
REVIEW
published: 04 February 2021

doi: 10.3389/fcell.2020.618296

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 February 2021 | Volume 8 | Article 618296

Edited by:

Bechan Sharma,

Allahabad University, India

Reviewed by:

Pushpendra Singh,

Johns Hopkins University,

United States

Xabier Contreras,

University of the Basque

Country, Spain

Stéphanie Lebreton,

Institut Pasteur, France

*Correspondence:

Maurizio Sorice

maurizio.sorice@uniroma1.it

Specialty section:

This article was submitted to

Cellular Biochemistry,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 16 October 2020

Accepted: 21 December 2020

Published: 04 February 2021

Citation:

Sorice M, Misasi R, Riitano G,

Manganelli V, Martellucci S, Longo A,

Garofalo T and Mattei V (2021)

Targeting Lipid Rafts as a Strategy

Against Coronavirus.

Front. Cell Dev. Biol. 8:618296.

doi: 10.3389/fcell.2020.618296

Targeting Lipid Rafts as a Strategy
Against Coronavirus

Maurizio Sorice 1*, Roberta Misasi 1, Gloria Riitano 1, Valeria Manganelli 1,

Stefano Martellucci 2, Agostina Longo 1, Tina Garofalo 1 and Vincenzo Mattei 2

1Department of Experimental Medicine, “Sapienza” University, Rome, Italy, 2 Biomedicine and Advanced Technologies Rieti

Center, “Sabina Universitas”, Rieti, Italy

Lipid rafts are functional membrane microdomains containing sphingolipids, including

gangliosides, and cholesterol. These regions are characterized by highly ordered and

tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life

cycle of different viruses, including coronaviruses. Among these recently emerged the

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for

SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although

it also binds to sialic acids linked to host cell surface gangliosides. A new type of

ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike

protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2

receptor on host cell membranes where they may interact with the spike protein on

viral envelope. This review is focused on selective targeting lipid rafts components as

a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins

or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid

rafts, consequently impairing coronavirus adhesion and binding. Moreover, these

compounds can block downstream key molecules in virus infectivity, reducing the

levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin

(IL)-6], and/or affecting the autophagic process involved in both viral replication and

clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs

to form host–guest inclusions and may be used as pharmaceutical excipients of antiviral

compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility.

In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into

the host cells prompts to introduce a new potential task in the pharmacological approach

against coronavirus.

Keywords: coronavirus, SARS-CoV-2, lipid rafts, statins, cyclodextrins

CORONAVIRUSES

Coronaviridae family is morphologically characterized by a crown shape deriving from the presence
on the envelope of a 20-nm long protein called “spike” (Cong and Ren, 2014; Tortorici and Veesler,
2019). It is possible to divide the coronaviridae family into four genera: α, β, γ , and δ coronaviruses.
To date, there are 46 known coronaviruses species (ICT, 2019) that infect several hosts, including
humans, mammals, birds, and other animals; in particular, when considering humans, they are
infected mainly by both α- and β-coronaviruses (Geng et al., 2020). β-Coronaviruses can be further
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subdivided into five subgenes, namely, Embecovirus,
Hibecovirus, Merbecovirus, Nobecovirus, and Sarbecovirus
(ICT, 2019; Jeong-Min et al., 2020).

Coronavirus is an RNA virus with positive single-stranded
RNA. Regarding the virus structure, this family is characterized
by a lipid coating deriving from the host called “envelope” and
a nucleocapsid in which the genetic material is contained. The
envelope, in addition to the transmembrane glycoprotein named
M and the envelope protein (E), contains the spike glycoprotein
involved in the process of recognizing the host cell. Spike protein
differs for point mutation in coronaviruses (Wang Q. et al., 2020;
Yan et al., 2020). Moreover, the nucleocapsid is helical in shape
and consists of a positive polarity polyadenylated RNA molecule
equipped with CAP and associated with protein N.

