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Abstract: The estimation of traffic matrices in a communications network on the basis of a set of
traffic measurements on the network links is a well-known problem, for which a number of solutions
have been proposed when the traffic does not show dependence over time, as in the case of the Poisson
process. However, extensive measurements campaigns conducted on IP networks have shown that the
traffic exhibits long range dependence. Here a method is proposed for the estimation of traffic matrices
in the case of long range dependence, and its theoretical properties are studied. Its merits are then
evaluated via a simulation study. Finally, an application to real data is provided.
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1 Introduction

Traffic matrices play a crucial role in network management and provisioning. They
describe the amount of bits (packets) transmitted between every Source–Destination
(S–D) pair. If compared to other forms of network traffic representation (such as
path matrices or measures on links) traffic matrices have the important advantage
to be invariant under changes of either the network topology or routing (see
Bear, 1988).

Direct measurement of the traffic matrix elements is not usually feasible. It is
customary to overcome this inconvenience by resorting to indirect estimates of the
traffic matrix elements via measurements of the traffic on the links. Of course, this
requires the knowledge of the routing configuration.
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In a network with n nodes there are typically (at most) N = n(n−1) S–D pairs, but
only M links, with M considerably smaller than N. Hence, there is a many-to-one
mapping relating the (expected) traffic on links to the (expected) S–D traffic. In a
sense, the information produced by observations on links is not enough in order to
identify the S–D traffic. This means we are facing with an incomplete information
(or, equivalently, an under-constrained problem).

The approaches to S–D traffic matrix estimation under incomplete information
are either based on optimization techniques or on statistical inference techniques.
Proposals based on optimization techniques rely on the idea of reducing the space
of solutions by appropriate constraints on S–D traffic (see Goldschmidt, 2000; Juva
et al., 2006). Proposals based on statistical inference (known as network tomography
techniques) are based on probabilistic models for S–D traffic, and aim at estimating
appropriate parameters via either the maximum likelihood method (Vardi, 1996;
Cao et al., 2000; Bermolen et al., 2006) or via Bayesian methods (Tebaldi and West,
1988; Vaton and Gravey, 2002). In Cao et al. (2000) a functional mean variance
relation of S–D traffic guarantees identifiability under special assumptions on the
network topology.

All the above-mentioned works assume that S–D counts are independent Gaussian
over S–D pairs and independent and identically distributed (i.i.d.) within a S–D pair
over successive measurements periods. More formally they are based on the following
assumptions.

1. S–D pairs are independent.
2. The traffic produced by a single S–D pair is stationary Gaussian.
3. The traffic produced in different time intervals by a S–D pair is uncorrelated.

As it will be seen in Section 2, empirical analysis of observed traffic, as well as
theoretical studies, suggests that traffic data are strongly correlated over time, and
hence that the third assumption listed above is false.

Essentially motivated by the presence of strong correlation in real traffic data,
in the present article a model for S–D traffic incorporating such a feature is
considered. Its formal assumptions are listed in Section 2, and discussed in detail.
In Section 3, statistical inference problems for our model are studied. In Section 4,
a simulation study is performed. Finally, in Section 5 an application to real data is
provided.

Before closing this section, we must say that, as far as we know, the first paper
where the independence assumption is removed is Conti et al. (2009), where a
model with long memory is introduced. The estimation method considered in that
paper is essentially the maximum likelihood method, based on the reconstruction of
unobserved data via the EM algorithm. However, in the above-mentioned paper there
are several critical statistical aspects. First of all, the model used in Conti et al. (2009)
is not necessarily identifiable. Second, the theoretical properties of the estimators are
not studied. Third, the estimators developed in the present article are more efficient,
both computationally and in terms of mean square error (see Section 4).
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2 The model

As mentioned in the introduction, both empirical evidence and theoretical analysis
show that there is a strong correlation (slowly decreasing over time) among traffic
observed in non-overlapping time intervals. This motivates the introduction of a new
model based on long range dependence (LRD, for short) in the statistical analysis of
S–D traffic.

2.1 Model description

Let Xt
i be the traffic for the S–D pair i at time slot t, and let

Xt = (Xt
1, . . . , Xt

N) (2.1)

be the vector of traffic for all N S–D pairs at time t. Our assumptions are listed below.

• A1 The stochastic process (Xt; t ≥ 1) is a stationary Gaussian process, with

E[Xt
i ] = μXi , i = 1, . . . , N; t ≥ 1,

V[Xt
i ] = σ 2

Xi , i = 1, . . . , N; t ≥ 1.

• A2 Different S–D pairs generate independent traffic

C[Xt
i , Xt+k

j ] = 0, i =/ j, i, j = 1, . . . , N; t ≥ 1, k ≥ 0.

• A3 The autocorrelation function of lag k for S–D pairs possesses the form:

C[Xt
i , Xt+k

i ] = γXi (k) = σ 2
Xi ρX(k), i = 1, . . . , N; t ≥ 1, k ≥ 0

ρX(k) =
1
2

{
(k + 1)2H − 2k2H + (k− 1)2H

}
, i = 1, . . . , N; k ≥ 0, (2.2)

where 1/2 ≤ H < 1 is the Hurst parameter. The basic dichotomy is between
H = 1/2 (short range dependence) and H > 1/2 (long range dependence).
Equation (2.2) contains an important assumption: all S–D pairs have the same
value of the Hurst parameter H. This homogeneity assumption will be carefully
discussed in the sequel.

The spectral function at a single S–D pair level is unbounded at the origin, and
takes the form:

fXi (ω; H) = σ 2
Xi fX(ω; H)

= σ 2
Xi

1
π

sin(π H) �(2H + 1) (1 − cos ω)C0(H, ω), i = 1, . . . , N, (2.3)
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where

Cl(H, ω) =
+∞∑

k=−∞
(log |2πk + ω|)l |2πk + ω|−(2H+1), l = 0, ±1, ±2, . . . (2.4)

When ω is close to zero, the following well-known approximation holds:

fXi (ω; H) ≈ σ 2
Xi

1
2π

sin(π H) �(2H + 1) |ω|1−2H as ω → 0, i = 1, . . . , N. (2.5)

The stochastic process (Xt
i ) admits the following backward expansion:

Xt
i − μXi = σXi

∞∑
τ=0

cτ (H) ut−τ
i , (2.6)

where (ut
i ; t ≥ 1) are i.i.d. standard normal random variates.

For the sake of simplicity, from now on we will use the following notation:

ut = (ut
1, . . . , ut

N)
μX = (μX1, . . . , μXN)

θi = σ 2
Xi , i = 1, . . . , N,

θ = (σ 2
X1, . . . , σ 2

XN).

Due to the independence among S–D pairs, the covariance matrix of the r.v. Xt is
equal to

�X(k; θ, H) = ρX(k)

⎡⎢⎣ θ1 0 · · · 0
0 θ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · θN

⎤⎥⎦ = ρX(k) 
X(θ ).

From equation (2.6) we immediately obtain the following expansion for
multidimensional process (Xt; t ≥ 1):

Xt − μX = 
X(θ )1/2
∞∑
τ=0

cτ (H) ut−τ , (2.7)

where (ut; t ≥ 1) are i.i.d. multinormal random vectors with zero mean vector and
covariance matrix IN, the N× N identity matrix.

Denote now by
Yt = (Yt

1, . . . , Yt
M)

the (column) vector containing the traffic for the M links. Denoting by A = (akl) the
M × N matrix with akl equal either to 1 or to 0 according to whether link k does or
does not belong to the directed path of the S–D pair l, the following relationship

Yt = AXt, t = 1, 2, . . . (2.8)

holds.
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In view of equation (2.8) and assumptions A1–A3, it is obvious that the
(multivariate) process (Yt; t ≥ 1) is a stationary Gaussian process, with mean
function μY = AμX and covariance matrix of lag k �Y(k; θ, H) = A�X(k; θ, H) A′.
More explicitly, the covariance matrix of lag k, �Y(k; θ, H), possesses the following
structure:

�Y(k; θ, H) = ρX(k)G(θ ), (2.9)

where G(θ ) is the M × M matrix

G(θ ) = A
X(θ )A′. (2.10)

From equation (2.9) it appears that the (univariate) stochastic processes (Yt
m; t ≥

1), m = 1, . . . , M, are still stationary Gaussian processes, with Hurst parameter H.
Furthermore, the cross-covariance between Yt

j and Yt+k
l is long memory, too.

