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High-Tc superconductivity in weakly electron-doped HfNCl

Betül Pamuk,1, 2 Francesco Mauri,3, 4, ∗ and Matteo Calandra1, †

1CNRS, UMR 7590 and Sorbonne Universités, UPMC Université Paris 06,
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3Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy
4Graphene Labs, Fondazione Istituto Italiano di Tecnologia, Via Morego, I-16163 Genoa, Italy

(Dated: November 5, 2018)

We investigate the magnetic and superconducting properties in electron-doped LixHfNCl. HfNCl
is a band insulator that undergoes an insulator to superconductor transition upon doping at x ≈ 0.13.
The persistence of the insulating state for x < 0.13 is due to an Anderson transition probably related
to Li disorder. In the metallic and superconducting phase, LixHfNCl is a prototype two-dimensional
two-valley electron gas with parabolic bands. By performing a model random phase approximation
approach as well as first-principles range-separated Heyd-Scuseria-Ernzerhof (HSE06) calculations,
we find that the spin susceptibility χs is strongly enhanced in the low-doping regime by the electron-
electron interaction. Furthermore, in the low-doping limit, the exchange interaction renormalizes
the intervalley electron-phonon coupling and results in a strong increase of the superconducting
critical temperature for x < 0.15. On the contrary, for x > 0.15, Tc is approximately constant, in
agreement with experiments. At x = 0.055 we found that Tc can be as large as 40 K, suggesting that
the synthesis of cleaner samples of LixHfNCl could remove the Anderson insulating state competing
with superconductivity and generate a high-Tc superconductor.

PACS numbers: 74.20.Pq,74.62.Dh,74.78.-w,71.10.Ca

I. INTRODUCTION

The low-doping limit of multivalley semiconductors
has recently been proposed as an alternative route to
achieve high-Tc superconductivity1–3. Transition metal
dichalcogenides4–7, ternary transition-metal dinitrides8,
and cloronitrides9,10 have been reported to achieve fairly
high Tc upon doping. It is possible to dope multival-
ley semiconductors up to electron densities of n ∼ 1014

cm−2 via field-effect doping1,4,5,11–13. The doping of
these materials can be also be achieved and controlled by
intercalation9,10,14–17. However, reaching the low-doping
limit can be difficult as disorder and the consequent An-
derson transition can suppress superconductivity.

In two-dimensional and quasi-two-dimensional (2D)
semiconductors, in the weakly doped regime, the density
of states (DOS) is constant. This is different from three-
dimensional (3D) semiconductors with parabolic bands,
where generally, as the number of electrons increases, the
density of states increases as

√
ǫF , ǫF being the Fermi

level. Therefore, in 3D semiconductors, a large number of
carriers is needed18 to achieve a sizable density of states
at the Fermi level N(0). As in a phonon-mediated mech-
anism, Tc ∼ N(0), in a 2D semiconductor, Tc is expected
to be constant because of the constant DOS, as long
as the phonon spectrum is weakly affected by doping.
However, in the weakly doped regime of transition-metal
chloronitrides, Tc increases with decreasing doping9,10,14.
This unexpected behavior resulted in a search for a theo-
retical understanding of the physics of superconductivity
in 2D semiconductors19–26.

In previous work, it has been shown that in 2D mul-

tivalley semiconductors, at low doping, the electron-
electron interaction enhances intervalley electron-phonon
coupling, explaining the behavior of Tc

25,26. The en-
hancement of Tc is linked to the enhancement of the
spin susceptibility χs. Furthermore, a systematic study
of the electronic, magnetic, and vibrational properties
of LixZrNCl has been performed using density func-
tional theory (DFT) with hybrid functionals with exact
exchange and range separation, and this paper shows
that the exact exchange component leads to a similar
enhancement in spin susceptibility and electron-phonon
interaction26. This effect on the enhancement of Tc

should be quite general as it only requires basic general
ingredients such as a 2D multivalley (ideally two-valley)
semiconductor and a large enough electron-gas param-
eter, rs = 1/aB