The mechanisms of coronaviruses entry are complex and
differ among coronavirus species and strains. Coronaviruses
entry can occur by direct fusion at the cell surface after binding
to the receptor or after internalization via endocytosis with
fusion taking place in the endosomal compartment (Belouzard
et al., 2012; Wȩdrowska et al., 2020). The main mechanism
of coronaviruses entrance is based on spike protein that is
the primary determinant of cell tropism. Spike is a class I
transmembrane protein, synthesized as a precursor protein with
a typical size ranging from 1,200 to 1,300 amino acids (Wang
Q. et al., 2020). The fusion mechanism of viral membranes with
host membranes is related to conformational changes of the
spike protein (Belouzard et al., 2012; Wȩdrowska et al., 2020). In
particular, several coronaviruses may enter directly from the cell
surface, when receptor-bound viruses are treated with proteases
activating S proteins. This process generates homotrimers on the
virion surface triggering the early fusion pathway. Alternatively,
coronavirus may be endocytosed within the endosome where the
low pH activates cathepsin L, cleaving S2′ site, triggering the
fusion pathway, and releasing the coronaviruses genome (Tang
et al., 2020).

In November 2019, a new virus named SARS-CoV-2,
belonging to the Coronaviridae family, appeared in Wuhan for
the first time. In March 2020, the World Health Organization
(WHO) declared pandemic the viral disease caused by this
virus. SARS-CoV-2 virus has been isolated from nasopharyngeal
and oropharyngeal samples from patients affected with a flu-
like disease (Jeong-Min et al., 2020). To date, there are several
hypotheses on the SARS-CoV-2 origins; the most accredited
hypothesis by scientists regard the transmission from wild
animals to humans. In fact, several wild animals serve as a
reservoir for new coronaviruses; these include bats, pangolins,
and others. In a recent work, Lam et al., by metagenomic
sequencing, have identified some new coronaviruses isolated
from the pangolin that show a high similarity with SARS-CoV-2
in the receptor binding domain (Lam et al., 2020).

Coronaviruses that infect humans are involved in acute
respiratory diseases, including colds, pharyngitis, nasal
congestion, as well as, in some cases, headache, cough, muscle
pain, and fever.

The clinical courses of infected hosts may be vary, ranging
from asymptomatic, mild symptoms, or severe symptoms and
cause respiratory, enteric, hepatic, and neurological diseases

(Monchatre-Leroy et al., 2017; Cui et al., 2019). At present,
seven types of coronavirus are known as inducing infections in
humans. In particular, the species HCoV-229E, HCoV-OC43,
HCoV-NL63, and HCoV-HKU1 usually cause mild symptoms,
whereas SARS-CoV-2, SARS-CoV, and Middle East respiratory
syndrome coronavirus (MERS-CoV) are able to cause severe
respiratory disease like pneumonia and death (deWit et al., 2016;
Corman et al., 2018; Walls et al., 2020).

Infected people can be asymptomatic or present a flu-like
disease with an incubation period that can vary from 2 to 14
days during which the individual is able to transmit the virus.
From current data, it has been estimated that in 3–15% cases,
the virus can lead to a severe respiratory disease as pneumonia
and cause death. The large majority of deaths is represented by
elderly people over 70 years of age and with comorbidities.

The emergency caused by the SARS-CoV-2 infection in
Wuhan has spread to many countries and forced the WHO to
declare a pandemic in March 2020. The SARS-CoV-2 infection is
currently underway and is exponentially developing especially in
USA, Europe, South America, Russia, and India, recording more
than 2,000,000 deaths.

LIPID RAFTS

Lipid rafts are highly dynamic structures that can play a key role
in pathogens–cell interactions, including coronaviruses–host cell
(Carotenuto et al., 2020; Fecchi et al., 2020).

Lipid rafts are functional membrane microdomains that
contain sphingolipids and cholesterol. These regions are
characterized by a highly ordered and tightly packed lipid
molecules compared to the surrounding bilayer (Simons and
Ikonen, 1997; Wang and Silvius, 2001). It has been estimated that
the size of lipid raft is around 10–200 nm (Pralle et al., 2000) in
a dynamic conformation, since they can combine to form larger
raft domains.

Domain properties such as composition, size, and lifetimes
have been thoroughly investigated (Levental and Veatch, 2016;
Sezgin et al., 2017; Levental et al., 2020). The distribution
of lipid rafts in cell membranes can vary greatly, from small
isolated domains to larger coalescing rafts, depending on a variety
of factors, including cell type, specific condition, and type of
membrane (e.g., plasma membrane or intracellular membrane).
Thus, lipids rafts can be considered like nanodomains enriched in
the plasma membrane that can coalesce, forming microdomains
platforms for proper cell functioning.