The cross-spectrum matrix of the process (Yt; t ≥ 1) takes the following form:

�Y(ω; θ, H) = fX(ω; H) G(θ ), (2.11)

where fX(ω; H) and G(θ ) are given by equations (2.3) and (2.10), respectively.
Relationship (2.11) shows that the cross-spectrum matrix (2.11) factorizes into

the product of two terms: a scalar only depending on H and a M × M matrix only
depending on θ .

From equation (2.7) a backward representation formula for the process
(Yt; t ≥ 1) is obtained. First of all, using equations (2.8) and (2.7) we may write

Yt − Aμx =
∞∑
τ=0

cτ (H) A
X(θ )1/2εt−τ , (2.12)

where A
X(θ )1/2et−τ are i.i.d. M-variate multinormal random vectors with zero
mean vector and covariance matrix G(θ ). In the second place, if Q(θ ) denotes the
M×M orthogonal matrix whose column are the normalized eigenvectors of G(θ ), and
(θ ) is the diagonal matrix composed by the eigenvalues of G(θ ), taking G(θ )1/2 =
Q(θ ) (θ )1/2 and using the spectral decomposition G(θ ) = G(θ )1/2 (G(θ )1/2)′, it is
immediate to see that the relationship

A
X(θ )1/2εt = G(θ )1/2εt, t ≥ 1

holds, where (εt; t ≥ 1) are i.i.d. multinormal random vectors with zero mean vector
and covariance matrix IM. As a consequence, the process (Yt; t ≥ 1) possesses the
following backward representation

Yt − AμX = G(θ )1/2
∞∑
τ=0

cτ (H) εt−τ . (2.13)

Since M is usually smaller than N, the model introduced so far is not identifiable.
The most common approach consists in using a mean–variance relationship, such as
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μXi = θi , o, more generally, μXi = const × θ
q
i , q > 0. In the sequel, we will assume

that

μXi = h(θi ), i = 1, . . . , N,

where h(·) is a strictly monotone, known function. In the sequel, the notation

h(θ ) = [h(θ1), · · · , h(θN)] (2.14)

will be used.

2.2 Discussion and justification of the assumptions

In the sequel, the assumptions on which our model rests are discussed in detail.

Independence between S–D pairs. The hypothesis of independence between S–D pairs
has been studied for real data in Susitaival et al. (2006), via the correlation between
the standardized residuals of the bits (packets) arrival process (bit/packet network
traffic) of two different S–D pairs at various time aggregation levels. The data at hand
are measurements observed on one link in the Finnish University Network (Funet),
and partitioned into S–D traffic on the basis of source and destination IP address;
time aggregation varies from 1 second to 300 seconds. The main conclusion is that
there is no particular evidence against the assumption of independence among S–D
pairs.

Gaussianity. The assumption of Gaussianity of the S–D bits (packets) arrival process
is justified by (space/time) aggregation obtained by superimposing independent traffic
processes (independent sources) satisfying the usual conditions of the functional
central limit theorem (see Norros and Pruthi, 1996; Taqqu et al., 1997). The
assumption has been considered in Cao et al. (2000), Norros and Kilpi (2002),
Juva et al. (2005), Susitaival et al. (2006) and Juva et al. (2007), and validated via
QQ-plots and related correlation tests that compare the empirical distribution with a
fitted Gaussian distribution. The data at hand is traffic observed on one link partioned
into S–D traffic based on source and destination IP address (time aggregation from 1
second to 300 seconds), except in Cao et al. (2000) where data is traffic observed on
the links and S–D pairs of a one-router network with 5 minutes time aggregation, as
provided by Simple Network Management Protocol (SNMP). The data are consistent
with a normal based modelling approach under suitable (space/time) aggregation.

Stationarity. The assumption of stationarity is studied in Cao et al. (2000) and Nor-
ros and Kilpi (2002). In Cao et al. (2000) the time-varying nature of network traffic is
visually observed in Lucent data (traffic observed on the links and S–D pairs of a one-
router network with 5 minutes time aggregation as provided by SNMP). Stationarity
of S–D traffic (with respect to mean and variance) is assumed to hold in a window
lasting up to 21 five minutes time intervals. To take into account the time-varying
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nature of S–D traffic, Cao et al. (2000) propose to estimate S–D traffic (via EM)
using a local i.i.d. model within a moving data window. In Norros and Kilpi (2002)
the assumption of stationarity is considered via the correlation coefficient between
packet network traffic in adjacent time periods (time aggregation from milliseconds
to seconds). The main conclusion is that stationarity can be reasonably assumed to
hold within a period of 30–90 minutes. The empirical studies performed in Juva
et al. (2005), Susitaival et al. (2006) and Juva et al. (2007) for Funet data essentially
confirm the stationarity assumption, with a time aggregation from 1 second to 300
seconds.

As far as the constancy of H over time is concerned (with reference to time scales
relevant for traffic matrix estimation in a Wide Area Network [WAN] environment)
it has been studied in Norros and Kilpi (2002). The main conclusion is that the
stationarity of H can be reasonably assumed to hold within periods of 30–90 minutes.

Long range dependence. The assumption of LRD among traffic packets is more
delicate. Since the seminal paper by Leland et al. (1994), a number of studies of
measurements of packet networks have shown that the arrival process of (bits)
packets is self-similar, with increments exhibiting a strong temporal correlation (LRD
or long memory). Theoretical analysis is in Taqqu et al. (1997), where a functional
central limit theorem for aggregated traffic is proved. It provides some fundamental
theoretical motivations to use Gaussianity, long range dependence and homogeneity
of H, as well. In more detail, Theorems 1 and 2 in Taqqu et al. (1997) can be
interpreted as follows.

1. The superposition of independent ON/OFF sources with heavy-tailed ON
and/or OFF periods produces a limiting Gaussian self-similar aggregate
cumulative packets arrival process.

2. Under appropriate assumptions, the expected traffic level provides the
main term of the observed traffic; fluctuations around expected traffic
approximately behave like a rescaled fractional Brownian motion.

3. If a finite number of independent heterogeneous sources, possibly with
different values of the Hurst parameter H, are superimposed, then the
term with the highest value of H tends to be dominant. Equivalently, the
application with the highest value of the Hurst parameter determines the
value of the Hurst parameter for the aggregate traffic. This point is also
raised in Fonseca et al. (2000).

Further theoretical results, again supporting the presence of LRD, are in Resnick
and Samorodnitsky (2001), where infinite source Poisson models are considered.

Due to the difficulty to identify the tail of distributions from limited data, Gong
et al. (2005) propose a generative model for network traffic (MHOP Markovian
Hierarchical ON-OFF Process) that produces long memory traffic without relying on
heavy tails. Self-similarity of the simulated traffic fits (by means of different statistical
techniques) self-similarity of Bellcore real data.
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In order to explore self-similarity of the aggregate cumulative arrival process,
some studies have analyzed traffic at the level of individual source (or S–D pair)
in Local Area Networks (host-to-host) to validate the assumption that ON and/or
OFF periods have a heavy-tailed distribution (Paxson and Floyd, 1994; Willinger
et al., 1995, 1998; Park and Willinger, 2000). Similar studies have been performed
for WANs, to validate the assumption that session durations possess a heavy-tailed
probability distribution (Crovella and Bestavros, 1997; Park and Willinger, 2000).

Other studies have analyzed directly the cumulative traffic arrival process in
WANs, to validate the assumption that the corresponding (traffic) increment process
is Gaussian long range dependence (through several different estimates of the long
memory parameter; see Park and Willinger (2000), Fay et al. (2008)). The relevant
time scales for these works is of the order of a few seconds or less. The autocorrelation
of the cumulative aggregate (bits/packets) arrival process at the level of S–D pair has
been recently analyzed at a time scale either relevant for traffic matrix estimation
or suitable to detect long memory (time aggregation varying from 1 second to 300
seconds). In particular, the presence of long range dependence of traffic data is shown
in Juva et al. (2005) and Susitaival et al. (2006) through the analysis of the correlation
between the standardized residuals of the bits (packets) arrival process (bit/packet
network traffic) at lag k of a S–D pair at various time aggregation levels, as well
as in Park et al. (2005a), again with a time aggregation from 10 milliseconds to
60 seconds, through wavelet analysis (as developed in Veitch and Abry, 1999). In
Norros and Kilpi (2002) long range dependence is detected through a visual analysis.
All the above-mentioned papers show that S–D traffic is characterized by the presence
of long range dependence (with values of the Hurst parameter H ranging between
0.65 and 0.9 for aggregation time 1–300 seconds).

