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The self-consistent harmonic approximation is an effective harmonic theory to calculate the free energy of
systems with strongly anharmonic atomic vibrations, and its stochastic implementation has proved to be an
efficient method to study, from first-principles, the anharmonic properties of solids. The free energy as a function
of average atomic positions (centroids) can be used to study quantum or thermal lattice instability. In particular the
centroids are order parameters in second-order structural phase transitions such as, e.g., charge-density-waves or
ferroelectric instabilities. According to Landau’s theory, the knowledge of the second derivative of the free energy
(i.e., the curvature) with respect to the centroids in a high-symmetry configuration allows the identification of the
phase-transition and of the instability modes. In this work we derive the exact analytic formula for the second
derivative of the free energy in the self-consistent harmonic approximation for a generic atomic configuration. The
analytic derivative is expressed in terms of the atomic displacements and forces in a form that can be evaluated
by a stochastic technique using importance sampling. Our approach is particularly suitable for applications
based on first-principles density-functional-theory calculations, where the forces on atoms can be obtained with
a negligible computational effort compared to total energy determination. Finally, we propose a dynamical
extension of the theory to calculate spectral properties of strongly anharmonic phonons, as probed by inelastic
scattering processes. We illustrate our method with a numerical application on a toy model that mimics the
ferroelectric transition in rock-salt crystals such as SnTe or GeTe.
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I. INTRODUCTION

Describing accurately atomic vibrations is crucial in many
branches of physics and chemistry because thermodynamic,
transport, and superconducting properties of materials and
molecules as well as the spectra obtained in many spectro-
scopic techniques depend on how atoms vibrate [1]. The
standard harmonic approximation provides the simplest de-
scription of vibrations, which are also present at 0 K due to the
quantum zero-point motion. The harmonic approximation is
based on the expansion of the Born-Oppenheimer (BO) energy
surface to the second order around the ionic equilibrium po-
sitions. It predicts well-defined noninteracting quasiparticles
(phonons) with infinite lifetime and a temperature-independent
energy spectrum. Within this approximation many physical
effects cannot be described. For example, finite values of
the thermal conductivity and temperature dependent effects,
like the thermal expansion in solids, cannot be accounted for
at the harmonic level. Therefore, it is of paramount importance
to describe accurately the vibrations of atoms beyond the
harmonic approximation.

Anharmonic effects, i.e., effects due to higher orders in
the energy surface expansion, introduce interaction between

*raffaello.bianco@roma1.infn.it

phonons, thus finite scattering rates and finite lifetimes. Anhar-
monicity can be treated at different levels of theory. The basic
approach is to consider higher-order terms in the potential
expansion as a small perturbation of the harmonic potential [2].
However, the perturbative approach can be used under quite
restrictive conditions: the displacements of the atoms must be
within the range in which the harmonic approximation is valid
so that higher-order terms are considerably smaller than the
harmonic potential. Unfortunately, there are several cases in
which a nonperturbative regime is reached. For example, when
light atoms such as hydrogen are present [3–8], or when the
system is close to a dynamical instability (a phase transition) as
in ferroelectrics or materials undergoing a charge-density wave
(CDW) instability [9–22]. In these cases, a nonperturbative
approach is required in order to account for anharmonic
effects [23].

Anharmonic effects at a nonperturbative level are com-
monly treated within molecular dynamics (MD) simulations or
methods based on them [24–31]. However, these approaches
are computationally expensive as long simulation times are
needed to obtain converged renormalized phonon energies
and have an intrinsic limitation because they are based
on Newtonian dynamics, which limits their application to
temperatures above the Debye temperature. This problem can
be overcome by path-integral molecular dynamics [32], but
the even greater computational cost that the method needs to
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incorporate the quantum character of atomic vibrations makes
it challenging. To surmount these difficulties, several methods
[3,4,33–38] have been developed, mainly inspired by the
self-consistent harmonic approximation (SCHA) devised by
Hooton [39]. The main idea of the SCHA is to use a variational
principle, the Gibbs-Bogoliubov (GB) principle, in order to
approximate the free energy of the true ionic Hamiltonian
with the free energy calculated with a trial harmonic density
matrix for the same system. In particular, in the stochastic
self-consistent harmonic approximation (SSCHA) [3,4], the
free energy is explicitly minimized by using a conjugate-
gradient algorithm with respect to the independent coefficients
of the trial harmonic potential. In the SSCHA, the free energy
and its gradient are evaluated through averages computed
with stochastic sampling of the configuration space and
the importance sampling technique [3,4]. In that way, the
(approximated but nonperturbative) anharmonic free energy
of the system is directly accessible. The stochastic approach is
particularly suited to be used in conjunction with ab initio
calculations, and it has been employed to study thermal
anharmonic effects in several compounds such as hydrides
and transition metal dichalcogenides [3–7,13,40].

Within the SCHA the free energy as a function of the
average atomic positions, i.e., the centroid positions, can be
estimated for any temperature. These can be used to study
structural second-order phase transitions like, for example,
in some ferroelectric and CDW phase transitions [9–22]. In
general, at any temperature the system is in equilibrium in the
configuration which minimizes the free energy. According to
Landau’s theory [41], in a second-order phase transition the
high-temperature free energy minimum is in a high-symmetry
phase. As the temperature decreases, the minimum becomes
less and less pronounced until it becomes a saddle point at the
transition temperature Tc, and, on lowering the temperature
further, the equilibrium position moves continuously towards
lower-symmetry configurations, where the free energy is
smaller (cf. Fig. 1). In this scheme, the observable to be studied
as a function of temperature is the second derivative of the
free energy with respect to the centroid positions, i.e., the
free energy curvature, in the high-symmetry phase. Indeed,
the Hessian in the high-symmetry phase is positive-definite
at high-temperature, but lowering the temperature it develops
first a null (T = Tc) and then negative (T < Tc) eigendirection,
which indicates the instability distortion that lowers the free
energy.

Using the SSCHA code [3,4] it is possible to compute the
free energy for several centroid positions and, therefore, to
calculate numerically, by finite difference, the curvature in a
point. This has been done, for example, to study the quantum
H-bond symmetrization in the record superconductor H3S
[6]. However, even if legitimate, this “brute force” approach
to compute the free energy curvature is computationally
demanding. In fact, a careful calculation of the curvature
by finite differences requires small statistical noise, implying
a great deal of calls to the total-energy-force engine used.
Moreover, it also requires SSCHA calculations in the low-
symmetry distorted phase, which are always more statistically
demanding because the number of free parameters in the
trial harmonic Hamiltonian is larger due to the reduced
symmetry.

FIG. 1. Example of a second-order (i.e., continuous) phase
transition, as described by Landau’s theory. Q is a macroscopic,
scalar, order parameter identifying a system configuration. We
consider a situation in which symmetry Q → −Q holds. Q = 0 is
a high-symmetry phase. �F (Q) = F (Q) − F (0) is the difference
between the free energy of phase Q and the free energy of the
high-symmetry phase, at a certain temperature T . For each T ,
�F (Q) has a minimum in the equilibrium configuration Qeq(T ).
Plots are in arbitrary units. The free energy difference is an
even polynomial �F (Q) = A2(T ) Q2 + A4(T ) Q4 + O(Q6), with
A4(T ) > 0 and A2(T ) that decreases from positive to negative values.
Tc is the transition temperature. At T > Tc, the free energy has a
minimum in Qeq(T ) = 0, i.e., A2(T ) is positive. At T < Tc, A2(T ) is
negative: Q = 0 becomes a local maximum, whereas the minimum
Qeq(T ) acquires two opposite degenerate values, different from zero.
Qeq(T ) is a continuous function even during the transition. Upper
panel: variation of the free energy �F as a function of the order
parameter Q for three temperatures T , above, below and equal to
the transition temperature Tc. Bottom panel: value of the equilibrium
order parameter Qeq as a function of the temperature T .

Motivated by these considerations, in this paper we derive
the general exact analytic expression of the SCHA free energy
curvature for a generic atomic configuration. Our approach is
similar to the one proposed by Götze and Michel in the context
of elastic constants of anharmonic crystals [42]. We also
present an expression of the SCHA free energy curvature that
only depends on atomic displacements and forces. The latter is
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suited for a stochastic implementation in conjunction with any
total-energy-force engine. The method we are presenting here
allows, thus, to compute the curvature of the SCHA free energy
for a given structure straightforwardly once the GB functional
has been minimized within the SSCHA. Since the method
is much more efficient and precise than any finite-difference
approach [6], it is especially suited to be used in conjunction
with first-principles calculations.

Besides the practical achievements, the curvature formula
described here has also interesting conceptual consequences.
Since the only physical observable given by the SCHA is the
(approximated) free energy, the effective SCHA quadratic ma-
trix that minimizes the GB functional must be understood just
as an auxiliary quantity, even if its eigenvalues have been often
used to calculate renormalized anharmonic phonon spectra
[3–7,13,33,40]. A significant parallelism can be traced with the
Hartree-Fock approximation. In that case, the Rayleigh-Ritz
functional of the total energy is minimized with trial Slater
determinants describing noninteracting fermions. The energy
obtained is an approximation of the true energy of the system,
but, on the contrary, the corresponding trial noninteracting
many-body wave function and related single particle spectrum
do not have in general a physical meaning (except that
in some aspects, e.g., see Koopmans’ theorem [43]). An
analogous situation occurs with density-function theory (DFT)
and the corresponding noninteracting electrons and energy
bands [44]. In the same way, the SCHA matrix (divided by
the square root of the masses, in order to have the correct
dimensions) cannot be considered a generalized dynamical
matrix and, therefore, its temperature-dependent eigenstates
do not represent phonons renormalized by anharmonicity. On
the contrary, the free energy curvature (in the equilibrium
position) divided by the square root of the masses defines
a proper anharmonic temperature-dependent generalization of
the harmonic dynamical matrix, whose eigenstates represent
temperature-dependent anharmonic phonons. Indeed, at vari-
ance with the SCHA matrix, which is positive-definite by
construction, the dynamical matrix based on the free energy
curvature can have negative eigenvalues, and a softening in
its spectrum corresponds to a system instability. The free-
energy based dynamical matrix is a particularly important tool
especially when we consider crystalline systems. Indeed in
that case, exploiting the lattice periodicity and the Fourier
interpolation technique, it allows to find structural instabilities
with any modulations in real space by performing calculations
only on a coarse grid of the Brillouin zone.

The theory based on the free energy curvature with respect
to the centroid position is “static” in the sense that there
are no dynamical variables evolving with time. However,
here we also propose a minimal “dynamic” extension of the
theory that resembles the work by Goldman et al. [45], which
allows to study, in a full nonperturbative way, the spectral
properties of anharmonic phonons, and thus allows to have
finite scattering times and linewidths. This makes the theory
able to interpret the results of inelastic scattering processes
between anharmonic phonons and external incident particles
(typically neutrons), as well as allowing the calculation of the
thermal conductivity in strongly anharmonic solids where the
harmonic approximation breaks down. Despite the proposed
dynamic extension being based on an ansatz, it is reasonable

because it yields good results in two limits: at the lowest
perturbative level it reduces to the standard perturbation theory
result and in the static limit it predicts the same instabilities
found with the free energy curvature.

The paper is structured as follows. In Sec. II, we present
the fundamentals of the SCHA method, we define the SCHA
free energy as a function of the centroid position, and we
fix the notation used. In Sec. III, we show how to analyze
structural second-order phase transitions through the Hessian
of the free energy with respect to the centroid position (i.e.,
the curvature), and in Sec. IV, we give the explicit expression
of the free energy curvature. In Sec. V, on the basis of
the results obtained, we describe the temperature-dependent
free-energy-based generalization of the harmonic dynamical
matrix. In Sec. VI, we express the theory developed so
far in a diagrammatic way. In Sec. VII, we show how to
implement the curvature formula in a stochastic way and, in
particular, how to take into account symmetries in order to
speed up the statistical convergence. In Sec. VIII, we find
the lowest-order perturbative limit of the results obtained.
In Sec. IX, inspired by the results obtained, we propose the
ansatz to obtain a dynamical extension of the theory. Finally,
in Sec. X, we perform numerical tests on a toy model based on
the ferroelectric transition in SnTe, with the double objective
of demonstrating the correctness of our findings and showing
the power of the method. In Sec. XI, we summarize our results
and draw some final conclusions. The paper is completed with
several appendices including the proofs of all the equations
given in the manuscript and the details of the toy model.

II. SELF-CONSISTENT HARMONIC APPROXIMATION

We consider the quantum atomic free energy of crystal
lattices and molecules. For notation clarity, we derive the main
results by using a real space formalism for both cases. This
means that in the case of periodic crystals, we are actually
studying a supercell with periodic boundary conditions. Later,
we will explicitly consider a crystalline case for the numerical
example and we will take advantage of translational lattice
symmetry. The dynamic of atomic degrees of freedom is
determined by the quantum Hamiltonian

H =
Na∑
s=1

3∑
α=1

p2
s,α

2Ms

+ V (R), (1)

where Na is the total number of atoms, s and α are the atom
and Cartesian component indices, respectively, Ms is the mass
of the sth atom, ps,α and Rs,α are the momentum and position
operators, respectively, and V (R) is the Born-Oppenheimer
potential, where the bold letter R indicates Rs,α in component-
free notation. In what follows, we will use bold letters in
component-free notation also for other observables and higher-
order tensors with respect to the (s,α) index. Moreover, in order
to simplify the notation, we will use a single composite index
a = (s,α) to indicate both atom and Cartesian indices. Notice
that double index can be used also for the masses by defining
Ms,α = Ms .

