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Abstract

We consider the following distributed consensus prob-
lem: Each node in a complete communication network
of size n initially holds an opinion, which is chosen ar-
bitrarily from a finite set Σ. The system must con-
verge toward a consensus state in which all, or almost
all nodes, hold the same opinion. Moreover, this opin-
ion should be valid, i.e., it should be one among those
initially present in the system. This condition should be
met even in the presence of a malicious adversary who
can modify the opinions of a bounded subset of nodes,
adaptively chosen in every round.

We consider the 3-majority dynamics: At every
round, every node pulls the opinion from three random
neighbors and sets his new opinion to the majority one
(ties are broken arbitrarily). Let k be the number of
valid opinions. We show that, if k 6 nα, where α is
a suitable positive constant, the 3-majority dynamics
converges in time polynomial in k and log n with high
probability even in the presence of an adversary who
can affect up to o(

√
n) nodes at each round.

Previously, the convergence of the 3-majority pro-
tocol was known for |Σ| = 2 only, with an argument
that is robust to adversarial errors. On the other hand,
no anonymous, uniform-gossip protocol that is robust
to adversarial errors was known for |Σ| > 2.
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1 Introduction

We study the following probabilistic, synchronous pro-
cess on a complete network of n anonymous nodes: At
the beginning, each node holds an “opinion” which is an
element of an arbitrary finite set Σ. We call an opinion
valid if it is held by at least one node at the beginning.
Then, in each round, the following happens: 1) every
node pulls the opinion from three random nodes and
sets its new opinion to the majority one (ties are bro-
ken arbitrarily), and 2) an adaptive dynamic adversary
can arbitrarily change the opinions of a subset of the
nodes, possibly choosing different subsets over different
rounds. We consider F -dynamic adversaries that, at
every round, can change the opinions of up to F nodes,
possibly introducing non-valid opinions.

Let the system start from any configuration having
k valid opinions with k 6 nα for a suitable constant
α < 1 and consider any F -dynamic adversary with
F = O(

√
n/(k5/2 log n)). We prove that the process

converges to a configuration in which all but O(
√
n)

nodes hold the same valid opinion within O((k2
√

log n+
k log n)(k + log n)) rounds, with high probability. This
shows that the 3-majority dynamics provides an efficient
solution to the stabilizing-consensus problem in the
uniform-gossip model. Previously, this was known only
for the binary case, i.e. |Σ| = 2, while for any |Σ| > 3, it
has been an important open question for several years
[3, 14]. Furthermore, still for any |Σ| > 3, o(n)-time
convergence of the 3-majority dynamics was open even
in the absence of an adversary whenever the initial bias
toward some plurality opinion is not large.

In the remainder of this section, we will describe in
more detail the consensus problem and various network
scenarios in which it is of interest, our result in this
setting, and a comparison with previous related results.

1.1 Consensus (or Byzantine agreement). The
consensus problem in a distributed network is defined



as follows: A collection of agents, each holding a piece
of information (an element of a set Σ), interact with
the goal of agreeing on one of the elements of Σ ini-
tially held by at least one agent, possibly in the presence
of an adversary that is trying to disrupt the protocol.
The consensus problem in the presence of an adversary
(known as Byzantine agreement) is a fundamental prim-
itive in the design of distributed algorithms [25, 27]. The
goal is to design a distributed, local protocol that brings
the system into a configuration that meets the follow-
ing conditions: (1) Agreement : All non-corrupted nodes
support the same opinion v; (2) Validity : The opinion
v must be a valid one, i.e., an opinion which was ini-
tially declared by at least one (non-corrupted) node; (3)
Termination: Every non-corrupted node can correctly
decide to stop running the protocol at some round.

Recently, there has been considerable interest in
the design of consensus algorithms in models that
severely restrict both communication and computation
[3, 6, 14], both for efficiency consideration and because
such models capture aspects of the way consensus is
reached in social networks, biological systems, and other
domains of interest in network science [2, 4, 8, 9, 16, 17,
18].

In particular, we assume an anonymous network in
which nodes possess no unique IDs, nor do they have
any static binding of their local link ports (i.e., nodes
cannot keep track of who sent what). From the point
of view of computation, the most restrictive setting
is to assume that each node only has O(log |Σ|) bits
of memory available, i.e., it just suffices to store a
constant number of opinions. We further assume that
this bound extends to link bandwidth available in each
round. Finally, communication capabilities are severely
constrained and non-deterministic: Every node can
communicate with at most a (small) constant number
of random neighbors in each round. These constraints
are well-captured by the uniform-gossip communication
model [12, 21, 22]: At every round, every node can
exchange a (short) message (say, Θ(log(|Σ|)) bits) with
each of at most h random neighbors, where h is a (small)
absolute constant1. A more recent, sequential variant
of the uniform-gossip model is the (random) population-
protocols model [3, 1, 2] in which, in each round, a single
interaction between a pair of randomly selected nodes
occurs.

The classic notion of consensus is too strong and unre-
alistic in the aforementioned distributed settings, that

1In fact, h = 1 in the standard uniform-gossip model. It is
easy to verify that all our results still hold in this more restricted

model at the cost of a constant slow-down in convergence time
and local memory size.

instead rely on weaker forms of consensus, deeply in-
vestigated in [3, 4, 5, 14]. In this paper, we consider
a variant of the stabilizing-consensus problem [4] con-
sidered in [3]: There, a solution is required to converge
to a stable regime in which the above three properties
are guaranteed in a relaxed, still useful form2. More
precisely:

Definition 1.1. Starting from any initial configura-
tion with k valid opinions, a stabilizing almost-
consensus protocol must ensure the following properties:
- Almost agreement. In a finite number of rounds, the
system must reach a regime of configurations where all
but a negligible “bad” subset (i.e. having size O(nγ) for
constant γ < 1) of the nodes support the same opinion.
- Almost validity. The system is required to converge
w.h.p. to an almost-agreement regime where all but a
negligible bad set of nodes keep the same valid opinion.
- Non termination. In dynamic distributed systems,
nodes represent simple and anonymous computing units
which are not necessarily able to detect any global
property.
- Stability. The convergence toward such a weaker form
of agreement is only guaranteed to hold with high
probability (in short, w.h.p.3) and only over a long
period (i.e. for any arbitrarily-large polynomial number
of rounds).

We remark that no stabilizing almost-consensus proto-
col is known for |Σ| > 2 even in the complete graph.
Here, we consider the 3-majority dynamics, maybe the
simplest gossip dynamics that exhibits positive prob-
abilistic drift toward consensus [10]. The main result
of this paper is on its convergence properties in the
uniform-gossip model in the presence of the adaptive
F -dynamic adversary defined above.

Theorem 1.1. Let k 6 nα, for a suitable constant
α < 1, and F = β

√
n/(k

5
2 log n) for some constant

β > 0. The 3-majority dynamics is a stabilizing
almost-consensus protocol in the presence of any
F -dynamic adversary and its convergence time is
O((k2

√
log n+ k log n)(k + log n)), w.h.p.

As a simple consequence of our analysis, we also get the
same bound on the convergence time in the presence of
any F -static adversary with a larger bound on F , i.e.,
F = n/k−

√
kn log n. The F -static adversary is the one

2 These relaxed convergence properties are described in detail
in Section 7 of [3].

3According to the standard definition, we say that a sequence
of events En, n = 1, 2, . . . holds with high probability if P (En) =
1−O(1/nλ) for some positive constant λ > 0.



that looks at the initial configuration, then changes the
opinion of up to F arbitrary nodes and, after that, no
further adversary’s actions are allowed.

We remark that in [7] an Ω(k log n) bound on the
convergence-time of the 3-majority dynamics is derived
which holds even when the system starts from biased
configurations.

Not assuming a large initial bias of the plurality
opinion considerably complicates the analysis. Indeed,
the major open challenge is the analysis from (almost)
uniform configurations, where the system needs to
break the initial symmetry in the absence of significant
drifts towards any of the initial opinions. So far, the
symmetry breaking in the 3-majority dynamics has
never been analyzed even in the non-adversarial case.
Moreover, the phase before symmetry breaking is the
one in which the adversary has more chances to cause
undesired behaviours: Long delays and/or convergence
towards non-valid opinions. In Section 2, after providing
some preliminaries, we shall discuss the above technical
challenges.

