
H*pkH <p
g

If (C1) is violated we can write, using the Mean Value Theorem:

O (693 Qg 2
fr + gg;fpk +— (g(zk)Tpk - gfm) > fr— (7) 1Pk ]I, (3.6)

where 2, 1= xp, + 1, Epr € B, with g, € (0,1). Recalling (3.1) and by the Cauchy-Schwarz inequality,
we get,

Qg
9(zk) pe — gi ok < 19(zk) " pe — gipel < llg(zk) — grlllpell < Lllzk — zillllpell < L7|ka||2- (3.7)
Using (3.7) in (3.6) we get
Qg o\ 2 2 a2 2
— gk + | —) Lllpell* > =y (—) llpxll”
o o o
whence we obtain

oy > -2 |9 pr|
L+ lpkl?’
oy

which proves (v). Now assume that <& violates (C2). Suppose first that the rightmost inequality
does not hold, i.e.

(3.8)

(g(wg) — gi)T M;g(wy)
9 My,gx.

g(wy)” (—Mjgm) n pk) > 8y llgw)|P. (3.9)

Recalling (3.1) and by the Cauchy—Schwarz inequality we have

(9(wi) — gi) " Mig(wr) < |(g(wr) — ge)" Mjg(wi)| < [lg(wr) — gi) |l M;g(wg)]|
Lijwy, — ||| M;g(wi)|| < L%AM(MJ)HQ(W)HHMH- (3.10)

IN

Furthermore we get
g(wi) " Mjg(wr) > X (M;) | g(wp)[|; (3.11)

thus, using (3.10) and (3.11) in (3.9) we obtain:

!
L= M (M))llg(wi) [lpellg (wn) i > (M) = 81)llg (i) g Mig. (3.12)
Again, by the Cauchy—Schwarz inequality we have

lgCwi)lllpellg (wr) i < llgCwr) I [lp® (3.13)

along with
9k Migr > A (My) | gx - (3.14)

Finally, using (3.13) and (3.14) in (3.12) we obtain

L%AM(Mj)”g(wk)||2HpkH2 > (Am(M;) = 61)[lg(wi) | Am (M) | gk 1. (3.15)
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Taking the limits for j — +o00 and taking into account that the rightmost inequality (C2) holds at
Step k, we get

o (M) — 61) loel2 - (M) = 81) w2
« Am (M > A (M
N S AR W 7 ST
o(Am(My) — 61) |97 |
A (M , 3.16
S a ) i 2 (316)

implying (v). Now suppose that (C2) is violated because the leftmost inequality is not fulfilled, i.e.

(9(wg) — gr) T M;g(wy,)
gL Mgy

glw)” (—Mjgwk) n pk> < —Sallglwn)|® (3.17)

Using a similar reasoning we obtain

(02 — Anr (My)) gl - (32 — An(My)) lgr?
« > Am (M, > m
N S VHET AR P b, 2
0 (02 — Anr(My)) |97 x|
Am (M . 3.18
ST S (318)
Thus, from (3.5), (3.8), (3.16) and (3.18) we obtain (v) by taking
) o o(Am(Mg) — ) o (02 — Apr(My))
0 — A (M), A (M) b
mm{pl’L+w’ 53L (M) 521 (M)

Finally, in order to establish the main global convergence properties of Algorithm PR-NCG_M we
can state the following theorem.

Theorem 3.4 Let {x} be the sequence of points generated by Algorithm PR-NCG-M. Then, either
there exists an index v > 1 such that g(x,) = 0 and the algorithm terminates, or {zy} is an infinite
sequence such that:

0 _o:
() Jim_Jlg(ex)] =0
(ii) every limit point of {xx} is a stationary point of f.

Proof: Suppose that Algorithm PR-NCG_M does not terminate in a finite number of iterations and
that (7) is false. Then, there exists a subsequence {xj}rex C {xx} and € > 0 such that

lgk—1ll > e,  forall kekK, (3.19)
and by (ii7) of Proposition 3.3
li —zk—1|| = 0.
o g 1 = ]



Now, by the instructions of Algorithm PR-NCG_M, using (3.1), (3.2), (3.19) and (iv) of Proposition 3.3
we can write for k € K:

IN

gk — gr—1 ||| Mrgr||
Mg +< \Dr—1]
IMigell + g g agia 1P

Ljzg — xp—1][An (M )2
LHOék—1pk—1||)\M(Mk)QH H
2 (My_1) Ph—1

At (Mg)QLoye—1 || pr—1||?
= Ay (M)
(M) + < £2Am(Mj—1)

< s (24387) (P12

el

IN

Am (Mg)Q2 + <

= Am(Mp)Q+ <

Therefore, using (i7i) of Proposition 3.3 we get

li 2=0
pyim, ag||pl :

and hence by (v) of Proposition 3.3 it follows

li Lokl = 0.
ks oo ke 9% Pr|

The latter condition implies, by (C2) of Step 3

li =0

hsho0, kEK lgell =0,
so that (4i7) of Proposition 3.3 and the Lipschitz continuity of ¢ contradict (3.19). Thus, (i) holds and
(i) follows from the continuity of f(x). O

This theorem shows that for the preconditioned version PR-NCG_M the same global convergence
properties of PR-NCG still hold.