For a fixed temperature T , the free energy F of the ionic
Hamiltonian is given by the sum of the total energy and the
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entropic contribution:

F = tr[ρH ] + 1

β
tr[ρ ln ρ], (2)

where β = (kBT )−1, “tr” is the trace operation on the Na atom
Hilbert space, and

ρ = e−βH /tr[e−βH ] (3)

is the equilibrium density matrix. In systems comprising many
interacting particles, calculating F can represent a complicated
task. Nevertheless, a quantum variational principle for the free
energy can be established. By replacing the true density matrix
ρ in Eq. (2) with a generic density matrix ρ̃, we can define the
functional

F[ρ̃] = tr[ρ̃H ] + 1

β
tr[ρ̃ ln ρ̃], (4)

and the Gibbs-Bogoliubov (GB) variational principle [46]
states that

F � F[ρ̃]. (5)

Obviously, the equality holds when ρ̃ = ρ.
In particular, the SCHA is obtained by restricting the trial

density matrix to equilibrium density matrices

ρ̃R,Φ = e−βH̃R,Φ /tr[e−βH̃R,Φ ] (6)

for the same temperature of a general trial harmonic Hamilto-
nian H̃R,Φ for the same particles [39]. The trial harmonic
Hamiltonian is parametrized in terms of the vector R of
dimension 3Na and the square positive-definite matrix Φ of
order 3Na as

H̃R,Φ =
∑

a

p2
a

2Ma

+ ṼR,Φ, (7a)

ṼR,Φ = 1

2

∑
ab

Φab(R − R)a(R − R)b. (7b)

In what follows, we consider only trial harmonic potentials
ṼR,Φ that respect the symmetries of the system.

With 〈O〉
ρ̃R,Φ

we indicate the average of an observable O

with respect to the density matrix ρ̃R,Φ :

〈O〉ρ̃R,Φ
= tr[O ρ̃R,Φ ]. (8)

In what follows, it will be relevant to consider observables
O(R) that are function of the position only. In that case, the
average can be written as

〈O〉ρ̃R,Φ
=
∫

O(R) ρ̃R,Φ(R) d R, (9)

where ρ̃R,Φ (R) is the diagonal part of the density matrix ρ̃R,Φ

in coordinate representation [3,4]:

ρ̃R,Φ(R) =
√

det (ϒ/2π )

× exp

[
−1

2

∑
ab

ϒab(R − R)a(R − R)b
]
. (10)

Here, “det” indicates the determinant and ϒ is the symmetric
matrix associated to Φ by

ϒab =
√

MaMb

∑
μ

2ωμ

(1 + 2nμ)h̄
ea
μeb

μ, (11)

where ω2
μ and ea

μ are eigenvalues and corresponding eigenvec-
tors of Φab/

√
MaMb, and nμ = 1/(eβh̄ωμ − 1) is the bosonic

average occupation number associated to ωμ. Note that to have
a normalizable distribution ρ̃R,Φ(R), ϒ and thus Φ must be
positive-definite matrices, as specified above.

From Eqs. (9) and (10), we see that the average positions
of the atoms for the trial density matrix ρ̃R,Φ , namely the
“centroids,” coincide with R:

〈R〉ρ̃R,Φ
= R. (12)

According to the GB variational principle, the best approx-
imation of the free energy within the SCHA is F (S), given by

F (S) = min
R,Φ

F[ρ̃R,Φ] = min
R

(min
Φ

F[ρ̃R,Φ ]). (13)

With F (S)(R) we indicate the SCHA free energy for the
centroid position R,

F (S)(R) = min
Φ

F[ρ̃R,Φ ], (14)

and with Req we indicate the configuration that minimizes
F (S)(R):

F (S) = min
R

F (S)(R) = F (S)(Req). (15)

Therefore Req is the SCHA equilibrium configuration of the
centroids at the considered temperature.

Given a configuration R for the centroids, we define
the corresponding SCHA square matrix �(R) as the matrix
that minimizes the functional F[ρ̃R,Φ] with respect to Φ.
Therefore, from Eq. (14), we have

F (S)(R) = F[ρ̃R,�(R)]. (16)

The SCHA matrix satisfies the following self-consistent
equation [see Eq. (A20)]:


ab(R) =
〈

∂2V

∂Ra∂Rb

〉
ρ̃R,�(R)

. (17)

Notice that, for clarity, we are using two different symbols for
the generic trial matrix Φ (a “slanted” phi), and for the SCHA
matrix �(R), the specific trial matrix that minimizes F[ρ̃R,Φ ]
with respect to Φ for a given centroid position R.

In the rest of this paper, we will consider exclusively
the SCHA approximation for the free energy. Therefore, in
order to simplify the notation, in what follows we can safely
omit the superscript (S) without ambiguity: F will always refer
to the SCHA free energy. Moreover, as a guide and reference
for the reader, we collect in Table I some symbols used in the
text with a concise description. Several symbols collected in
the table will appear later in the course of the paper.
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TABLE I. Collection of some symbols frequently used in the main text. First column: the symbol used. Second column: a short description
of the meaning. Third column: first labeled equation where the symbol appears.

Symbol Meaning First use

R Atomic position (canonical variable) Eq. (1)
V (R) Potential energy Eq. (1)
R Centroid position (parameter) Eq. (6)
F (R) SCHA free energy for the centroids R Eq. (14)
R(0) Minimum point of V (R) Eq. (30)
Req Minimum point of F (R) Eq. (15)
Φ Generic trial harmonic matrix (parameter) Eq. (6)
ρ̃R,Φ (R) Probability distribution of R for a given value of the parameters R, Φ Eq. (6)
�(R) Φ that minimizes the SCHA free energy functional at a given R Eq. (16)
(n)

�(R) Average of the nth derivative of V (R) with the probability ρ̃R,�(R)(R) Eq. (20)
φ Second derivative of V (R) in R(0) Eq. (51)

(n)

φ N th derivative of V (R) in R(0) Eq. (52)
D(F ) Second derivative of F (R) in Req, divided by the square root of the masses Eq. (29)
D(S) Matrix �(Req) divided by the square root of the masses Eq. (32)
(n)

D(S) Tensor
(n)

�(Req) divided by the square root of the masses Eq. (40)
D(0) Matrix φ divided by the square root of the masses Eq. (30)
(n)

D(0) Tensor
(n)

φ divided by the square root of the masses Eq. (60)
−1

A Inverse of the matrix A Eq. (34)
G(S) Green function associated to D(S) Eq. (34)
G(0) Green function associated to D(0) Eq. (53)

III. STRUCTURAL SECOND-ORDER PHASE TRANSITION
AND CURVATURE OF THE FREE ENERGY

In second-order phase transitions involving the position of
the atoms, e.g., in ferroelectric and in charge-density wave
phase transitions [9–22], we can use the centroids R to define
the order parameter, which is the observable measured in
diffraction experiments. The (temperature-dependent) func-
tion F (R) rules the phase transitions. At each temperature,
the system is in equilibrium in the (temperature-dependent)
configuration Req, where F (R) has a minimum. Therefore,
in Req, the first derivative of F (R) is zero, ∂F/∂Ra|Req =
0, and the Hessian matrix of F (R) (i.e., the curvature),
∂2F/∂Ra∂Rb|Req , is positive-definite.

Landau’s theory of second-order phase transitions [41]
shows that above a certain critical temperature Tc the equi-
librium configuration Req is in a high-symmetry phase Rhs.
As T decreases and approaches Tc from above, the minimum
of F (R) in Rhs becomes less and less pronounced. At T = Tc,
Rhs becomes a saddle point, i.e., the Hessian of F (R) in
Rhs develops at least one null eigenvalue, which becomes
negative by lowering further the temperature. At the same time,
the minimum point Req(T ), now depending on temperature,
continuously deviates from Rhs to different configurations
having lower symmetry. Since during the phase transition
the equilibrium configuration Req(T ) remains a continuous
function of temperature, these are also called “continuous
phase transitions.” In Fig. 1, we show an example of a typical
second-order phase transition.

In conclusion, at any temperature it is ∂F/∂Ra|Rhs = 0
and the phase transition is characterized by the change of
character of the Hessian matrix ∂2F/∂Ra∂Rb|Rhs

: at T > Tc

it is positive-definite, whereas as T < Tc it develops at least

one negative eigendirection indicating the distortion which
decreases the free energy. It follows that a method to estimate
the transition temperature Tc and the instability modes of a
second-order phase transition can be obtained by computing
the Hessian of F (R) in the high-symmetry configuration and
studying its evolution as a function of temperature. In the next
section, we will find explicit formulas for the first and second
derivatives of F (R).

IV. DERIVATIVES OF F(R)

From the definition of Eq. (16), we can calculate explicitly
the derivatives of F (R) with respect to R. Here we present
only the results, while the derivation is given in Appendix A.
For the first derivative, we have the intuitive result [see
Eq. (A21)]

∂F

∂R =
〈
∂V

∂ R

〉
ρ̃R,�(R)

. (18)

The derivative of the free energy is the average of the potential
derivative. In other words, the forces on the centroids are equal
to the average of the mechanical forces on the atoms. From
Eq. (18), for the equilibrium position Req defined in Eq. (15)
it is

0 =
〈
∂V

∂ R

〉
ρ̃Req,�(Req)

. (19)

For what follows it is convenient to define the nth-order
SCHA tensor, which generalizes Eq. (17) to higher orders:

(n)


a1···an
(R) =

〈
∂nV

∂Ra1 · · · ∂Ran

〉
ρ̃R,�(R)

. (20)
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Notice that we did not use the superscript (2) for the square
SCHA matrix. The nth-order SCHA tensor has the same
properties of the nth-order force constant (i.e., the nth
derivative of the potential). Notably, it is invariant with respect
to permutation of indices; it is invariant with respect to all
the symmetry operations (including lattice translations in a
crystal) associated to the configuration R [47]; and it satisfies
the acoustic sum rule (ASR), i.e., the sum over any atom index
vanishes [see Eq. (C16)].

Deriving a second time Eq. (18) with respect to R, we
obtain [see Eqs. (A22)–(A31)]

∂2F

∂Ra∂Rb
= 
ab +

∑
c1c2c3c4

(3)


ac1c2�
c1c2c3c4

(3)


c3c4b

+
∑

c1c2c3c4
d1d2d3d4

(3)


ac1c2�
c1c2c3c4c3c4d1d2�

d1d2d3d4
(3)


d3d4b,

(21)

where

�abcd = − h̄2

8

∑
νμ

F (0,ωμ,ων)

ωμων

ea
ν√
Ma

eb
μ√
Mb

ec
ν√
Mc

ed
μ√
Md

.

(22)

Here, ea
μ and ω2

μ are eigenvectors and eigenvalues of

ab/

√
MaMb, respectively, and

F (0,ων,ωμ) =

⎧⎪⎪⎨⎪⎪⎩
2

h̄

(
2nν + 1

2ων

− dnν

dων

)
if ων =ωμ

2

h̄

(
nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

)
if ων �=ωμ

.

(23)

The tensor abcd is the solution of the Dyson-like equation

abcd = (4)


abcd +
∑

l1l2l3l4

(4)


abl1l2�
l1l2l3l4l3l4cd . (24)

Notice that in all these equations the dependence of the
quantities on R is understood.

We have obtained for the second derivative a relation which
is different from the one found for the first derivative. Indeed,
as shown in Eq. (18), the first derivative of the SCHA free
energy is equal to the average of the first derivative of the
potential. On the contrary, the second derivative of the SCHA
free energy is equal to the average of the second derivative
of the potential, the SCHA matrix 
ab of Eq. (17), plus two
terms depending on the third- and fourth-order SCHA tensors.
In component-free notation, we can write Eq. (21) in compact
form:

∂2F

∂R∂R = � +
(3)

��
(3)

� +
(3)

����
(3)

�, (25)

where the contraction on the indices is understood. Moreover,
it is convenient to introduce a “superindex” A = (pq). In this

way, for example, �pqhk = �AB , pqhk = AB and
(4)


pqhk =
(4)


AB are square symmetric “supermatrices” of order (3Na)2,

and the contraction of indices between them can be seen as a
matrix product.

As explained in the previous sections, the curvature of
the free energy in a high-symmetry phase as a function of
temperature is essential in order to identify and character-
ize a second-order phase transition. Diagonalizing the real
symmetric matrix ∂2F/∂Ra∂Rb we obtain eigenvalues and
eigenvectors as a function of temperature. In the presence of a
second-order phase transition, there is at least one eigenvalue
that becomes negative at the transition temperature, and the
corresponding eigenvector identifies the instability distortion
pattern which reduces the free energy. By definition, the SCHA
matrix � is positive-definite [see comment after Eq. (11)]. On
the contrary, as shown in Eq. (B39), � is negative-definite

thus
(3)

��
(3)

� is negative-semidefinite. It is this term, which for
reasons that will be clear later we call “bubble” (see Sec. VI),
that allows the second derivative of the free energy to have
negative eigenvalues. The formula obtained for ∂2F/∂Ra∂Rb

also clarifies in this way the long-standing debate about the
possibility of having second-order phase transitions within the
SCHA [48,49]: the SCHA can describe a second-order phase

transition only if
(3)

� �= 0.
Using the interpretation of the fourth-rank tensors as

supermatrices of order (3Na)2, � is readily obtained by
inverting Eq. (24) in matrix form:

� = [1 −
(4)

��]−1
(4)

�. (26)

Substituting Eq. (26) into Eq. (25), we obtain the compact
expression for the free energy Hessian:

∂2F

∂R∂R = � +
(3)

� �[1 −
(4)

��]−1
(3)

�. (27)

This is the equation that has been implemented. It is also
interesting to write Eq. (27) in a more symmetric fashion:

∂2F

∂R∂R = � −
(3)

�W
1

1 + W
(4)

�W
W

(3)

�, (28)

where W = √−�. The adimensional real symmetric matrix

W
(4)

�W rules the convergence of the series [1 + W
(4)

�W ]−1.
For example, from Eq. (28) we clearly see that in the limiting

case where the absolute values of the eigenvalues of W
(4)
�W

are much smaller than one and W
(4)

�W can be discarded with
respect to the identity, the curvature is given by the SCHA
matrix plus the bubble only.