The advancement of technology made it possible to exploit
some crucial characteristics of lipid rafts. In fact, since lipid rafts
are relatively resistant to non-ionic detergents, such as Triton
X-100 (Brown and London, 1998, Raggi et al., 2019), and they
are present in low-density fractions after density centrifugation,
many authors refer to lipid rafts also as glycolipid enriched and
insoluble or detergent-resistant membrane complexes (DRMs)
(Simons and Ikonen, 1997).

These characteristics of lipid domains are mainly related
to their cholesterol content. In fact, it has been shown that
cholesterol sequestering agents selectively destroy rafts. Thus,
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the use of cholesterol sequestering molecules is a useful tool
for identifying proteins as components of the lipid raft or
simply copurified contaminants (Foster, 2009), as well as for
determining the role of rafts in modulating cellular processes
(Mattei et al., 2015; Martellucci et al., 2019).

Noteworthy, these lipid domains show a peculiar fluidity,
which allow lateral assembly and rapid reorganization upon
diverse biological stimuli. Some molecules associate/dissociate
from rafts in a regulated manner depending on their state of
activation. These clusters allow the formation of highly efficient
lipid–protein molecular associations that operate in several
important cellular processes, including membrane trafficking,
cell signaling, cell migration, and axonal guidance (Lingwood
and Simons, 2010; Sezgin et al., 2017). This structure can
concentrate membrane-associated proteins as receptors and
molecules involved in signaling pathways (Levental et al., 2010;
Martellucci et al., 2018; Mattei et al., 2020; Riitano et al., 2020). Of
interest, in polarized cells, lipid rafts show a characteristic sorting
on apical surface able to segregate distinct functional proteins,
whereas in non-polarized cells, they are distributed randomly on
the cell surface.

Lipid rafts play important roles in innate and adaptive
immunity; in T lymphocytes, rafts are enriched inmany receptors
and signaling molecules and participate in T-cell receptor (TCR)
triggering and T-cell activation (Varshney et al., 2016; Robinson
et al., 2017; Nakayama et al., 2018).

Thus, lipid rafts are thought to function as platforms that
recruit specific proteins or concentrate some specific components
and exclude others (Wang and Silvius, 2001; Pizzo and Viola,
2004; Pizzo et al., 2004), thus initiating and controlling cell
signaling (Simons and Ikonen, 1997; Barbat et al., 2007). Lipid
rafts have been proposed to mediate multiple stages of apoptosis
(Sorice et al., 2012), including the recruitment of the different
key molecules involved in the process, including Fas and the
tumor necrosis factor receptor (TNF-α-R) (Garcia-Ruiz et al.,
2002; Legler et al., 2003), as well as protein recruitment of the Bcl-
2 proapoptotic family, including truncated Bid, t-Bid, and Bax,
following the trigger of Fas (Scheel-Toellner et al., 2002).

Lipid rafts are not merely confined to the plasma membrane.
In fact, as reported by numerous studies, lipid microdomains
are formed similarly in the subcellular organelles, such as
Golgi, ER, or mitochondria, termed as raft-like microdomains
(Garofalo et al., 2005). In particular, functional studies suggest
that mitochondrial lipid microdomains participate in the
mitochondrial network of fusion and fission during remodeling,
as well as in the regulation of cell fate, i.e., survival or death
through activation of intracellular signaling (Ciarlo et al., 2010,
2018; Matarrese et al., 2014; Garofalo et al., 2018). Interesting
emerging data establish that the interaction of the ER with
the mitochondria occurs through endoplasmic reticulum (ER)–
mitochondria-associated membrane (MAM) subdomains, and
this interaction allows the membrane scrambling, contributing
to the multiple functions of ER (Raturi and Simmen, 2013).
Since some components of lipid microdomains are present
within MAM subdomains (Sano et al., 2009; Garofalo et al.,
2016), several authors assume a key role of these subdomains
in regulating and influencing a variety of cellular activities

(Annunziata et al., 2018), including the early stages of
autophagosome formation in mammalian cells (Hamasaki et al.,
2013; Garofalo et al., 2016). They are also enriched in caveolin-
1 (Sala-Vila et al., 2016), lipid synthesis enzymes (Vance, 1990;
Vance et al., 1997), and cholesterol (Area-Gomez et al., 2012;
Fujimoto et al., 2012). This particularity suggests that these
areas act as non-vesicular lipid transfer sites between ER and
mitochondria. In recent years, it has become evident that a
complex network of lipid–lipid and lipid–protein interactions
contributes to protein sorting and intracellular transport. The
hypothesis that the Golgi system sorts the proteins and sends
them to the plasma membrane through preferential membrane
sites such as lipid rafts, dates back to 1988 (van Meer and
Simons, 1988). Moreover, host lipid rafts have been reported
to be critically involved in apical targeting, assembly, and virus
budding. In this case, the subcellular distribution of lipid raft
on internal membranes, including the Golgi apparatus or the
ER, has a significant impact in the sorting of proteins and in
the trafficking and overall exocytosis of viral proteins, which
constitute fundamental steps to support viral infection (Takeda
et al., 2003; Von Blume and Hausser, 2019; Stalder and Gershlick,
2020).