√
πn with aB = ǫM~

2/(m∗e2) where n
is the electron density per unit area [linked to the dop-
ing per formula unit x per area Ω of 2 formula units
(f.u.) for LixZrNCl: n = 2x/Ω], ǫM is the environmental
dielectric constant (i.e., the dielectric constant of the un-
doped semiconductor), and m∗ the effective mass of the
electronic band25. Therefore, it is natural to search for
high-Tc superconductivity in other materials with either
larger ǫM or with lower n and m∗.
An interesting system with these features can be in-

tercalated HfNCl. Superconductivity has been observed
with Li-intercalated β-HfNCl with Tc = 20 K15, and
with co-intercalated Li0.48(THF)yHfNCl with Tc = 25.5
K10,15. As β-ZrNCl, β-HfNCl is a two-dimensional two-
valley semiconductor with an almost perfect parabolic
conduction band and constant DOS. Moreover, in β-
HfNCl, ǫM = 4.9321 is slightly smaller than in the case
of β-ZrNCl (ǫM = 5.59). Thus, it is natural to expect
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that a similar enhancement in Tc at low doping occurs
also in LixHfNCl. However, the Tc in LixHfNCl is sur-
prisingly flat in the weakly doped regime, and an Ander-
son transition occurs at almost three times larger doping
(x ≈ 0.15) with respect to LixZrNCl. It is then possible
that the Anderson transition prevents the enhancement
of Tc at low doping, or, alternatively, the reported dop-
ing is indeed nominal doping and not the real electron
doping occurring in the sample. More experimental in-
sight into the low-doping regime can also be obtained by
field-effect doping. In this paper, we follow the method
introduced in Refs. 25 and 26 to explore the behavior in
LixHfNCl. We propose that clean samples at sufficiently
low doping can achieve higher Tc without the need of
further cointercalation.

II. COMPUTATIONAL DETAILS

Calculations are performed using the Quantum

ESPRESSO ab initio method27 with the generalized
gradient approximation (GGA) as implemented in the
Perdew-Burke-Ernzerhof (PBE) functional28 with ultra-
soft norm conserving pseudopotentials and plane wave
basis sets. The doping of the semiconductor is simu-
lated by changing the number of electrons and adding a
compensating jellium background, which has been pre-
viously shown to give accurate results20,24. The atomic
coordinates are relaxed with lattice parameters fixed at
the experimental values from Ref. 15. For the energy
convergence, a threshold on the change in total energy
of 10−10 Ry is used for all calculations. A Methfessel-
Paxton smearing of 0.01 Ry with an electron-momentum
grid of 48× 48× 48 are used for the relaxation of the in-
ternal coordinates and for calculating the electronic band
structure. The density of states is calculated using a
Gaussian smearing of 0.01 Ry.
Furthermore, we have performed calculations with the

Heyd-Scuseria-Ernzerhof (HSE06)29 functional that has
exact exchange and range separation components, us-
ing the CRYSTAL code30 with Gaussian-type triple-ζ
valence polarized basis set orbitals31,32, where the dif-
fuse Gaussian functions of the Hf basis are reoptimized.
A Fermi-Dirac smearing of 0.0025 Ha, an electron-
momentum grid of 48 × 48 × 16, an energy convergence
threshold of 10−9 Ha, and real space integration toler-
ances of 8-12-8-30-60, with a sixth order multipolar ex-
pansion are used for the HSE06 calculations.
The effective mass m∗ is calculated from the curvature

of a fourth order polynomial fit to the region between the
Fermi energy and the conduction band minimum around
the special point K, assuming that the mass tensor is
isotropic.
Electron-phonon coupling and phonon frequencies are

calculated with the PBE functional with a Methfessel-
Paxton smearing of 0.02 Ry, electron-momentum grid of
12×12×4, Wannierization33 of the electronic bands with
an electron-momentum grid of 6×6×2, correspondingly,

a phonon-momentum grid of 6 × 6 × 2, and a Wannier
interpolation scheme of electron-phonon coupling with a
grid of 40× 40× 634.

III. RESULTS AND DISCUSSION

A. Electronic structure

The primitive unit cell of HfNCl has rhombohedral
structure (space group R3̄m, No. 166) with 2 f.u.
per unit cell. It can also be constructed by a conven-
tional cell of hexagonal structure with 6 f.u. per cell
with ABC stacking. Instead of using the rhombohe-
dral unit cell, we take advantage of the weak interlayer
interaction20,24,25,35,36, which makes the stacking order
negligible, and we adopt a hexagonal HfNCl structure
with AAA stacking. This is equivalent to the hexagonal
structure with the space group P 3̄m1 (No. 164), with
2 f.u. in the unit cell. We use the experimental lattice
parameters a and c for each doping from Ref. 15.
To confirm the assumption that the stacking order does

not play a significant role in the conduction band, we
compare the electronic bands and the density of states
of hexagonal and rhombohedral structures for the dop-
ing x = 0.11 in Fig. 1. The electronic structure is not
affected by the stacking difference.
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FIG. 1. Electronic structure and density of states (DOS) of
LixHfNCl calculated with the PBE functional. The hexag-
onal structure (H) with AAA stacking is compared to the
rhombohedral structure (R) with ABC stacking for the dop-
ing x = 0.11. For the hexagonal structure with AAA stacking,
the electronic structure of the doping x = 0.11 is compared
to that of the doping x = 0.31. The DOS is given in units of
states/eV per 2 f.u. of each unit cell.