V. PHONONS IN THE SCHA

From the results obtained, it is tempting to use the curvature
of the free energy with respect to the centroids to define a
phonon-like dispersion. To this purpose, for each temperature,
we consider the free energy curvature in the corresponding
equilibrium configuration Req, divided by the square root of
the masses:

D
(F )

ab = 1√
MaMb

∂2F

∂Ra∂Rb

∣∣∣∣
Req

. (29)

This matrix can be considered as the temperature-dependent,
free energy-based, generalization of the temperature-
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independent harmonic dynamical matrix

D
(0)

ab = 1√
MaMb

∂2V

∂Ra∂Rb

∣∣∣∣
R(0)

. (30)

Here, R(0) is the temperature-independent configuration for
which the potential V (R) has a minimum. We associate the
“free energy dynamical matrix” D

(F )

ab to “free energy phonons,”
quasiparticles whose energies h̄�μ and polarization vectors εa

μ

are obtained by diagonalization as∑
b

D
(F )

abε
b
μ = �2

μεa
μ. (31)

Since D
(F )

ab is positive-definite if and only if ∂2F/∂Ra∂Rb|Req

is positive-definite, an instability in the system corre-
sponds to at least a frequency �μ becoming imaginary.
It is this fact that justifies the interpretation of D

(F )

ab as
a temperature-dependent generalized dynamical matrix de-
scribing temperature-dependent anharmonic phonons. It is
worthwhile to emphasize that the theory developed so far is
“static,” in the sense that it is not based on time-dependent
properties, but on the variation of the free energy with respect
to a static variation of the centroid position. Moreover, it is
important to observe that we cannot use

D
(S)

ab = 1√
MaMb


ab(Req) (32)

to study system instabilities and define phononlike particles,
even if in some cases it has given temperature-dependent
anharmonic phonons in good agreement with experiments
[3,13]. Indeed, D(S)

ab is not given by the second derivative of the
free energy. Moreover, by definition, D

(S)

ab is positive-definite,
thus it is impossible to observe any softening in its eigenvalues.

The free energy dynamical matrix D
(F )

ab is a particularly
important tool when we consider crystals. Indeed, in that
case we can use the same techniques that are standard for
the harmonic theory [50]. Exploiting the translational lattice
symmetry, we define the SCHA dynamical matrices D(F )(q) in
the unit cell as a function of the quasimomentum q. We can
explicitly calculate D(F )(q) on a coarse grid of the Brillouin
zone (BZ) and later Fourier interpolate the result to obtain the
matrix on an arbitrary finer grid or a path. Thus, diagonalizing
D(F )(q), we obtain the spectrum �2

μ(q) and the polarization
vectors εa

μ(q) on a path of the BZ. An imaginary phonon in a
point q indicates that the system is unstable for a distortion with
modulation q that reduces the lattice periodicity. This is, for
example, what happens in charge-density wave instabilities.
Therefore, with moderate workload, it is possible to have a
complete picture of the crystal instabilities. In particular, with
calculations on supercells of reasonable size it is possible, in
principle, to study lattice instabilities that are periodic on very
large supercells or even incommensurate.

VI. DIAGRAMMATIC REPRESENTATION

In this section, we give a perspicuous diagrammatic
description of Eq. (27), in order to reformulate it in a language
familiar to the field theorists. The diagrammatic description
can also be useful as a basis for further developments of the
theory, as we will see later in Sec. IX.

For fixed temperature, with the corresponding Req, we
define the quadratic “SCHA Hamiltonian”

H (S) =
∑

a

p2
a

2Ma

+ 1

2

∑
ab


ab(Req) (R − Req)
a(R − Req)

b,

(33)
and we consider the corresponding SCHA thermodynamic
Green function Gab

(S) (z) for the displacements normalized by
masses

√
Ma(R − Req)a . Since H (S) is quadratic,

−1

Gab
(S) (z) = z2δab − D

(S)

ab, (34)

where
−1

Gab
(S) indicates the inverse matrix of G

(S)

ab (similar notation
for the inverse will be used later also in other formulas). We
also consider χabcd

(S) (0), the SCHA static loop, i.e., the loop
with Gab

(S) and total frequency equal to zero:

χabcd
(S) (0) = 1

β

∑
l

Gac
(S) (i�l)G

bd
(S) (i�−l), (35)

where �l = 2πl/h̄β is the lth Matsubara frequency. With
standard techniques for Matsubara frequency summation we
obtain [2,51]

1

β

∑
l

Gac
(S) (i�l)G

bd
(S) (i�−l) = h̄2

4

∑
μν

F (0,ωμ,ων)

ωμων

ea
νe

b
μec

νe
d
μ,

(36)

with F (0,ωμ,ων) defined in Eq. (23). From Eqs. (22), (35),
and (36), we obtain a relation between the tensor �abcd and
the static loop χabcd

(S) (0):

χabcd
(S) (0) = −2�abcd

√
MaMbMcMd. (37)

Therefore, using Eqs. (29) and (32), formula (27) divided by
the square root of the masses gives

D(F ) = D(S) + �(S)(0), (38)

where, as usual, we have used bold symbols in component-free
notation and we have defined

�(S)(0) =
(3)

D(S)

(
−1

2
χ (S)(0)

)
×

[
1 −

(4)

D(S)

(
−1

2
χ (S)(0)

)]−1
(3)

D(S). (39)

Here we have generalized the definition (32) to the nth order
as

(n)

D(S)
a1...an

=
(n)


a1...an
(Req)√

Ma1 . . . Man

. (40)

Notice that we did not use the superscript (2) for the second-
order tensor defined by Eq. (32). In terms of the SCHA Green
function defined in Eq. (34), Eq. (38) is readily written as

−D(F ) =
−1

G(S)(0) − �(S)(0), (41)

which is equivalent to the Dyson-like equation

−
−1

D(F ) = G(S)(0) + G(S)(0) �(S)(0)
(−−1

D(F )

)
, (42)
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Π(S)(0)
−

−1

D(F )

∞∑

n=0

n

Π(S)

(4)

D(S)/4!
(3)

D(S)/3!

G(S)(0) G(S)(0)−
−1

D(F )

(B)

Π(S)

(a)

(b)

(c)

FIG. 2. (a) Diagrammatic representation of Eq. (42). (b) Dia-
grammatic representation of the SCHA self-energy �(S), Eq. (39).
Since in that equation only the static value �(S)(0) is considered, the
sum over the frequencies of the internal lines is performed, but the
total frequency is kept equal to zero. (c) Diagrammatic representation

of
(B)

�(S), the bubble part of the SCHA self-energy, Eq. (43).

where the matrix product is understood. If the opportune
diagram symmetry factors are taken into account, Eq. (42) with
Eq. (39) have the Feynman diagrams representation shown in
Figs. 2(a) and 2(b). This is the diagrammatic representation of
the curvature formula (27) (divided by the square root of the
masses). Analogous diagrammatic series has been obtained by
Götze and Michel in Ref. [42]. The first term of the series

giving �(S)(0) is the SCHA “bubble”
(B)

�(S)(0). It is given by the
formula

(B)

�(S)(0) =
(3)

D(S)
(− 1

2 χ (S)(0)
) (3)

D(S) (43)

and corresponds to the diagram in Fig. 2(c). The SCHA

“bubble” is the term
(3)

��
(3)

� of Eq. (25), divided by the square
root of the masses. This explains the name “bubble” given to
that term.

Before concluding this section, it is worthwhile to remark
that, in spite of the symbol used, at this level the �(S)(0) defined
in Eq. (39) is just an auxiliary quantity, without a specific

physical meaning. However, the choice of the symbol is not
casual because later we will interpreted it as a self-energy. This
will give a deeper meaning to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA) has
demonstrated to be an efficient method to analyze thermal
properties of solids in situations where the harmonic approxi-
mation breaks down [3–7,13,40]. The SSCHA is described in
Ref. [4] and consists in minimizing with a conjugate-gradient
(CG) method the functional F[ρ̃R,Φ] with respect to R and
Φ. The functional and its gradient are expressed as averages
taken with ρ̃R,Φ of observables O(R) = O(V (R),f(R)) that
are functions only of the potential V (R) and the forces f(R) =
−∂V/∂ R. The method is “stochastic” because these averages
are evaluated with the importance sampling technique. Since
the observables depend only on the position, Eqs. (9) and (10)
apply. The space of configurations is statistically sampled with
a (large) population of finite size NI , whose members R(I) are
distributed according to the probability density ρ̃R,Φ(R). For
each element R(I) = R + u(I), u(I) being the displacement from
the centroids R, the forces f(R + u(I)) and the potential energy
V (R + u(I)) are calculated by any energy-force engine, i.e.,
making use of first-principles methods or empirical potentials.
In that way the average integrals can be straightforwardly
computed. However, at each step of the CG minimization
algorithm, the distribution probability ρ̃R,Φ (R) changes. Thus,
in principle, at each minimization step a new population should
be generated and for its members the energies and the forces
should be calculated. In order to reduce the number of calls to
the energy-force engine, in actual calculations a reweighting
procedure is adopted [4]. Energy and forces are computed
only once for the population elements that are distributed
according to an initially fixed probability density ρ̃ in(R). The
approximate averages for a generic distribution probability
ρ̃R,Φ(R) are then computed as

〈O〉ρ̃R,Φ
� 1

NI

NI∑
I=1

ρ̃R,Φ (R + u(I))

ρ̃ in(R + u(I))

× O(V (R + u(I)),f(R + u(I))). (44)

Obviously, the equality holds for NI → +∞.
We want to use the stochastic approach also to compute

the free energy curvature through Eq. (27). Considering
a configuration R, after the SSCHA minimization of the
functional F[ρ̃R,Φ] with respect to Φ, the SCHA matrix �

for that configuration is available. Therefore we only need to

express
(3)

� and
(4)

� in a form that is suited for the stochastic
calculation (here and in what follows the dependence of the
matrices on R is understood). As demonstrated in Appendix C
[see Eqs. (C6), (C21a), (C12), (C21b), and (C22)], it can be
shown making use of integration by parts that

(3)


abc = −
∑
pq

ϒapϒbq〈upuq fc〉ρ̃R,�
, (45a)

(4)


abcd = −
∑
pqr

ϒapϒbqϒcr 〈upuqur fd〉ρ̃R,�
. (45b)
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Here, ϒab is the matrix obtained from 
ab through the
definition (11), and

fi = fi −
⎡⎣〈fi〉ρ̃R,�

−
∑

j


ij uj

⎤⎦. (46)

Equations (45) express the third- and fourth-order SCHA
tensors in terms of averages of forces and displacements only
[in the definition (46) the term subtracted from the forces fa is
computed analytically with negligible cost, since 〈∂V/∂ R〉

ρ̃R,�

and � are known]. Therefore, they can be calculated through
Eq. (44).

It is interesting to observe that, in the limit of an infinitely
large population sampling, adding to fi a term odd in the

displacements does not change the value of
(3)

� obtained from
Eq. (45a). Therefore the fi used in Eq. (45a) is actually defined
only up to an additive factor that is odd in the displacements.
Analogously, if we use an infinite sampling, the fi used in
Eq. (45b) is defined only up to an additive factor that is even in
the displacements. However, depending on the actual fi used,
we obtain different results when we use a finite sampling to
compute the averages. The specific choice of Eq. (46), identical
for both equations (45), guarantees that if the potential V is
quadratic, then the SSCHA tensors (i.e., the SCHA tensors

calculated stochastically)
(3)

� and
(4)

� are correctly zero with
any finite sampling used to compute the averages. Therefore
the definition (46) reduces the stochastic error and accelerates
the convergence. Notice that if we compute the curvature of
the free energy in a stationary point, since it is ∂F/∂R = 0
then from Eq. (18) the term 〈fi〉ρ̃R,�

in Eq. (46) is zero. In

particular, this is true when we evaluate the curvature in the
equilibrium configuration Req, which is the relevant case when
we study structural second-order phase transitions.

In the limit of a fully converged stochastic calculation,

the SSCHA tensors
(3)

� and
(4)

� satisfy both acoustic sum rule
(ASR) and invariance with respect to permutations of indices
and symmetry transformations. Actually, in Appendix C, it
is shown that the SSCHA nth-order tensor satisfies the ASR
with any finite population sampling, as long as the total force
acting on the system is zero for any population element (as it
must be), and the ASR is satisfied by �. Therefore it is not

necessary to impose any extra condition to make
(3)

� and
(4)

�

satisfy the ASR.
For the invariance properties the situation is different. We

can distinguish two kind of operators acting on a tensor
(n)

�: the
n! operators Tπ , which permute the tensor indices according
to the permutations π ∈ σn, and the Nsym operators TS , whose
action corresponds to the symmetry transformations S ∈ Gsym

(excluding lattice translations, if it is a crystal). If we are
considering a crystal, the SSCHA calculation is performed
on a supercell made of Nc unit cells, with periodic boundary
conditions. In that case we consider also the Nc operators Tl

whose action corresponds to the translations by lattice vectors
noncommensurate with the supercell l ∈ Glat. The SSCHA
tensors are invariant with respect to these operations only in

the limit NI → +∞ (for simplicity we consider the crystal
case):

Tπ

(n)

� =
(n)

� ∀π ∈ σn, (47a)

TS

(n)

� =
(n)

� ∀S ∈ Gsym, (47b)

Tl

(n)

� =
(n)

� ∀l ∈ Glat. (47c)

For calculations performed with finite-size populations, these
conditions are not satisfied. We enforce them by applying the
projectors Pperm, Psym, and Plat to the result:

Pperm = 1

n!

∑
π∈σn

Tπ , (48a)

Psym = 1

Nsym

∑
S∈Gsym

TS, (48b)

Plat = 1

Nc

∑
l∈Glat

Tl . (48c)

For calculations with finite sampling, the action of the
projectors (48) has two benefits: we obtain SSCHA tensors
with the correct properties and we reduce the statistical noise
and improve, with negligible cost, the rapidity of the statistical
convergence with respect to NI . Indeed, the necessity of
imposing the property (47a) is due to the fact that Eqs. (45)
are not symmetric with respect to permutation of indices. That
is caused by the arbitrariness in the choice of the variables
integrated by parts in the derivation of the formulas, shown
in Appendix C. As a consequence, an approximate evaluation
of the averages causes spurious asymmetries, which are elimi-
nated by applying the projectorPperm to the result. The necessity
of imposing the properties (47b) and (47c) is instead due to
the fact that, in general, the population generated to compute
the averages is composed of elements whose distribution in
configuration space does not respect the symmetries of the
system. This leads to spurious fluctuations which spoil the
symmetry properties of the result and which are eliminated by
applying the projectors Psym and Plat. Applying these projectors
to the result corresponds to computing the averages through
Eq. (44) using a larger population of Nlat × Nsym × NI elements
obtained by applying the Nlat × Nsym symmetry operations on
the NI members of the original population.