Furthermore, at the cellular level, rafts and related membrane
microdomains, such as caveolae, characterized by a high
expression of caveolin-1, have been proposed to play important
roles in the sorting of membrane and non-membrane molecules
(Browne and London, 2000; Parton and Richards, 2003). In
fact, the study of caveolar platform has been proposed as a
potential target to inhibit the entry of SARS-CoV-2 (Filippini and
D’Alessio, 2020).

Functionally, lipid rafts host exo-/endocytosis molecular
apparatuses that form the functional communication
platforms inside and outside the cell (Manes et al., 2003).
Thermodynamically, it would be energetically challenging
due to the stiff and efficiently packed nature of lipid rafts
owing to the fact that fusion mechanism involves processes
like membrane bending and non-bilayer lipid intermediates,
requiring substantial flexibility of membrane structures (Dadhich
and Kapoor, 2020). Thus, Yang et al. (2015) proposed the role
of the edges of raft domains, rather than the bulk region,
as the preferred sites for fusion. Later on, they verified the
mechanisms of fusion to be driven by the effect of hydrophobic
mismatch at the edges of raft and not raft (liquid ordered–liquid
disordered) domains. Although we cannot refer to the lipid raft
as an area dedicated to endocytosis, however, many endocytic
(and exocytic) mechanisms involve the lipid rafts to some
extent (Pelkmans and Helenius, 2002). Many viruses, including
SARS-Cov-2, can enter into the host cells by receptor-dependent
endocytosis. One of the best characterized pathways is the
clathrin-dependent one, based on viral entry and translocation
into endosomes where they are degraded or recycled (Wang et al.,
2019). Alternatively, a caveolae-dependent pathway may be used.
Caveolae are small invaginations of the plasma membrane that
are composed of cholesterol, glycosphingolipids, and caveolin
(Filippini and D’Alessio, 2020). Caveolin is able to oligomerize,
leading to the formation of caveolin-rich microdomains in
the plasma membrane, and subsequently, the caveolar vesicles
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may fuse with the early endosomal compartment. For instance,
coronavirus infection may employ distinct endocytic pathways
in the upper and lower respiratory tract related to different
signaling molecules. Indeed, a large GTPase, dynamin, which is
required for endocytosis, is abundant in the nasal epithelium but
undetectable in pneumocytes (Glebov, 2020).

Lipid rafts have been shown to be exploited by intracellular
pathogens at different times of the infectious process, as a gateway
to the cell. Indeed, many steps of pathogen interaction with
host cells, and sometimes all steps within the entire lifecycle of
various pathogens, rely on host lipid rafts (Bukrinsky et al., 2020).
In addition, the activation of the innate and acquired immune
responses by the hosts is regulated by the rafts in many crucial
steps; in this regard, some pathogens have the ability to shut down
the immunological response by altering the cholesterol content of
the lipid raft (immune evasion) (Mackenzie and Khromykh, 2007
and Sen et al., 2011). Possibly, a similar strategy could be shared
by SARS-CoV2.

ROLE OF LIPID RAFTS IN THE PROCESS
OF CORONAVIRUS ENTRY INTO THE
CELLS

Several studies pointed out the key role of lipid rafts during viral
infection. Indeed, lipid rafts are involved in different stages of the
life cycle of different viruses, including dengue and hepatitis C