Finally, though not the focus of this paper, one
may wonder whether it is possible to provide guarantees
about the color that eventually achieves majority. As to
this point, the results of this paper and of our previous
work [7] together imply that a color is not going to
become majority unless it is a near-plurality, i.e., (1)
its size is not below the average by an excessive amount
and (2) it is close to the size of the plurality color.

1.2 Previous results. Consensus problems in dis-
tributed systems have been the focus of a large body of
work in several research areas, such as distributed com-
puting [19], communication networks [28], social net-
works and voting systems [24, 30], distributed databases
[12, 13], biological systems and chemical reaction net-
works [9]. For brevity’s sake, we here focus on results
that are closest in spirit to our work.

In [3], the authors show that w.h.p. n agents
that meet at random can reach valid stabilizing almost-
consensus in O(n log n) pairwise interactions against an
F = o(

√
n)-bounded dynamic adversary. The adopted

protocol is the well-studied third-state protocol [3, 26].
However, their analysis (and, thus, their result) only
holds for the binary case and for the population-protocol
model: At every round only one pair of nodes can
interact. The authors left the existence of protocols for
the multi-valued Byzantine case as a final open question
[3].

In the uniform-gossip model, in [14] the authors
provide an analysis of the 3-median rule, in which every
node updates its value to the median of its random
sample. They show that this dynamics converges to an

almost-agreement configuration (which is even a good
approximation of the global median) within O(log k ·
log log n + log n) rounds, w.h.p. It turns out that, in
the binary case, the median rule is equivalent to the
3-majority dynamics, thus their result implies that 3-
majority is an (F =

√
n)-stabilizing consensus with

O(log n) convergence time. However, in the non-binary
case, it requires Σ to be a totally-ordered set and this
order to be consistent, i.e. all agents agree on it: This
may be a strong restriction when these processes are
used to model emerging behavior and self-organization
in complex agent systems such as biological ones.

Furthermore, even assuming an ordered opinion set
(Σ,6), the 3-median rule does not guarantee the crucial
property of validity against both F -static (and, clearly,
dynamic) adversaries even for very-small bounds on F
(say F = polylog(n)).

We strongly believe that the validity property of
consensus plays a crucial role in several realistic sce-
narios, such as monitoring sensor networks, bio-inspired
dynamic systems, and voting systems [9, 24, 30].

More recently, the 3-majority rule in the multi-
opinion case (i.e. for |Σ| > 3) has been studied
for a stronger goal than consensus, namely, stabilizing
plurality consensus [7]. In this task, the goal is to
reach an almost-stable consensus towards the valid
opinion initially supported by the plurality of the nodes.
However, the initial configuration is assumed to have
a large bias towards the pluraltiy opinion. Then, let
k be the number of valid opinions, and let s be the
initial difference between the largest and the second-
largest opinion: By strongly exploiting the assumption
s >
√
kn log n, the authors in [7] proved that, w.h.p., the

system converges to the plurality opinion within time
Θ(k log n).

Another version of binary stabilizing almost-
consensus is the one studied by Yildiz et al in [30]: Here,
corrupted nodes are stubborn agents of a social network
who influence others but never change their opinions.
They prove negative results under a generalized vari-
ant of the classic voter dynamics in the (Poisson-clock)
population-protocol model.

2 The Process and its Analysis in a Nuthshell

Preliminaries. We assume a distributed system con-
sisting of n nodes that communicate with each other
over a complete graph via the synchronous uniform-
gossip mechanism: In every round, each node can pull
information from (at most) h random neighbors, where
h is an absolute constant (in this work, h = 3). At the
onset, every node chooses an arbitrary item, called opin-
ion, from an arbitrary finite set Σ. A simple dynamics
for consensus is the 3-majority protocol [7]:



In each round, every node samples three nodes
uniformly at random (including itself and with
repetitions) and revises its opinion according
to the majority of the opinions it sees. If it
sees three different opinions, it picks the first
one.

Clearly, in the case of three different opinions, choosing
the second or the third one would not make any differ-
ence, nor would choosing one of the observed opinions
uniformly at random.

Since the communication graph is complete and
nodes are anonymous, the overall system state at any
round can be described by a configuration c :=(
c1, ..., c|Σ|

)
, where the support ci of opinion i is the

number of nodes holding opinion i in that system’s
state. Given configuration c, we say that an opinion
i is active in c if ci > 0 and, for any set of active
opinions W ⊆ Σ, we define m (W ) := arg mini∈W ci.
For any variable x of the process, we write x(t) if we
are considering its value at round t and X(t) to de-
note the corresponding random variable. Furthermore,
following [23], considered a configuration c and a ran-
dom variable X defined over the process, we write
Pc

(
X(t) = x

)
for P

(
X(t) = x |C(0) = c

)
. Analogously,

we write Ec

[
X(t)

]
for the associated conditional expec-

tation.

The next lemma provides the expected number of
nodes supporting a given opinion at round t+ 1 (and a
general upper bound to it), given the configuration at
round t. The simple proof of the first equality is in [7].
It is also included in Appendix A to make the paper
self-contained.

Lemma 2.1. (See [7]) Let c be the configuration at
round t and let W ⊆ Σ be the subset of active opinions
in c. Then, for any opinion i ∈W ,

E
[
C

(t+1)
i

∣∣∣C(t) = c
]

= ci

(
1 +

ci
n
−
∑
j∈W c2j

n2

)

6 ci

(
1 +

ci
n
− 1

|W |

)
The above upper bound easily implies that opinions
whose supports fall below the average n/|W | decrease in
expectation. This expected drift is a key-ingredient of
our analysis and, as we will see in the next paragraph,
it provides useful intuitions about the process. On the
other hand, when c is almost uniform, the above drift
turns out to be negligible and symmetry breaking is due
to the inherent variance of the random process.

Failed attempts. When the 3-majority dynamics
starts from configurations that exhibit a large initial

support bias between the largest and the second-largest
opinions, the approach adopted in [7] successfully ex-
ploits the fact that the initial plurality is preserved
throughout the evolution of the random process, with an
expected positive drift that is also preserved, w.h.p. An
intuition of this fact can be achieved from simple ma-
nipulations of (2.1). However, the aforementioned drift
is only preserved if the largest opinion never changes
(w.h.p.), no matter which the second-largest opinion is:
a condition that is not met by uniform configurations. A
promising attempt to cope with uniform configurations

is to consider the r.v. S(t) = C
(t)
M(t) − C

(t)
2M(t) where

M(t) and 2M(t) are the r.v.s that take the index of
(one of) the largest opinion and of (one of) the second-
largest ones, respectively, in round t. For any fixed pair
i, j, such that ci > cj , (2.1) implies that the difference

C
(t+1)
i −C(t+1)

j in the next round is positive in expecta-
tion, so a suitable submartingale argument (similarly to
those in [23]), seemed to work in order to show that the
system (rather quickly) achieves a “sufficiently-large”
bias toward the plurality as to allow fast convergence.
This approach would work if the random indices M and
2M maintained their initial values across the entire du-
ration of the process. Unfortunately, starting from uni-
form configurations, in the next round, the expected
difference between the new largest opinion and the new
second largest one may have no positive drift at all.

Roughly speaking, in the next round, the r.v. C
(t+1)
2M(t+1)

can be much larger than the r.v. C
(t+1)
M(t) .

A promising dynamics for the stabilizing almost-
consensus problem is the one introduced in [14], in
which nodes revise their opinions (assumed to be totally
ordered) by taking the median between the currently
held opinion and those held by two randomly sampled
nodes. However, while we do not assume opinions to
be integers (or totally ordered), their analysis strongly
relies on the fact that the median opinion (or any good
approximation of it) exhibits a strong increasing drift,
even when starting from almost-uniform configuration,
whereas no opinion is “special” to a majority rule when
the starting configuration is uniform. The adoption
of an inherently biased function as the median can
have important consequences. To get an intuition,
the reader may consider the following simple instance:
Σ = {1, 2, 3}, with the system starting in configuration
c1 = n/2, c2 = 0, c3 = n/2. At the end of the first round,
a static adversary changes the values of F = log n
nodes, equally distributed in c1 and c3, to value 2. The
(non-valid) value 2 is the global median and standard
counting arguments show that, while values 1 and 2
have no positive expected drift, the median has a strong
expected drift that holds w.h.p. whenever c1, c3 = Θ(n).