In conclusion, the formulas implemented in the SSCHA are

(3)


abc � PsymPlatPperm

1

NI

∑
I

ρ̃R,�(R + u(I))

ρ̃ in(R + u(I))

×
[
−
∑
pq

ϒapϒbq up
(I) u

q
(I) fc(R + u(I))

]
, (49a)

(4)


abcd � PsymPlatPperm

1

NI

∑
I

ρ̃R,�(R + u(I))

ρ̃ in(R + u(I))

×
[
−
∑
pqr

ϒapϒbqϒcr up
(I)u

q
(I)u

r
(I) fd (R + u(I))

]
.

(49b)
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VIII. PERTURBATIVE LIMIT

In this section, we analyze the lowest perturbative order of
the SCHA and of the free energy dynamical matrix D

(F )

ab . First,
we set some definitions. Expanding the potential V around its
minimum Ra

(0), the Hamiltonian H is written as

H = H (0) +
∑
n�3

1

n!

∑
a1···an

(n)

φa1...an
ua1 . . . uan , (50)

where ua = Ra − Ra
(0) is the displacement with respect to the

potential minimum,

H (0) =
∑

a

p2
a

2Ma

+ V (R(0)) + 1

2

∑
ab

φab uaub (51)

is the quadratic harmonic Hamiltonian, and

(n)

φa1...an
= ∂nV

∂Ra1 . . . ∂Ran

∣∣∣∣
R(0)

(52)

is the nth-order force constant tensor. Notice that for the
second-order force constant matrix φab we do not use the
superscript (2). In order to avoid confusion, it is worthwhile to

stress that the nth force constant
(n)

φa1...an
is the nth derivative of

the potential, evaluated at the potential minimum R(0), whereas

the nth SCHA tensor
(n)


a1...an
(R), defined in Eq. (20), is the

nth derivative of the potential averaged with the distribution
ρ̃R,�(R).

The part of the Hamiltonian in Eq. (50) not included in
H (0) defines the anharmonic part of the potential, which we
treat as a (small) perturbation of H (0). With Gab(z) and Gab

(0) (z)
we indicate the Green function of H and H (0) for the variable√

Ma(Ra − Ra
(0)), respectively. The latter is given as

−1

Gab
(0) (z) = z2δab − D

(0)

ab, (53)

where D
(0)

ab = φab/
√

MaMb is the harmonic dynamical matrix,
already defined in Eq. (30). The relation between the full and
harmonic Green functions is given by the Dyson equation

−1

G(z) =
−1

G(0)(z) − �(0)(z), (54)

which is equivalent to

G(z) = G(0)(z) + G(0)(z) �(0)(z) G(z), (55)

where, in order to use a consistent notation, we have indicated
with �(0)(z) the harmonic self-energy, i.e., the self-energy
obtained by taking H (0) as noninteracting unperturbed Hamil-
tonian. At the lowest perturbative order [2],

�(0)(z) �
(T )

�(0) +
(L)

�(0) +
(B)

�(0)(z), (56)

where
(L)

�(0),
(T )

�(0), and
(B)

�(0)(z) are the loop, tadpole and bubble
harmonic self-energies, respectively, which have the following
expressions:

(L)

�
(0)

ab = −1

2

∑
c1c2

(4)

D
(0)

abc1c2

[
1

β

∑
l

Gc1c2
(0) (i�l)

]
, (57)

(3)

D(0)/3!
(4)

D(0)/4!

(T )

Π(0)
(L)

Π(0)
(B)

Π(0)(z)

Π(0)(z)
G(0)(z) G(0)(z)G(z) G(z)

�Π(0)(z)

FIG. 3. Diagrammatic description of the harmonic perturbation
theory at the lowest perturbative order, see Eqs. (55)–(59). The dashed
line corresponds to the harmonic propagator. The double solid line
corresponds to the full propagator. Notice that in Fig. 2, we have

already used a double solid line to indicate
−1

D(F ). This is not casual

because later we will interpret
−1

D(F ) as the static full propagator [see

Eq. (69)]. Third- and fourth-order vertices are associated to
(3)

D(0)/3!

and
(4)

D(0)/4!, respectively [see definition (60)]. A sum over internal
degrees of freedom is performed.

(T )

�
(0)

ab = − 1

2

∑
c1c2
d1d2

(3)

D
(0)

abc1

(0)

Gc1c2
(0) (0)

(3)

D
(0)

c2d1d2

[
1

β

∑
l

Gd1d2
(0) (i�l)

]
,

(58)

(B)

�
(0)

ab(z) = − 1

2

∑
c1c2
d1d2

(3)

D(0)
ac1c2

(3)

D
(0)

bd1d2

×
[

1

β

∑
l

Gc1c2
(0) (i�l)G

d1d2
(0) (z − i�l)

]
. (59)

Here we have generalized the definition (30) of the harmonic
dynamical matrix to the nth order:

(n)

D(0)
a1···an

=
(n)

φa1···an√
Ma1 · · ·Man

. (60)

Notice that loop and tadpole self-energies do not depend on
the value of the frequency z. In fact they are real symmetric.
On the contrary, the bubble is a complex symmetric matrix
depending on z. In Fig. 3, the diagrammatic representation of
the harmonic perturbative result at the lowest order is shown.

From the SCHA equations, retaining only the lowest-order
corrections to the harmonic values Ra

(0) and φab, using the
SCHA matrix defined in Eq. (32), we obtain [see Eq. (D10)]

D(S) � D(0) +
(T )

�(0) +
(L)

�(0). (61)
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�
G(0)(z)

(b)

(a)

G(S)(z)

G(S)(z)

−
−1

D(F )

G(0)(z)

G(0)(0)

G(0)(0)�

−
−1

D(F )

FIG. 4. Diagrammatic description of the SCHA results at the
lowest harmonic perturbative order. (a) Relation between the SCHA
and the harmonic propagator, Eq. (63). (b) Relation between the free
energy dynamical matrix within SCHA and the harmonic propagator,
Eq. (66).

Equivalently, using the SCHA propagator G(S)(z) defined in
Eq. (34), we can write

−1

G(S)(z) �
−1

G(0)(z) −
(T )

�(0) −
(L)

�(0), (62)

that is,

G(S)(z) � G(0)(z) + G(0)(z)[
(T )

�(0) +
(L)

�(0)]G(S)(z). (63)

At the lowest perturbative order, we also have [see Eq. (D13)]

�(S)(0) �
(B)

�(S)(0) �
(B)

�(0)(0), (64)

where �(S)(0) and
(B)

�(S)(0) are the quantities defined in Eqs. (39)
and (43), respectively. From Eqs. (61)–(63), we see that at the
lowest perturbative order, the SCHA and harmonic propagators
are related through the harmonic loop and tadpole self-energies
only [52]. However, from Eqs. (38) and (64), we see that
in order to obtain the SCHA dynamical matrix, defined in
Eq. (29), we need the harmonic static bubble too:

D(F ) � D(0) +
(T )

�(0) +
(L)

�(0) +
(B)

�(0)(0). (65)

Notice that, in particular, this implies that the term
(3)

����
(3)

�

in the curvature formula, Eq. (25), can be discarded at the
lowest perturbative order. In terms of the harmonic propagator
defined in Eq. (53), the formula (65) can be written as [cf.
Eq. (42)]

−
−1

D(F ) � G(0)(0) + G(0)(0)[
(T )

�(0) +
(L)

�(0) +
(B)

�(0)(0)]
(−−1

D(F )

)
.

(66)

Equations (63) and (66) are the main SCHA results at the
lowest harmonic perturbative order. They are represented in
diagrammatic form in Figs. 4(a) and in 4(b), respectively.

It is interesting to observe that, at the lowest perturbative
order, the free energy curvature takes into account only the

static harmonic bubble, whereas in the full propagator the
bubble actually depends on the frequency z, as we can see from
Eq. (56). This is consistent with the fact that we have developed
only a “static” theory (obviously, this fact does not have
consequences for the tadpole and loop term, because they do
not depend on the frequency). In the next section, we will inves-
tigate possible dynamic extensions of the results found thus far.

IX. ANSATZ FOR A DYNAMIC THEORY

In this section, we propose a possible “dynamical” ex-
tension of the “static” results obtained above. This could be
used to interpret the outcomes of inelastic scattering processes
between phonons and external incident particles (typically
neutrons) in the framework of the SCHA approximation. The
extension that we are going to present is reasonable because
it returns the expected results in two limits. In the static
limit, it gives results coherent with the ones already obtained
for the free energy curvature and at the lowest perturbative
order it gives the correct results already known in literature.
Nevertheless, it is worthwhile to stress that, at variance with
the static results, the dynamical extension that we are going
to propose is only an ansatz, reasonable but not based on a
rigorous demonstration. For that reason, it can be considered
as a basis for a future rigorous extension of the static theory.

For fixed temperature and relative Ra
eq, we consider the full

Green function Gab(z) for H and the Green function G
(S)

ab(z)
for H (S) in the variable

√
Ma(Ra − Ra

eq). We consider a Dyson-
type relation between them:

−1

G(z) =
−1

G(S)(z) − �(S)(z), (67)

which is equivalent to

G(z) = G(S)(z) + G(S)(z) �(S)(z) G(z), (68)

where �(S)(z) is the SCHA self-energy. The aim of this section
is to propose an expression for �(S)(z). The first assumption
is that its static value, i.e., its value for z = 0, is given by
Eq. (39). At that level, the symbol used did not have a physical
meaning. Now we are explicitly interpreting it as the static
SCHA self-energy. Comparing Eq. (67) to Eq. (41), this is
equivalent to saying that

−1

G(0) = −D(F ). (69)

This is the same kind of relation that exists between the
harmonic static Green function and the harmonic dynamical
matrix. Therefore Eq. (69) gives a deeper meaning to the
consideration in Sec. V that D(F ) is the anharmonic gener-
alization of the harmonic dynamical matrix. A real pole of
the Green function corresponds to the energy of a phonon
with zero linewidth, i.e., with infinite lifetime. Equation (69)
means that we observe a phonon with zero energy, i.e., we
see a phonon softening and therefore an instability, when
D(F ) has a null eigenvalue. This is exactly the result found
in Secs. IV and V. Thus the interpretation of Eq. (39) as the
static SCHA self-energy is consistent with the rigorous (static)
results obtained for the free energy curvature.

The subsequent step is to give an expression for the SCHA
self-energy at z different from zero. As a second part of our
hypothesis, we assume for �(S)(z) the same structure of �(S)(0),
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given by Eq. (39) and illustrated by the diagrams in Fig. 2(b),
but readily generalized to any z. Therefore it is

�(S)(z) =
(3)

D(S)
(− 1

2 χ (S)(z)
)[
1 −

(4)

D(S)
(− 1

2 χ (S)(z)
)]−1 (3)

D(S),

(70)

with

χabcd
(S) (z) = 1

β

∑
l

Gac
(S) (i�l)G

bd
(S) (z − i�l). (71)

Using standard techniques for Matsubara frequencies summa-
tions [51], we obtain an explicit expression for this term:

1

β

∑
l

Gac
(S) (i�l)G

bd
(S) (z − i�l)

= h̄2

4

∑
μν

F (z,ωμ,ων)

ωμων

ea
ν e

b
μec

νe
d
μ, (72)

where ω2
μ and ea

μ are eigenvalues and corresponding eigenvec-
tors of D

(S)

ab, respectively, and for z �= 0,

F (z,ων,ωμ) = 2

h̄

[
(ων + ωμ)[1 + nν + nμ]

(ων + ωμ)2 − z2

− (ων − ωμ)[nν − nμ]

(ων − ωμ)2 − z2

]
. (73)

The assumption expressed by Eqs. (70) and (71) is reasonable
because at the lowest perturbative limit it gives the correct
result. Indeed, by using the same arguments of Sec. VIII, at
the lowest perturbative order we readily generalize Eq. (64) to

�(S)(z) �
(B)

�(0)(z). (74)

Thus, from Eqs. (62) and (67), we obtain
−1

G(z) �
−1

G(0)(z) −
(T )

�(0) −
(L)

�(0) −
(B)

�(0)(z), (75)

which is the correct perturbative result shown in Eqs. (54)
and (56). In conclusion, according to our ansatz, the full
Green function G(z) is (approximately) given by Eq. (68) with
Eqs. (70) and (71). In that way, we obtain a minimal extension
of the static theory, which reproduces the correct instabilities
and gives the correct results at the lowest perturbative level.
By using this formula we can study anharmonic effects in
a nonperturbative way also for the dynamic case. In Fig. 5,
we give the diagrammatic expression for our ansatz, the
self-energy �(S)(z) being the one in Fig. 2(b). An analogous
diagrammatic series has been proposed in Ref. [45].

Π(S)(z)
G(S)(z) G(S)(z)G(z) G(z)

FIG. 5. Diagrammatic representation of our dynamical conjec-
ture, Eq. (68). It is the generalization to z �= 0 of the static result
represented in Fig. 2(a). With G and G(S) we indicate the full
Green function and the SCHA Green function, Eq. (34), for the
variable

√
Ma(Ra − Ra

eq), respectively. The SCHA self-energy �(S)

is represented in Fig. 2(b).