This layered system can be considered as the prototype
of a 2D two-valley electron gas. Indeed, the bottom of the
conduction band of HfNCl is composed of two perfectly
parabolic bands at points K and K′ = 2K in the Bril-
louin zone. The conduction band is a simple parabola,
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with a minimum at the K point of the Brillouin zone,
and the density of states is essentially constant along the
parabolic part of the conduction band. The curvature of
the rhombohedral structure is slightly smaller, hence the
Fermi energy is slightly lower, than the hexagonal struc-
ture. This difference also would lead to a slightly larger
effective mass calculated with the rhombohedral struc-
ture. The rest of the calculations are performed with the
hexagonal structure.
Upon Li intercalation, Li atoms are placed between

the HfNCl layers. Li acts as a donor and gives electrons
to the Hf-N layers. The density of states stays almost
constant, as shown in our virtual crystal calculation for
LixHfNCl in Fig. 1. The semiconducting state is lost
with doping and superconductivity emerges. While it
is well established that in LixZrNCl the superconducting
state is enhanced at low doping9,10,14, there is no evidence
of this enhancement in experiments with LixHfNCl.

TABLE I. The fundamental band gap, Eg between the valence
band maximum at the Γ point and the conduction band mini-
mum at the K point, effective mass, m∗, and density of states
at the Fermi level, N(0) of each doping calculated with the
PBE and HSE06 exchange and correlation (XC) functionals
with and without exact exchange and range separation.

x XC Eg (eV) m∗ (me) N(0) (states/eV)
0 PBE 2.203 0.615
0.055 PBE 2.195 0.599 0.587
0.11 PBE 2.171 0.585 0.632
0.13 PBE 2.168 0.580 0.639
0.16 PBE 2.164 0.572 0.654
0.18 PBE 2.156 0.568 0.666
0.20 PBE 2.153 0.564 0.680
0.31 PBE 2.130 0.540 0.833
0 HSE06 3.330 0.522
0.055 HSE06 3.240 0.496 0.511
0.11 HSE06 3.148 0.472 0.539
0.13 HSE06 3.121 0.466 0.545
0.16 HSE06 3.084 0.456 0.556
0.18 HSE06 3.055 0.451 0.565
0.20 HSE06 3.031 0.446 0.577
0.31 HSE06 2.908 0.425 0.723

In Table I, we present the band gap Eg, effective mass
m∗, and density of states N(0) of each doping with the
PBE and HSE06 functionals. The band gap Eg decreases
with increased doping for both functionals. As the dop-
ing increases, the m∗ decreases, and this trend is similar
in ZrNCl26. However, in general, the effective mass of
HfNCl is slightly larger than that of ZrNCl. Similarly,
N(0) is larger in HfNCl than ZrNCl for all doping26.

B. Spin susceptibility

Similar to Tc, the magnetic spin susceptibility is en-
hanced in LixZrNCl at low doping37,38, whereas there
are no experiments of spin susceptibility as a function of
doping for LixHfNCl. Spin susceptibility is the response

of the spin magnetization to an applied magnetic field,

χs =

(

∂2E

∂M2

)−1

, (1)

where E and M are the total energy and magnetization,
respectively. The noninteracting spin susceptibility χ0s

is obtained by neglecting the electron-electron interac-
tion of the conducting electrons. For perfectly parabolic
bands, the noninteracting spin susceptibility is doping
independent and equal to

χ0s = µsN(0) =
gvm

∗

π~2
, (2)

where µs is the Bohr magneton, gv is the valley degener-
acy (2 in our case), and m∗ the band effective mass. We
calculate χ0s from the density of states of the undoped
compound, and by extrapolatingN(0) of the desired dop-
ing. Our calculations show that χ0s is not enhanced at
the low-doping limit. As N(0) is larger in HfNCl, χ0s is
also larger in HfNCl than ZrNCl26.
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FIG. 2. Spin susceptibility enhancement at different doping
with the RPA and HSE06 approximations.