4 A framework for Symmetric Rank-2 updates

The previous section reveals the importance of mild assumptions on the preconditioners, in order to
prove global convergence properties of PR-NCG_M. On this guideline, now we briefly report a positive
definite preconditioner for NCG, based on quasi-Newton updating formula, recently proposed in [10].
It exploits the properties of a parameter dependent symmetric rank-2 (SR2) update of the inverse
Hessian matrix, and will represent one of our benchmarks for the numerical experience in Section 6.
In particular (see [10]), after k iterations of the NCG let the sequence of iterates {z1,...,x;} be
available. Then, the idea is that of building a structured preconditoner M1 which satisfies the
secant equation at least at the current iteration, i.e.

Mk-Jrlyk- = Sk. (41)

In a more general framework, similarly to the Broyden class, the authors in [10] address a family of
preconditioners of the form

M1 (Vk+1) = Mi(vk) + A, Ay € R™", symmetric, (4.2)

where the sequence { M (v;)} depends on the parameters v € RP, p > 1, and provides an approxima-
tion of [V2f(x)]~! according with Remark 2.1. The new update Mj1(vr41) is claimed to satisfy the
following appealing conditions (quoting from [10]):

10



(1) Mgy1(vg+1) is well-defined, positive definite and can be iteratively updated,;

(2) Mp11(yg+1) collects information from the iterations k —m,k—m+1,..., k, of an NCG method,
being m > 0 integer;

(3) Mjy11(ygs+1) satisfies the secant equation at a subset K of iterations, with K C {1,2,...,k};

(4) Mpy1(7k41) “tends to preserve” in some sense the inertia of the inverse Hessian [V? f(z41)] _1,
in case f(x) is a quadratic function.

In particular, the proposal in [10] sets in (4.2)

Mi(w) = e, W >0, G0,
b » T
2 n
Ak = ’7](6 )Ukvk; +’Y]<; Z ch ’Y]E; ), 7]&3) U € R ) (43)
j=k—m y] p]

with pj generated at the k-th iteration of the NCG method, and «; computed by the linesearch
procedure. The resulting overall update is given by

k T

3 DD
M1 (1) = 17 Co + 12 w0l +21Y > e, (4.4)

j=k—m Yj Pi

with
k
1 Py Uk

ve = on | sk — " Crye — 11 Z e |, ok € {141} (4.5)

Finally, in order to satisfy the secant equation Mjyi1(Vk+1)yr = sk at step k, the following relation

among the parameters vlgl), 'y,(f), 'y,(f’) and o} must hold

V@52 1
k Yk — ( 2
sTuk = W UE Crnn =9 i gpyypk

(4.6)

The next result (see (i) of Proposition 2 in [10]) summarizes a relevant issue of the proposal in [10],
in order to satisfy the secant equation or secant—like conditions. The efficiency of the preconditioner
in [10] gives a numerical evidence of the latter fact.

Proposition 4.1 ([10] - Proposition 2 (iii)) Let f(z) = 1/227 Az —b"z, with A = 0, and suppose

k > 2 aterations of the NCG algorithm are performed, using an exact linesearch. Then, there exist

values of ’y( , 7,&2), 'y,(cs), and a positive semidefinite matrixz Cy, such that My, 1 >~ 0 and the following

modified secant conditions
Mkﬂyj:’y,i?’)sj, j=k—mk—m+1,...)k—1,
are satisfied.

We complete this section observing that by the choice of Cy in [10] the preconditioner in (4.4) satisfies
item ¢) of Assumption 3.1.

11



5 A Symmetric Rank-2 update based on modified secant equations

In this section we propose a novel quasi-Newton updating formula, by considering the properties of a
parameter dependent symmetric rank-2 (SR2) update of the inverse Hessian matrix, used as a possible
preconditioner for the NCG (see [10]). We claim that our quasi-Newton update My, which aims
at approximating [V2f(z)]~! in some sense, satisfies the following modified secant equation along all
previous directions; namely it results

0; >0, for j <k,
Mk+1yj = 5j8j with (5.1)
0; =1, for j=k.

The satisfaction of (5.1) is a distinguishing property of our proposal in this paper, and though (5.1)
imposes weaker conditions with respect to the satisfaction of the secant equation at any step j < k,
numerical performance seems to confirm its effectiveness and efficiency.