It is interesting to observe that, inspired by the perturbative
result in Eq. (56), one could be tempted to naively obtain a
dynamic SCHA theory simply by adding a dynamic bubble
term on top of the standard SCHA results [which, as shown
in Eq. (62), contain only tadpole and loop at the lowest
perturbative level]. This approach of adding a dynamic bubble
has been taken, for example, in PbTe [53] and PdH [54],
where the strong anharmonicity induces satellite peaks in
the spectral function. Now we can see that this essentially
consists in adopting our ansatz, but discarding all the terms
in �(S)(z) described by the diagrams of Fig. 2(b), except the
nonperturbative SCHA dynamic bubble given in Fig. 2(c):

(B)

�(S)(z) =
(3)

D(S)
(− 1

2 χ (S)(z)
) (3)

D(S). (76)

This, in general, is not justified. As long as we consider a
nonperturbative situation, there is in principle no hierarchy
that allows to discard the other terms. Therefore the term given
by Eq. (76) has to be considered an incomplete expression for
�(S)(z) and a better choice is to take into account the full ex-
pression of Eq. (70). Of course, there can be situations in which
even if the regime is not perturbative, because the third order is
not smaller than the harmonic term, nevertheless the superior
orders are smaller. In that case, it would be justified to use
Eq. (76) to evaluate �(S)(z). However, this is a further assump-
tion that, in order to be adopted, has to be justified case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our findings,
we apply the theory to a toy model based on the SnTe
crystal (an analogous model could be used for GeTe). SnTe
crystallizes at room temperature and ambient pressure in the
NaCl-structure (Fm3m), called β-SnTe phase, where two
fcc lattices of Sn and Te interpenetrate. At low temperature,
around 100 K, it undergoes a phase transition and stabilizes
in a rhombohedral structure (R3m), called α-SnTe. The phase
transition can be described in terms of a two-step symmetry
reduction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along the
cube diagonal [55]. We concentrate on the first distortion.
We define the interatomic potential V (u) of the toy model
as a function of the displacements ua = Ra − Ra

(0) from the
equilibrium position of the rock-salt structure R(0) and we
keep, beyond the quadratic part, only the anharmonic third-
and fourth-order terms:

V (u) = 1

2

∑
ab

φabu
aub + 1

3!

∑
abc

(3)

φabc uaubuc

+ 1

4!

∑
abcd

(4)

φabcd uaubucud. (77)

The harmonic matrix φab has been obtained from first-
principles calculation for SnTe on a 2 × 2 × 2 grid of the
Brillouin zone (BZ) (details in Appendix E). With the exper-
imental lattice parameter aexp = 6.312 Å, we do not observe
any instability in the total energy (i.e., the harmonic matrix is
positive-definite). However, a lattice instability appears and
increases at � ∈ BZ as we increase the lattice parameter.
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FIG. 6. Harmonic phonon dispersion for the toy model along an
high-symmetry path of the BZ.

Therefore in order to achieve, for explicative purposes, an
increased instability at the harmonic level, we calculated ab
initio the harmonic matrix with a higher lattice parameter:
atoy = 6.562 Å. Moreover, in order to keep the toy model
as simple as possible and focus on the main purpose of the
numerical test, we ignored the LO-TO splitting at �, which is
present in real undoped SnTe samples. In Fig. 6, we show
the obtained (harmonic) phonon dispersion along a high-
symmetry path of the fcc BZ. There are imaginary phonons in
several points, the optical phonon in � corresponding to the
highest instability.

For the third- and fourth-order contributions, we follow
the model described in Refs. [56,57]. We define short-
range anharmonic terms by using reciprocal displacements
of nearest-neighbor atoms (in the rock-salt structure each
atom has six nearest neighbors). In particular, as explained

in Appendix E, in our model,
(3)

φabc is proportional to a single

parameter p3, and
(4)

φabcd is a linear function of two parameters

p4, p4χ . We take p4 = 7.63 eV/Å
4
, p4χ = 4.86 eV/Å

4
, and

p3 = 6.70 eV/Å
3
.

A. Free energy curvature

We consider the free energy profile obtained by displacing
the atoms in the unit cell along the [111] cubic direction. In
order to describe this distortion, we write the atomic position
R as a function of a scalar, adimensional parameter Q:

R(Q) = R(0) + Q(R(1) − R(0)), (78)

where R(1) is the configuration corresponding to the minimum
of the potential energy along the distortion path. Therefore
R(Q) is linear, Q = 0 and Q = 1 corresponding to the high-
symmetry phase (Fm3m) and to the low-symmetry energy
minimum (R3m), respectively. In Fig. 7, we show �V (R(Q)),
the variation of the potential (per unit cell) along this distortion
path. This curve depends on φab, p4, and p4χ . The harmonic
term is responsible for the initial decrease whereas the fourth-
order term gives the subsequent increase. On the contrary, due
to the symmetry of the rock-salt structure, the value of p3 is
not relevant for the energy pattern (as a matter of fact, the
value of p3 does not affect the energy value of any unit cell
configurations).
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FIG. 7. Variation of the free energy, at three temperatures (0,
150, and 300 K), as a function of the atomic displacement of
Eq. (78). (Top) Without third order. (Bottom) With third order,

p3 = 6.70 eV/Å
3
. Vertical axis: variation of the free energy (per

unit cell) with respect to the value in the undistorted position,
�F (Q) = F (Q) − F (0), in meV. Horizontal axis: order parameter
Q. In the two plots, the (temperature independent) variation of the
potential energy �V (Q) = V (Q) − V (0) is also shown.

The free energy along the path has been calculated with
the SSCHA on a 2 × 2 × 2 supercell. Fixed R and the
temperature, the GB functional F[ρ̃R,Φ] has been minimized
with respect to Φ as described in Refs. [3,4]. In Fig. 7, we show
a complete variation path for the free energy �F (R(Q)) at
three temperatures. For reasons that will be clear in a while, we
studied also the case without third order (p3 = 0). However,
it is interesting to remark that at Q = 0 the SCHA result is
independent from p3.

A first remarkable, somewhat counterintuitive, conclusion
can be deduced from the results of Fig. 7. While the potential
energy path V (Q) is independent from p3, at given temperature
the two free energy paths F (Q) obtained with p3 = 0

and p3 = 6.70 eV/Å
3

are considerably different. This has
important consequences. The presence or not of a second-order
phase transition and, when there is such a transition, the
transition temperature Tc and the low-symmetry equilibrium
configuration Req for T < Tc are properties that cannot be
inferred from the potential energy profile.

From the values of the free energy computed near Q = 0,
the curvature in the origin d2F/dQ2|Q=0 has been evaluated
by finite difference. The results at four temperatures are shown
with dots in Fig. 8. We compare these values with the curvature
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FIG. 8. Curvature of the free energy in the high-symmetry phase,
d2F/dQ2|Q=0, as a function of temperature T . The transition
temperature Tc is around 140 K. Lines: curvature calculated with
Eq. (80). Three different quantities, contracted with dR/dQ, are
shown (see legend). Dots: curvature, with and without third order,
estimated by finite difference from the values of the free energy
calculated for several configurations around the high-symmetry
phase.

in Q = 0 calculated by contracting dR/dQ with the formula
for ∂2F/∂R∂R of Eq. (25):

d2F

dQ2
= dR

dQ

∂2F

∂R∂R
dR
dQ

(79)

= dR
dQ

�
dR
dQ

+ dR
dQ

(3)

��
(3)

�
dR
dQ

+ dR
dQ

(3)

����
(3)

�
dR
dQ

.

(80)

This formula is evaluated at Q = 0. In order to be consistent
with the finite differences result, all the ingredients have been
calculated by using the SSCHA on a 2 × 2 × 2 supercell.
Once the SSCHA minimization at Q = 0 has been completed
and the converged value for �(R(0)) has been obtained,
(3)

�(R(0)) and
(4)

�(R(0)) have been computed using Eq. (49). For
each temperature, we used the converged value of �(R(0))
to generate the population used to compute the averages.
Therefore, in this case, it is ρ̃ in(R) = ρ̃R,�(R). Notice that, as
explained in Sec. VII, since the calculation has been performed
in a stationary point of the free energy, the term 〈fi〉

ρ̃R,�

on the

right-hand side of Eq. (46) is zero.
For explicative purposes, we have used Eq. (25) to express

the curvature. Thus we have three terms in Eq. (80), and in
Fig. 8, we plot three lines to show their different contributions.
The term obtained from � does not depend on the value of p3,
whereas the other two terms depend quadratically on p3. As
a consequence, [dR/dQ� dR/dQ]Q=0 gives the curvature
in the high-symmetry phase when the third order is absent.
This is confirmed, within the statistical error (�2 meV), by
comparing the red curve and the red dots in Fig. 8. For p3 =
6.70 eV/Å

3
the other two terms [dR/dQ

(3)

��
(3)

� dR/dQ]Q=0

and [dR/dQ
(3)

����
(3)

� dR/dQ]Q=0 are necessary in order

to obtain the curvature. This is confirmed by comparing the
blue curve and the blue dots in Fig. 8. As explained in Sec. VIII,
only at the lowest perturbative order it is possible to neglect the

term [dR/dQ
(3)

����
(3)

� dR/dQ]Q=0. Indeed, in Fig. 8, we
show with a yellow line the curvature computed with only the
SCHA matrix and the bubble. In this case, the difference with
respect to the correct value increases with temperature and,
even if small, it is already beyond the statistical error at 250 K.

In this section, we have numerically proved the correctness
of Eq. (25). We conclude with a consideration. As already
stressed in Sec. IV, the first term of Eq. (80) is always positive.
Therefore, with p3 = 0 it is possible to observe only a first-
order phase transition within the SCHA approximation. With

p3 = 6.70 eV/Å
3
, the plot in Fig. 8 shows that the free energy

curvature in Q = 0 changes sign for T � 140 K. However, in
Fig. 7, we see that at T = 150 K the free energy has already
developed a lower minimum in |Q| � 0.9. As a consequence,
the toy model studied undergoes a first-order phase transition
even with p3 different from zero.

B. Phonons

In this section, we apply the concept of free energy
dynamical matrix defined in Sec. V. To be precise, fixed the
temperature, we compute the second derivative of the free
energy in R(0), divided by the square root of the masses.
Notice that properly speaking, this is D(F ) only for T > Tc,
when Req is equal to R(0), because at temperatures below the
transition temperature Req departs from R(0). Nevertheless, for
explicative purposes and having this caveat in mind, we will
use the same symbol even at T < Tc.

The matrix D(F ) is given by the matrix D(S) plus the static
self-energy �(S)(0) which, in turn, is made of the bubble term
(B)

�(S)(0) plus other factors, negligible at the lowest perturbative
level [see Eqs. (38), (39), (43), and (64)]. Since we are
considering a crystal, we exploit the lattice translational
symmetry and we write the dynamical matrices in the unit
cell as a function of the quasimomentum. In Fig. 9, we plot
the spectrum of these matrices along a high-symmetry path
of the BZ. We consider two temperatures. The matrix D(S)

coincides with the free energy dynamical matrix D(F ) when
the third order is absent. Since D(S) is positive-definite, the

spectrum is always positive. However, with p3 = 6.70 eV/Å
3

the dynamical matrix D(F ) is qualitatively different from
D(S). Below the transition temperature the phonon spectrum
becomes imaginary (negative eigenvalue) in �, and only in that
point. The other instabilities that were present in the harmonic
phonon spectrum, Fig. 6, have been washed out by the zero-
point energy and anharmonicity. Notice that in this case the
comparison between the harmonic and the free energy dynam-
ical matrix is particularly meaningful because, for symmetry
reasons, both are computed in the same point R(0). In Fig. 9,
we also show the spectrum obtained by adding only the bubble
(B)

�(S)(0) to D(S). From the results shown in Fig. 8, we expected in
� a very small difference between the full formula and the one
considering only the bubble. However, here we have a more
complete picture. As we can see, in other points of the BZ the
spectrum is more affected by the presence of terms beyond the
bubble. For example, at 400 K for the fifth mode in L, the terms
beyond the bubble change the spectrum around 13 cm−1.
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FIG. 9. Spectrum along a BZ high-symmetry line of the matrix D(S), independent of p3, and of the free energy dynamical matrix D(F ) =
D(S) + �(S)(0) for p3 = 6.70 eV/Å

3
, at two temperatures. When the third order is equal to zero, D(F ) is equal to D(S). For p3 = 6.70 eV/Å

3
,

the system shows phonon softening, i.e., instability, in �. The spectrum obtained by adding only the bubble
(B)

�(S)(0) to D(S) is also shown. At

400 K, it is marked the considerable difference, around 13 cm−1, between the energies of the fifth mode in L obtained with D(S) +
(B)

�(S)(0) and
with D(F ).

C. Convergence

Since for our test we used a toy model, i.e., an analytic
potential, we could evaluate the averages using populations of
very big size at small computational cost. However, in view of
first-principles applications for realistic materials, we carefully
performed convergence tests of the curvature formula with
respect to the population size NI .

First, we tested the convergence of d2F/dQ2|Q=0 at various
temperatures. As said, for each temperature we calculated the
curvature using the converged value of �(R(0)) to generate the
population used to compute the averages in Eq. (49). As shown
in the upper left-hand panel of Fig. 10, the convergence can be
considered reached with NI = 104. However, it is worthwhile
to say that, in general, fitting the values of the curvature
versus temperature with a polynomial allows to wash out
part of the stochastic noise and obtain good estimations for
Tc with smaller populations. In this case, for example, fitting
with a fourth-degree polynomial the results obtained with
NI = 103 gives a value for Tc, which is only 9 K smaller than
the converged one.

As we have seen in Fig. 8, for d2F/dQ2|Q=0, the terms be-

yond the bubble, which depend on
(4)

�, have a limited relevance.
For that reason, we performed an analogous convergence test
for the frequency of the fifth mode in L of D(F ). Indeed, as
shown in Fig. 9, for that specific mode, the terms beyond the

bubble play a non-negligible role in the determination of the
spectrum. Therefore this quantity is particularly significant to
analyze the convergence of the different terms comprising the
curvature formula. Here, as in the previous paragraph, with
D(F ) we are indicating the curvature of the free energy in R(0)

divided by the square root of masses, even at temperatures
below Tc. As shown in the upper right-hand panel of Fig. 10,
also in this case the convergence can be considered reached
with NI = 104. However, the absolute stochastic error is
already smaller than 3 cm−1 with NI = 103.

It is interesting to see how the two terms
(3)

� and
(4)

� affect
the convergence, separately. To that end, we plot in the other
panels of Fig. 10, the curvature and the frequency of the chosen

mode, versus temperature, obtained once with
(3)

� computed

with different population sizes NI but with
(4)

� fixed to the
converged value (obtained with a population of 105 elements),
and in the other case the inverse. The conclusion is that the total
convergence is affected in a similar way from the two tensors
(3)

� and
(4)

�. This could be surprising since the fourth-order tensor
(4)

� is obtained by averaging a quantity that depends three times

on the displacements, whereas for the third-order tensors
(3)

�
it is averaged a less complicated quantity which depends
only two times on the displacements. However, it has to be

considered that in the curvature formula
(4)

� is fully contracted
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FIG. 10. Convergence test. Left-hand column: curvature in the high-symmetry phase, for the distortion considered, as a function of the
temperature. Right-hand column: frequency of the fifth mode in L (also highlighted in Fig. 9) as a function of temperature. For this mode, the

effect of the terms beyond the bubble is not negligible. Populations of different size are used to compute the tensors
(3)

� and
(4)

� with Eq. (49).
Upper row: different population sizes are used to compute both tensors. With population of 104 elements the result can be considered converged

within the statistical error. Second row (third row): different population sizes are used to compute only
(3)

�(
(4)

�) whereas
(4)

�(
(3)

�) is computed with
105 elements. In the two cases, the convergence trend is similar.