We calculate the spin susceptibility with the HSE06
hybrid functional by calculating the total energy at fixed
magnetization and then using equation 1 to obtain χs.
We choose the HSE06 functional, because it can repro-
duce the χs/χ0s of ZrNCl

26. We also compare our results
with those obtained by a model based on the random
phase approximation (RPA)25,39. The model is appro-
priate in the low-doping limit where |kF − K| << K,
a condition necessary to have the intravalley electron-
electron scattering dominating over the intervalley one,
as explained in the Supplemental Material of Ref. 25.
This model assumes a 2D two-valley electron gas with
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no intervalley Coulomb scattering. Therefore, only the
intravalley electron-electron interaction remains and the
RPA susceptibility can be calculated analytically, by us-
ing the PBE effective mass of undoped HfNCl and the en-
vironmental dielectric constant ǫM = 4.9321. This value
is smaller in HfNCl than ZrNCl (ǫM = 5.59)25.
In a 2D two-valley electron gas, the reduction of dop-

ing implies an increase of the rs electron-gas parameter,
and, consequently, of the electron-electron interaction40.
The effective mass of β-HfNCl as calculated by the PBE
functional is larger (0.615 me) than β-ZrNCl (0.57 me

25).
Therefore, both the larger m∗ and the smaller ǫM of
HfNCl lead to larger rs as compared to ZrNCl, at a sim-
ilar low-doping regime25. This implies that the electron-
electron interaction is larger in HfNCl, and hence the
spin susceptibility enhancement is also larger in HfNCl.
While the spin susceptibility enhancement at low doping
is present for both calculations with the RPA and the
HSE06 functional, as presented in Fig. 2, it is milder
with the HSE06 functional than the RPA calculation.

C. Electron-phonon interaction

The electron-phonon coupling of a mode ν at a phonon
momentum q is defined as

λ̃qν =
2

ω2
qνN(0)Nk

∑

k

|d̃νk,k+q|2δ(ǫk)δ(ǫk+q), (3)

where ǫk is the quasiparticle energy and the electron-
phonon matrix elements are defined such that d̃νk,k+q =<

k|δṼ /δuqν|k+ q >, uqν is the phonon displacement of

the mode ωqν, and Ṽ is the single particle potential that
is fully screened by charge, spin, and valley exchange and
correlation effects [see Eq. (2) in Ref. 25 for more de-
tails]. We first calculate the noninteracting λqν with the
PBE functional, which does not have valley polarization
dependence, using the Wannier interpolation method34.
In Fig. 3, we show the phonon dispersion along the

high symmetry directions, and the Eliashberg function
α2F (ω) and the electron-phonon coupling λ(ω) for the
doping x = 0.055. The Eliashberg function has two dis-
tinct peaks that are dominated by the modes with large
phonon linewidths γqν at the K point of the Brillouin
zone at the energies ∼ 19 meV and ∼ 59 meV. To ana-
lyze the contribution to the electron-phonon coupling, we
separate it into the inter- and intra-valley components.
The intervalley electron-phonon coupling λinter is defined
such that the modes contributing to the coupling are in
the vicinity of the K and 2K points such that, in Eq.
(3), k ∈ I(K) and k+ q ∈ I(2K); or k ∈ I(2K) and
k+ q ∈ I(K). The rest of the coupling is attributed
to the intravalley electron-phonon coupling λintra. Also
shown in Fig. 3 is that these modes at the K point con-
tribute significantly to the intervalley component of the
Eliashberg function and have a large intervalley electron-
phonon coupling λinter. Therefore, they induce a valley
polarization in this system25.
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FIG. 3. Left: Phonon dispersion along the high symmetry
directions of the Brillouin zone for Li0.055HfNCl. Right: The
total and intervalley component of the Eliashberg function
α2F (ω) and the electron-phonon coupling λ(ω).

Consequently, the spin susceptibility enhancement is
directly linked to the enhancement in the electron-
phonon coupling due to the intervalley interaction25,26.
The intervalley electron-phonon coupling is enhanced
similarly to χs/χ0s such that

λ̃inter
qν

λinter
qν

=

(

χs

χs0

)2

. (4)

Following the previously developed methodology,25,26 we
first calculate the bare intervalley electron-phonon cou-
pling λ with the PBE functional, and use the spin sus-
ceptibility enhancement of RPA or HSE06 to obtain the
corresponding fully dressed coupling λ̃.
In Table II, we present the bare electron-phonon cou-

pling λ, and its intra- and intervalley components, λintra,
λinter calculated with the PBE functional, as well as the
fully interacting electron-phonon coupling for the RPA
and the HSE06 calculations, λ̃RPA, λ̃HSE06 and their cor-
responding ωlog values.

