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Abstract
Aim: Forecasting changes in species distribution under future scenarios is one of the 
most prolific areas of application for species distribution models (SDMs). However, 
no consensus yet exists on the reliability of such models for drawing conclusions on 
species’ distribution response to changing climate. In this study, we provide an over-
view of common modelling practices in the field and assess the reliability of model 
predictions using a virtual species approach.
Location: Global.
Methods: We first review papers published between 2015 and 2019. Then, we use a 
virtual species approach and three commonly applied SDM algorithms (GLM, MaxEnt 
and random forest) to assess the estimated and actual predictive performance of 
models parameterized with different modelling settings and violations of modelling 
assumptions.
Results: Most SDM papers relied on single models (65%) and small samples (N < 50, 
62%), used presence-only data (85%), binarized models' output (74%) and used a 
split-sample validation (94%). Our simulation reveals that the split-sample validation 
tends to be over-optimistic compared to the real performance, whereas spatial block 
validation provides a more honest estimate, except when datasets are environmen-
tally biased. The binarization of predicted probabilities of presence reduces models’ 
predictive ability considerably. Sample size is one of the main predictors of the real 
model accuracy, but has little influence on estimated accuracy. Finally, the inclusion 
of ecologically irrelevant predictors and the violation of modelling assumptions in-
creases estimated accuracy but decreases real accuracy of model projections, leading 
to biased estimates of range contraction and expansion.
Main conclusions: Our ability to predict future species distribution is low on average, 
particularly when models’ predictions are binarized. A robust validation by spatially 
independent samples is required, but does not rule out inflation of model accuracy by 
assumption violation. Our findings call for caution in the application and interpreta-
tion of SDM projections under different climates.
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1  | INTRODUC TION

Understanding how climate shapes species distribution and how 
range shifts may be driven by future climatic change is more ur-
gent than ever. In the last thirty years, studies aimed at develop-
ing, improving and applying species distribution models (SDMs) 
have proliferated (Araújo et  al.,  2019), and forecasting changes in 
species distributions under future scenarios is one of the most pop-
ular areas of application for SDMs today (Newbold, 2018; Schloss 
et al., 2012; Thuiller et al., 2011). In SDM-based climate change fore-
casting studies, models are trained on current data and used to pre-
dict the probability of presence under present and future conditions. 
Models’ predictions are often binarized (Liu et al., 2013) to assess 
whether a species’ distribution is expected to shift, contract or ex-
pand (Newbold, 2018). Although many modelling techniques require 
presence and absence data, many models are fitted using presence-
only data, that is contrasting presences with random pseudo-
absences, or background points, that represent available conditions 
(Guillera-Arroita et al., 2015). Although more appropriate validation 
approaches and discrimination metrics have been proposed (Bahn & 
McGill, 2013; Boyce et al., 2002; Leroy et al., 2018), the predictive 
performance of these models is commonly assessed by randomly 
splitting the dataset into training and testing (split-sample valida-
tion), and fitting the model on the training dataset and validating it 
on the testing dataset using the true skill statistic (TSS) or the area 
under the curve (AUC). While several authors have warned about 
the challenges and uncertainties of projecting future species distri-
bution (Dormann, 2007; Peterson et al., 2018), only few studies have 
tested model performance with empirical data, reporting mixed re-
sults (Araujo et al., 2005; Morán-Ordóñez et al., 2017; Rapacciuolo 
et al., 2012; Sofaer et al., 2018).

The literature on SDMs has grown very quickly and extensively, 
with papers adhering to different schools of thought and supporting 
the use of one or another technique (see Norberg et al., 2019 for an 
overview), suggesting different validation measures (e.g., Allouche 
et al., 2006; Leroy et al., 2018) or approaches (e.g., testing on spa-
tially independent data; Bahn & McGill, 2013). Additionally, a number 
of studies made different conclusions about the minimum number 
of presence points needed (Hernandez et  al.,  2006; van Proosdij 
et al., 2016; Stockwell & Peterson, 2002; Wisz et al., 2008), area of 
sampling of background points (e.g., Anderson & Raza, 2010; Barve 
et al., 2011; Elith et al., 2010; VanDerWal et al., 2009), or choice of 
environmental predictors and approaches to reduce collinearity (see 
Fourcade et al., 2018 for an overview). This can make it challenging 
and disorientating for people that approach the field of SDM for the 
first time. The existence of modelling software packages that make 
the application of these models easier and more accessible to people 
with limited modelling background (e.g., MaxEnt Phillips et al., 2006) 

may be counterproductive, as running an SDM in one of these soft-
ware packages may appear simpler than it is. This is particularly wor-
rying considering that SDMs are largely used to inform conservation 
science (Manish & Pandit, 2019; Newbold, 2018).