(at variance with
(3)

�). Indeed, the random fluctuations on the
single components tend to cancel each other and, thus, the
convergence of a contracted tensor is expected to be faster
than the convergence of a single tensor component.

XI. CONCLUSIONS

In this work, we present an approach to study structural
second-order phase transitions in molecules and solids
within the self-consistent harmonic approximation. The

developed method allows to estimate transition temperature
and instability modes. It is based on the analytic formula
giving the second derivative of the SCHA free energy with
respect to the average atomic positions. The Hessian of the
SCHA free energy is also expressed in terms of thermal
averages of forces and displacements. Therefore the method
is suitable for a stochastic implementation in conjunction
with any energy-force engine. Considering a configuration,
it allows to calculate directly the free energy curvature once
the SSCHA calculation has been performed in that point. As
a consequence, it permits to avoid the very computational
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demanding finite difference approach of computing the
curvature through several SSCHA calculations for different
configurations [6]. Moreover, the imposition of symmetries on
the result reduces the statistical noise and speeds up statistical
convergence with respect to the population size used to
compute the averages with the importance sampling technique.

The efficiency of this method makes it ideal to be used in
conjunction with first-principles energy-force engines to study
realistic materials, such as ferroelectrics or CDW materials.
With the curvature formula it is possible to find the instabilities
of a general condensed matter system. In particular, the method
is especially convenient for crystals, since by exploiting the
lattice translational symmetry and the Fourier interpolation
technique it is possible to find distortions lowering the free
energy with any modulation in space (e.g., periodic on large
supercells or even incommensurate) with SSCHA calculations
performed on supercells of moderate size. In order to demon-
strate our findings, numerical tests have been performed on a
toy model. The results confirm both correctness of the theory
and numerical efficiency of the implemented method.

In addition to its practical utility, the developed theory sheds
light on several fundamental aspects of the SCHA. In particu-
lar, the role of the auxiliary effective quadratic Hamiltonian is
clarified. It is shown that the SCHA matrix is only a term of
the free energy Hessian and, in general, it does not define an
anharmonic dynamical matrix. On the contrary, an anharmonic
temperature dependent, free energy based, dynamical matrix
is obtained through the free energy curvature. It generalizes
the temperature independent harmonic dynamical matrix and
defines temperature dependent anharmonic phonons.

The theory developed for the SCHA free energy curvature
is static, as it does not take into account any dynamical
effects. Inspired by a perspicuous diagrammatic interpretation
of the results, we propose a tentative minimal dynamic
extension of the static theory in order to associate spectral
functions with anharmonic phonons and interpret the results of
scattering processes in a full nonperturbative way. Similarly,
the dynamic theory allows to calculate phonon lifetimes in
the nonperturbative limit. At variance with the curvature
formula, the suggested dynamic extension is not based on a
rigorous demonstration. Nevertheless, it is expected to give
good results, because it is correct in both static limit and
lowest perturbative limit, and thus it opens the way to further
theoretical developments and interesting applications.

ACKNOWLEDGMENTS

The authors acknowledge support from the Graphene Flag-
ship. I.E. acknowledges financial support from the Spanish
Ministry of Economy, Industry, and Competitiveness (Grant
No. FIS2016-76617-P). M.C. acknowledges support from
Agence Nationale de la Recherche under contract ANR-
13-IS10-0003-01, from the Graphene Flagship, PRACE for
awarding us access to resource on Marenostrum at BSC and
the computer facilities provided by CINES, IDRIS, and CEA
TGCC (Grant EDARI No. 2017091202).

APPENDIX A: PROOFS OF THE SCHA METHOD

In this appendix, we give an explicit demonstration of the
SCHA self-consistent equation, Eq. (17), and of the expression

for the first and second derivative of the SCHA free energy,
Eqs. (18) and (21), respectively. We find convenient to use
a notation slightly different from the one used in the main
text. Considering a trial harmonic matrix Φab we define three
matrices from it: the matrix Dab = Φab/

√
MaMb; the matrix

Eab = ∑
μ ξ 2(ω2

μ) ea
μeb

μ, where ω2
μ and ea

μ are eigenvalues
and eigenvectors of Dab, respectively, and ξ 2(ω2

μ) = h̄(1 +
2nμ)/2ωμ, where nμ = 1/(eβh̄ωμ − 1) is the bosonic average
occupation number; and the matrix Ψ ab = Eab/

√
MaMb.

Introducing the diagonal mass matrix Mab = δabMa , we can
summarize these definitions in the compact form

D = M− 1
2 Φ M− 1

2 , (A1a)

E = ξ 2(D), (A1b)

Ψ = M− 1
2 E M− 1

2 . (A1c)

In this notation, the matrix ϒ of Eq. (11) coincides with the

inverse of Ψ , which we indicate with the symbol
−1

Ψ . Thus the
thermal average of an observables O(R) that is function only
of the position is given by [58]

〈O〉ρ̃R,Φ
= 1√

det (2πΨ )

∫
O(R + u)e− 1

2 u
−1
Ψ u du. (A2)

For the subsequent derivation, it is convenient to perform the
change of variable

ua =
∑

μ

La
μ yμ with La

μ = ea
μ√
Ma

ξμ, (A3)

where we have introduced the compact notation ξ 2
μ = ξ 2(ω2

μ).
With that change of variable, the average is written as a
Gaussian integral:

〈O〉ρ̃R,Φ
=
∫

O(R + L y) [dy], (A4)

where

[dy] =
3Na∏
μ=1

e− (yμ )2

2√
2π

dyμ. (A5)

We now demonstrate the following two relations:

∂

∂Ra
〈O〉ρ̃R,Φ

=
〈

∂O

∂Ra

〉
ρ̃R,Φ

, (A6a)

∂

∂Φab

〈O〉ρ̃R,Φ
= 1

2

∑
cd

∂Ψ cd

∂Φab

〈
∂2O

∂Rc∂Rd

〉
ρ̃R,Φ

. (A6b)

From the explicit expression of the average, the first identity
is trivially obtained. In order to demonstrate the second one,
we use integration by parts:

∂

∂Φab

〈O〉ρ̃R,Φ
=
∑

c

∫
∂O

∂Rc
(R + L y)

∑
μ

∂Lc
μ

∂Φab

yμ [dy]

= −
∑

c

∑
μ

∂Lc
μ

∂Φab

∫
∂O

∂Rc
(R + L y)

∂[dy]

∂yμ
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=
∑
cd

∑
μ

∂Lc
μ

∂Φab

Ld
μ

∫
∂2O

∂Rc∂Rd
(R + L y) [dy]

= 1

2

∑
cd

∂

∂Φab

(∑
μ

Ld
μLc

μ

)

×
∫

∂2O

∂Rc∂Rd
(R + L y) [dy]

= 1

2

∑
cd

∂Ψ cd

∂Φab

∫
∂2O

∂Rc∂Rd
(R + L y) [dy]

= 1

2

∑
cd

∂Ψ cd

∂Φab

〈
∂2O

∂Rc∂Rd

〉
ρ̃R,Φ

, (A7)

the boundary terms at infinity being zero due to the exponen-
tial.

Denoting with F̃R,Φ the free energy of ρ̃R,Φ , we prove next
the following relations:

∂

∂Ra

[
F̃R,Φ − 〈ṼR,Φ〉ρ̃R,Φ

] = 0, (A8a)

∂

∂Φab

[
F̃R,Φ − 〈ṼR,Φ〉ρ̃R,Φ

] = −1

2

∑
cd

Φcd

∂Ψ cd

∂Φab

, (A8b)

where ṼR,Φ = 1/2
∑

ab Φabu
aub is the trial potential. Indeed,

since the trial Hamiltonian is quadratic, we have the standard
result

F̃R,Φ =
∑

μ

[
h̄ωμ

2
− 1

β
ln(1 + nμ)

]
. (A9)

Therefore, since dnμ/dωμ = −βh̄nμ(1 + nμ),

∂F̃R,Φ

∂ω2
μ

= 1

2
ξ 2
μ. (A10)

The matrices Dab and Eab have same eigenvectors but
eigenvalues ω2

μ and ξ 2
μ, respectively. Thus

∂F̃R,Φ

∂Dab

=
∑

μ

∂F̃R,Φ

∂ω2
μ

∂ω2
μ

∂Dab

(A11)

= 1

2

∑
μ

ξ 2
μ

∂ω2
μ

∂Dab

(A12)

= 1

2

∑
cd

Ecd ∂Dcd

∂Dab

, (A13)

or, equivalently,

∂F̃R,Φ

∂Φab

= 1

2

∑
cd

Ψ cd ∂Φcd

∂Φab

. (A14)

Moreover,

〈ṼR,Φ〉ρ̃R,Φ
= 1

2

∑
μ

ΦcdΨ
cd . (A15)

Indeed,

〈ṼR,Φ〉ρ̃R,Φ
= 1

2

∑
ab

Φab〈uaub〉R,Φ

= 1

2

∑
ab

Φab

∑
νμ

La
νL

b
μ

∫
yνyμ [dy]

= 1

2

∑
ab

Φab

∑
νμ

La
νL

b
μδνμ

= 1

2

∑
ab

ΦabΨ
ab. (A16)

From Eqs. (A14) and (A15), the relation (A8b) is readily
obtained. The equation (A8a) comes from the observation that
neither F̃R,Φ nor 〈ṼR,Φ〉ρ̃R,Φ

depend on R.
The SCHA functional, i.e., the GB functional restricted to

quadratic trial Hamiltonians, can be written as [3,4]

F[ρ̃R,Φ ] = F̃R,Φ − 〈ṼR,Φ〉ρ̃R,Φ
+ 〈V 〉ρ̃R,Φ

. (A17)

From this relation, and Eqs. (A6) and (A8), we obtain

∂

∂Ra
F[ρ̃R,Φ] =

〈
∂V

∂Ra

〉
ρ̃R,Φ

, (A18a)

∂

∂Φab

F[ρ̃R,Φ] = 1

2

∑
cd

[〈
∂2V

∂Rc∂Rd

〉
ρ̃R,Φ

− Φcd

]
∂Ψ cd

∂Φab

.

(A18b)

For fixed R, with �(R) we indicate the matrix that minimizes
F[ρ̃R,Φ ] with respect to Φ. This implies that ∂F[ρ̃R,Φ ]/∂Φ

is equal to zero in �(R):

∂

∂Φ
F[ρ̃R,Φ]

∣∣∣∣
�(R)

= 0. (A19)

Therefore, from Eq. (A18b), we have the self-consistent
relation


ab(R) =
〈

∂2V

∂Ra∂Rb

〉
ρ̃R,�(R)

. (A20)

Defining F (R) = F[ρ̃R,�(R)], from Eqs. (A18a) and
Eq. (A19), we have

∂F

∂Ra
=
〈

∂V

∂Ra

〉
ρ̃R,�(R)

. (A21)

Deriving one more time and using Eqs. (A6) and (A20),

∂2F

∂Ra∂Rb
= ∂

∂Rb

[〈
∂V

∂Ra

〉
ρ̃R,�(R)

]
(A22)

= 
ab +
∑
pq

(3)


apq

∑
c�d

1

2

∂Ψ pq

∂Φcd

∣∣∣∣
�

∂
cd

∂Rb
, (A23)

where
(3)

�(R) is defined as a generalization of Eq. (A20) to
higher orders [see Eq. (20)] and in the application of the chain
rule we have derived only with respect to the independent
components of the symmetric matrix Φcd . Moreover, using
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Eq. (A20),

∂
ab

∂Rc
= ∂

∂Rc

[〈
∂2V

∂Ra∂Rb

〉
ρ̃R,�(R)

]

= (3)


abc +
∑
lm

(4)


ablm

∑
p�q

1

2

∂Ψ lm

∂Φpq

∣∣∣∣
�

∂
pq

∂Rc
. (A24)

In the next section, we will give the explicit expression of the
fourth-order tensor �abcd (R) satisfying the relation

∑
p�q

1

2

∂Ψ lm

∂Φpq

∣∣∣∣
�

∂
pq

∂Rc
=
∑
pq

�lmpq ∂
pq

∂Rc
. (A25)

Using it we rewrite Eqs. (A23) and (A24) in the following
way:

∂2F

∂Ra∂Rb
= 
ab +

∑
lmpq

(3)


alm�lmpq ∂
pq

∂Rb
, (A26)

∂
ab

∂Rc
= (3)


abc +
∑
lmpq

(4)


ablm�lmpq ∂
pq

∂Rc
. (A27)

The second equation can be solved by iteration, in the
hypothesis that the resulting series converges:

∂
ab

∂Rc
= (3)


abc +
∑

l1l2l3l4

(4)


abl1l2�
l1l2l3l4

(3)


l3l4c

+
∑

l1l2l3l4
j1j2j3j4

(4)


abl1l2�
l1l2l3l4

(4)


l3l4j1j2�
j1j2j3j4

(3)


j3j4c + . . . .

(A28)

Substituting this solution into Eq. (A26), we obtain

∂2F

∂Ra∂Rb
= 
ab +

∑
c1c2c3c4

(3)


ac1c2�
c1c2c3c4

(3)


c3c4b

+
∑

c1c2c3c4
d1d2d3d4

(3)


ac1c2�
c1c2c3c4c3c4d1d2�

d1d2d3d4
(3)


d3d4b,

(A29)

where abcd (R) is the fourth-order tensor given by the series

abcd = (4)


abcd +
∑

l1l2l3l4

(4)


abl1l2�
l1l2l3l4

(4)


l3l4cd

+
∑

l1l2l3l4
j1j2j3j4

(4)


abl1l2�
l1l2l3l4

(4)


l3l4j1j2�
j1j2j3j4

(4)


j3j4cd + . . .