D. Superconductivity and Tc enhancement

Finally, we calculate the superconducting criti-
cal temperature Tc using the McMillan-Allen-Dynes
equation41,42,

Tc =
ωlog

1.20
exp

(

− 1.04(1 + λ̃)

λ̃− µ∗(1 + 0.62λ̃)

)

, (5)
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TABLE II. For each doping, bare electron-phonon coupling λ and its intravalley λintra and intervalley λinter components as
calculated by the PBE functional; fully interacting electron-phonon coupling for the RPA and the HSE06 functionals λ̃RPA and
λ̃HSE06; PBE functional values of ωPBE

log with intra- and intervalley components ωPBEintra

log and ω
PBEinter

log ; and rescaled ωRPA
log and

ωHSE06
log in meV. The screened Coulomb pseudopotential µ∗ and the Tc values calculated by the RPA and HSE06 functional are

also given.

x λ λintra λinter λ̃RPA λ̃HSE06 ωPBE
log

ω
PBEintra

log
ω
PBEinter

log
ωRPA
log

ωHSE06
log

µ∗ TRPA
c

THSE06
c

0.055 0.861 0.133 0.728 6.730 2.578 34.219 28.494 35.385 35.233 34.991 0.326 68.60 39.39
0.11 0.789 0.167 0.622 2.236 1.628 32.593 28.285 33.854 33.404 33.235 0.276 38.15 25.18
0.13 0.803 0.182 0.621 1.959 1.547 31.458 27.882 32.588 32.120 31.997 0.266 32.97 23.36
0.16 0.860 0.208 0.652 1.800 1.523 28.643 26.451 29.380 29.026 28.962 0.254 28.17 21.86
0.18 0.889 0.225 0.664 1.724 1.551 26.781 25.103 27.373 27.066 27.032 0.248 25.69 21.67
0.20 0.932 0.256 0.676 1.688 1.554 26.370 24.686 27.040 26.668 26.636 0.242 24.81 21.96
0.31 0.973 0.372 0.601 1.401 1.331 25.915 25.956 25.887 25.905 25.906 0.222 19.89 18.30

where µ∗ = µ/[1+µ log(ǫF /ωD)] is the screened Coulomb
pseudopotential, with ǫF and ωD = 900 meV being the
Fermi and Debye energy, respectively. We set the un-
screened µ = 0.231 that gives the correct estimate of
the experimental Tc = 19.94 K at the highest doping
of x = 0.31 by using the RPA enhanced fully screened
electron-phonon coupling λ̃. This is in agreement with
the GW estimate of µ = 0.237 at x = 0.122. We present
the screened Coulomb pseudopotential µ∗ that is used to
calculate Tc for each doping and the final Tc values for
the RPA and HSE06 calculations in Table II.
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FIG. 4. Superconducting critical temperature Tc as a func-
tion of doping calculated with the bare electron-phonon cou-
pling λqν as calculated by the PBE functional, and with fully

dressed electron-phonon coupling, λ̃qν using the RPA and
HSE06 functional. The experimental data are taken from
Ref. 15.

With the PBE functional, the superconducting tem-
perature, Tc is reduced in the low-doping limit, in stark
disagreement with experiments, as shown in Fig. 4.
When the dressing of the intervalley electron-phonon

coupling by the intravalley Coulomb interaction is taken
into account, Tc is enhanced in a similar fashion to what
happens to the spin susceptibility, i.e., it is enhanced sig-
nificantly, up to ∼ 70 K, with RPA, while the enhance-
ment is softer, up to ∼ 40 K with the HSE06 functional.
In addition, the HSE06 functional agrees well with the
experimental Tc for the doping between 0.15 < x < 0.20.
We show the details of this scaling for the RPA calcu-
lation in Appendix A, and we present the phonon dis-
persion, ω, Eliashberg function α2F (ω), and electron-
phonon coupling λ(ω) for the rest of the dopings in Ap-
pendix B.