viruses (Aizaki et al., 2004).Moreover, lipid rafts contribute to the
binding and entry of several viruses to host cells, such as human
immunodeficiency virus (HIV) (Viard et al., 2002), human herpes
virus 6 (Huang et al., 2006), poliovirus (Danthi and Chow, 2004),
West Nile virus (Medigeshi et al., 2008), foot-and-mouth disease
virus (Martin-Acebes et al., 2007), and simian virus 40 (Parton
and Lindsay, 1999). Coronaviruses also interact with lipid rafts
for cellular entry (Nomura et al., 2004; Choi et al., 2005; Liao
et al., 2006; Li et al., 2007; Pratelli and Colao, 2015; Hu et al.,
2016) (Figure 1). The functional role of lipid rafts in this process
was supported by the observation that cholesterol depletion
prevented coronavirus entry into host cells (Thorp andGallagher,
2004). Lu et al. reported that lipid rafts are crucial for SARS-
CoV entry into cells (Lu et al., 2008). Virus envelope contains
the major attachment spike protein (S), the membrane protein
(M), and the minor envelope protein (E). Spikes are composed
of S protein trimers, which are involved in viral attachment, as
well as in the subsequent fusion of viral with cellular membranes
(Yang et al., 2012). The S protein comprises two subunits:
S1 and S2. Subsequently, the S protein is cleaved by receptor
transmembrane serine protease 2 (TMPRSS2) (Hoffmann et al.,
2020), a predominantly raft-resident protein (Ballout et al., 2020),
with the help of FURIN precleavage, which facilitates the entry
of the virus into the cell after binding (Tay et al., 2020). Furin
has been found in small fraction on the cell surface, while the
predominant amount is in Golgi network (Coutard et al., 2020).
Once spike activation has been promoted, virus enters host cells

FIGURE 1 | Schematic representation of coronavirus entry mechanism. (A) Spike protein interacts through its receptor-binding domain (RBD) with ACE-2 receptor.

(B) As result of their interaction, spike is activated by human proteases and is internalized by direct fusion with plasma membrane. (C) In the absence of proteases,

the virus is endocytosed.
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through specific interactions involving cellular surface receptors
and viral structural proteins, the viral interactome.

The main receptor for SARS-CoV-2 is represented by the
angiotensin-converting enzyme-2 (ACE-2) (Mathewson et al.,
2008), a type I transmembrane metallocarboxypeptidase, with
its enzymatically active domain exposed on the cell surface. The
binding with ACE-2 receptor may facilitate virus surface S1
subunit proteolysis by plasma-membrane-bound serine protease
TMPRSS2 and Cathepsine L (CatL), which may be associated
with caveolae (Gopal et al., 2006). Once the SARS-CoV-2 reaches
intracellular endosomes, CatL becomes the major protease that
cleaves the virus S1 subunit (Liu C. et al., 2020). ACE-2 is present
on non-immune cells, including endothelial cells, respiratory
and intestinal epithelial cells, kidney cells, cerebral neurons,
and alveolar monocytes/macrophages. In particular, the ability
of SARS-CoV-2 to infect human cells seems to depend by its
interaction with human ACE-2 by gln493 residue. However,
the S protein uses not only the ACE-2 receptor for entry
but also sialic acids linked to host cell surface gangliosides.
Indeed, a new type of ganglioside-binding domain within the
N-terminal domain of the SARS-CoV-2 S protein has been
identified. This domain (111–158), which is a highly conserved
sequence, may be responsible for attachment of the virus to
lipid rafts, thus facilitating contact with the ACE-2 receptor
(Fantini et al., 2020). In particular, ACE-2 is largely colocalized
both with raft markers GM1 and caveolin-1. Coronaviruses
may enter the host cells either by direct membrane fusion
with the plasma membrane or by receptor-mediated endocytosis
(Manes et al., 2003). In both processes, lipid rafts play a
key role, since they concentrate components of the membrane
docking and fusion machinery for endocytosis, such as actin
polymerization, which is important for the membrane fusion
and endocytosis. When these proteins are concentrated within
lipid rafts, their intermolecular interactions are highly facilitated
(Nicolau et al., 2006), since partitioning of protein into lipid
rafts increases specific interprotein collision rates. Thus, lipid
rafts may represent plasma membrane “chambers,” able to
increase protein interactions on the plasma membrane and, in
turn, increase the collision rate and consequently the efficiency
of membrane reactions. In particular, lipid rafts may provide
suitable platforms able to concentrate ACE-2 receptor on host
cell membranes where they may interact with the S protein on
viral envelope. Only in the “open” S conformation, RBD engages
PD of ACE-2, and the complex may involve a dimeric ACE-
2 that accommodates two S protein trimers (Yan et al., 2020).
A clustering of ACE-2 in certain areas of the membrane may
allow multivalent binding of virus particles to the cell surface. In
this way, microdomains may increase the efficiency of infection
but are not an absolute requirement for the entry process. This
explanation is in agreement with the finding that cholesterol
depletion reduces the susceptibility to infection but does not
abolish it (Glende et al., 2008).