Homogeneity. The main theoretical justification of the homogeneity hypothesis (all
S–D pair possess the same value of H) is in Taqqu et al. (1997) (see the third point).
Empirical analyses supporting the homogeneity assumption are in Park et al. (2005b)
and Susitaival et al. (2006).

From a practical point of view, the homogeneity assumption is based on a simple
idea: applications run by customers connected to a given node do not significantly
differ from those used by the customers of different nodes. In other words, nodes
(representing routers) are not specialized by service. Although we do not know
of any thorough work devoted to the relation between the Hurst parameter and
the network application, it is known in practice that the feedback behaviour built
in the Transmission Control Protocol (TCP) transport protocol (and hence in all
the network application relying on it) is a source of long range dependence. More
recently, it has been observed that the appearance of a particular P2P protocol
(namely Blubster, a.k.a. Piolet) has been related to a variation of the measured
Hurst parameter (Park et al., 2005a). Hence, the Hurst parameter can be reasonably
considered as determined by the mix of applications generating the observed traffic.
Therefore, there should be no difference among nodes roughly generating similar
application mix.
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Mean–variance relationship. Finally, as far as the mean–variance relation is con-
cerned, the simplest (and the most widely used as well) assumption is that μXi =
h(θi ) = const × θ

q
i , i.e., a power law. In the seminal paper by Vardi (1996), the

values const = 1, q = 1 are assumed, whilst in Cao et al. (2000) the value q = 1/2 is
also considered. With reference to S–D data on time scales relevant for traffic matrix
estimation, the mean–variance relation has been studied in Susitaival et al. (2006)
and Juva et al. (2007) under different space/time aggregation levels for Funet data.
The main conclusion is that a power law μXi = const × θ

q
i can be assumed, with

q = 2/3.

2.3 Identifiability issues

Since the process (Yt; t ≥ 1) is Gaussian, its probability law is specified by both
its mean function and its covariance kernel (Karatzas and Shreve, 1991). As a
consequence, the whole process (Yt; t ≥ 1) is identifiable if and only if its two-
dimensional distributions are, i.e., if and only if for every t ≥ 1 and k ≥ 1 the
probability law of (Yt, Yt+k) is identifiable. The following result, which is essentially
an adaptation of Theorem 1 in Cao et al. (2000), holds.

Proposition 1 Let B be the (M(M + 1)/2) × N matrix whose rows are the rows of A
and the component-by-component products of all distinct pairs of rows of A. Under
the mean–variance relationship summarized in (14) (Yy; t ≥ 1) is identifiable if and
only if B has full column rank.

Proof See Appendix A.
The identifiability condition of Proposition 1 is expressed in terms of linear

algebra. Next result, as expressed in Proposition 2, gives a simpler sufficient condition
in terms of graph theory. Its essential merit is that it allows one to immediately
establish the identifiability of the involved model, without any manipulation of the
matrix B.

Proposition 2 is in the same spirit as the Corollary in Cao et al. (2000), where
a sufficient condition is provided for the identifiability of the traffic matrix. Such a
condition is that the only traffic flowing on the link outgoing from a node a and on
the link incoming on a node b is the traffic pertaining to the OD couple (a, b). This
condition is tantamount to stating that all the nodes in the network act just as ‘end
nodes’, and do not support transit traffic. Now, this is quite rare to be met in real
networks: the only examples we can think of are pure hub networks (such as the
network considered in Cao et al. (2000)) and fully meshed networks where routing is
accomplished just by the direct one-link paths. Both represent quite special networks.
From this point of view, Proposition 2 can be considered as a generalization of the
Corollary in Cao et al. (2000). To state more transparently the main result, we need
a slightly different terminology and notation. A telecommunication network can be
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thought of as a graph, where source/destination sites are nodes, and direct links are
arcs. A sequence of arcs connecting two nodes is a path. Clearly, a path is a sequence
of consecutive arcs connecting two nodes. The routing matrix A possesses elements
ai j equal to 1 if the arc j is a part of the path connecting the pair i of nodes, and
equal to 0 otherwise.

The length of a path is the number of arcs that define the path. The simplest
algorithm to construct S–D paths consists in using the minimum length rule: paths
are composed by the smallest number of arcs.

A sub-path of a given path is a sub-sequence of the arcs of the path. Of course, a
sub-path is still a path, connecting two nodes. More formally, and with a different
notation, let us indicate nodes by letters, and arcs by pairs of letters, those of the two
nodes connected by arcs. Suppose that two nodes a and b are connected through the
path composed by the l arcs (a, a1), (a1, a2), . . . , (al−1, b). Then such a path also
contains all paths from a node ai to a node a j , 0 ≤ i < j ≤ l, with a0 = a, al = b.
Such paths will be called sub-paths of that connecting the nodes a and b. Clearly,
every sub-path connects two nodes. In the sequel, we will assume that the paths in
the routing matrix possess the following property.

P1 For every pair ai , a j , i < j , of nodes, the sub-path (ai , ai+1), . . . , (a j−1, a j ) is
also the path connecting the Source-node ai to the Destination-node a j , as it appears
in the routing matrix A.

Proposition 2 Assume that all S–D pairs can be connected through a path, and that
P1 holds. Then the matrix B does have rank N.

Proof See Appendix A.

Remark 1 Property P1 is satisfied when paths are obtained via the minimum length
rule. This is true, in particular, for two widely deployed Internet routing algorithms,
namely Routing Information Protocol (RIP) and Open Shortest Path First (OSPF),
which represent two alternative ways to provide the shortest path: see, for instance,
Huitema (1999). In RIP, by construction each node obtains the optimal path to a
destination by passing through its adjacent node providing the shortest path to that
destination. In OSPF all the transit nodes are chosen to provide the shortest path to
the final destination.

3 Statistical analysis: basic aspects

In this section we mainly concentrate on the estimation of the parameters θ , H, μX.
The statistical data at hand are a multivariate time series Y1, Y2, . . . , YT, each Yt

being a M-dimensional vector of components Yt
1, . . . , Yt

M.
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3.1 General theoretical results

A general framework for the asymptotic theory of parameter estimates in case of
linear, scalar-valued stationary processes with long range dependence is in Whittle
(1952), Yajima (1985), Fox and Taqqu (1986) and Dahlhaus (1997) for Gaussian
processes, and in Giraitis and Surgailis (1990) for non-Gaussian processes. Whittle’s
results were extended to vector-valued processes by Hosoya and Taniguchi (1982)
and Hosoya (1997). In the sequel, we give a short summary of Hosoya’s results. Let
(Z(t); t ≥ 0) be a (discrete-time) zero mean vector-valued linear process:

Z(t) =
∞∑
l=0

G(l; ψ) e(t − l), t ≥ 0,

where Z(t)s are q-dimensional random vectors, and e(t)s are p-dimensional random
vectors such that

E[e(u) e(v)∗] = δ(u, v) K(ψ),

K being a nonsingular p×p matrix. G(l; ψ)s are q×q matrices, δ(·, ·) is the Kronecker
delta, and the components of Z, E and Gare all real. A∗ denotes as usual the conjugate
transpose of a matrix A, and the same notation is retained for the transpose of a real
A; tr (A) and det(A) are the trace and the determinant of A, respectively. ψ is a
s-dimensional vector of unknown parameters. Under the condition

∞∑
j=0

tr (G(l; ψ) K(ψ) G(l; ψ)∗) < ∞, (3.1)

the process (Z(t); t ≥ 0) is a second order stationary process, with spectral density
matrix

g(ω; ψ) =
1

2π
k(ω; ψ) K(ψ) k(ω; ψ)∗, −π < ω ≤ π (3.2)

and

k(ω; ψ) =
∞∑
l=0

G(l; ψ) eiωl .

Assume further that the process (Z(t); t ≥ 0) is Gaussian, and choose frequencies
ω js ( j = 1, . . . , T) equally spaced on the torus (−π, π ], i.e., ω j = (2π j)/T − π . The
finite Fourier transforms

wT(ω j ) =
1√

2πT

T∑
t=1

Z(t) eitω j , j = 1, . . . , T
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based on a finite segment Z(1), . . . , Z(T) are sufficient statistics for ψ . The random
vectors wT(ω j )s are approximately independent for large T, with complex-valued
multivariate normal distribution. Their density functions are proportional to

(det(g(ω j ; ψ))−1/2 exp

{
−1

2
tr
(
g−1(ω j ; ψ) wT(ω j ) wT(ω j )

∗)} , j = 1, . . . , T.