On this guideline, in order to build an approximate inverse of the Hessian matrix and explicitly
indicating the parameters it depends on, in place of (4.2) we consider here the update

My = 6 My + Ay, Aj € R™X™ symmetric, (5.2)

where the sequence { My} explicitly depends on the real parameters oy, v, wg. Considering the relation
(5.2) we set now more explicitly
T, DEDR
Ag = VEUkv) + wg yTpk ;o Ykewr €ERA{0}, v €RT,
K Pk

where py. is generated at the k-th iteration of the NCG method. Thus, we have the novel update

T
DPrp
Miy1 = 0 My, + Yivpvi + wi yTpk , Yewe ERV{0}, v €R™ (5.3)

k Pk

We immediately remark that the main difference between (5.3) and the proposal in [10] relies on the
following fact. In (4.4) the rightmost contribution aims at possibly computing an approximate inverse
Hessian matrix. Then, the coefficients %S:l)’ 'y,(f) and ’y,(f) are set so that My, fulfills the secant equa-
tion. On the contrary, in (5.3) the rightmost term of My plays a role similar to that of the term

prskst in (2.3), and thus it does not contain the contribution from any previous step.

In order to comply with (5.1), Mj1 must satisfy the secant equation My 1y = Sk, which implies

T PrD),
5k Myyr + i (Vh Yk )0k + Wk =Yk = Sk,
Y. Pk
that is
Y (Vk Yk ok = sk — Ok Myyk — Wrpk- (5.4)

Therefore it results explicitly
vk = 0 (Sk — O Mpyr — wipk)

for some scalar o}, € R. By replacing this expression of vy, in (5.4) we have
Veor (Ui (sk — 0k Myye — wipk)| (85 — O Myyr, — wkpk) = Sk — 6k My — WD

Thus, the following relation among the parameters v, o and wy must hold

1
sTy, — Syl Myyx — wiplus

2
V0 =
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By the arbitrariness of -y, without loss of generality, we can set o € {—1,1}, i.e. a,% = 1. Therefore,
in the sequel we refer to (5.3) with

Vg = (8 — Ok Mypyr, — wrpr) (5.5)
and the parameters «; and w; are chosen, for any j =1,...,k, as
T T
1 55 Yj — 05y Mjy; ‘
v = wj # 2 J , j=1,...,k. (5.6)

sTyj — 05y) Myy; — wip]y;’ Py Y

Now, in the next proposition we first consider the case of quadratic functions, and prove that
under mild assumptions the update (5.3) satisfies the modified secant equation (5.1), along all previous
directions.

Proposition 5.1 Let f(x) = %xTAx —bl'z, where A € R™™ is symmetric and b € R"™. Suppose that
k steps of the CG are performed, in order to detect the stationary point (if any) of the function f,
and that the vectors p1,...,pi are generated. Then, the matriz My in (5.3), with vy given by (5.5),
satisfies the modified secant equations (5.1), provided that the nonzero coefficients v;, wj, j =1,...,k
are chosen such that (5.6) hold.

Proof: The proof proceeds by induction: we prove it for k =1 (and j = 1 in (5.1)), we assume it
holds for k—1 (and j < k—1in (5.1)) and prove it for k. Equations (5.1) immediately hold for k = 1,
that is May; = s1, as a direct consequence of (5.5) and (5.6).
Now, suppose that the relations (5.1) hold for the index k — 1. To complete the induction we need
to prove that the relations (5.1) hold for the index k (and j < k in (5.1)).
Firstly, note that My 1y, = sk as a direct consequence of (5.5) and (5.6), and (5.1) hold for j = k.
Now, we have to prove that (5.1) hold for any j < k. Indeed, for j < k the definition of My, yields
T, .
M1y = 0 Myy; + i (sk — oMy — wipr) (5K — 6k Miyr — wipk)” yj + wi ];?ink,
k

where Myy; = 6555, j = 1,...,k — 2, and Myyr—1 = sp—1 by the inductive hypothesis. Moreover,
(st — Ok Mryr) "y = siyj — Onyf Myy; =
s{yj — 5k5jygsj = S%AS]' — (5k5jS£ASj =0, j < k—1,

Stye—1 — Okyf sk—1 = s} Asp—1 — Op(Asp)Tsp1 =0,  j=k—1,

where the third equality holds since y; = As;, for any j € {1,...,k—1}. Moreover, the fourth equality
holds since s; = a;jpj, j = 1,...,k — 1, and p; are conjugate directions. Finally,

wWEpEy; = wiph Asj = wra;pf Apj = 0,

which again follows from the conjugacy of the directions {pi,...,pr}. Thus, (5.1) hold for index k
(and j < k) and the induction is complete. O

As an immediate consequence of the previous proposition, we give now a finite termination property
for quadratic functions. More specifically, we prove that after at most n steps, the recursion (5.3)
provides the matrix M, 1, which is, in some sense, a modified inverse Hessian.