In addition, methyl-β-cyclodextrin (MβCD) and mevastatin-
induced disruption of lipid rafts inhibited infectious bronchitis
virus infection, suggesting that lipid rafts are involved in viral
attachment (Guo et al., 2017; Wang et al., 2019). These results
indicated that lipid rafts on cell plasma membrane may mediate

viral adhesion to facilitate virus endocytosis. It is likely that
pathogen–host interactions promote lipid raft clustering and
focal adhesion formation during endocytosis.

Thus, we can conclude that lipid rafts may
represent attachment factors during the early stages of
coronavirus infection.

EFFECT OF LIPID RAFTS-AFFECTING
DRUGS ON CORONAVIRUS INFECTION

Lipid rafts affecting drugs, alone or in combination with other
compounds, may play a role in antiviral activity. Indeed,
as reported above, lipid rafts are crucial components of the
viral envelope (Scheiffele et al., 1999), where cholesterol is
a known critical structural component. Barman and Nayak
(2007) demonstrated that lipid rafts disruption by MβCD-
mediated cholesterol depletion is able to reduce influenza virus
infectivity. Indeed, it leads to reduced infectivity of virus particles,
holes on the viral envelope with consequent effects on particle
structure, and altered release of viral proteins. In addition,
depletion of cholesterol on host plasma membrane makes it less
vulnerable to influenza virus infection. Several authors reported
the importance of cholesterol for viral entry into host cells and
suggested a role for cholesterol-lowering therapies in reducing
SARS-CoV-2 infectivity (Bailly and Vergoten, 2020; Fecchi et al.,
2020; Radenkovic et al., 2020; Tang et al., 2020). Drugs such
as lovastatin or squalestatin induce cholesterol depletion by
inhibiting biosynthesis; as a result, different steps of the virus life
cycle can be disrupted. Other drugs, such as filipin, digitonin,
nystatin, saponin, or MβCD, cause disruption of lipid rafts in a
short period of time, directly removing cholesterol (Barman and
Nayak, 2007), although their effects are different at the level of
the membrane bilayer (Awasthi-Kalia et al., 2001). For instance,
filipin leads to the dispersion of glycosylphosphatidylinositol
(GPI)-anchored proteins at the cell surface favoring their release
from lipid rafts and decreases the number of caveolae (Robinson
and Karnovsky, 1980). Important factors involved in virus
infectivity could be afflicted by statins, and some of them are
able to reduce the levels of proinflammatory molecules, such
as interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α,
affecting the autophagic process involved in both viral replication
and clearance (Mehrbod et al., 2014). On the basis of these
findings, the possibility to undertake studies on patients with
severe SARS-CoV-2 infection has been suggested (Fedson et al.,
2020). Although there are still controversial theories about the
benefits of using statins in patients with SARS-CoV-2, large-scale
observational or randomized studies supported this hypothesis
(Shu, 2015; Rodrigues-Diez et al., 2020; Subir et al., 2020).

Differently, cyclodextrins have always been considered
as excipients with stabilizing and solubilizing properties.
At the end of the twentieth century, cyclodextrins have
been used as medicinal compounds. The first isolation of
cyclodextrins was made by Antoine Villiers in 1981 from
starch. Typical cyclodextrins contain three common ring types:
(α-CD) alpha-cyclodextrin, (β-CD) beta-cyclodextrin, and (γ-
CD) gamma-cyclodextrin. Cyclodextrins can assemble into
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TABLE 1 | Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) clinical trials.

Compounds Action Method References

Convalescent Plasma Isolation of IgG and IgM vs. SARS-CoV-2 in order to scale up polyclonal antibody

manufacturing to produce treatment cocktails directed against the betacoronavirus

causing COVID-19

Shen et al., 2020

Chloroquine/Hydroxychloroquine Interfering with the glycosylation of angiotensin-converting enzyme 2 (ACE2) and blocking

SARS-CoV-2 fusion with the host cell. Impaired terminal glycosylation of ACE2 may reduce

the binding efficiency between ACE2 on host cells and the SARS-CoV-2 spike protein

Golden et al., 2015; Torres

et al., 2019; Gao et al., 2020

Favipiravir A guanine analog that inhibit the RNA-dependent RNA polymerase of RNA virus. It has

been approved for some other viruses like Human Immunodeficiency Virus (HIV), Hepatitis

B Virus (HBV), Hepatitis C Virus (HCV) and influenza

Li and De Clercq, 2020; Liu

T. et al., 2020

Remdesivir A monophosphoramidate prodrug of an adenosine analog with a chemical structure

similar to that of tenofovir alafenamide, an approved HIV reverse transcriptase inhibitor.