This might fool the system into the configuration in
which c2 = n, thus converging to a non-valid value.

Our New Approach: An Overview. Our analysis
significantly departs from the above approaches. It is
important to remark that, for |Σ| > 3, no analysis of the
3-majority dynamics with almost-uniform initial config-
urations is known, even in the simpler non-adversarial
case. On the other hand, while simpler, the analysis of
the non-adversarial case still has per-se interest and it
requires to address some of the main technical challenges
that also arise in the adversarial case. Section 3 will be
thus devoted to the analysis of the non-adversarial case,
while an outline is given in the paragraphs that follow.

When the configuration is (approximately) uniform,
Lemma 2.1 tells us that the process exhibits no signifi-
cant drift toward any fixed opinion. Interestingly, things

change if we consider the random variable C
(t)
m , indicat-

ing the size of the smallest opinion supported at round
t. Let j 6 k be the number of active opinions in a given

round t, we first prove that the expected value of C
(t)
m

always exhibits a non-negligible negative drift:

(2.1) E
[
C(t+1)
m

|C(t) = ĉ
]
6 ĉm − ε

√
n

j3/2
,

for some constant ε > 0. This drift is essentially a con-
sequence of Lemma 2.1 and of the standard deviation of

r.v.s C
(t)
i s (see the proof of Lemma 3.2). The analysis

then proceeds along consecutive phases, each consisting
of a suitable number of consecutive rounds. If the num-
ber of active opinions at the beginning of the generic
phase is j, we prove that, with positive constant prob-

ability, C
(t)
m vanishes within the end of the phase, so

that the next phase begins with (at most) j − 1 active
opinions.
We clearly need a good bound on the length of a phase
beginning with at most j opinions. To this aim, we
derive a new upper bound - stated in Lemma 3.1 - on
the hitting time of stochastic processes with expected
drift that are defined by finite-state Markov chains [23].
Thanks to this result, we can use the negative drift
in (2.1) to prove that, from any configuration with

j 6 k active opinions, C
(t)
m drops below the threshold

n/j −
√
jn log n within O(poly(j, log n)) rounds, with

constant positive probability: This “hitting” event rep-
resents the exit condition from the symmetry-breaking
stage of the phase. Indeed, once it occurs, we can con-
sider any fixed active opinion i having support size ci
below the above threshold (thanks to the previous stage,
we know that there is a good chance this opinion ex-
ists): We then show that Ci has a negative drift of or-
der Ω(ci/j). This allows us to prove that Ci drops from

n/j −
√
jn log n to zero within O(poly(j, log n)) further

rounds, with positive constant probability. This interval
of rounds is the dropping stage of the phase.
Ideally, the process proceeds along k consecutive phases,
indexed as j = k, k−1, . . . , 2, such that we are left with
at most j − 1 active opinions at the end of Phase j. In
practice, we only have a constant probability that at
least one opinion disappears during Phase j. However,
using standard probabilistic arguments, we can prove
that, w.h.p., for every j, the transition from j to j − 1
active opinions takes a constant (amortized) number of
phases, each requiring O(poly(j, log n)) rounds.

The presence of a dynamic, adaptive adversary
makes the above analysis technically more complex. A
major issue is that a different definition of Phase must
be considered, since the adversary might permanently
feed any opinion so that the latter never dies. So
the number of active opinions might not decrease from
one phase to the next one. Essentially, we need
to manage the persistence of “small” (valid or not)
opinions: The end of a phase is now characterized
by one “big” valid color that becomes “small” and,
moreover, we need to show that, in general, “small”
colors never become “big”, no matter what the dynamic
F -bounded adversary does. The dynamic-adversary
case is described in Subsection 4.

3 The 3-Majority Dynamics without
Adversary

Let C ⊆ Σ be the subset of valid opinions, i.e. those
supported by at least one node in the initial configu-
ration, and denote by k = |C| its size. This section is
devoted to the proof of the following result.

Theorem 3.1. (The Adversary-Free Case.)
Starting from any initial configuration with k 6 n1/3−ε

active opinions, where ε > 0 is an arbitrarily-small
constant, the 3-majority dynamics reaches consensus

within O
(

(k2 log1/2 n+ k log n)(k + log n)
)

rounds,

w.h.p.

We first provide the lemmas required for the process
analysis and then we give the formal proof of the above
theorem.

The next lemma shows an upper bound on the
time it takes a stochastic process with values in N =
{0, 1, . . . , n} to reach or exceed a target value m, under
mild hypotheses on the process. We give here only an
idea of the full proof, which is deferred to Appendix A.

Lemma 3.1. Let {Xt}t be a Markov chain with finite
state space Ω, let f : Ω → N be a function mapping
states of the chain to non-negative integer numbers, and



let {Yt}t be the stochastic process over N defined by
Yt = f(Xt). Let m ∈ N be a “target value” and let

τ = inf{t ∈ N : Yt > m}

be the random variable indicating the first time Yt
reaches or exceeds value m. Assume that, for every state
x ∈ Ω with f(x) 6 m− 1, it holds that

1. (Positive drift). E [Yt+1 |Xt = x] > f(x) + λ for
some λ > 0

2. (Bounded jumps). Px (Yτ > αm) 6 αm/n, for
some α > 1.

Then, for every starting state x ∈ Ω, it holds that

Ex [τ ] 6 2α
m

λ

Idea of the proof. From Hypothesis 1 it follows that
Zt = Yt − λt is a submartingale that satisfies the
hypotheses of the Doob’s Optional Stopping Theorem
[15] (see e.g. Corollary 17.8 in [23] or Theorem 10.10
in [29]), thus

0 6 f(x) = Ex [Z0] 6 Ex [Zτ ] = Ex [Yτ ]− λEx [τ ]

And from Hypothesis 2 it follows that Ex [Yτ ] 6 2αm.
�

We next use the above lemma to bound the time
required by the symmetry-breaking stage.

Lemma 3.2. (Symmetry-breaking stage) Let c be
any configuration with j active opinions. Within t =

O
(
j2 log1/2 n

)
rounds it holds that

Pc

(
∃i such that C

(t)
i 6 n/j −

√
jn log n

)
>

1

2

Sketch of Proof. Let J be the set of j active opinions in

c and let C(t) =
(
C

(t)
i : i ∈ J

)
be the random variable

indicating the opinion configuration at round t, where

we assume C(0) = c. Let C
(t)
m = min

{
C

(t)
i : i ∈ J

}
be the minimum among all C

(t)
i s and consider the

stochastic process {Yt}t defined as Yt = bn/jc − C(t)
m .

Observe that Yt takes values in {0, 1, . . . , bn/jc} and it
is a function of C(t). We are interested in the first time
Yt becomes at least as large as

√
jn log n, i.e.

τ = inf
{
t ∈ N : Yt >

√
jn log n

}
We now show that {Yt}t satisfies Hypotheses 1 and 2 of
Lemma 3.1, with λ = ε

√
n/j3/2, for a suitable constant

ε > 0.

1. Let ĉ = (ĉi : i ∈ J) be any configuration with j
active opinions such that ĉm > n/j −

√
jn log n. We

want to prove that

(3.2) E
[
C(t+1)
m

|C(t) = ĉ
]
6 cm − ε

√
n

j3/2

Two cases may arise.

Case ĉm > n/j − 2ε
√
n/j: Observe that, in this case,

r.v.s
{
C

(t+1)
i : i ∈ J

}
conditional on {C(t) = ĉ} have

standard deviation Ω
(√

n/j
)

. Moreover, they are

binomial and negatively associated. Hence, by choosing
ε small enough, from the Central Limit Theorem we
have that

P

(
i ∈ J exists : C

(t+1)
i 6

n

j
− 6ε ·

√
n

j

)
> 1/2

We thus get

(3.3) E
[
C(t+1)
m

|C(t) = ĉ
]
6

6
1

2

(
n

j
− 6ε ·

√
n

j

)
+

1

2
· n
j

=
n

j
− 3ε

√
n

j
6 cm − ε

√
n

j

6 cm − ε
√
n

j3/2

Case ĉm 6 n/j − 2ε
√
n/j: Equation (3.2) easily follows

from Lemma 2.1. Indeed, let i ∈ J be an opinion such
that ĉi = ĉm, then

(3.4) E
[
C(t+1)
m

|C(t) = ĉ
]
6 E

[
C

(t+1)
i |C(t) = ĉ

]
6 ĉi

(
1 +

ĉi
n
− 1

j

)
6 ĉi

(
1− 2ε√

nj

)
6 ĉi −

ε
√
n

j3/2
= ĉm − ε

√
n

j3/2

where we used the case’s condition and the fact that
ĉi = ĉm > n/(2j).