The sufficiency of wT(ω1), . . . , wT(ωT) implies that an approximate log-likelihood
for ψ , up to a multiplicative factor, is

lT(ψ) = −
T∑

i=1

{
log det(g(ω j ; ψ)) + tr (g−1(ω j ; ψ) IT(z, ω j )

}
, (3.3)

where IT(z, ω j ) is the periodogram matrix, defined by wT(ω j ) wT(ω j )∗. The
approximate log-likelihood lT(ψ) is constructed in Hosoya (1997). It is essentially
the multivariate version of the approximate log-likelihood for scalar-valued processes
first considered by Whittle (1952).

Assume now that log det(g(ω; ψ)) and tr
(
g−1(ω j ; ψ) wT(ω) wT(ω)∗

)
are differen-

tiable w.r.t. ψ , and denote by ∂lT(ψ)/∂ψ the vector of partial derivatives of lT(ψ)
w.r.t. ψ . A root ψ̂T of the equations ∂lT(ψ)/∂ψ = 0 is a quasi maximum likeli-
hood (QML) estimate of ψ . Under appropriate regularity conditions, consistency and
asymptotic normality of ψ̂T are proved in Hosoya (1997). The asymptotic covari-
ance matrix of ψ̂T has a complicated form, involving the second partial derivatives
of log det(g(ω; ψ)) and tr

(
g−1(ω j ; ψ) wT(ω) wT(ω)∗

)
(Hosoya, 1997, Theorem 2.2).

3.2 Statistical analysis for telecommunication networks

The results in the previous sub-section are used here to construct point estimates for
the parameters of the model developed in Section 2.

In our problem, Yt − AμX = Yt − Ah(θ ) essentially plays the role of Z(t) in
Sub-section 3.1. The parameter to be estimated on the basis of the approximate log-
likelihood (3.3) is ψ = η = (θ, H). The cross-spectrum matrix g(ω, ψ) is given by
equation (16). Under conditions A1–A3, it is not difficult to see that Yt satisfies all
conditions of Sub-section 3.1. Hence, the approximate log-likelihood for (θ, H) is
given by

lT(θ, H) = −
T∑

j=1

{
log det( fX(ω j ; H) G(θ )) + tr (( fX(ω j ; H) G(θ ))−1) IT(θ, ω j ))

}
,

(3.4)
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where IT(θ, ω j ) = wT(θ, ω j ) wT(θ, ω j )∗,

wT(θ, ω j ) =
1√

2πT

T∑
t=1

(Yt − Ah(θ )) eitω j , j = 1, . . . , T.

Now, it is not difficult to show that the approximate likelihood (3.4) can be
considerably simplified, because the term Ah(θ ) essentially disappears. In fact, the
term IT(θ, ω j ) can be written as

IT(θ, ω j ) =
1

2πT

T∑
t=1

T∑
u=1

(Yt − Ah(θ ))(Yu − Ah(θ ))′eitω j e−iuω j

=
1

2πT

{
T∑

t=1

T∑
u=1

YtY
′
ueitω j e−iuω j −

T∑
t=1

Yt(Ah(θ ))′eitω j

T∑
u=1

e−iuω j

−
T∑

t=1

Yt(Ah(θ ))′e−i tω j

T∑
u=1

eiuω j + Ah(θ )(Ah(θ ))′
T∑

t=1

eitω j

T∑
u=1

e−iuω j

}
, (3.5)

Using the well-known trigonometric relationship

T∑
t=1

exp

{
i
2π

T
tj

}
=

{
T, j = 0
0, j =/ 0

j being an integer such that | j | < T, and taking into account that ω j = 2π j/T − π ,
it is not difficult to see that the relationships

T∑
t=1

e−iuω j =
T∑

t=1

eiuω j = 0, j = 1, . . . , T − 1 (3.6)

hold true. In view of equations (3.5) and (3.6), it is easy to see that

IT(θ, ω j ) =
1

2πT

T∑
t=1

T∑
u=1

YtY
′
ueitω j e−iuω j

= ÎT(ω j ); j = 1, . . . , T − 1.
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Since the term corresponding to j = T is essentially negligible for large T, the
approximate log-likelihood (3.4) can be written in the form:

lT(θ, H) = −
T∑

j=1

{log det( fX(ω j ; H) G(θ ))

+ tr (( fX(ω j ; H) G(θ ))−1) ÎT(y, ω j ))
}

. (3.7)

Note that the ‘empirical periodogram’ ÎT(ω) can be written as

ÎT(ω) = ŵT(ω) ŵT(ω)∗,

where

ŵT(ω) =
1√

2πT

T∑
t=1

Yt eitω.

We have now to maximize equation (3.7) w.r.t. H and θ . To this purpose, we first
compute the corresponding partial derivatives. They are computed according to the
conventions and rules in Magnus and Neudecker (1999) and Magnus and Neudecker
(1985).

First of all, it is easy to see the equality

∂

∂ H

⎧⎨⎩
T∑

j=1

log det( fX(ω j ; H) G(θ ))

⎫⎬⎭
=

T∑
j=1

∂

∂ H

{
log( fX(ω j ; H)M det(G(θ ))

}
=

T∑
j=1

d
d H

{M log fX(ω j ; H)}

= M
T∑

j=1

1
fX(ω j ; H)

1 − cos ω j

π

{
d

dH
(sin(π H) �(2H + 1))

+∞∑
k=−∞

|2kπ + ω j |−(2H+1)

+ (sin(π H) �(2H + 1))
+∞∑

k=−∞

d
dH

(
|2kπ + ω j |−(2H+1)

)}

= M
T∑

j=1

1
fX(ω j ; H)

1 − cos ω j

π
{(π cos(π H) �(2H + 1) + 2 sin(π H) �′(2H + 1))

× C0(H, ω j ) − 2 sin(π H) �(2H + 1)C1(H, ω j )} , (3.8)

where �′(x) = d�(x)/dx and Cl(H, ω) is given by equation (2.4).
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In the second place, the derivative w.r.t. θ of the log det term appearing in equation
(3.7) is

∂

∂ θ

⎧⎨⎩
T∑

j=1

log det( fX(ω j ; H) G(θ ))

⎫⎬⎭ =
T∑

j=1

∂ log det G(θ )
∂ θ

= T (det G(θ ))−1 ∂ det G(θ )
∂ θ

= T (vec((G(θ )−1)′)′
∂ G(θ )

∂ θ
, (3.9)

where ∂ G(θ )
∂ θ

is a M2 × N matrix having the following structure:[(
d vec(G(θ ))

d σ 2
X1

)
. . .

(
d vecG(θ )

d σ 2
XN

)]
(3.10)

and

d vecG(θ )
d σ 2

Xi

= ai = vec

⎡⎣ a2
1i a1i a2i · · · a1i aMi

· · · · · · · · · · · ·
aMia1i aMia2i · · · a2

Mi

⎤⎦ ; i = 1, . . . , N. (3.11)

Next steps consists in computing the partial derivatives of the tr term in equation
(3.7). We have first

∂

∂ H

⎧⎨⎩
T∑

j=1

tr (( fX(ω j ; H) G(θ ))−1) IT(y, ω j ))

⎫⎬⎭
=

T∑
j=1

tr (G(θ )−1 ÎT(ω j ))
d

d H
fX(ω j ; H)−1. (3.12)

Since

d
d H

fX(ω j ; H)−1 = − 1
fX(ω j ; H)2

d
d H

fX(ω j ; H)

= − 1
fX(ω j ; H)2

1 − cos ω j

π

×{(π cos(π H) �(2H + 1) + 2 sin(π H) �′(2H + 1))
×C0(H, ω j ) − 2 sin(π H) �(2H + 1)C1(H, ω j )} (3.13)
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from equations (3.12) and (3.13) we easily obtain

∂

∂ H

⎧⎨⎩
T∑

j=1

tr (( fX(ω j ; H) G(θ ))−1) ÎT(ω j ))

⎫⎬⎭
= −

T∑
j=1

tr (G(θ )−1 ÎT(ω j ))
1

fX(ω j ; H)2

1 − cos ω j

π

×{(π cos(π H) �(2H + 1) + 2 sin(π H) �′(2H + 1))C0(H, ω j )

−2 sin(π H) �(2H + 1)C1(H, ω j )} . (3.14)

Finally, as far as the partial derivatives w.r.t. θ of the tr term are concerned, using
the foregoing notation we first have

∂

∂ θ

⎧⎨⎩
T∑

j=1

tr (( fX(ω j ; H) G(θ ))−1) ÎT(ω j ))

⎫⎬⎭
=

T∑
j=1

fX(ω j ; H)−1 (vec( ÎT(ω j )))
′
(

∂ G(θ )−1

∂ θ

)
, (3.15)

where, as shown in Magnus and Neudecker (1999, p. 208, Table 7),

∂ G(θ )−1

∂ θ
= −((G(θ )′)−1 ⊗ G(θ )−1)

∂ G(θ )
∂ θ

(3.16)

and ∂ G(θ )/∂ θ is given by equations (3.10) and (3.11).
If Ĥ, θ̂ denote the values of H, θ maximizing lT(θ, H) (3.7), the mean vector μX

is then estimated by inverting the relationship μX = h(θ ), i.e., by taking

μ̂Xi = h−1(θ̂i ), i = 1, . . . , N.