Corollary 5.2 Let f(x) = %$TAJ} — Tz, where A € R™"™ s symmetric nonsingular and b € R".

Suppose that n steps of the CG are performed, in order to detect the stationary point of the function
f, and that the vectors p1,...,pn are generated.

13



o If (5.1) and (5.6) hold, we have
M1 A= (51--8,)D(s1---8,) " with D = diag{61,...,0p-1,1}.
o [t results
Am(Mni1A) = Am(D), Am (Mg A) = A (D). (5.7)
Proof: The proof immediately follows by Proposition 5.1. O
We highlight that, whenever k = n, Corollary 5.2 justifies item (4) on page 11. Moreover, later
on in the paper we show that for £k < n, the update in (5.3) can be suitably used to provide a

preconditioner. The next corollary details further properties of My in (5.3), again when the function
f(x) is quadratic, in the light of possibly approximating the inverse Hessian A~

Corollary 5.3 Let f(z) = %xTAx — bz, where A € R™™ is symmetric nonsingular and b € R™.
Suppose that n steps of the CG are performed, in order to detect the stationary point of the function

f, and that the vectors p1,...,pn are generated. If relations (5.1) and (5.6) hold for any k =1,...,n,
then we have

k
1)) 6jsj = (Myy1A)(wppr — 71),

k
9i+1 — Gj
2) AMy11 Z% = 9k+1 — 915
=t

3) in the case k =n then

Z [(31 coosp)D(s1 - 5,) 7t — 5jI] s; =0, where D = diag{é1,...,0p-1,1}.
j=1

Proof: By (5.1) and adding with respect to index j we obtain the two relations

M1 [gr+1 — 25 8j (5.8)
M1 Z g;+157—gj = Tp41 — L1 (5.9)
=1 !

By (5.8) and recalling that f(z) is quadratic, we have

k
Mk+1A(Ik+1 - xl) == Zéij, (510)

which yields 7). By (5.9) we immediately infer 2). Finally, by Corollary 5.2

Mpt1A=(s1---5p)D(s1-- sn)_l

and using (5.10) with £ = n we have
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ie.

Z [(51 coo8p)D(sy - sp) 7 — 5]-1] s; =0,

which is relation 3). O

After analyzing the case of f(x) quadratic, we turn now to the general case of a nonlinear con-
tinuously differentiable function. In particular, since we are interested in using the matrix My, in
(5.3) as a preconditioner, recalling Section 3 we need to investigate if there exists a suitable setting
of the parameters dx, v, and wy, such that My is positive definite, provided that (5.1) and (5.6) are
satisfied.

In order to prove the next result, we highlight that by replacing (5.5) in (5.3), we obtain

M1 = M+ [(Olk — wi)? prpt — O (a — wp) ((Mkyk)pf + Pk (Mkyk)T>
T
+6; (M) (Mkyk)T] +wkp;;pk :
Yi Pk

Hence, M} 1 can be rewritten in the form

Mpy1 = oMy + Ay, (511)
with w
k
ok — wp)? + —— =0y (g — w) T
Yi Pk Py
Ap = (pr Myyr) .
) (Mryr)
—Or k(o — wi) O3 Vk

Proposition 5.4 Let f be a continuously differentiable function. Suppose that the NCG method is
used to minimize the function f. Suppose that (5.1) and (5.6) are satisfied and let us set the arbitrary
sequence of positive values {\}. If My = 0 with

Am(Ml) > 5\1 > 0,

for any k the vectors py, and Myyy are not parallel, and the sequence {0y} in (5.11) satisfies

Aet1 .
o > kAl f Am(Ay) >0,
b= (M) if Am(Ar) 20
(5.12)
ot (A
5 > Akt = Am(Bk) Am (Ag) <0,

B )\m(Mk)
then the matrix My, in (5.3) is positive definite, for any k > 1, with
An(Miy1) > Apst.

Proof: Since by hypothesis A\, (M) > A > 0, then a sufﬁcifznt condition to have Am(ﬂfg) > Ao >0
is that A, (A1) > 0, so that relation A, (Msz) > d1 A, (M) > Ao is fulfilled choosing §1 > Ao/ N\, (M7).

'~

On the other hand, if A,,(A1) < 0 we can always set A2 such that
Am (Ms) = A (51 M1 + A1) > §1 A (M) + A (A1) > Ag > 0,

which is satisfied provided that R
5 > Ao — )\m<A1).
Am(M7)
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Note that by (A.1) of Lemma A.1 (see the Appendix), regardless of the choice of 7, and w; in (5.6),
the quantity A,,(A1) can be obtained directly as

Am(A1) = min{An_1, An, 0}, (5.13)

where A,_1 and ), are defined in (A.1), setting in Lemma A.1 v = py, u = Myyy, a = y1 (a1 —wy)? +
wl/y{pl, b= —01m(a1 —wi) and ¢ = 5%71.