2. Since random variables
{
C

(t+1)
i : i ∈ J

}
are bino-

mial, conditional on the configuration at round t, it is
possible to a apply Chernoff bound (though with some
care) to prove that

(3.5) Pc

(
Yτ > α

√
jn log n

)
6

1

n
,

for some constant α > 1. Though this result seems
intuitive, its formal proof is less obvious, since τ is a



stopping time and thus itself a random variable. Lemma
B.1 in Appendix B offers a formal proof of the above
statement.

From (3.2) and (3.5), we have that {Yt}t satisfies the
hypotheses of Lemma 3.1 with m =

√
jn log n and

λ = ε
√
n/j3/2. Hence Ec [τ ] < j2

√
log n and, from

Markov inequality, for t = 2j2
√

log n, we finally get

(3.6) Pc

(
∀ i ∈ J : C

(t)
i > n/j −

√
jn log n

)
6

6 Pc

(
τ > 2j2

√
log n

)
6

1

2

�

We now provide the analysis of the dropping stage:
More precisely, we show that, if the system starts with
up to j active opinions and one of them (say i) is below
the threshold n/j−

√
jn log n, then i drops to the smaller

threshold j2 log n within O(j log n) additional rounds.
This bound can be proved w.h.p. since, in this regime,
Ci is still sufficiently large to apply the Chernoff bound.
This concentration result is not necessary to the purpose
of proving Theorem 3.1, while it is a key ingredient in
the analysis of the adversarial case (Theorem 4.1). The
next lemma can be proved by standard concentration
arguments - applied in an iterative way - on the r.v.

C
(t)
i (see Appendix B).

Lemma 3.3. (Dropping stage 1) Let c be any con-
figuration with j 6 n1/3−ε active opinions, where ε > 0
is an arbitrarily-small positive constant, and such that
an opinion i exists with ci 6 n/j −

√
jn log n. Within

t = O(j log n) rounds opinion i becomes O
(
j2 log n

)
w.h.p.

In the next lemma we prove that once ci becomes
smaller than n/(2j), then opinion i disappears within
further O(j log n) rounds with constant probability. We
only give an outline of the proof (the full proof is
presented in Appendix B).

Lemma 3.4. (Dropping stage 2) Let c be any con-
figuration with j 6 n1/3−ε active opinions, where ε > 0
is an arbitrarily-small positive constant, and such that
an opinion i exists with ci 6 n/(2j). Within t =
O(j log n) rounds opinion i disappears with probability
at least 1/2.

Idea of the proof. If ci 6 n/(2j) in configuration c, then
from Lemma 2.1 it follows that

E
[
C

(t+1)
i |C(t) = c

]
6 ci

(
1− 1

2j

)
Moreover, since C

(t+1)
i conditional on

{
C(t) = c

}
is bi-

nomial, if j 6 n1/3−ε, from the Chernoff bound it

follows that P
(
C

(t+1)
i > n/(2j) |C(t) = c

)
6 e−Θ(nε).

Hence, it is easy to check that for any initial configura-
tion c with ci 6 n/(2j) the following recursive relation
holds

Ec

[
C

(t)
i

]
6

(
1− 1

2j

)
Ec

[
C

(t−1)
i

]
+ e−n

ε/2

that for some t = O(j log n) gives Ec

[
C

(t)
i

]
6 1/2.

Since C
(t)
i is a non-negative integer-valued r.v., the

thesis then follows from the Markov inequality. �

Proof of Theorem 3.1. From Lemmas 3.2, 3.3, and
3.4 it follows that from any configuration with j 6 k
active opinions, within O(k2

√
log n+ k log n) rounds at

least one of the opinions disappears with probability
at least 1/4. Thus, within O((k2

√
log n + k log n)(k +

log n)) rounds, all opinions but one disappear w.h.p. �

4 Convergence Time of 3-Majority with
Adversary

In this section we consider the presence of a Byzantine
adversary that can adaptively change the opinions of a
subset of nodes in order to (i) delay the convergence
time toward a valid consensus, or (ii) make the system
converge to a non-valid opinion. We consider two
different kinds of adversaries: A static one and a
stronger, dynamic one.

The F -static adversary. Let c be the initial
configuration: At the beginning of the process the
adversary looks at c and can replace the opinions of at
most F = n/k−

√
kn log n nodes with arbitrary opinions

in Σ. Then, the adversary is not allowed to perform
any further action during the execution of the protocol.
Since any opinion the adversary may introduce has size
less than n/k −

√
kn log n, as a simple consequence of

the dropping stage (see Lemmas 3.3 and 3.4), the static
adversarial case easily reduces to the non-adversarial
one. We thus get the following

Corollary 4.1. Starting from any initial configura-
tion with k 6 nα active opinions, where α > 0 is
a suitable constant, the 3-majority dynamics reaches
almost-consensus within O

(
k2
√

log n+ k log n
)

(k +
log n) rounds, in the presence of any F -static adversary
with F = n/k −

√
kn log n, w.h.p.

The F -dynamic adversary. The actions of this
adversary over the studied process can be described as
follows.



Definition 4.1. At every round t, after nodes have
updated their opinions (i.e. once the configuration
C(t) = c(t) is realized), the F -dynamic adversary looks
at the current configuration and replaces the opinion of
up to F nodes with any opinion in Σ. We define C̃(t) as
the configuration that results from the adversary’s action

on c(t) and D
(t)
i = D

(t)
i (c(0), c̃(0), . . . , c(t−1), c̃(t−1), c(t))

as the r.v. corresponding to the number of nodes
that the adversary adds or removes from ci (note that∑
i∈Σ |Di| 6 2F ) at the end of the t-th round, based on

all the past history of the process, i.e.

C̃(t) =
(
C

(t)
1 +D

(t)
1 , . . . , C

(t)
|Σ| +D

(t)
|Σ|

)
In what follows we consider an F -dynamic adver-

sary with F 6 β
√
n/(k

5
2 log n) for a suitable positive

constant β. As we will show in the proof of Lemma
4.1, this bound on F turns out to be almost tight if
the goal is to converge to an almost-consensus regime
in polynomial time, w.h.p.

The presence of the adversary requires us to dis-
tinguish between valid and non valid opinions. So, we
recall that the set of valid opinions C ⊆ Σ is the subset
of active opinions in the initial configuration and, in the
sequel, we denote k as the number of valid opinions, i.e.,
k := |C| and define C̄ := Σ− C.

We are now ready to state our main result in the
presence of the dynamic adversary.

Theorem 4.1. (The Dynamic-Adversary Case.)
Starting from any initial configuration with k 6 nα

active opinions, where α > 0 is a suitable constant, the
3-majority dynamics reaches (valid) almost-consensus
within O

(
(k2
√

log n+ k log n)(k + log n)
)

rounds,
in the presence of any F -dynamic adversary with
F = β

√
n/(k

5
2 log n), where β > 0 is a suitable

constant, w.h.p.

In order to prove the above theorem, we need to
“improve” the technical lemmas shown in the previous
section for the non-adversarial case. Informally speak-
ing, the adversary can introduce “small” non-valid opin-
ions and it can keep small valid opinions active that, we
know, they would otherwise disappear. These facts lead
us to the problem of managing “small” opinions. In the
next subsection, we thus provide analyze this issue and
prove the main result above.

4.1 Proof of Theorem 4.1. The rigorous definition
of “small opinion” is determined by the minimal nega-

tive drift for C
(t)
m we derived in the proof of Lemma 3.2

(see (3.4)).