3.3 Properties of the obtained estimators

The asymptotic properties of the estimators Ĥ, θ̂ can be obtained by applying
Theorem 2.2 in Hosoya (1997). Denote by H0, θ0 the ‘true values’ of H, θ ,
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respectively, and let Q1(H, θ), Q2(H, θ), Q(H, θ) be the functions:

Q1(H, θ) =
∫ π

−π

log det( fX(ω, H) G(θ )) dω

= M
∫ π

−π

log( fX(ω, H)) dω + 2π log det(G(θ )) (3.17)

Q2(H, θ) =
∫ π

−π

tr
(
{ fX(ω, H)−1 G(θ )−1} { fX(ω, H0) G(θ0)}

)
dω

= tr (G(θ )−1G(θ0))
∫ π

−π

fX(ω, H0)
fX(ω, H)

dω (3.18)

Q(H, θ) = Q1(H, θ) + Q2(H, θ) (3.19)

and by W the (N + 1) × (N + 1) matrix having elements

wkl(H, θ) =
∂2Q(H, θ)

∂θk ∂θl
, k, l = 1, . . . , N (3.20)

wN+1,l(H, θ) = wl,N+1(H, θ) =
∂2Q(H, θ)

∂ H ∂θl
, l = 1, . . . , N (3.21)

wN+1,N+1(H, θ) =
∂2Q(H, θ)

∂ H2
. (3.22)

If x = (x1 . . . xm2) is a vector of m2 elements, denote further by Ma(x) the m× m
matrix whose hth row is composed by xm( j−1)+1, . . . , xmj , j = 1, . . . , m. Finally, let
γk(ω; H, θ) be the M × M matrices

γk(ω; H, θ) = fX(ω, H)−1

{
Ma

(
∂ G(θ )−1

∂ θk

)}
= − fX(ω, H)−1 Ma

(
(G(θ )−1 ⊗ G(θ )−1)ak

)
, k = 1, . . . , N (3.23)

γN+1(ω; H, θ) =

(
d fX(ω, H)−1

d H

)
G(θ )−1

= − f ′X(ω, H)
fX(ω, H)2

G(θ )−1 (3.24)

and let V(H, θ) the (N + 1) × (N + 1) matrix with elements

vkl(H, θ) = 4π

∫ π

−π

fX(ω, H0)2tr (γk(ω; H, θ) G(θ0) γl(ω; H, θ) G(θ0)) dω. (3.25)

Explicit expressions for the terms wkl and γk are obtained in Appendix B.
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As a consequence of Theorem 2.2 in Hosoya (1997), it is not difficult to see that, as
T increases

√
T

[
θ̂ − θ0

Ĥ − H0

]
d→ NN+1(0, W(H0, θ0)V(H0, θ0)W(H0, θ0)′), (3.26)

where Np(μ, D) denotes a p-variate normal distribution with mean vector μ and
covariance matrix D.

The matrices V(H0, θ0) and W(H0, θ0) can be consistently estimated. In fact, let
Q̂1(H, θ) and Q̂2(H, θ) be defined exactly as (3.17) and (3.18), where integrals
are replaced by Riemann sums evaluated at Fourier frequencies ω j = 2π j/T − π ,
j = 1, . . . , T, and H0 and θ0 are replaced by Ĥ and θ̂ , respectively. Moreover, let
Q̂(H, θ) = Q̂1(H, θ) + Q̂2(H, θ), and let ŵkl(H, θ) be defined exactly as in (3.20)–
(3.22), with Q replaced by Q̂. Similarly, define v̂kl(H, θ) as (3.25), but again with
integrals replaced by Riemann sums evaluated at Fourier frequencies ω j , and with
Ĥ and θ̂ in the place of H0 and θ0, respectively. Finally, let Ŵ(H, θ), V̂(H, θ) the
(N + 1) × (N + 1) matrices of elements ŵkl(H, θ), v̂kl(H, θ), respectively.

Since (as it is easily shown)

Ŵ(θ̂ , Ĥ)
p→ W(H0, θ0), V̂(θ̂ , Ĥ)

p→ V(H0, θ0) as T → ∞, (3.27)

the asymptotic covariance matrix appearing in equation (3.26) can be consistently
estimated.

3.4 Additional results on statistical inference on the Hurst parameter

Although the primary goal of the present article is the estimation of the (expected)
traffic matrix, an important point, which needs to be developed, consists in testing
for the presence of LRD, as well as in constructing a confidence interval for H.
Of course, these two problems are strictly related, since in order to test the null
hypothesis H = 0.5 (LRD is absent) versus H > 0.5 (LRD is present), the procedure
usually adopted in the literature (Beran, 1994), consists in constructing a confidence
interval for H with level 1− α. The null hypothesis H = 0.5 is rejected whenever the
point 0.5 does not lie in the confidence interval.

In principle, the results of the previous section could be used to construct a Wald-
type test-statistic, of the form T(Ĥ − H)′σ̂ 2(Ĥ, θ̂ )−1(Ĥ − H), where σ 2(H, θ) is
the asymptotic variance of Ĥ, and σ̂ 2(Ĥ, θ̂ ) is its estimated version. The foregoing
statistic does possess an asymptotic Chi-square distribution with 1 degree of
freedom, as T goes to infinity. This procedure, although intuitive, does have some
relevant drawbacks. First of all, the estimation of the (asymptotic) variance of Ĥ
is computationally heavy. Second, and more importantly, the actual (finite sample)
distribution of Ĥ is asymmetric, so that the asymptotic approximation (based on
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the asymptotic normality of Ĥ) could be inaccurate. For this reason, we resort to a
completely different approach based on sub-sampling, as used, for instance, in Hall
et al. (1998a), Lahiri (2003) and Conti et al. (2008).

Let

ζT =
√

T (Ĥ − H) (3.28)

be the ‘centred version’ of the estimator Ĥ, based on T observations, and denote by

DT(x) = P(ζT ≤ x) (3.29)

its distribution function (d.f.). As a consequence of (3.26), DT(x) converges to a
normal N(0, σ 2(H, θ)) d.f. as T goes to infinity. Convergence is uniform w.r.t. x.

Let further Bt = (Yt, . . . , Yt+l−1), t = 1, . . . , N, be a collection of N = T − l + 1
overlapping blocks of length l, for some given integer l = lT (1 ≤ l ≤ T). Finally, let
Ĥl,t be the estimator of H based on the data in block Bt.