Remdesivir has broad-spectrum activities against RNA viruses such as MERS and SARS

in cell cultures and animal models and has been tested in a clinical trial for Ebola

de Wit et al., 2020; Li and

De Clercq, 2020

Galidesivir An adenosine analog that was originally developed for HCV, is currently in early-stage

clinical studies evaluating its safety in healthy subjects and its efficacy against yellow fever,

and has shown antiviral activities in preclinical studies against many RNA viruses, including

SARS and MERS2

Li and De Clercq, 2020

Ribavirin A guanine derivative approved for treating HCV and respiratory syncytial virus (RSV) that

has been evaluated in patients with SARS and MERS, but its side effects such as anemia

may be severe at high doses and whether it offers sufficient potency against 2019-nCoV is

uncertain

ClinicalTrials.gov, 2020; Li

and De Clercq, 2020

human mAb 47D11 A human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell

culture. This cross-neutralizing antibody targets a communal epitope on these viruses and

may offer potential for prevention and treatment of COVID-19

Jiang et al., 2020; Wang C.

et al., 2020

Cyclodextrins The cyclodextrin structure can be modified and used for containment of infections or as

virucidal agents. The use of a mouth rinses and/or nasal applications that contain

cyclodextrins combined with other drugs could provide a valuable adjunct treatment. Both

are locally administered delivery systems that could lower the SARS-CoV-2 viral load

Serno et al., 2010; Lembo

et al., 2018; Torres et al.,

2019

complexes with various drugs to form host–guest inclusions
and have therefore been accepted as pharmaceutical excipients.
Cyclodextrins were found attractive for a variety of applications
because they could protect sensitive organic guest molecules
from oxidation and from volatilization and could make more
soluble apolar guests, too. The synthetic derivatives of native
cyclodextrins are divided into three groups: ionizable, such as
sulfobutylether β-CD (SBE-β-CD); hydrophobic, such as 2,6-di-
O-ethyl-β-CD; and hydrophilic, such as 2-hydroxypropyl-β-CD
(HP-β-CD). Modified beta-cyclodextrin owns antiviral activities
(Braga, 2019). For example, biocompatible sulfonated MβCD
mimics some features of heparan sulfate (Jones et al., 2020); in
fact, it can act as a broad-spectrum antiviral agent, since it has
been proven to reduce influenza A and coronavirus infectivity
through depletion of cholesterol. Moreover, drug delivery
systems of cyclodextrins can overcome formulation challenges
of antiviral drugs improving solubility and bioavailability (Jones
et al., 2020).

However, the use of cyclodextrins or statins as active drugs
against coronaviruses has some limitations. Indeed, they have
a pleiotropic effect in cultured cells by affecting many different
signaling pathways. Moreover, in addition to cholesterol, MβCD
also extracts other lipids, such as fatty acids and ceramides
from cell membranes. Finally, MβCD depolymerizes the actin
meshwork, drastically affecting whole cellular architecture.

Antiviral drugs targeting Ebola and HIV have demonstrated
encouraging results in SARS-CoV-2 patients, and cyclodextrin

seems to be the best excipient to enhance the properties of these
drugs, including the antiviral drug Kaletra, a combination of
lopinavir and ritonavir, a protease inhibitor for HIV, which
demonstrates a benefit in treatment of viral pneumonia (Lim
et al., 2020; Wan et al., 2020); the anti-HIV combination
lopinavir–ritonavir, currently employed in clinical trials
(ClinicalTrials.gov, 2020); and the purine nucleoside Favipiravir,
which has recently been authorized for a clinical trial (Liu T.
et al., 2020). An additional strategy to disrupt lipid rafts is to use
lipidomimetic antiviral agents that alter either viral or host cell
membrane blocking viral infection (Nieto-Garai et al., 2018).
Therefore, a new antiviral strategy could be assumed based on a
rafts-like lipid scaffold.