Definition 4.2. Let S := {i
∣∣ ci 6 γ

√
n/k

3
2 } be the

set of the small opinions, where γ is some constant such

that γ > β, and let its complement B := S̄ = {i
∣∣ ci >

γ
√
n/k

3
2 } be the set of the big opinions.

It turns out that we cannot define the end of a phase
as we did in the non-adversarial case, namely, at least
one (valid) opinion dies. Rather and without loss of
generality, we assume that all k valid opinions are big
when the process begins. Then, our new definition
of a phase is the following: phase j is an interval of
consecutive rounds, in each of which exactly j big valid
opinions are present. Our goal then is to show that
at the end of phase j, one of the j initially big colors
becomes small and, moreover, this color (and no other
small color) will never get big again.

In the symmetry-breaking stage of each phase, we

thus need to show that the negative drift of C
(t)
m (notice

that the latter now denotes the minimum among the j
big colors) cannot be opposed by the actions of the F -

dynamic adversary, provided that F 6 β
√
n/(k

5
2 log n).

Lemma 4.1. (Symmetry-breaking stage) Let c̃ be
any configuration such that |B| = j and

∑
i∈C̄ c̃i 6

γ
√
n/k

3
2 . Within t = O

(
j2 log1/2 n

)
rounds, with

probability at least 1/2 it holds that:

i) |B| = j,
∑
i∈C̄ C̃i 6 γ

√
n/k

3
2 , and

ii) ∃i ∈ B(t) such that C̃
(t)
i 6 n/j −

√
jn log n.

The formal proof of the above lemma is given in
Subsection C.1. Informally, the proof is obtained via
two different technical steps:

i) A new bound on the expected negative drift for C
(t)
m

that considers both the presence of small good opinions
and the adversary’s opposing action (for its proof see
Subsection C.2).

Lemma 4.2. Let c̃ be any configuration such that |B| 6
j and

∑
i∈C̄ c̃

(t)
i 6 γ

√
n/k

3
2 . For some constant α > 0,

for any opinion i such that c̃i > γ
√
n/k

3
2 , it holds

(4.7) E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i

(
1− 1

j
+
c̃i + α

√
n/k

n

)

(4.8) E
[
C̃

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i(1− η(i, j)), where

η(i, j) = min

{
1

j
−
c̃i + α

√
n/k

n
,

1

2

(
1

j
− c̃i
n

)}

ii) A novel use of Lemma 3.1 on the hitting time of
random processes in order to bound the expect time of
the symmetry-breaking stage. We in fact need to define
a new stopping condition that also includes some “bad”



event: Some small (valid or not) color become big. More
precisely, In Lemma 4.3 (its formal proof can be found
in Subsection C.3) we prove the following key-properties
of the process in the presence of the dynamic adversary:
w.h.p., it is never the case that

1. if in a given round a valid opinion is small then it
gets big at a later time, i.e. S(t−1) ⊆ S(t);

2. the size of the overall set of non valid opinions grows
beyond γ

√
n/k

3
2 , i.e.

∑
i∈C̄ ci > γ

√
n/k

3
2 .

Lemma 4.3. If c̃(t) is such that
∑
i∈C̄ c̃

(t)
i 6 γ

√
n/k

3
2 ,

then
∑
i∈C̄ C̃

(t+1)
i 6 γ

√
n/k

3
2 and S(t) ⊆ S(t+1), w.h.p.

The dropping stage of phase j is now defined as the in-

terval of rounds in which C
(t)
m drops from the symmetry-

breaking threshold n/j −
√
jn log n to the size of small

colors i.e. γ
√
n/k

3
2 . Similarly to the non-adversarial

case, we can here fix the big opinion i that is dropped
below the symmetry-breaking threshold and look at its
negative drift derived in Lemma 4.2. The drift turns out
to be strong enough to compensate the possible actions
of any F -bounded adversary and implies an O(j log n)
bound on the time required by this second stage of phase
j. This result is stated in the following Lemma (its proof
is given in Subsection C.4.

Lemma 4.4. (Dropping stage) Assume that, at

round t′, c̃(t′) is such that
∑
i∈C̄ ci 6 γ

√
n/k

3
2 ,

|B(t′)| = j, and an i ∈ B(t′) exists such that

γ
√
n/k

3
2 6 c

(t′)
i 6 n/j −

√
kn log n. Then, w.h.p.,

a round t′′ = t′ + O(k log n) exists such that∑
i∈C̄ C̃

(t′′)
i 6 γ

√
n/k

3
2 , i ∈ S(t′′) and |B(t′′)| 6 j − 1.

Finally, after k phases, we are left with one (valid)
opinion that accounts for n − O(

√
n) nodes, while the

remaining nodes can have any (possibly non valid)
opinion and reflect the presence of the adversary. In
fact, this is what happens with high probability. �

5 Future Work

We believe that our upper bound on the convergence
time of the 3-majority dynamics is not tight w.r.t. k.
We think that at least a factor k can be saved. To
this aim, we would need to show that “more” opinions
get small during a phase. This number should also
depend on the current number of big colors. Another
idea would be that of (also) considering the growth of
the maximal opinion. Unfortunately, differently from
the minimal opinion (see (2.1) in Section 2), we have
no good bound on the expected drift for the maximal
opinion that holds from any configuration. So, we don’t

see how to efficiently adapt our approach without this
crucial ingredient.

A more general open question is to analyze stabiliz-
ing almost-consensus dynamics, such as the 3-majority
one, in some interesting graph topologies. We believe
that a suitable combination of our analysis and some
previous analysis for the binary case [11] might result
useful in expander graphs [20] and some classes of ran-
dom evolving graphs [10].
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Appendix

A Preliminary Results

Proof of Lemma 2.1. According to the 3-
majority protocol, a node u gets opinion i if it chooses 3
times opinion i, or if it chooses two times i and one time
a different opinion, or if it chooses the first time opinion
i and then, the second and third time, two different dis-

tinct opinions. Hence, if we denote by X
(t)
i,u the indicator

random variable of the event “Node u gets opinion i at
time t”, we have that

P
(
X

(t+1)
i,u = 1 |C(t) = c

)
=
(ci
n

)3

+ 3
(ci
n

)2 (n− ci
n

)
+
(ci
n

)[
1−

(∑k
`∈S c

2
`

n2
+ 2

(ci
n

)(n− ci
n

))]

=
( ci
n3

)(
n2 + cin−

k∑
`∈S

c2`

)
.

Then the inequality in (2.1) is obtained by observing
that the sum

∑
`∈S c

2
` is minimized for c` = n/|S|. �

Proof of Lemma 3.1. Consider the stochastic
process Zt = Yt − λt and observe that for any state
x ∈ Ω with f(x) 6 m− 1 it holds that

E [Zt+1 |Xt = x] = E [Yt+1 |Xt = x]− λ(t+ 1)

> f(x) + λ− λ(t+ 1)

> f(x)− λt,

where in the inequality we used Hypotheses 1. Thus
Zt is a submartingale up to the stopping time τ , i.e.
E [Zt+1 |Xt] > Zt for any t < τ . Moreover, since
|Yt| 6 n the jumps of Zt can be bounded by a value
independent of t

|Zt+1 − Zt| = |Yt+1 − λ(t+ 1)− Yt + λt| 6 n+ λ,

and it is easy to see that Hypotheses 1 implies Ex [τ ] <
∞, thus we can apply Doob’s Optional Stopping Theo-
rem [15] (see also, e.g., Corollary 17.8 in [23] and The-
orem 10.10 in [29]). It then follows that Ex [Zτ ] >
Ex [Z0] = f(x) and, since Ex [Zτ ] = Ex [Yτ ] − λEx [τ ],
we have that

Ex [τ ] 6
Ex [Yτ ]− f(x)

λ
6

Ex [Yτ ]

λ
.

Finally, we get

E0 [Yτ ] =

n∑
j=1

jP0 (Yτ = j)

=

bαmc∑
j=1

jP0 (Yτ = j) +

n∑
j=bαmc+1

jP0 (Yτ = j)

6 (αm) + nP0 (Yτ > αm) 6 2 (αm) ,

where in the last inequality we used Hypothesis 2. �

B Proofs for the Non-Adversarial Case

We first provide a formal proof for (3.5).