IV. CONCLUSION

We study the electronic, magnetic, and vibrational
properties of LixHfNCl at the low-doping regime. We
first calculate the electronic structure and find that the
effective mass m∗ and the density of states N(0) are
larger in HfNCl as compared to ZrNCl, both for the PBE
and the HSE06 functionals.
As there are no experimental data for the spin suscep-

tibility of HfNCl as a function of doping, we calculate the
spin susceptibility enhancement using both RPA calcu-
lations and the HSE06 functional. Both m∗ and ǫM con-
tribute to a larger rs in HfNCl than ZrNCl. Therefore,
spin susceptibility enhancement is larger in HfNCl than
ZrNCl at the low-doping limit, and this is visible both
in the RPA calculations and the HSE06 calculations of
χs/χ0s.
Then, we calculate the phonon dispersion ωqν , Eliash-

berg function α2F (ω), and the bare electron-phonon cou-
pling λ(ω) using the PBE functional. We further calcu-

late the fully-dressed electron-phonon coupling λ̃, based
on the enhancement in the spin susceptibility.
This enhancement is then directly reflected in the cal-

culated Tc. There is no enhancement in Tc with the PBE
functional. On the other hand, we can speculate that
depending on the enhancement in the spin susceptibil-
ity, high Tc can be reached, ranging from 40 K (with the
HSE06 functional) to 70 K (with the RPA calculation).
Furthermore, the HSE06 functional gives comparable Tc



6

values to the experiments for dopings 0.15 < x < 0.20.
However, the Tc goes to zero in experiments for the re-
ported doping x < 0.1515. A possible explanation for
this disagreement is that the disorder at the low-doping
limit can lead to Anderson localization. Alternatively,
it could be that the reported doping is only a nominal
doping. Experiments on field-effect doping can also help
one to learn more about the low-doping regime. In either
case, our results predict that the removal of the Anderson
transition or better control of doping in LixHfNCl could
lead to the emergence of a high-Tc superconducting state.
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Appendix A: Electron-phonon Coupling Scaling

We present the electron-phonon coupling in Eq. (5)
as a function of doping in Fig. 5. The top panel shows
the average noninteracting electron-phonon coupling λ,
as well as its inter- and intravalley components.
The second panel shows the total ωlog, also decom-

posed into inter- and intravalley components. In addi-
tion, we also present how it is rescaled with the RPA
calculation, by rescaling λ̃inter. Starting with the defini-
tion of ωlog,

ωlog = exp

[

2

λ

∫ +∞

0

α2F (ω)
log(ω)

ω
dω

]

, (A1)

we have separated ωlog into inter- and intravalley terms.
The intervalley term is

ωinter
log = exp

[

2

λinter

∫ +∞

0

α2F (ω)inter
log(ω)

ω
dω

]

, (A2)

and the intravalley term is defined similarly. The relation
between these two terms hold such that

ωlog = (ωinter
log )λ

inter/λ × (ωintra
log )λ

intra/λ. (A3)

Therefore, we rescaled it for the RPA calculation by keep-
ing the intravalley λintra component the same, but rescal-
ing the fully interacting intervalley λ̃inter and hence the
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FIG. 5. First panel: Average noninteracting electron-phonon
coupling λ for each doping including the inter- and intraval-
ley components as calculated with the PBE functional. Sec-
ond panel: ωlog for each doping with inter- and intravalley
components, as well as rescaled ωRPA

log . Third panel: Interact-

ing electron-phonon coupling λ̃ where the intervalley term is
rescaled with RPA electron-electron interaction enhancement.
Fourth panel: Superconducting critical temperature Tc as a
function of doping, calculated by noninteracting (PBE) and
interacting (RPA) electron-phonon coupling, as compared to
the experiments from Ref. 15.

total λ̃ electron-phonon coupling elements. These are
shown in the third panel of the figure for the RPA calcu-
lations.
For completeness, we also present the final calculated

Tc without an intervalley enhancement using the PBE
functional, and with an intervalley enhancement using
the RPA calculation, similar to Fig. 4.

Appendix B: Phonon Modes as a Function of Doping

In this Appendix, we present the phonon dispersion of
LixHfNCl for all doping values. The left panels of Fig. 6
show the phonon dispersion with increasing doping. Sim-
ilarly the right panels show the corresponding Eliashberg
function α2F (ω) and the electron-phonon coupling λ(ω).
In all cases, there are two distinct peaks of α2F (ω), and
consequently an increase in the λ(ω).
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phonon coupling λ(ω).
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