(A30)

Thus abcd (R) solves the Dyson-like equation

abcd = (4)


abcd +
∑

l1l2l3l4

(4)


abl1l2�
l1l2l3l4l3l4cd (A31)

already introduced in Eq. (24).

APPENDIX B: THE MATRIX �

In this section, we derive the explicit expression of the
tensor �abcd used in Eq. (A25). We break the derivation into
several intermediate steps.

1. Derivatives of eigenvalues and eigenvectors
with respect to matrix elements

Let us consider a real symmetric matrix Mab with distinct
eigenvalues λμ and eigenvectors ea

μ. From nondegenerate
perturbation theory, if Mab depends on a parameter ε we have

∂λμ

∂ε
=
∑
ab

M ′
abe

a
μeb

μ, (B1)

∂ea
μ

∂ε
=

∑
ν,ν �=μ

∑
pq M ′

pqe
p
ν e

q
μ

λμ − λν

ea
ν , (B2)

where M ′
ab = dMab/dε. In particular, for ε = Mij ,

∂Mab

∂Mij

=
{

δaiδbj + δbiδaj i �= j

δaiδbj i = j
. (B3)

Thus

∂λμ

∂Mij

=
{

2ei
μej

μ i �= j

ei
μej

μ i = j
(B4)

and

∂ea
μ

∂Mij

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

ν,ν �=μ

ei
νe

j
μ + e

j
νe

i
μ

λμ − λν

ea
ν i �= j

∑
ν,ν �=μ

ei
νe

j
μ

λμ − λν

ea
ν i = j

. (B5)

2. Calculation of ∂[F(M)]ab/∂ Mcd

The matrix Mab can be written as

Mab =
∑

μ

λμ ea
μeb

μ. (B6)

Given a regular function F (x), [F (M)]ab is a real symmetric
matrix having the same eigenvectors ea

μ and eigenvalues
F (λμ):

[F (M)]ab =
∑

μ

F (λμ) ea
μeb

μ. (B7)

Then, we can write

∂[F (M)]ab

∂Mcd

= Xabcd + Y abcd (B8)

with

Xabcd =
∑

μ

∂[F (M)]ab

∂λμ

∂λμ

∂Mcd

=
∑

μ

F ′(λμ)ea
μeb

μ

∂λμ

∂Mcd

(B9)
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and

Y abcd =
∑
mμ

∂[F (M)]ab

∂em
μ

∂em
μ

∂Mcd

=
∑
mμ

F (λμ)
[
δmaeb

μ + δmbea
μ

] ∂em
μ

∂Mcd

=
∑

μ

F (λμ)

[
eb
μ

∂ea
μ

∂Mcd

+ ea
μ

∂eb
μ

∂Mcd

]
. (B10)

Therefore, from Eq. (B4),

Xabcd =
∑

μ

F ′(λμ)ea
μeb

μ

{
2ec

μed
μ if c �= d

ec
μed

μ if c = d
(B11)

and, from Eq. (B5),

Y abcd =
∑
μ �=ν

F (λμ)
(
ea
ν e

b
μ + ea

μeb
ν

)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ec
νe

d
μ + ec

μed
ν

λμ − λν

if c �= d

ec
νe

d
μ

λμ − λν

if c = d

. (B12)

3. Contraction of ∂[F(M)]ab/∂ Mcd with a symmetric matrix Scd

We are interested in calculating the quantity

∑
c�d

∂[F (M)]ab

∂Mcd

Scd =
∑
d�c

∂[F (M)]ab

∂Mcd

Scd (B13)

with Scd = Sdc a symmetric matrix. First, we define the tensor

�̃abcd = X̃abcd + Ỹ abcd , (B14)

with

X̃abcd =
∑

μ

F ′(λμ) ea
μeb

μec
μed

μ (B15)

and

Ỹ abcd =
∑
ν �=μ

F (λμ)

λμ − λν

(
ea
ν e

b
μ + ea

μeb
ν

)
ec
νe

d
μ. (B16)

In terms of the tensor �̃abcd

∂[F (M)]ab

∂Mcd

=
{

�̃abcd + �̃abdc if c �= d

�̃abcd if c = d
. (B17)

Therefore ∑
c�d

∂[F (M)]ab

∂Mcd

Scd =
∑
cd

�̃abcd Scd . (B18)

Moreover, notice that∑
cd

Ỹ abcd Scd

=
∑
cd

∑
ν �=μ

F (λμ)

λμ − λν

(
ea
ν e

b
μec

νe
d
μ + ea

μeb
νe

d
μec

ν

)
Scd

=
∑
cd

∑
ν �=μ

F (λμ) − F (λν)

λμ − λν

ea
ν e

b
μec

νe
d
μ Scd . (B19)

Therefore, given a symmetric tensor Scd , we have∑
c�d

∂[F (M)]ab

∂Mcd
Scd =

∑
cd

�abcd Scd (B20)

with �abcd defined by

�abcd =
∑
νμ

Fμν ea
ν e

b
μec

νe
d
μ, (B21)

where

Fμν =

⎧⎪⎪⎨⎪⎪⎩
dF

dλ

∣∣∣∣
λμ

if μ = ν

F (λμ) − F (λν)

λμ − λν

if μ �= ν

. (B22)

Notice the following two symmetries:

�abcd = �badc, (B23)

�abcd = �cdab. (B24)

4. Degeneracy

Up to now, we have exclusively considered the nondegen-
erate case. However, if we write Fμν in the form

Fμν =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dF

dλ

∣∣∣∣
λμ

if λμ = λν

F (λμ) − F (λν)

λμ − λν

if λμ �= λν

, (B25)

Eq. (B21) is well defined even in case of degeneracies, and
gives the same tensor �abcd regardless of the gauge chosen,
i.e., regardless of the basis set chosen in the degenerate spaces.
In order to see that, let us consider two eigenvectors basis sets
{ea

μ} and {ēa
μ} related as

ea
μ =

∑
ν

ēa
ν Uν

μ, (B26)

where Uν
μ is an orthogonal matrix, i.e., it satisfies∑

ν

Uμ2
ν Uμ1

ν =
∑

ν

Uν
μ2

Uν
μ1

= δμ1μ2 , (B27)

and it does not mix eigenvectors with different eigenvalues:

λν �= λμ =⇒ Uμ
ν = 0. (B28)

Notice that an immediate consequence is that

FμνU
μ
ρ = FρνU

μ
ρ . (B29)
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Then,∑
νμ

Fμν ea
ν e

b
μec

νe
d
μ

=
∑

ρ1ρ2ρ3ρ4

∑
νμ

Fμν ēa
ρ1

ēb
ρ2

ēc
ρ3

ēd
ρ4

Uρ1
ν Uρ2

μ Uρ3
ν Uρ4

μ

=
∑

ρ1ρ2ρ3ρ4

∑
νμ

Fρ1ρ2 ēa
ρ1

ēb
ρ2

ēc
ρ3

ēd
ρ4

Uρ1
ν Uρ2

μ Uρ3
ν Uρ4

μ

=
∑

ρ1ρ2ρ3ρ4

Fρ2ρ1 ēa
ρ1

ēb
ρ2

ēc
ρ3

ēd
ρ4

δρ1ρ3δρ2ρ4

=
∑
ρ1ρ2

Fρ2ρ1 ēa
ρ1

ēb
ρ2

ēc
ρ1

ēd
ρ2

. (B30)

Therefore Eqs. (B21) and (B25) are well defined even in the
degenerate case, because they give the same result, regardless
of the specific basis of eigenvectors chosen. This essentially
proves that Eq. (B20), is valid even if Mab is degenerate. In
fact, given a matrix Mab degenerate, we can consider a real
symmetric matrix function Mab(ε) continuously depending on
a parameter ε ∈ [0,1],

Mab(ε) =
∑

μ

λμ(ε)ea
μ(ε)eb

μ(ε), (B31)

such that Mab(0) = Mab but with Mab(ε) nondegenerate for
ε �= 0. Notice that, given Mab, the arbitrariness in the choice
of the function Mab(ε) reflects in the arbitrariness of the
eigenvectors eb

μ(0) for Mab, i.e., in the choice of a specific
gauge. We can apply Eqs. (B20), (B21), and (B22) with ε �= 0
and consider the limit of the result for ε that goes to zero.
That gives Eqs. (B20), (B21), and (B25) for the specific set
eb
ν (0). However, as observed, the formula is gauge invariant,

i.e., the specific choice of ea
ν (0) in the degenerate subspaces is

immaterial. Therefore the procedure is well defined, as it gives
a unique result.

5. The matrix �abcd

We apply the general results found to Eq. (A25). We can
write∑

c�d

1

2

∂Ψ ab

∂Φcd

∣∣∣∣
�

∂
cd

∂Rm

= 1√
MaMbMcMd

∑
c�d

1

2

∂Eab

∂Dcd

∣∣∣∣
D(�)

∂
cd

∂Rm
. (B32)

Since Eab = ξ 2(Dab) and the matrix ∂
cd/∂Rm is symmetric
in (cd), applying Eq. (B20), we obtain

∑
c�d

1

2

∂Ψ ab

∂Φcd

∣∣∣∣
�

∂
cd

∂Rm
=
∑
cd

�abcd ∂
cd

∂Rm
, (B33)

where

�abcd = 1

2

∑
νμ

Fμν

ea
ν√
Ma

eb
μ√
Mb

ec
ν√
Mc

ed
μ√
Md

(B34)

and

Fμν =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dξ 2

μ

dω2
μ

if ω2
μ = ω2

ν

ξ 2
μ − ξ 2

ν

ω2
μ − ω2

ν

if ω2
μ �= ω2

ν

. (B35)

Here, ω2
μ and ea

μ are eigenvalues and eigenvectors of Dab =

ab/

√
MaMb, respectively. Since ξ 2

μ = h̄(1 + 2nμ)/2ωμ and
dnμ/dωμ = −βh̄nμ(1 + nμ), we can write

Fμν = − h̄2

4ωμων

F (0,ων,ωμ) (B36)

with

F (0,ων,ωμ) =

⎧⎪⎪⎨⎪⎪⎩
2

h̄

(
2nν + 1

2ων

− dnν

dων

)
if ων = ωμ

2

h̄

(
nμ + nν + 1

ωμ + ων

− nμ − nν

ωμ − ων

)
if ωμ �= ων

.

(B37)

Therefore, we obtain the final expression:

�abcd = − h̄2

8

∑
μν

F (0,ωμ,ων)

ωμων

ea
ν√
Ma

eb
μ√
Mb

ec
ν√
Mc

ed
μ√
Md

.

(B38)

For some derivations it is convenient to express the
fourth-rank tensor �abcd as a square supermatrix �AB ,
with A = (ab) and B = (cd). From Eq. (B24), we have
that � is real symmetric (we are using bold symbol in
component free notation). Moreover, it is negative-definite.
In fact, ξ 2(ω2

μ) = h̄(1 + 2nμ)/2ωμ = h̄ coth(βh̄ωμ/2)/2ωμ is
monotonically decreasing. Thus from Eq. (B35) Fμν < 0, and,
considering a vector T = TA = Tab, we have from Eq. (B34),

T�T = 1

2

∑
μν

(∑
ab

Tab√
MaMb

ea
μeb

ν

)2

Fμν < 0. (B39)

APPENDIX C: STOCHASTIC CALCULATION
OF SCHA MATRICES

Given an observable O(R), it can be proved that〈
∂O

∂Ra

〉
ρ̃R,Φ

=
∑

b

−1

Ψ ab 〈ub O〉ρ̃R,Φ
, (C1)

where u = R − R. In order to demonstrate this formula, we
use the change of variable in Eq. (A3) and the inverse matrix
of L:

−1

Lμ
a = ea

μ

ξμ

√
Ma. (C2)

The demonstration is obtained with integration by parts:〈
∂O

∂Ra

〉
ρ̃R,Φ

=
∫

∂O

∂Ra
(R + L y) [dy]

=
∑

μ

−1

Lμ
a

∫
∂

∂yμ

O(R + L y) [dy]

014111-21



BIANCO, ERREA, PAULATTO, CALANDRA, AND MAURI PHYSICAL REVIEW B 96, 014111 (2017)

= −
∑

μ

−1

Lμ
a

∫
O(R + L y)

∂[dy]

∂yμ

=
∑

μ

−1

Lμ
a

∫
yμ O(R + L y) [dy]

=
∑

b

∑
μ

−1

Lμ
a

−1

L
μ

b

∫
ubO(R + L y) [dy]

=
∑

b

−1

Ψ ab

∫
ubO(R + L y) [dy]

=
∑

b

−1

Ψ ab〈ub O〉ρ̃R,Φ
. (C3)

We apply Eq. (C1) to find expressions for
(3)

�(R) and
(4)

�(R)
suited for a stochastic calculation. The goal is to express them
as averages of functions of positions and forces only. In what
follows, the dependence of the matrices on R is understood.