Lemma B.1. Let c be any configuration with j active
opinions. Consider the stochastic process {Yt}t defined

as Yt =
⌊
n
j

⌋
− C(t)

m and define the stopping time τ =

inf
{
t ∈ N : Yt >

√
jn log n

}
. Then:

Pc

(
Yτ > α

√
jn log n

)
6

1

n
.

Proof. Observe that Ec [τ ] < ∞, since C
(t)
m has a

negative drift (see the proof of Lemma 3.2). Next, from
the definition of Yt:

Pc

(
Yτ > α

√
jn log n

)
= Pc

(
C(τ)
m

<

⌊
n

j

⌋
− α

√
jn log n

)
= Pc

(
∃` : C

(τ)
` <

⌊
n

j

⌋
− α

√
jn log n

)
6

j∑
`=1

Pc

(
C

(τ)
` <

⌊
n

j

⌋
− α

√
jn log n

)
.

Given any opinion l, any comparison operator � ∈
{<,6,>, >} and any round t, let

E(t)
l� = C

(t)
l �

⌊
n

j

⌋
−
√
jn log n.



From the definition of the stopping time τ :

Pc

(
C

(τ)
` <

⌊
n

j

⌋
− α

√
jn logn

)
=

∞∑
t=1

Pc

(
C

(t
` <

⌊
n

j

⌋
− α

√
jn logn

∧
τ = t

)

=

∞∑
t=1

Pc

(
C

(t)
` <

⌊
n

j

⌋
− α

√
jn logn

∧
E(t)
m6

∣∣∣ t−1∧
s=1

E(s)
m>

)

·Pc

(
t−1∧
s=1

E(s)
m>

)

=

∞∑
t=1

Pc

(
C

(t)
` <

⌊
n

j

⌋
− α

√
jn logn

∣∣∣ t−1∧
s=1

E(s)
m>

)
·Pc

(
t−1∧
s=1

E(s)
m>

)
,

(B.1)

where the last equality follows since

C
(t
` <

⌊
n

j

⌋
− α

√
jn log n

implies

C(t)
m

<

⌊
n

j

⌋
−
√
jn log n.

We next consider Pc

(∧t−1
s=1 E

(s)
m>

)
. We can write:

Pc

(
t−1∧
s=1

E(s)
m>

)
=

t−1∏
s=1

Pc

(
E(s)
m>

∣∣∣ s−1∧
r=1

E(r)
m>

)
=

t−1∏
s=1

Pc

(
E(s)
m>

∣∣∣ E(s−1)
m>

)
,

where the last equality follows since the 3-majority
process is Markovian. We next give an upper bound on
Pc(C

(s)
m > bn/jc −

√
jn logn |C(s−1)

m > bn/jc −
√
jn logn):

Pc

(
E(s)
m>

∣∣∣ E(s−1)
m>

)
=

∑
ĉ:ĉm>bnj c−

√
jn logn

Pĉ

(
E(1)
m>

)
·Pc

(
C(s−1) = ĉ

∣∣∣ E(s−1)
m>

)
6

∑
ĉ:ĉl>bnj c−

√
jn logn

Pĉ

(
E(1)
m>

)
·Pc

(
C(s−1) = ĉ

∣∣∣ E(s−1)
m>

)
,

where l = arg ĉm (ties broken arbitrarily). We can give

an upper bound on Pĉ

(
C

(1)
l >

⌊
n
j

⌋
−
√
jn log n

)
using

a “reverse” Chernoff bound4. In particular, it is possible

4A folklore example with complete proofs can be found

at http://cstheory.stackexchange.com/questions/14471/

reverse-chernoff-bound.

to show that

Pĉ

(
C

(1)
l > (1− δ)Eĉ

[
C

(1)
l

])
6 1− e−βδ

2Eĉ

[
C

(1)
l

]

for a suitable constant β. We use δ =
√
jn log n/Eĉ

[
C

(1)
l

]
and note that n/2j 6 Eĉ

[
C

(1)
l

]
6

n/j, so that

Pĉ

(
C

(1)
l > (1− δ)Eĉ

[
C

(1)
l

])
6 1− e−4βj2 logn.(B.2)

Saturating with respect to ĉ yields

Pc

(
E(s)
m>

∣∣∣ E(s−1)
m>

)
6 1− e−4βj2 logn.

On the other hand, using standard concentration tech-

niques and recalling that Eĉ

[
C

(1)
l

]
6 n/2j, we can

prove that:
(B.3)

Pc

(
C

(t)
` <

⌊
n

j

⌋
− α

√
jn log n

∣∣∣∣∣
t−1∧
s=1

E(t)
m>

)
6 e−

α2

6 j
2 logn.

Next, substituting (B.2) and (B.3) into (B.1), the
result follows after simple calculations and by suitably
choosing α. �

Proof of Lemma 3.3. We first prove that the
decreasing rate of Ci depends on its value at the end
of the previous round. More formally, if we are in a
configuration satisfying the hypotheses of the lemma:

P

(
C

(t)
i > c

(t−1)
i

(
1− 1

2

(
1

j
− c

(t−1)
i

n

)))

= P

(
C

(t)
i > c

(t−1)
i

(
1−

(
1

j
− c

(t−1)
i

n

))
(1 + δ)

)
,

where δ = 1
2 ( 1
j −

c
(t−1)
i

n )/1− ( 1
j −

c
(t−1)
i

n )
Using Lemma 2.1 and applying Chernoff bound we

have:

P

(
C

(t)
i > c

(t−1)
i

(
1− 1

2

(
1

j
− c

(t−1)
i

n

)))
(B.4)

6 exp

{
−δ

2

3

(
1−

(
1

j
− c

(t−1)
i

n

))
c
(t−1)
i

}

= exp

{
−δ

3

(
1

2

(
1

j
− c

(t−1)
i

n

))
c
(t−1)
i

}

< exp

−1

3

(
1

2

(
1

j
− c

(t−1)
i

n

))2

c
(t−1)
i


= n−Θ(1).(B.5)

http://cstheory.stackexchange.com/questions/14471/reverse-chernoff-bound
http://cstheory.stackexchange.com/questions/14471/reverse-chernoff-bound


The second equality in (B.5) follows from the definition
of δ, while the third inequality follows by (upper)
bounding the denominator of δ by 1, which is always
possible since ci/n − 1/j < 0 from the hypotheses.
Finally, to prove the last equality, we used the fact
that ci > j2 log n and that the function x (1− x)

2
is

decreasing iff x ∈ (1/3, 1), with x = jci/n.
Finally, we can iteratively apply (B.5) as long as

we have at most j active opinions and C
(t)
i keeps

not smaller than j2 log n. By standard concentration
arguments we get that the time to reach this threshold
is O (j log n), w.h.p. �

Proof of Lemma 3.4. Let J be the set of active
opinions. By conditioning on all the configurations
ĉ = (ĉ` : ` ∈ J) that the system can take at round t−1,

we can bound the expectation of C
(t)
i as follows

Ec

[
C

(t)
i

]
=
∑
ĉ

E
[
C

(t)
i |C

(t−1) = ĉ
]
Pc

(
C(t−1) = ĉ

)
6

(
1− 1

2j

) ∑
ĉ : ĉi6n/(2j)

ĉi ·Pc

(
C(t−1) = ĉ

)
+ n ·

∑
ĉ : ĉi>n/(2j)

Pc

(
C(t−1) = ĉ

)
6

(
1− 1

2j

)
Ec

[
C

(t−1)
i

]
+ n ·Pc

(
Ct−1
i >

n

2j

)
,

where we used that, for any configuration ĉ
with ĉi 6 n/(2j), Lemma 2.1 gives the bound

E
[
C

(t)
i |C(t−1) = ĉ

]
6 ĉi

(
1− 1

2j

)
. Moreover, if j 6

n1/3−ε, from Chernoff bound it follows that

P

(
C

(t)
i >

n

2j
|C(t−1) = ĉ

)
6 e−Θ(nε)

for any such configuration ĉ. Hence, for any t we have

that Pc

(
C

(t)
i > n

2j

)
6 te−Θ(nε). Indeed,

Pc

(
C

(t)
i >

n

2j

)
6 Pc

(
∃t̄ = 1, . . . , t : C

(t̄)
i >

n

2j
∧ C(t̄−1)

i 6
n

2j

)
6

t∑
t̄=1

Pc

(
C

(t̄)
i >

n

2j
∧ C(t̄−1)

i 6
n

2j

)

=

t∑
t̄=1

∑
ĉ : ĉi6

n
2j

P

(
C

(t̄)
i >

n

2j
|C(t̄−1) = ĉ

)
Pc

(
C(t̄−1) = ĉ

)
6 te−Θ(nε).