A ‘sub-sample copy’ of ζT, based on Bt, is given by

ζ̂l,t =
√

l (Ĥl,t − Ĥ). (3.30)

The sub-sampling estimator of the distribution function DT(x) = P(ζT ≤ x) of ζT,
based on the sub-samples Bt’s, is the empirical distribution function (e.d.f.) of the
ζ̂l,t’s in equation (3.30), namely,

D̂T(x) =
1
N

N∑
t=1

I(ζ̂l,t≤x), x ∈ IR. (3.31)

By repeating verbatim the reasoning in Proposition 1, and taking into account
that the (multivariate) Gaussian process (Yt; t ≥ 1) is completely regular (see, for
instance, Ibragimov and Rozanov, 1978), it is not difficult to show that

sup
x∈R

∣∣∣D̂T(x) − DT(x)
∣∣∣ p→ 0, as T → ∞. (3.32)

As a consequence, the quantiles of D̂T are asymptotically equivalent to the
quantiles of DT. Precisely, if D−1

T (u) = inf{x : DT(x) ≥ u} and D̂−1
T (u) = inf{x :

D̂T(x) ≥ u}, then

D̂−1
T (u) − D−1

T (u)
p→ 0, as T → ∞, ∀ u ∈ (0, 1). (3.33)

Results 3.32 and 3.33 suggest that the d.f. DT can be approximated by the e.d.f.
Q̂T obtained through sub-sampling, and that the quantile D−1

T can be approximated
by the sample quantile D̂−1

T . Hence, for 0 < α < 1 the interval(
Ĥ − 1√

T
D̂−1

T (α/2), Ĥ +
1√
T

D̂−1
T (1 − α/2)

)
(3.34)
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is a confidence interval for H with asymptotic coverage probability 1 − α. The
accuracy of the interval (3.34) will be evaluated in Section 4.2.2.

Finally, in order to evaluate the possible presence of LRD, it is enough to check
whether the confidence interval (3.34) contains the point 0.5 (LRD is absent) or
does not contain the point 0.5 (LRD is present). Of course, such a test possesses
asymptotic size α.

4 Simulation study

4.1 Traffic model and simulation assumptions

In order to evaluate the performance of the traffic estimation technique presented in
the previous sections, we consider here a ‘toy network’, already used by Vardi in his
seminal paper Vardi (1996). Such a network is reported in Figure 1.

The nodes in Figure 1 are labelled by letters, and the links by numbers. The
network consists of 4 nodes (hence 12 S–D pairs) and 7 unidirectional links. The
routing matrix (where the S–D pairs listed on the columns are sorted in lexicographic

a

3

1

4

5

6

2

7

b

c

d

Figure 1 ‘Toy network’ used in the simulation study
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order) is reported as in the following.

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
For this network, the performance of our traffic estimation technique is evaluated
by simulation. In the following sub-sections we review the scenarios employed in the
simulation procedure.

In order to simulate the traffic measured on the links and apply our matrix
estimation algorithm, we make the following assumptions on the traffic generated.

1. The traffic generated by each node is assumed to follow a long range
dependence process, and the autocorrelation functions obey the relationship
(2.2).

2. The stochastic processes associated to any two S–D pairs are stochastically
independent.

3. All the S–D pairs have the same value of the Hurst parameter.
4. The expected value of traffic follows a Zipf rank–size relationship.
5. The mean–variance relationship for the traffic intensity follows a power law.
6. The coefficient of preference, which determines how the traffic generated by

a given origin node distributes among all the destinations, is proportional to
the traffic generated by the destination node.

Note that only Assumptions 1–3 are actually used in the proposed estimation
method. Assumptions 4–6 (that are well supported in the literature) are
used to generate the synthetic traffic data employed to feed the estimation
algorithm.

As remarked in the Introduction, Assumptions 1–3 are well supported in the
literature. As far as Assumption 4 is concerned, suppose the n nodes are sorted
according to the average traffic generated. Denote by μOj the expected traffic
generated by jth node, so that μO1 ≤ μO2 ≤ · · · ≤ μOn. Assumption 4 means
that μOj s obey the Zipf law

μOj ∝
1
iα

i = 1, . . . , n. (4.1)

This law, originally formulated in the context of linguistics in Zipf (1949), is found
in many different contexts to describe rank–frequency relationships. The parameter
α determines the imbalance of the traffic distribution: the larger α, the larger the
differences in the traffic intensity between the highest and the lowest ranked nodes.
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As far as its applications in telecommunications are concerned, Zipf law is supported
by measurements conducted on the telephone network and on Internet users (see
Naldi and Salaris, 2006). Assumption 5 is expressed by the relationship

σ 2
Xi

= φ μc
Xi

i = 1, . . . , N. (4.2)

It was put forward in the seminal paper by Cao et al. (2000) and is supported by
several measurements campaigns: Medina et al. (2002), Susitaival et al. (2006) and
Gunnar et al. (2004). Assumption 6 is common in teletraffic studies, e.g., Chapter
13 in the reference book by Bear (1988). Consider the ith S–D pair, and denote by
Ol its origin node, and by Om its destination node. The expected traffic intensity for
such S–D pair is then

μXi = μOl

μOm∑n
k=1 μOk

i = 1, . . . , N. (4.3)

As a consequence of Assumptions 4 and 6, the resulting matrix of expected traffic
intensities is asymmetric.

Finally, the long-range-dependent traffic traces are generated by using the Choleski
method (see Hall et al., 1998b). This method, though computationally heavy, is
exact and has become the reference method for such task (De Giovanni and Naldi,
2008).

In our simulation the following set of parameter values have been used.

• H = 0.5, 0.6, 0.8;
• Zipf parameter α = 1;
• Sample size (traffic traces length) T = 30, 90, 120;
• Parameter of the power law relationship between mean and variance φ = 1

and c = 1, 1.5.

4.2 Simulation results

In this section we provide the results of the simulation-based evaluation. Namely, we
report the overall error obtained in estimating the expected traffic intensity for S–D
pairs, as well as of the Hurst parameter.

4.2.1 Traffic intensity estimation

In this section, the performance of the proposed estimator(s) of the expected S–D
traffic is compared via simulation to the performance of other statistical methods
proposed in the literature. Among them, techniques based on maximum likelihood
have been shown to be the most effective. In detail, the following three traffic matrix
estimation methods have been considered:

M1. Maximum likelihood (on Yt) method based on maximizing the
approximated log-likelihood (3.7).
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M2. Blind EM maximum likelihood method proposed in Conti et al. (2009), and
based on EM algorithm.

M3. Maximum likelihood method based on EM method, and that forces H to
be equal to 1/2.

The estimation method in Conti et al. (2009) is based on a model for Xt
i t ≥ 1,

i = 1, . . . , N similar to one considered in the present article. The computation of
the maximum likelihood estimate of the (expected) traffic matrix is performed via
EM algorithm, but no explicit mean–variance relationship is used. Of course, the
resulting model could be unidentifiable. The estimation method M3 is essentially the
method proposed by Vardi (1996) and Cao et al. (2000), and ignores the possible
presence of LRD.

For each combination of estimation method, value of T (sample size), value of
H and the average error over all the S–D pairs (as in Juva, 2007) are reported in
Table 1.

Estimation methods M1 and M2 outperform method M3 when LRD is actually
present (H > 0.5). When H = 0.5, the performance of methods M1–M3 is
comparable. Hence, our first conclusion is that ‘taking into account the possible
presence of LRD is better than ignoring, even when LRD is absent’.

As far as comparison between methods M1 and M2 is concerned, we stress that
method M1 is considerably better than M2 from a computational point of view. In
a statistical efficiency perspective, the two methods are essentially equivalent when
T = 30. Method M1 is better than M2 when T = 90, 120. This is probably due to
two effects: (i) the larger the T, the better the spectral approximation used by M1;
(i i) M1 is based on the ‘actual’ (although approximated) likelihood function, with
no attempts at reconstructing unobserved data.

Table 1 Average error over S–D pairs

Estimation method

M1 M2 M3

H = 0.5 H = 0.6 H = 0.8 H = 0.5 H = 0.6 H = 0.8 H = 0.5 H = 0.6 H = 0.8

T = 30

c = 1.0 13.7 15.4 15.9 12.6 13.2 15.7 12.6 13.4 16.5
c = 1.5 15.4 15.5 16.1 13.9 15.7 21.6 14.2 16.0 22.3

T = 90

c = 1.0 11.9 12.2 12.8 12.0 12.4 14.6 11.9 12.6 15.1
c = 1.5 12.2 12.6 14.7 12.7 13.6 18.6 12.7 13.8 19.3

T = 120

c = 1.0 11.6 11.3 12.4 11.9 12.1 14.5 11.9 12.9 15.0
c = 1.5 12.1 11.3 14.5 12.5 13.4 18.0 12.6 13.8 18.0
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4.2.2 Hurst parameter estimation

The goal of the present section is to study the quality of both point and interval
estimates of H, on the basis of the results obtained in the preceding section.

As far as the point estimation of H is concerned, the bias B(Ĥ) and the standard
deviation SD(Ĥ) of the estimator Ĥ maximizing (3.7) are shown in Table 2. The
values reported are computed over a block of 500 simulation runs. We can observe
a slight underestimation of the Hurst parameter. However, the bias is progressively
reduced when longer traffic traces are used.