Now assuming that A, (My) > A\g, we want to prove the result for step k& + 1. To this purpose,
recalling again that by Lemma A.1 we can compute similarly to (5.13)

Am (A1) = min{\,_1, An, 0},
the choice (5.12) immediately yields Ap (Mps1) > Aps1. O

The result in Proposition 5.4 gives a characterization of the spectrum of My 1, but possibly it does
not indicate a procedure to set the parameters affecting the formula of My 1. Moreover, the hypothesis
that for any k£ the vectors pr and My, are not parallel may be difficult to be guaranteed. Thus, in
order to fill the latter gap and provide a set of parameters Jy, wy and -k, such that conditions (5.6)
are satisfied (i.e. equivalently (5.1) hold) and the preconditioner M}, is positive definite, the following
proposition may represent an operative tool. In particular, observe that unlike Proposition 5.4, the
next result neither requires to compute A (Ay) nor it needs to introduce the sequence {Ay}.

Proposition 5.5 Let f be a continuously differentiable function. Suppose that the NCG method is
used to minimize the function f. Suppose that at current step k the linesearch procedure satisfies
sTyr > 0. Moreover, let My, = 0 in (5.3), and set e, € (0,1), with

Sk Yk
0 < 0 = (1—eg) k (5.14)
YL My
0 < wr < epag, (5.15)
1
0 < 7 = — (5.16)
(ex0x — wi)D}, Yk
Then, conditions (5.1) and (5.6) hold and Myy1 > 0 in (5.3).
Proof: By (5.14) and recalling that e € (0, 1), with My > 0, we obtain
T
0< 6 < ;’“ Ik
Vi Mryx
which implies also
T T
Sp Yk — 5kyk Mkyk > 0. (5.17)

Now, observe that by the first relation (5.6) v > 0 if and only if si yx — 6xyL Myyx — wkplyr > 0, i.e.

sFyr — Syl Myys,
Pk

wE <

which can be satisfied using (5.14) as

sFyr — Syl Myys,

0<we <
Py

= ELO.

The latter relation is indeed the condition (5.15), and satisfies also the second relation (5.6). Finally,
by (5.14) the first relation (5.6) yields (5.16) with (egag — wg)pfyr > 0. Then, (5.14)-(5.16) yield
exactly (5.1) and (5.6), along with My1 > 0. O
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5.1 Issues on ill-conditioning

The previous proposition ensures that, properly choosing the parameters 6, wi and 7y, the precon-
ditioner Mjq is well-posed and positive definite. However, we should take into account that the
search direction p; we compute at iteration k of NCG could be not well scaled, which may introduce
some ill-conditioning when applying the PNCG. Following the rationale behind the BFGS updates,
a possible remedy to the latter drawback can be represented by reducing the distance between My, 1
and Mj, i.e. minimizing the Frobenious norm ||Mj41 — Mg||r. In this regard, as well known we have

[ Myt1 — My||r = \/tr[(MkJrl — M)T (M1 = My)] = \/tr[(My1 — My)?). (5.18)

By the properties of the trace of matrices (see e.g. [7]), we have

V(M1 — My)?) < \/[tr(Myp1 — My))? = [tr(Mgs1 — My)|. (5.19)
Thus, a possible upper bound for ||My1 — Mg||F is given by
| My — Myl < Jtr(Mysr — My, (5.20)

We recall that by Proposition 5.5, {7} and {wy} are positive sequences, so that using (5.3) in (5.20)
we have

2
Pk
tr(Mior — M) = |dutr(Me) + wellonl® + ool 27 g any)
Y. Pk
< 16, — Uer(My) +ulonl2 + w122 (5.21)
ykpk

From (5.15) and (5.16) we observe that, after setting the arbitrary parameter e, then 7 still de-
pends on wy. Thus, following the rationale behind the BFGS update, in the following proposition we
investigate possible values for the bound (5.21) on tr(Mjy4+1 — My), when wy, changes.

Proposition 5.6 Let f be a continuously differentiable function. Suppose that the NCG method is
used to minimize f. Suppose that at current step k we have s%yk >0, M > 0, e, € (0,1), and let
(5.1), (5.6), (5.14)—(5.16) be satisfied. Consider the function of wy

||Pk||
yk pk

d(wi) = [0k — Ltr(M) + vellvel® + wi (5.22)

Then ¢(wy) is monotone non decreasing with respect to wy, and wi = 0 minimizes it.