Thus for any t = poly(n) the following recursive
relation holds

Ec

[
C

(t)
i

]
6

(
1− 1

2j

)
Ec

[
C

(t−1)
i

]
+ e−n

ε/2

,

and it gives

Ec

[
C

(t)
i

]
6

(
1− 1

2j

)t
n

2j
+ e−n

ε/3

.

Hence, for t = 2j(log n + 1) we have that Ec

[
C

(t)
i

]
6

1/2 and since C
(t)
i takes non-negative integer values, the

thesis follows from Markov inequality. �

C Omitted Proofs for the Adversarial Case

The proofs for the adversarial case need the following
preliminary results.

Lemma C.1. Let c̃ be any configuration such that |B| =
j and

∑
i∈C̄ c̃i 6 γ

√
n/k

3
2 . Consider the stochastic

process {Ỹt}t defined as Ỹt =
⌊
n
j

⌋
− C̃

(t)
m and define

the stopping time

τ = inf{t ∈ N : Ỹt >
√
jn log n ∨

(∑
i∈C̄

C̃i > γ
√
n/k

3
2

)
∨ (S(t−1) 6⊆ S(t))}.

Then, it holds that

Pc

(
Ỹτ > α

√
jn log n

)
6

1

n
.

Sketch of Proof. The proof of this Lemma follows
from minor modifications of the proof of Lemma B.1.
In particular, the argument is based on the following
observations:
1. The event defining the stopping time τ is in this case

E(t) =
(
Ỹt > (

√
jn log n) ∨

(∑
i∈C̄

C̃i > γ
√
n/k

3
2

)
∨ (S(t−1) 6⊆ S(t))

)
.

The negated of this event is

¬E(t) =
(
Ỹt 6 (

√
jn log n) ∧

(∑
i∈C̄

C̃i 6 γ
√
n/k

3
2

)
∧ (S(t−1) ⊆ S(t))

)
,

which implies the event
(
Ỹt 6

√
jn log n

)
.

2. Proceeding like in the proof of Lemma B.1, we can
write an expression that is similar to (B.1), with the
generic conditioning event

C(s)
m

>

⌊
n

j

⌋
−
√
jn log n,



replaced by ¬E(s). The conditioned event

C
(t)
` <

⌊
n

j

⌋
− α

√
jn log n,

is instead replaced by the event(
C

(t)
` <

⌊
n

j

⌋
− α

√
jn log n

)
∧ E(t).

Now, note that the event

C
(t)
` <

⌊
n

j

⌋
− α

√
jn log n,

again implies E(t). Hence, we can still write (B.1), from
which the proof requires some non-hard adaptations
w.r.t. the case without adversary. �

Since the adversary, at round t, may decide what to
do based on the full history of the process up to time

t, the stochastic process
{
C̃(t)

}
t

may not be a Markov

process anymore. Thus, we need a more general version
of Lemma 3.1.

Lemma C.2. Let {Xt}t be a discrete time stochastic
process with a finite state space Ω, let ft : Ωt → N
be a function mapping histories of the process in non-
negative integer numbers, and let {Yt}t be the stochastic
process over N defined by Yt = ft(X0, . . . , Xt). Let
m ∈ N be a “target value”, let A ⊆ Ω be an arbirary
subset of states, and let

τ = inf{t ∈ N : Yt > m or Xt /∈ A}

be the random variable indicating the first time Xt exits
from set A or Yt reaches or exceeds value m. Assume
that, for every sequence of states x0, . . . , xt ∈ A with
ft(x0, . . . , xt) 6 m− 1, it holds that

1. (Positive drift). E [Yt+1 |X0 = x0, . . . , Xt = xt] >
ft(x0, . . . , xt) + λ for some λ > 0

2. (Bounded jumps). Px (Yτ > αm) 6 αm/n, for
some α > 1.

Then, for every starting state x ∈ A, it holds that

Ex [τ ] 6 2α
m

λ

Proof. The proof is a straight adaptation of the proof
of Lemma 3.1, in which we take into account the full
history of the process.

Consider the stochastic process Zt = Yt − λt.
For any sequence of states x0, . . . , xt ∈ A with

ft(x0, . . . , xt) 6 m− 1 it holds that

E [Zt+1 |X0 = x0, . . . , Xt = xt]

= E [Yt+1 |X0 = x0, . . . , Xt = xt]− λ(t+ 1)

> ft(x0, . . . , xt) + λ− λ(t+ 1)

> ft(x0, . . . , xt)− λt,

where in the inequality we used Hypotheses 1. Thus, Zt
is a submartingale up to the stopping time τ . Moreover,
since |Yt| 6 n then |Zt+1 − Zt| 6 n + λ and, together
with Hypotheses 1 this implies Ex [τ ] < ∞. Thus,
we can apply Doob’s Optional Stopping Theorem [15].
It follows that Ex [Zτ ] > Ex [Z0] = f0(x) and, since
Ex [Zτ ] = Ex [Yτ ]− λEx [τ ], we have that

Ex [τ ] 6
Ex [Yτ ]− f0(x)

λ
6

Ex [Yτ ]

λ

Finally, we get

E0 [Yτ ] =

bαmc∑
j=1

jP0 (Yτ = j) +

n∑
j=bαmc+1

jP0 (Yτ = j)

6 (αm) + nP0 (Yτ > αm) 6 2 (αm) ,

where in the last inequality we used Hypothesis 2. �

C.1 Proof of Lemma 4.1. We proceed by adapting
the proof of Lemma 3.2. Let C̃(0) = c̃ be the initial
configuration. Let us consider the stochastic process
{Ỹt}t>0 defined as

Ỹt =

⌊
n

j

⌋
− C̃(t)

m

where C̃
(t)
m = min{C̃(t)

i : i ∈ B(t)}. We are interested in
round

τ = inf{t ∈ N : Ỹt > (
√
jn log n) ∨

(∑
i∈C̄

C̃i > γ
√
n/k

3
2

)
∨ (S(t−1) 6⊆ S(t))}

Now we show that {Ỹt}t satisfies the Hypotheses 1 and

2 of Lemma 3.1 with A =
(∑

i∈C̄ C̃i 6 γ
√
n/k

3
2

)
∨

(S(t−1) ⊆ S(t)) and λ = ε
√
n/j3/2, for a suitable

constant ε > α.

1. Let c̃ be any configuration such that c̃m > n/j −√
jn log n. Now we prove that

(C.6) E
[
C̃(t+1)
m

| C̃(t) = c̃
]
6 c̃m − ε

√
n

j3/2

Case c̃m > n/j − 2ε
√
n/j: Observe that, in this case,

random variables
{
Ct+1
i : i ∈ B

}
have standard devia-

tion is Ω(
√
n/j). Moreover they are binomial and neg-

atively associated. Hence, by choosing ε small enough,



from the Central Limit Theorem we have that

P

(
∃ i ∈ B such that C

(t+1)
i 6

n

j
− 6ε ·

√
n

j

)
> 1/2

We thus get

E
[
C̃(t+1)
m

| C̃(t) = c̃
]
6

1

2

(
n

j
− 6ε ·

√
n

j

)
+

1

2
· n
j

+
β
√
n

k
5
2 logn

=
n

j
− 2ε

√
n

j
+

β
√
n

k
5
2 logn

6 c̃m − ε
√
n

j
6 c̃m − ε

√
n

j3/2

(C.7)

Case c̃m 6 n/j − 2ε
√
n/j: Equation (C.6) easily follows

from Lemma 4.2. Indeed, let i ∈ B be an opinion such
that ĉi = ĉm, then

E
[
C̃(t+1)
m

| C̃(t) = c̃
]

6 E
[
C̃

(t+1)
i | C̃(t) = c̃

]
6 c̃i

(
1 +

c̃i + α
√
n/k

n
− 1

j

)

6 c̃i

(
1− 2ε√

nj
+

α√
kn

)
6 c̃i −

ε
√
n

j3/2
= c̃m − ε

√
n

j3/2
,

where we used the case’s condition and c̃i = c̃m >
n/(2j).