In the second place, the results of our simulation study have been used to evaluate
the accuracy of confidence intervals (3.34). In particular, we have considered the
sample sizes T = 90, 120, a nominal coverage probability 1 − α = 0.95, and two
values of H, namely H = 0.6, 0.8. The block length l has been chosen according
to the rule l = 6 ×

√
T, which gives good results as reported in Conti et al. (2008).

In the present case, the value l = 60 has been used. The coverage probabilities and
the average interval length, computed on the basis of simulated data, are reported in
Table 3.

As it may be seen from Table 3, the coverage probability is rather close to its
nominal level 0.95, and the average length of sub-sampling confidence interval is
smaller than H/10.

Table 2 Estimated Hurst parameter

T c H B(Ĥ) SD(Ĥ) T c H B(Ĥ) SD(Ĥ)

30 1 0.6 −0.016 0.014 90 1 0.6 −0.009 0.013
30 1 0.8 −0.008 0.024 90 1 0.8 −0.002 0.024
30 1.5 0.6 −0.009 0.021 90 1.5 0.6 −0.007 0.017
30 1.5 0.8 −0.02 0.028 90 1.5 0.8 −0.005 0.026

Table 3 Coverage probabilities and average length of sub-sampling confidence intervals (nominal level:
0.950)

H = 0.6 H = 0.8

Coverage prob. Average length Coverage prob. Average length

Sample size T = 90

c = 1.0 0.938 0.057 0.931 0.062
c = 1.5 0.934 0.071 0.929 0.074

Sample size T = 120

c = 1.0 0.940 0.050 0.933 0.056
c = 1.5 0.936 0.059 0.930 0.065

Statistical Modelling 2012; 12(1): 29–65

NOT FOR C
OMMERCIA

L U
SE



February 28, 2012 15:22 02-SMJ-12-1

Estimation of traffic matrices in the presence of long memory traffic 53

5 Application to real data

In order to evaluate the performance of the traffic estimation model presented in
the previous sections, an application to real data has been developed. The primary
goal of this analysis is to estimate the traffic matrix, i.e., the expected amounts of
traffic μXi os S–D pairs. Traffic data have been collected on a network belonging
to a wider network of Tinet S.p.A. and Enter s.r.l., two Italian providers. The
network considered here is made of 16 links and 9 nodes. Nodes are labelled by
Rj , j = 1, . . . , 9, and links by i = 1, . . . , 16. The topology of this real network is
shown in Figure 2, where the links 1–8 are directed to the hub router R4, while the
links 9–16 go in the opposite direction.

For structural reasons related to the network architecture, the only allowed S–D
pairs are either those with Source node Ri , i = 1, . . . , 3 and Destination node Rj ,
j = 5, . . . , 9, or those with Source node Ri and Destination node Rj , i, j = 5, . . . , 9,
i =/ j . The node R4 is a transit node that does not generate its own traffic. As a
consequence, there are N = 50 S–D pairs. The routing matrix A (where the S–D pairs
listed on the columns are sorted in lexicographic order) is reported in the following.

R1

1

9 13

12
4

5

2

10 6
14

15

7
11

3

8

16

R2

R3

R4 R7

R6

R5

R8

R9

Figure 2 Network used in application
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The last row has been deleted, in order to avoid linear dependence (exactly as in Cao
et al., 2000).

Links S−D pairs
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

13 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
14 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

15 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

The observed traffic on links consists of bytes per minute. For each link, 90
minutes of observed traffic are available, so that the sample size is T = 90. Due to the
length of the observation period, the traffic produced by each S–D pair is assumed
stationary. In Figure 3 the traffic (bytes per minute) generated in 90 minutes by all
16 links is reported.

In order to validate, via assumption of stationarity, ‘empirical versions’ of the
variograms γ (k) = E[(Yt+k

j − Yt
j )

2] (Beran, 1994) have been constructed for all links
j = 1, . . . , 16. They are shown in Figures 4 and 5.

As remarked in Beran (1994, p. 94), the behaviour of the depicted variograms
shows the presence of LRD, and also the absence of trends.

In order to validate, again via an explorative analysis, the model assumptions of
Gaussianity and long range dependence, the standardized residuals, as well as the
corresponding (Gaussian) QQ-plots, have been computed. Since Xts are not observed,
the validation itself is based on Yts observations. For each link j = 1, . . . , 16, the
vector [Y1

j , · · · , Y90
j ] has been standardized by taking into account its covariance

structure (due to long range dependence). This requires a preliminary estimation of
the expectation and of the covariance matrix of Yt

j s, obtained by taking the sample
mean and by estimating H via the Whittle method, respectively. Results support the
assumptions of Gaussianity and long range dependence.
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Figure 3 Byte counts per minute on all 16 links (90 minutes)

As already remarked, the proposed model is not identifiable, unless a mean–
variance relationship for S–D traffic is introduced. In particular, we consider here a
power relation between mean and variance of S–D traffic, i.e.:

μXi = φ−1/cσ
2/c
Xi

, c > 0; i = 1, . . . , N. (5.1)
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Figure 4 Empirical variograms for links 1–8

In order to get a good degree of flexibility of the proposed model, the quantities φ
and c in (5.1) are obtained via a preliminary exploratory analysis. In more detail, a
linear regression of log ŝ2

j against log m̂2
j is considered

log ŝ2
j = log φ + c log m̂2

j (5.2)

ŝ2
j and m̂j being the sample mean and variance of traffic on links, i.e., of Yjs

( j = 1, . . . , 16); see Figure 6. The estimated variance log ŝ2
j takes into account

the presence of long memory dependence.
According to the arguments in Cao et al. (2000), log φ is estimated with an error

in between zero and (1−c) log K where K is the number of S–D pairs that contribute
to the byte count on link j . This term is small w.r.t. c log m̂2

j .
The obtained values for the parameters are log φ = 9.89, c = 1.24, with an R2

goodness-of-fit value equal to 0.92, and a corresponding p-value 2.2 × 106. These
quantities are used in the relationship (5.1) in order to estimate the mean S–D traffic.
The estimated value of H, common to all S–D pairs, is 0.65. This denotes the presence
of long memory on S–D traffic.

The S–D expected traffic values, μXi s, have been estimated by maximizing the
(approximated) log-likelihood (3.7). Their histogram is shown in Figure 7.

Statistical Modelling 2012; 12(1): 29–65

NOT FOR C
OMMERCIA

L U
SE



February 28, 2012 15:22 02-SMJ-12-1

Estimation of traffic matrices in the presence of long memory traffic 57

5                   10                   15

5                   10                   15

5                   10                   15

5                   10                   15 5                   10                   15

5                   10                   15

5                   10                   15

5                   10                   15

5.
0e

+
13

8.
0e

+
13 link 9

k

va
ri

og
ra

m
(k

)
va

ri
og

ra
m

(k
)

va
ri

og
ra

m
(k

)
va

ri
og

ra
m

(k
)

va
ri

og
ra

m
(k

)
va

ri
og

ra
m

(k
)

va
ri

og
ra

m
(k

)
va

ri
og

ra
m

(k
)

6.
0e

+
14

link 10

k

1.
2e

+
15

link 11

k

6e
+

13
1e

+
14 link 12

k

4.
0e

+
14

1.
1e

+
15

link 13

k

2.
2e

+
14

link 14

k

1.
6e

+
15

link 15

k

1.
2e

+
15

link 16

k

Figure 5 Empirical variograms for links 9–16

Log  (Estimated mean)

Lo
g 

 (
E

st
im

at
ed

 v
ar

ia
nc

e)

17                                       18                                      19                                     20

30

31

32

33

34

35

Figure 6 Linear regression of log ŝ2
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Figure 7 Histogram of S–D expected traffic values
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Appendix A

Proof of Proposition 1 As already remarked, the process (Yt, t ≥ 1) is identifiable if
and only if, for every t ≥ 1, k ≥ 1, the probability law of (Yt, Yt+k) is identifiable.
Denote by p(yt, yt+k; H, θ) the density function (d.f., for short) of (Yt, Yt+k),
which turns out to be 2M-dimensional normal with mean vector and covariance
matrix [

Ah(θ )
Ah(θ )

]
,

[
A
X(θ )A′ ρX(k) A
X(θ )A′

ρX(k) A
X(θ )A′ A
X(θ )A′

]
.