Remdesivir, an antiviral developed by Gilead Sciences
Inc. and previously approved on patients with Ebola, has
shown promising results in animal models for MERS and
SARS. A formulation with cyclodextrin and remdesivir has
been recently proposed (de Wit et al., 2020). In addition,
a combination of chloroquine and remdesivir was found to
effectively inhibit SARS-CoV-2 in vitro. Chloroquine phosphate
is an old antimalarial drug and has been effective in inhibiting
the exacerbation of SARS-COV-2 pneumonia (Gao et al., 2020).
Furthermore, chloroquine displays an immunomodulatory effect
by inhibiting TNF-α and IL-6. It also exhibits autophagy
inhibitory properties by the elevation of endosomal pH, which
may interfere with viral infection and replication (Golden
et al., 2015). Hydroxychloroquine presents a terminal hydroxyl
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group in molecular structure, and several studies have shown
the capacity of chloroquine and hydroxychloroquine to bind
the sialic acids and gangliosides of the host cells lipid rafts,
destabilizing the order, that SARS-COV-2 uses to enter besides
the receptor ACE-2 (Fantini et al., 2020; Yuan et al., 2020). This
fact suggested a possible additional role for cyclodextrins. Indeed,
it was shown that complexation with cyclodextrins lead to an
increase in the activity of the antimalarial drug (Torres et al.,
2019).

In addition, losartan, a generic blood pressure medication able
to block ACE-2 receptor, could be associated with cyclodextrins.
Other drugs, such as selective estrogen receptor modulators
(SERMs), offer alternative candidate drugs for SARS-CoV-2
(Zhou et al., 2020). Indeed, an overexpression of estrogen
receptor, which is localized within lipid rafts (Marin et al.,
2012), has been proven to interfere in viral replication through
the non-classical pathways associated with estrogen receptor
(Lasso et al., 2019). A reasonable solubility is essential to induce
bioavailability, and in the case of parenteral therapy, where
intravenous solutions must be buffered to physiological pH and
be particulate-free, drug solubility is critical, and cyclodextrin
represents the best candidate to improve complex therapies.
Although researchers are searching for preventive intervention
strategies, including interferon therapies, peptides, vaccines,
small-molecule drugs, and monoclonal antibodies to treat SARS-
CoV-2 infection, these may require several months to test, and
all depends on the results of the clinical trials (Shanmugaraj
et al., 2020). A few companies are developing actions to
accelerate the formation of their neutralizing antibodies, driven
by previous successes in the treatment of other diseases (Jiang
et al., 2020; Wang C. et al., 2020). Adequate excipients are
crucial during shipment and storage to maintain antibody and
drugs stability. The protective properties of cyclodextrin, such
as the inhibition of proteins aggregation under various stress
conditions, have been shown by many case studies (Serno et al.,
2010). Finally, researchers have been racing to find possible
vaccines for future prevention. Cyclodextrin, as an adjuvant,
stabilizes therapeutic monoclonal antibodies, preserves longer

immune response, increases antigen (vaccine)-specific antibody
titers, and induces type 2 T-helper (Th2) cell response (Onishi
et al., 2015) by affecting key signal transduction pathway(s)
triggered by lipid rafts.

Further applications for the use of lipid raft affecting drugs
are derived from the observations of Zhou and Simmons (2012),
who pointed out novel broad-spectrum antiviral compounds to
target different stages of the viral life cycle. Certain molecules
prove able to be able interfere with the infectivity of some
coronaviruses, possibly by viral lipid-dependent attachment to
cells (Baglivo et al., 2020). The main pharmacological approaches
against coronaviruses are summarized in Table 1.

CONCLUSION

It is conceivable that the first contact between coronavirus and
host cells occurs into lipid rafts, specialized regions of cell
plasma membrane, which provide a suitable platform able of
concentrating ACE-2 receptor, thus representing a port of cell
entry for viruses.

This review is focused on targeting lipid rafts as a strategy
against coronavirus. We report that agents, such as statins
or cyclodextrins, can deplete cholesterol and cause disruption
of lipid rafts, consequently affecting coronavirus adhesion and
binding. Furthermore, these compounds can assemble into
complexes with various drugs to form host–guest inclusions and
may be used as pharmaceutical excipients of antiviral drugs,
such as lopinavir and remdesivir, by improving bioavailability
and solubility. Thus, the possible use of drugs affecting
lipid rafts in the process of coronavirus entry into the cells
introduces a potential new task in the pharmacological strategy
against coronavirus.
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