2. Since random variables
{
C̃

(t)
i : i ∈ B(t)

}
are bino-

mial conditional on the configuration at round t − 1,
from the Chernoff bound it follows that
(C.8)

Pc̃

(
Ỹτ > α

√
jn log n

)
6

1

n
, for some constant α > 1

See Lemma C.1 for the formal statement of the last fact.
From (C.6) and (C.8) we have that {Ỹt}t satisfies

the hypotheses of Lemma C.2 with m =
√
jn log n, λ =

ε
√
n/j3/2 and A =

(∑
i∈C̄ C̃i 6 γ

√
n/k

3
2

)
∨ (S(t−1) ⊆

S(t)). Moreover, by iteratively applying Lemma 4.3,
we have that, for any t = O(n2), it holds w.h.p. that(∑

i∈C̄ C̃
(t)
i 6 γ

√
n/k

3
2

)
∨ (S(t−1) ⊆ S(t)). Thus, from

Markov’s inequality, for t = 2j2
√

log n, we have that

Pc̃

(
∀i ∈ B :

(
C

(t)
i 6 n/j −

√
jn logn

)
∧
(∑
i∈C̄

C̃
(t)
i 6 γ

√
n/k

3
2
)

∧ (S(0) ⊆ S(t))
)
> Pc̃

(
τ̂ 6 2j2

√
logn

)
>

1

3

where τ̂ = inf{t ∈ N : Ỹt >
√
jn log n}. �

C.2 Proof of Lemma 4.2. Similarly to the proof of
Lemma 2.1 we have

E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]

6 c̃i

(
1 +

c̃i
n
−
∑
j c̃

2
j

n2

)
6 c̃i

(
1 +

c̃i
n
−
∑
j∈B c̃

2
j

n2

)

6 c̃i

1 +
c̃i
n
−

∑
j∈B

(
n−(k−j+1)γ

√
n/k

3
2

j

)2

n2


6 c̃i

(
1 +

c̃i
n
−
∑
j∈B(n− α/4

√
n/k)2

j2n2

)

6 c̃i

(
1 +

c̃i
n
− 1

j
+
α/2

√
n/k

jn

)

6 c̃i

(
1−

n/j − c̃i − α/2
√
n/k

n

)
.

Taking into account any possible action of the adver-
sary, we thus get that

E
[
C̃

(t+1)
i

∣∣∣ C̃(t) = c̃
](C.9)

= E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]

+ E
[
D

(t+1)
i

∣∣∣ C̃(t) = c̃
]

6 c̃i

(
1−

n/j − c̃i − α/2
√
n/k

n

)
+ F

6 c̃i

1− n/j − c̃i
n

+
2 max

{
α/2

√
n/k, Fn/c̃i

}
n

 .

(C.10)

By distinguishing the cases c̃i > n/(3j) or c̃i <
n/(3j), from (C.10) we get (4.8). �

C.3 Proof of Lemma 4.3. From Lemma 4.2, for
each i ∈ S(t) we have that

E
[
C

(t+1)
i

∣∣∣ C̃(t) = c̃
]
6 c̃i

(
1 +

c̃i
n
− 1

k

)
.

From a direct application of the Chernoff bound to

C
(t+1)
i , and taking into account any possible action of

the adversary, we thus get that w.h.p.

C̃
(t+1)
i = C

(t+1)
i +D

(t+1)
i 6 γ

√
n

k
3
2

(
1− 1

4k

)
+F 6 γ

√
n

k
3
2

,



that is, i ∈ S(t) w.h.p. Analogously, we have

E

 ∑
i∈C̄(t)

C
(t+1)
i

∣∣∣∣∣∣ C̃(t) = c̃


6
∑
i∈C̄

c̃
(t)
i

(
1 +

c̃i
n
− 1

k

)
6 γ

√
n

k
3
2

(
1− 1

2k

)
,

and then, by applying the Chernoff bound, we get that
w.h.p. ∑

i∈C̄(t)
C̃

(t+1)
i =

∑
i∈C̄(t)

C
(t+1)
i +

∑
i

D
(t+1)
i

6 γ

√
n

k
3
2

(
1− 1

4k

)
+ F 6 γ

√
n

k
3
2

,

concluding the proof. �

C.4 Proof of Lemma 4.4. By iteratively apply-
ing Lemma 4.3, we have that, w.h.p., for each t ∈
{t′, . . . , t′′ − 1} it holds

∑
i∈C̄ C̃

(t)
i 6 γ

√
n/k

3
2 and i ∈

S(t).
To prove that |B(t′′)| 6 j − 1, we first prove that,

for each round t ∈ {t′ + 1, . . . , t′′}, w.h.p. C̃
(t)
i decreases

by a certain extent that depends on c̃
(t−1)
i , regardless of

what the adversary does.

Let ψ = (1/j − (c̃
(t−1)
i + α

√
n/k)/n) If we are in

a configuration satisfying the hypotheses of the lemma,
we have

(C.11) P

(
C

(t)
i > c̃

(t−1)
i

(
1− ψ

2

))
=

= P
(
C

(t)
i > c̃

(t−1)
i (1− ψ(1 + δ))

)
,

where δ = 1
2ψ/(1− ψ). Thus, using Lemma 4.2 and

applying the Chernoff bound we have

P
(
C

(t)
i > c̃

(t−1)
i

(
1− ψ

2

))
6 exp

{
− δ

2

3 ψc̃
(t−1)
i

}
< exp

{
− 1

3

(
1
2ψ
)2
c̃
(t−1)
i

}
= n−Θ(1),(C.12)

where the second inequality follows from the definition
of δ and the fact that its denominator is smaller than
1, and the equality in (C.12) follows by minimizing

ψ2c̃
(t−1)
i for γ

√
n/k

3
2 6 c(t

′)
i 6 n/j −

√
kn log n.

It follows that, w.h.p.
(C.13)

C̃
(t)
i = C

(t)
i +D

(t)
i 6 c̃

(t−1)
i

(
1− ψ

2

)
+ F 6 c̃(t−1)

i

Thus, w.h.p., we can iteratively apply (C.13) until

c̃
(t−1)
i 6 γ

√
n/k

3
2 . We next prove that this happens

within O (k log n) rounds, w.h.p. Interestingly, showing
that, withinO (k log n) rounds, Ci decreases to a costant
fraction of its value at the beginning of the dropping
stage does not seem obvious. For this reason, we
consider the evolution of the displacement n

j −Ci, which
seems analytically more tractable. To this purpose, note
that (C.12) implies that, w.h.p.

(C.14)
n

j
− C(t)

i >

>
n

j
− c(t−1)

i +
c
(t−1)
i

2

(
1

j
−
c
(t−1)
i + α

√
n/k

n

)

=
n

j
− c(t−1)

i +
c
(t−1)
i

2

(
1

j
− c

(t−1)
i

n

)1−
α
√
n/k

1
j
− c

(t−1)
i
n


=
n

j
− c(t−1)

i +
c
(t−1)
i

2

(
1

j
− c

(t−1)
i

n

(
1 +

α

logn

))

=

(
n

j
− c(t−1)

i

)(
1 + α1

c
(t−1)
i

2n

)
,

for some constant α1 > 0, where in the first equality

of (C.14) we have used that n/j − c(t−1)
i >

√
kn log n.

We can now conclude the proof of Lemma 4.4. We
first prove that Ci 6 n/ (2j) within O (k log n) steps,
w.h.p. To this purpose, note that n

j − ci >
√
kn log n

at the beginning of the dropping stage from the hy-
potheses. Furthermore, for some positive constants α2

and α3, as long as Ci > α3n/j, it holds 1 + α1ci/n >
1 +α2/j. Hence, after O (k log n) steps, w.h.p. we have
n
j − ci > (1 − α3)nj , which in turn implies ci 6 α3n/j.

Once ci 6 α3n/j, using again (C.14) we have that Ci
decreases by a factor 1 − Ω(1/j) in every round w.h.p.
By standard concentration arguments we obtain that
eventually ci 6 γ

√
n/k

3
2 within O (k log n) more steps,

w.h.p. �
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