Proof: After setting £ € (0,1), by (5.16) we note that 75 depends on wy. Thus, the function ¢(wy)
in (5.22) uniquely depends on wy. Now we have for ¢/ (wy)

+ .
dwy, yk Dk dwg, yfpk

2 2 2 2
() — 2Clloel®) o d%” P+ EUEIP) ] (5.23)

By using (5.5) and (5.16) in (5.23) we obtain

C + 2Bejoy, + Acia?
D(Ekak — wk)2

¢’ (wi) =

: (5.24)

where
A= |Ipel?, B = §ipt Myyy — axl|pkl)?, C = ||s — S Myyr|%, D = plys.
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Now, by (5.15) and sy, > 0 the quantity D(exay — wg)? is strictly positive, for any wy. Moreover,
recalling that sy = aupg, after some computation we have

C + 2Beray, + Aezai =(1- 5k)2‘|5k”2 -2(1- sk)ékskayk + 5,%||Mkyk||2 (5.25)
Now, replacing 1 — g = € in (5.25), we can introduce the function
C(@) = C + 2Bepay + Asia% = 92“816”2 — 205k3;€Mkyk + 5]%”Mkka2, (5.26)

being after a simple computation ((6) > 0, for any § € R. Hence, ¢'(wr) > 0 in (5.24) and ¢(wy) in
(5.22) is monotone non decreasing. Finally, by (5.15) wy = 0 minimizes ¢(wg). O

The latter proposition gives some guidelines for the choice of the parameter e in (5.14)-(5.16),
indicating that small positive values for £ tend to reduce the value of w; and can possibly control
ill-conditioning of the matrix in (5.3).

6 Numerical Experience

Here we report the results of an extensive numerical experience, in order to validate the analysis and
the theoretical achievements of the previous sections. We implement our proposal (5.3) in Fortran 90
(without recurring to the alternative Step 3 on page 3) and, analogously to [10], we embed it in a
standard implementation of NCG, namely the code CG+ by Gilbert and Nocedal [15]. We select the
Polak—Ribiere method and, as regards the linesearch procedure, the standard one by Moré and Thuente
[25] satisfying strong Wolfe conditions, i.e. the one adopted in CG+. As concerns the parameters of the
algorithm, we use all the default values of CG+. According with Proposition 5.5, for the parameters
affecting our proposal in (5.3) we used the settings

1 sgyk 1 oy
M, =1, & =35 o = (1 - Ek)m> Wk = 5EkOE; Tk = (erar —wn)sTor
In order to limit the computational burden, as long as the storage requirement at iteration k, we
preliminarily investigated the possibility to implement the preconditioner in (5.3) neglecting the in-
formation at iterations older than iteration (k —m)-th, playing m the role of a “memory” parameter.
The latter choice resembles the setting of the preconditioner proposed in [10], where only the explicit
contribution of the last m pairs in (2.2) was taken into account. Not surprisingly, our numerical ex-
perience highlighted that this simplification does not deteriorate the performance. Indeed, this choice
matches the rationale of the limited memory BFGS method (L-BFGS) and the value of m = 4 seems
to provide the best compromise.
As regards the stopping criterion we adopt the standard one given by (see e.g. [23], [24], [27])

lgrell < 107" max {1, ||z} - (6.1)

As a test set for our numerical experience, we select all the large scale unconstrained test problems
in CUTEst collection [16]. We consider those test problems whose dimension is in the range n = 1000
and n = 10000, and whenever a variable-dimension problem is used, two different sizes are included
(this sums up to 112 resulting problems). The results are reported in terms of number of iterations
and number of function evaluations. As usual, when comparing two algorithms we exclude all the test
problems where the compared alternatives do not converge to the same stationary point.

In Figure 6.1 we compare the performance of the preconditioner in [10] and that of our proposal
n (5.3). We can easily observe that our proposal definitely outperforms the one in [10] (both in terms
of iterations and function evaluations). This should be due to the fact that the preconditioner in (5.3)
seems to better exploit the information collected in the history of the overall algorithm, imposing a
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Figure 6.1: Comparison between the proposal of preconditioner in [10] (namely M, dashed line) and
our proposal in (5.3) (namely M_mod, solid line), using the stopping criterion (6.1). Profiles with
respect to number of iterations (left) and number of function evaluations (right).

modified quasi-Newton equation. The profiles reveal an appreciable improvement of the efficiency as
long as the robustness.

In order to verify the effectiveness of exploiting information by the modified secant equation, we
perform a comparison between our proposal in formula (5.3) and the benchmark algorithm given by
the L-BFGS method (see [23], [27]). To this aim, we use the L-BFGS code available at the J. Nocedal
web page. Observe that, as reported in the L-BFGS code, the linesearch procedure used therein
slightly differs from the original one in [25], as (quoting from the Fortran code) “Moré’s code has been
modified so that at least one new function value is computed during the line search (enforcing at least
one interpolation is not easy, since the code may override an interpolation)”. In this comparison, we
also adopt this modified linesearch procedure within our PNCG code, for the sake of correctness.

Figure 6.2: Comparison among L-BFGS (dotted line), our proposal in (5.3) (M_mod, solid line)
and the Unpreconditioned NCG method (Unprec, dashed line). Profiles with respect to number of
iterations (left) and number of function evaluations (right).