1. Stochastic formula for
(3)

�

Applying Eq. (C1), we obtain

(3)


abc =
〈

∂3V

∂Ra∂Rb∂Rc

〉
ρ̃R,�

=
∑

p

−1

Ψ ap

〈
up ∂2V

∂Rb∂Rc

〉
ρ̃R,�

=
∑

p

−1

Ψ ap

[〈
∂

∂Rb

(
up ∂V

∂Rc

)〉
ρ̃R,�

− δpb

〈
∂V

∂Rc

〉
ρ̃R,�

]

=
∑
pq

−1

Ψ ap

−1

Ψ bq

〈
upuq ∂V

∂Rc

〉
ρ̃R,�

− −1

Ψ ab

〈
∂V

∂Rc

〉
ρ̃R,�

=
∑
pq

−1

Ψ ap

−1

Ψ bq

〈
upuq

[
∂V

∂Rc
−
〈

∂V

∂Rc

〉
ρ̃R,�

]〉
ρ̃R,�

,

(C4)

where in the last line we used that 〈upuq〉
ρ̃R,�

= Ψ pq . In terms

of the forces fc = −∂V/∂Rc, we write
(3)


abc = −
∑
pq

−1

Ψ ap

−1

Ψ bq〈upuq[fc − 〈fc〉ρ̃R,�
]〉ρ̃R,�

. (C5)

Since the average of a function that is odd in the displacements
is zero, we can write

(3)


abc = −
∑
pq

−1

Ψ ap

−1

Ψ bq 〈upuq fc〉ρ̃R,�
, (C6)

with

fc = fc − [〈fc〉ρ̃R,�
+ F odd

c (u)
]
, (C7)

where F odd
c (u) are generic odd functions. However, this is

true only in the limit of an infinite population sampling. In
actual calculations we compute the averages with populations

of finite size. In that case, the value of
(3)

� obtained from Eq. (C6)
depends on the specific F odd

c (u) chosen, i.e., on the specific

expression of fc. In order to reduce the statistical noise and
speed up the convergence, we found convenient to utilize

fc = fc −
[
〈fc〉ρ̃R,�

−
∑

i


ci u
i

]
. (C8)

Indeed, this corresponds to fc = −∂V/∂Rc, where V(R) =
V (R) − V ref(R) is the difference between the true potential
and the quadratic “reference” potential

V ref(R) = V (R) +
∑

a

〈
∂V

∂Ra

〉
ρ̃R,�

(R − R)a

+ 1

2

∑
ab


ab(R − R)a(R − R)b. (C9)

If V (R) is quadratic, then it coincides with V ref(R), thus
V(R) = 0 and fc = 0. Therefore, considering Eq. (C6) with

Eq. (C8) implies that if V (R) is quadratic then
(3)

� is identically
zero, as it must be, with any finite sampling.

2. Stochastic formula for
(4)

�

With passages analogous to the ones used in the previous
demonstration, we obtain

(4)


abcd =
〈

∂4V

∂Ra∂Rb∂Rc∂Rd

〉
ρ̃R,�

=
∑
pqr

−1

Ψ ap

−1

Ψ bq

−1

Ψ cr

〈
upuqur ∂V

∂Rd

〉
ρ̃R,�

−
∑

p

[−1

Ψ ac

−1

Ψ bp + −1

Ψ bc

−1

Ψ ap + −1

Ψ ab

−1

Ψ cp

]〈
up ∂V

∂Rd

〉
ρ̃R,�

=
∑
pqr

−1

Ψ ap

−1

Ψ bq

−1

Ψ cr

{
upuqur

[
∂V

∂Rd

−
∑

i

ui

〈
∂2V

∂Ri∂Rd

〉
ρ̃R,�

]}
ρ̃R,�

. (C10)

Therefore we can write
(4)


abcd = −
∑
pqr

−1

Ψ ap

−1

Ψ bq

−1

Ψ cr

×
〈
upuqur

[
fd +

∑
i


diu
i

]〉
ρ̃R,�

. (C11)

Again, since the average of a function that is odd in the
displacements is zero, we can write

(4)


abcd = −
∑
pqr

−1

Ψ ap

−1

Ψ bq

−1

Ψ cr 〈upuqur fd〉ρ̃R,�
, (C12)

with

fd = fd −
[
F even

d (u) −
∑

i


diu
i

]
, (C13)

where F even
d (u) are generic even functions.
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In order to reduce the statistical noise and accelerate

the convergence, in our simulations we calculated
(4)

� with
Eq. (C12) and we defined fd as in Eq. (C8), since it is
compatible with Eq. (C13). In that way, if V (R) is quadratic,

we obtain
(4)

� = 0 for any finite sampling, as it must be. Once
(3)

� has been calculated, another possibility, in principle better,
would be to define

fd = fd −
⎡⎣〈fd〉ρ̃R,�

+ 1

2

∑
ij

(3)


dijΨ
ij

−
∑

i


di ui − 1

2

∑
ij

(3)


diju
iuj

⎤⎦. (C14)

With this choice it is sufficient that V (R) is cubic in order to

obtain
(4)

� = 0, as it must be, with any finite sampling. Indeed,
Eq. (C14) corresponds to fd = −∂V/∂Rd , where V(R) is the
difference between V (R) and the cubic “reference” potential

V ref(R) =V (R) +
∑

a

[〈
∂V

∂Ra

〉
ρ̃R,�

− 1

2

∑
hk

(3)


ahkΨ
hk

]
(R−R)a

+ 1

2

∑
ab


ab(R − R)a(R − R)b

+ 1

3!

∑
abc

(3)


abc(R − R)a(R − R)b(R − R)c.

(C15)

If V (R) is cubic it coincides with this V ref(R), thus
(4)

� calculated
with Eqs. (C12) and (C14) is equal to zero with any finite
sampling. However, for the simulations of this paper we did
not use the definition (C14).

3. Acoustic sum rule

The SCHA tensor
(n)

�a1...an
satisfies the acoustic sum rule

(ASR) if the sum over any atomic index vanishes. Considering
that we are using a double (cartesian,atom) index a = (α,s),
in our notation this means that∑

ai

(n)

�a1...ai ...an
tai = 0, (C16)

with tα,s = tα a global translation of the system by the 3D
vector tα . The averages in Eq. (C6) and Eq. (C12) are evaluated
stochastically with a finite-size population through Eq. (44).
We demonstrate that if the matrix 
ab satisfies the sum rule and
the total force on the center of mass of the system is zero for
any population member (as it must be), then the approximate
SCHA tensors given by Eqs. (C6) and (C12) with Eq. (C8)
satisfy the ASR with any finite population sampling. The two
above mentioned conditions are expressed by the relations∑

a

fa ta = 0, (C17)∑
b


ab tb = 0, (C18)

thus from Eq. (C8), we also have∑
a

fa ta = 0. (C19)

This proves that
∑

c

(3)

�abc tc = 0 and
∑

d

(3)

�abcd td = 0. The
proof that the SCHA tensors given by Eqs. (C6) and (C12)
satisfy the ASR also on the other indices is obtained by
considering that ∑

b

−1

Ψ ab tb = 0. (C20)

Indeed, Eq. (C18) means that tb is null eigenvector for 
ab,
which is equivalent to saying that

√
Mb tb is null eigenvector

for Dab. However, indicating with
−1

Eab the inverse of Eab

defined in Eq. (A1b), it is
−1

Eab = ξ−2(Dab) and ξ−2(0) = 0.

Therefore
√

Mb tb is null eigenvector for
−1

Eab, i.e., tb is null

eigenvector of
−1

Ψ ab = √
MaMb

−1

Eab, which proves Eq. (C20).

Notice that
(4)

� computed with Eq. (C12) satisifes the ASR
with any finite sampling even if we use the definition (C14) for
fa . In that case, in order to demonstrate the condition (C19),

we just have to consider that
(3)

� satisfies the ASR.

In conclusion, and using the matrix ϒ =
−1

Ψ [see Eq. (11)]
in order to ease the connection with the main text, the formulas
that we used to compute the SSCHA third- and fourth-order
tensors are

(3)


abc = −
∑
pq

ϒapϒbq〈upuq fc〉ρ̃R,�
, (C21a)

(4)


abcd = −
∑
pqr

ϒapϒbqϒcr 〈upuqur fd〉ρ̃R,�
, (C21b)

where

fi = fi −
[
〈fi〉ρ̃R,�

−
∑

j


ij uj

]
. (C22)

APPENDIX D: PERTURBATIVE LIMIT OF SCHA

In this section, we explicitly calculate the lowest pertur-
bative order of the SCHA results. The formalism used is the
one introduced in Sec. VIII. We treat the anharmonic potential
as a (small) perturbation of the harmonic Hamiltonian H (0),
with φ(n)

μ1...μn
of order O(λn−2), λ  1 being the adimensional

perturbative expansion parameter (which can be estimated as
the ratio between the mean harmonic displacement and the
nearest-neighbor atomic distance [2]).

We consider the SCHA equilibrium position Req, Eq. (15),
and the corresponding SCHA square matrix � = �(Req),
Eq (17). From Eq. (19), we have

0 =
〈

∂V

∂Ra

〉
ρ̃Req,�

, (D1)


ab =
〈

∂V

∂Ra∂Rb

〉
ρ̃Req,�

. (D2)
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Using the explicit expression Eqs. (50) and (51), we obtain

0 =
∑
c1

φac1δR
c1 + 1

2

∑
c1c2

(3)

φac1c2
(δRc1δRc2 + Ψ c1c2 )

+ 1

3!

∑
c1c2c3

(4)

φac1c2c3
(δRc1δRc2δRc3 + 3δRc1Ψ c2c3 ) + . . .

(D3)

and


ab = φab +
∑
c1

(3)

φabc1
δRc1

+ 1

2

∑
c1c2

(4)

φabc1c2
(δRc1δRc2 + Ψ c1c2 ) + . . . , (D4)

where δRa = Ra
eq − Ra

(0) = O(λ) and Ψ ab is the matrix ob-
tained from 
ab according to the definitions (A1). At the lowest
order,

0 =
∑
c1

φac1δR
c1 + 1

2

∑
c1c2

(3)

φac1c2
ψc1c2 + O(λ3) (D5)

and


ab = φab +
∑
c1

(3)

φabc1
δRc1 + 1

2

∑
c1c2

(4)

φabc1c2
ψc1c2 + O(λ3),

(D6)

where ψab is the matrix related to φab in the same way as Ψ ab

is related to 
ab according to the definitions (A1). Inverting
Eq. (D5), we obtain

δRa = −1

2

∑
c1c2c3

−1

φac1
(3)

φc1c2c3
ψc2c3 + O(λ3), (D7)

where
−1

φab is the inverse matrix of φab. By substituting Eq. (D7)
into Eq. (D6), we obtain


ab = φab + 1

2

∑
c1c2

(4)

φabc1c2
ψc1c2

− 1

2

∑
c1c2c3c4

(3)

φabc1

−1

φc1c2
(3)

φc2c3c4
ψc3c4 + O(λ3). (D8)

Denoting with ω2
μ and ea

μ eigenvalues and eigenvectors of
D

(0)

ab = φab/
√

MaMb, respectively, with standard techniques
for Matsubara frequency summation, we obtain [51]

− 1

β

∑
l

Gab
(0) (i�l) = h̄

2

∑
μ

1 + 2nμ

ωμ

ea
μeb

μ =
√

MaMbψ
ab,

(D9)

where Gab
(0) (z) is the harmonic Green function for the variable√

Ma(Ra − Ra
(0)) [see Eq. (53)]. Therefore, dividing Eq. (D8)

by the square root of masses and considering the definition of
D

(S)

ab, Eq. (32) and (57)–(59), we obtain

D
(S)

ab = D
(0)

ab + (T )

�
(0)

ab + (L)

�
(0)

ab + O(λ3). (D10)

Moreover from Eq. (20), we readily have
(3)


abc = (3)

φabc + O(λ3) (D11)

and
(4)


abcd = (4)

φabcd + O(λ3). (D12)

Thus, from Eqs. (39), (43), and (59), we have

�
(S)

ab(0) = (B)

�
(S)

ab(0) + O(λ3) = (B)

�
(0)

ab(0) + O(λ3). (D13)

Therefore, from Eqs. (38) and (D10), we obtain

D
(F )

ab = D
(0)

ab + (T )

�
(0)

ab + (L)

�
(0)

ab + (B)

�
(0)

ab(0) + O(λ3). (D14)

APPENDIX E: TOY-MODEL DEFINITION

In this section, we define the toy model used in our
numerical tests, which we rewrite here as

V (R) = 1

2

∑
ab

φab uaub + V
(3)
A (u) + V

(4)
A (u), (E1)

where u = R − R(0), R(0) being the equilibrium configuration
of the rock-salt structure. The harmonic matrix φab has
been obtained with ab initio calculations for SnTe, on a
2 × 2 × 2 mesh of the BZ, performed within density functional
perturbation theory (DFPT) [50] as implemented in QUANTUM

ESPRESSO [59]. In order to have increased harmonic instability,
calculations have been performed with lattice parameter
atoy = 6.562 Å, which is higher than the experimental value
aexp = 6.312 Å. We used Perdew-Burke-Ernzerhof (PBE)
[60], projector augmented wave (PAW) [61] potentials. We
calculated 40 Khon-Sham states, with a cutoff of 28 and 280 Ry
for the wave functions and the charge density, respectively. The
BZ integration has been performed with a Monkhorst-Pack
grid [62] of 16 × 16 × 16 k points. The self-consistent solution
of the Kohn-Sham equations was obtained when the total
energy changed by less than 5 × 10−12 Ry.

In order to describe the anharmonic terms we follow the
model described in Refs. [56,57] and we define short-range
anharmonic terms by using reciprocal displacements of
nearest-neighbor atoms (in the rock-salt structure each atom
has six nearest neighbors). The third- and fourth-order terms
are given by

V (3)(u) = p3

Na∑
s=1

∑
α=x,y,z

[
A3

s,α+ − A3
s,α−

]
(E2)

and

V (4)(u) = p4

Na∑
s=1

∑
α=x,y,z

[
A4

s,α+ + A4
s,α−

]

+ p4χ

Na∑
s=1

∑
α=x,y,z

[
A2

s,α+

((
E(1)

s,α+

)2 + (
E(2)

s,α+

)2)
+ A2

s,α−

((
E(1)

s,α−

)2 + (
E(2)

s,α−

)2)]
(E3)

with, for example,

As,x± = 1√
2

(ux±(s),x − us,x), (E4a)

E(1)
s,x± = 1√

2
(ux±(s),y − us,y), (E4b)

E(2)
s,x± = 1√

2
(ux±(s),z − us,z), (E4c)
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where x+(s) and x−(s) are the nearest neighbor of the atom s,
along the cartesian direction +x and −x, respectively. Similar
notation is used for the directions ±y and ±z. According to
this definition, the third order is proportional to the parameter
p3 and the fourth order is linear function of the parameters
p4 and p4χ . In order to set reasonable values, p4 and p4χ

have been fixed by fitting the energy curve obtained ab initio

for displacements with unit cell periodicity (the third order
does not affect the value of the potential for configurations
having unit cell periodicity): p4 = 7.63 eV/Å

4
and p4χ =

4.86 eV/Å
4
. For the third order, we set p3 = 6.70 eV/Å

3
a

value larger than the one reported in Ref. [56] for PbTe. This
has been done to magnify the effect of the third order in the
2 × 2 × 2 supercell used for the SSCHA calculation.
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