If (H(1), θ (1)) and (H(2), θ (2)) are two parameter values, then the identity

p(yt, yt+k; H(1), θ (1)) ≡ p(yt, yt+k; H(2), θ (2))
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holds if and only if the three relationships

Ah(θ (1)) = Ah(θ (2)), A
X(θ (1))A′ = A
X(θ (2))A′, H(1) = H(2)

hold true. At this point, the proof is totally similar to the proof of Theorem 1 in Cao
et al. (2000).

Proof of Proposition 2 First of all, observe that the first M rows of the matrix B
possess elements bi j equal to 1 if the arc corresponding to the row i is in the path
connecting the S–D pairs of nodes corresponding to the column j , and is equal to
0 otherwise. As far as the remaining M(M − 1)/2 rows of B are concerned, if the
lth row (l = m + 1, . . . , M(M + 1)/2) is obtained by the component-wise product of
rows (i , p (i =/ p; i, p = 1, . . . , M)), then the element bl j is equal to 1 if the two arcs
corresponding to the rows i and p are in the path connecting the S–D pairs of nodes
corresponding to the column j , and is equal to 0 otherwise.

Next, observe that every S–D pair connected by an arc is uniquely identified by
that arc. Similarly, all S–D pairs connected by a path of two or more arcs are uniquely
identified by the pair of arcs (first arc in the path, last path in the path). In this way, a
one-to-one map T is defined. The map T associates to each S–D pair (a, b) of nodes
the arc (a, b) is it exists, and the two arcs (a, a1) and (al−1, b) if the two nodes a
and b are connected through the path composed by the arcs (a, a1), (a1, a2), . . . ,
(al−1, b).

Reorder now the columns of B by considering first the c1 = M S–D pairs connected
by a single arc (i.e., by path of length 1), then the c2 S–D pairs connected by a path
of length 2, then the c3 S–D pairs connected by a path of length 3, and so on, up to
the ck S–D pairs connected by a path of length k. Clearly, c1 + c2 + · · · + ck = N.

Next, reorder the rows of B in this way:

• the ith row of B, i = 1, . . . , N, represents either the single arc or the pair
of arcs corresponding, via the map T, to the S–D pair identified by the ith
column of B;

• the remaining M(M + 1)/2 − N rows are arbitrarily ordered.

Let now B1 be the sub-matrix of B composed by its first N rows and c1 = M
columns, B2 the sub-matrix of B composed by its first N rows and by the next c2
columns, and so on, up to Bk, which is composed by the first N rows and the last ck
columns of B. Since c1 + · · · + ck = N, it is easy to see that

B = [B1 B2 · · · Bk] (A1.1)

is the sub-matrix of B composed by its first N rows and columns. We now show that
the determinant of B is equal either to 1 or to −1.

The matrix B1 does have the following structure:

B1 =

[
�c1

01

]
, (A1.2)
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where �c1 is a c1 × c1 matrix whose rows are obtained by permuting the rows of an
identity matrix of order c1, and 01 is a (N− c1)× c1 matrix having all elements equal
to zero.

Similarly, the matrix B2 can be written as

B2 =

⎡⎣Q2

�c2

02

⎤⎦,
where Q2 is a c1 × c2 matrix having elements equal either to 0 or to 1, �c2 is a
c1 × c1 matrix whose rows are obtained by permuting the rows of an identity matrix
of order c2, and 02 is a (N− c1 − c2) × c2 matrix having all elements equal to zero.

Similarly, the general sub-matrix Bj in (A1.1) does possess the following structure:

Bj =

⎡⎣Qj

�c j

0 j

⎤⎦, j = 2, . . . , k, (A1.3)

where Qj is a (c1 + · · · + c j−1) × c j matrix having elements equal either to 0 or to 1,
�c j is a c j × c j matrix whose rows are obtained by permuting the rows of an identity
matrix of order c j , and 0 j is a (N− c1 − · · · − c j−1) × c j matrix having all elements
equal to zero.

In view of (A1.2) and (A1.3), using the Laplace expansion rule for determinants,
it is immediate to conclude that det (B) = ±1. As a consequence, the N columns of
B are linearly independent.

Appendix B

We compute here separately the second derivatives of Q1(H, θ), Q2(H, θ). We have
first:

∂2Q1(H, θ)
∂θk ∂θl

=
∂2

∂θk ∂θl

{∫ π

−π

log det( fX(ω, H)G(θ )) dω

}
= 2π

∂

∂ θk

{
∂

∂θl

(
log det(G(θ ))

)}
= 2π

∂

∂ θk

{
vec(G(θ )−1)′ ak

}
= 2πa′

k
∂ vec(G(θ )−1)

∂ θk

= −2πa′
k{G(θ )−1 ⊗ G(θ )−1}al . (B1.1)
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In the second place, from the equality ∂G(θ )−1/∂θl = −{G(θ )−1⊗G(θ )−1}al , using the
matrix differentiation rule for Kronecker products (Magnus and Neudecker, 1985),
it is seen that

∂

∂θk

{
tr

(
∂G(θ )−1

∂θl
G(θ0)

)}
=

∂

∂θk

{
∂

∂θl
tr
(
G(θ )−1G(θ0)

)}
=

∂

∂θk

{
(vec(G(θ0)))′

∂ vec(G(θ )−1)
∂ θl

}
= −(vec(G(θ0)))′

∂

∂θk

(
{G(θ )−1 ⊗ G(θ )−1}al

)
= −(vec(G(θ0)))′

(
a′

l ⊗ IM2

) ∂

∂θk

(
{G(θ )−1 ⊗ G(θ )−1}

)
(vec(G(θ0)))′

(
a′

l ⊗ IM2

) {
(IM ⊗ C1 + C2 ⊗ IM)(G(θ )−1 ⊗ G(θ )−1)ak

}
(B1.2)

where

C1 = (KM,M ⊗ IM)(IM ⊗ vec(G(θ )−1)), C2 = (IM ⊗ KM,M)(vec(G(θ )−1) ⊗ IM),

Ip being the identity matrix of order p, and Kp,p being the commutation matrix
(Magnus and Neudecker, 1999) that transforms vec(A) into vec(A′). From (B1.2) it
is easy to see that

∂2Q2(H, θ)
∂θk ∂θl

= (vec(G(θ0)))′
(
a′

l ⊗ IM2

) {
(IM ⊗ C1 + C2 ⊗ IM)(G(θ )−1 ⊗ G(θ )−1)ak

}
×
∫ π

−π

fX(ω, H0)
fX(ω, H)

dω, (B1.3)

and hence:

wkl(H, θ) =
∂2Q1(H, θ)

∂θk ∂θl
+

∂2Q2(H, θ)
∂θk ∂θl

, k, l = 1, . . . , N. (B1.4)

where the partial derivatives of Q1 and Q2 are given by (B1.1) and (B1.3), respectively.
The element wN+1,N+1 is obtained by differentiating twice the function Q w.r.t.

H:

wN+1,N+1(H, θ) =
∂2Q1(H, θ) + ∂2Q2(H, θ)

∂ H2
, (B1.5)

where
∂2Q1(H, θ)

∂ H2
= M

∫ π

−π

d2

dH2
log fX(ω, H) dω

= M
∫ π

−π

f ′′X(ω, H) fX(ω, H) − f ′X(ω, H)2

fX(ω, H)2
dω (B1.6)
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and

∂2Q2(H, θ)
∂ H2

= tr (G(θ )−1G(θ0))
∫ π

−π

d2

dH2

(
fX(ω, H0)
fX(ω, H)

)
dω

= tr (G(θ )−1G(θ0))
∫ π

−π

fX(ω, H0)

{
2

f ′X(ω, H)2

fX(ω, H)3
− f ′′X(ω, H)

fX(ω, H)2

}
dω.

(B1.7)

Finally, taking into account that

∂2Q1(H, θ)
∂θk ∂ H

= 0

it is easy to see that the terms wk,N+1, k = 1, . . . , N are equal to

wk,N+1(H, θ) =
∂2Q2(H, θ)

∂θk ∂ H

=
∂

∂θk

{
tr (G(θ )−1G(θ0))

} d
dH

{∫ π

−π

fX(ω, H0)
fX(ω, H)

dω

}
=
{

(vec(G(θ0)))′
{

G(θ )−1 ⊗ G(θ )−1
}

ak
}∫ π

−π

f ′X(ω, H)
fX(ω, H)2

fX(ω, H0) dω.

(B1.8)
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