The results of this comparison, also including the unpreconditioned NCG case, are reported in

Figure 6.2. The results w.r.t. number of iterations show that, to some extent, our proposal in (5.3) can
be also competitive with L-BFGS, in terms of efficiency. On the other hand, L-BFGS seems to confirm
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in any case its robustness, with respect to both a standard (unpreconditioned) NCG scheme and a
preconditioned scheme including our proposal in (5.3). Conversely, L-BFGS definitely outperforms
both the proposal in (5.3) and the unpreconditioned NCG, in terms of number of function evaluations.
The latter fact suggests that the control of ill-conditioning of our preconditioner, as indicated by the
bound (5.21), surely represents an improvement, but possibly it does not guarantee yet a fully efficient
tool, so that further research in this regard seems necessary. Finally, on the overall, the results highlight
that our idea in (5.3) provides a good (say efficient) search direction, but still needs a better scaling.
In order to confirm this trend, we enclose in Table 6.1 the detailed results (number of iterations (it)
and number of function evaluations (nf)) for those problems where our proposal compares favourably
vs. L-BFGS, at least in terms of number of iterations. Table 6.1 reveals that on several test problems,
our approach requires a larger amount of function evaluations w.r.t. L-BFGS, even in presence of a
reduced number of iterations. This is due to a couple of facts affecting the Moré—Thuente linesearch
procedure [25] used, i.e.:

e the linesearch procedure seems to be well tuned when search directions computed by quasi-
Newton methods are adopted, hence the efficiency of L-BFGS (quoting from [25] “The curvature
condition [in strong Wolfe conditions| is particularly important in a quasi-Newton method, be-
cause it guarantees that a positive definite quasi-Newton update is possible”);

e observe that, in most of the iterations, the linesearch procedure provides a unit steplength for L-
BFGS, while the choice of the stepsize for PNCG is distributed on a larger interval. In Figure 6.3
a typical behaviour of the latter fact is reported (the plot refers to TRIDIA 1000 test problem).
This is also motivated by a different selection of the initial stepsize in the linesearch procedure. In
particular, a unit initial stepsize is used for L-BFGS, while the Shanno-Phua’s formula (default
choice for CG+) is adopted as the initial trial step for our proposal in (5.3).

Ba e L-BFGS
s B PNCG

Steplength
{5
o
=]
1

0 100 200 300 400 500 600 700
Number of lterations

Figure 6.3: The complete sequences of steplengths generated by the linesearch procedure, when coupled
to L-BFGS (filled circles) and to our proposal in (5.3) (empty squares).

On the base of the above considerations, it might be the case to investigate modifications to the
linesearch procedure, to be paired with our proposal (see for instance [22]).
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Table 6.1: Detailed results for those problems where our proposal in (5.3) compares favourably vs.

L-BFGS.

PNCG L-BFGS
PROBLEM n it nf it nf
ARWHEAD 1000 4 13 11 13
ARWHEAD 10000 3 11 11 14
BDQRTIC 1000 132 316 - -
BRYBND 10000 29 70 41 50
CRAGGLVY | 10000 60 136 69 79
DIXMAANA 1500 8 23 11 13
DIXMAANA 3000 9 25 12 14
DIXMAANB 1500 8 27 11 13
DIXMAANB 3000 8 27 11 13
DIXMAANC 1500 8 26 12 14
DIXMAANC 3000 8 30 2 14
DIXMAAND 1500 8 27 5 17
DIXMAAND | 3000 10 33 4 16
DIXMAANE 1500 132 239 192 199
DIXMAANE 3000 224 401 252 260
DIXMAANF 1500 94 179 181 190
DIXMAANF 3000 196 343 236 241
DIXMAANG 1500 83 163 177 186
DIXMAANG | 3000 153 272 226 236
DIXMAANH 1500 91 178 166 171
DIXMAANH | 3000 145 270 223 229
DIXMAANJ 1500 168 301 910 941
DIXMAANJ 3000 154 277 347 359
DIXMAANK 1500 131 231 922 951
DIXMAANK | 3000 139 252 326 341
DIXMAANL 1500 109 202 936 975
DIXMAANL 3000 139 252 549 564
DQDRTIC 1000 5 15 13 19
DQDRTIC 10000 6 17 13 21
EDENSCH 1000 23 66 25 29
EDENSCH 10000 20 63 25 31
FMINSURF 1024 199 353 223 224
FMINSURF 5625 428 717 614 632
FREUROTH 1000 20 55 28 38
LIARWHD 1000 14 32 20 25
MOREBV 1000 10 18 43 45
MOREBV 10000 3 5 6 8
MSQRTALS 1024 2061 | 3147 || 2143 | 2215
MSQRTBLS 1024 1397 | 2147 1811 | 1874
PENALTY1 10000 18 86 70 84
POWELLSG 1000 28 63 54 61
POWER 1000 134 276 139 44
POWER 10000 348 582 419 433
SCHMVETT | 1000 29 63 39 45
SCHMVETT | 10000 27 61 34 41
SINQUAD 1000 24 65 26 38
SPARSINE 1000 1845 | 3167 || 6029 | 6307
SPMSRTLS 1000 97 182 107 118
SROSENBR 1000 7 22 17 20
SROSENBR 10000 8 24 17 20
TESTQUAD 1000 1312 | 2322 4081 | 4222
TOINTGSS 1000 4 18 14 20
TOINTGSS 10000 4 20 16 23
TQUARTIC 1000 9 29 21 27
TQUARTIC 10000 12 33 22 27
TRIDIA 1000 619 960 670 695
TRIDIA 10000 1909 | 2851 3021 | 3115
VAREIGVL 1000 51 102 171 179
WOODS 1000 74 181 95 125
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As a final comparison, taking into account that the stopping criterion used in the original CG+
code does not match the one in (6.1), being

gklloo < 107°(1 + | fxl), (6.2)

for the sake of completeness, we replicate the comparison between our proposal in (5.3) and that in
[10], by using the default stopping criterion (6.2) in CG+. The linesearch procedure is the CG+ default
one (i.e. unmodified one [25]), too. The results are reported in Figure 6.4 and confirm the conclusions
inferred from Figure 6.1.

_________________ | ]
~ = - M_iter
7 1 ~ = =M feval
——M_mod_iter 053 ——M_mod_feval
055 ! 05 L | . | L . |

Figure 6.4: Comparison between the proposal of preconditioner in [10] (M, dashed line) and our
proposal in (5.3) (M_mod, solid line), using the stopping criterion (6.2). Profiles with respect to
number of iterations (left) and number of function evaluations (right).

7 Conclusions

In this paper a novel preconditioner for NCG is introduced. It is based on the satisfaction of a
modified secant equation and complies with some theoretical advances for NCG global convergence.
An extensive numerical testing showed that our proposal is reliable for large scale problems. Moreover,
it proved to be efficient when compared with the benchmark algorithm for large scale unconstrained
optimization given by L-BFGS. Further research is still expected in order to better control possible
ill-conditioning of our preconditioner, since this should enhance the overall behaviour of the PNCG
method.

A Appendix

Lemma A.1 Let u,v € R" and a,b,c € R, with u,v linearly independent and ac — b*> # 0. Then, the
symmetric matric H € R™*" given by

Hz(vfu)(Z b)(viu)T

C

has n — 2 eigenvalues equal to 0, and the two real eigenvalues

)\n_l:6—1—5—\/(<52—6)2—i-40ry7 )\n:(5+5+\/((52—ﬂ)2+4047’ (A1)
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where
a=alu+b|ul?, B=a|v|*+bvTu, y=0b|v|*+cvTu, &=>0bvTu+clul?

Proof: First note that since H is symmetric then its n eigenvalues are real. Now, let {z;},i=1,... n,
be an independent set of n-real vectors. Let {z;},7 =1,...,n—2, be orthogonal to vectors v, u. Then,
for any i € {1,...,n — 2} the vector z; is trivially an eigenvector of H, associated with the zero
eigenvalue. Thus, the only two eigenvectors z,_1 and z, of H, associated with the nonzero eigenvalues
An—1 and A, must satisfy the relation

Zn—1, 2n € span{v,u}.

Now, using
Zn—1 = M1,10 + p12u

Zn = 2,1V + {22U,

with pi11, p1,2, 2,1, 2,2 € R, and imposing the conditions Hzj, = Apzp, for h € {n —1,n}, we obtain
the couple of relations

(cva + buv” + bou® + cuuT) (1,10 4+ p12w) = Ap—1(p1,10 + p1 2u)

(ava + buv” + bou” + cuuT) (2,10 + p22u) = Ap(f2,10 + p22u).

Note that after an easy computation, av?u + b||u|? # 0 implies that 11 # 0 (indeed, p1 1 = 0 yields
Zn—1 = p12u, but there is no real value for A such that Hyjou = Ay ou). Thus, since the latter
relations must hold for any choice of vectors v and w, setting o,—1 = p1,2/p1,1 in the first of them (a
similar analysis holds also for the second relation), we obtain the couple of equalities

[chu + bl|ul’] o1 + [allv]® + buTv] = A—1,

[b]|v]12 + culv] + [boTu+ cljul|?] op1 = An—10n-1,

or equivalently
O[O'n_]_ + B = )\n—l’

Y+ 00n-1= Ap-10p-1,

which give

(6= + V- B +day

On—1 =
2¢¢

and

An—1 = aop_1 + f.
A similar analysis holds for the computation of A,, which completes the proof. O
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