Recently, a number of experts have delineated a set of best prac-
tices and shown that many studies still apply inconsistent approaches 
that do not adhere to the best standards (Araújo et al., 2019). This 
generates a self-perpetuating problem, because published papers 
create a precedent and are used to justify modelling choices in new 
papers. For example, while several authors argued that models’ 
predictors should be chosen considering the biology of the species 
(Araújo & Guisan, 2006; Austin & Van Niel, 2011), it has become a 
common practice to include all bioclimatic variables excluding col-
linear variables using automatic procedures irrespective of species-
specific biological considerations (e.g., Manish & Pandit,  2019), 
increasing the risk of detecting spurious relationships (Fourcade 
et al., 2018; Synes & Osborne, 2011). Worryingly, it has been shown 
that non-biologically relevant predictors can contribute to in-
crease the predictive ability of the models (Fourcade et al., 2018), 
so discrimination accuracy metrics may suggest a very good model 
while the estimated relationships do not have a biological meaning 
(Journé et al., 2020; Warren et al., 2020). Spurious relationships be-
come particularly problematic when the model is projected to new 
areas or environmental scenarios (Bahn & McGill, 2013; Heikkinen 
et  al.,  2012; Merow et  al.,  2014; Yackulic et  al.,  2013). Similarly, 
methodological papers that suggest less demanding requirements 
can become preferred and widely cited references, reinforcing the 
trend. For example, van Proosdij et al. (2016) concluded that 14–25 
observations may be sufficient to run species distribution models. 
This paper is often cited to justify the use of small sample sizes (e.g., 
Carlson et al., 2017; Chen et al., 2017) despite previous recommen-
dations suggesting a minimum of 50 points (Hernandez et al., 2006; 
Stockwell & Peterson, 2002; Wisz et al., 2008).

The extent to which SDMs perform adequately also depends 
on the degree to which modelling assumptions are met. SDMs are 
often fitted on opportunistically collected data that violate the as-
sumption of random sampling (e.g., Guillera-Arroita et al., 2015). 
Furthermore, the present distribution of species is rarely in equi-
librium with the environment, meaning that species only occupy a 
portion of the fundamental niche, not only because of biotic (e.g., 
competition or predation) or dispersal constraints (e.g., physical 
barriers, limited dispersal abilities; Soberon & Peterson,  2005), 
but also because they may have recently contracted their distri-
bution due to human influence (e.g., Di Marco & Santini,  2015; 
Faurby & Svenning, 2015; Varela et al., 2009) or stochastic events. 
This problem has often been discussed in the literature in rela-
tion to the inferences made (Faurby & Araújo,  2018; Maiorano 
et al., 2013; Martínez-Freiría et al., 2016; Varela et al., 2009). Yet, 
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methodological papers aimed at assessing optimal settings to run 
species distribution models typically assume ideal conditions (e.g., 
van Proosdij et al., 2016).

Models used for future projections to inform conservation need 
to adhere to even higher standards than those used for present 
predictions (Sequeira et  al.,  2018). In fact, while a model used for 
predicting current distribution can still provide meaningful predic-
tions even though the inferred relationships are wrong (Fourcade 
et al., 2018; Warren et al., 2020), relationships need to be realistic 
in order to make meaningful predictions to different conditions. 
However, although guidelines for transferability have been provided 
(Sequeira et al., 2018), it is common to validate models on present 
data and assume they perform equally well for future predictions. 
While a number of studies have discussed and tested the influence 
of multiple sources of uncertainty on the predictive accuracy of SDM 
predictions under present conditions (e.g., Fernandes et  al.,  2019; 
Fourcade et al., 2018; Vale et al., 2014; Wenger & Olden, 2012), to 
our knowledge, no study has yet tested the reliability of both pres-
ent and future predictions while considering the effects of differ-
ent modelling settings and several violations in model assumptions 
simultaneously.

In this study, we first provide an overview of common practices 
in the field by reviewing the papers published in the last 5 years 
(2015–2019). We focused on the sample size used, choice and se-
lection of environmental predictors, types of models employed, 
the sampling approach of background (or pseudo-absence) points, 
and the method used for binarization of model outputs. Then, we 
employed a virtual species approach (Meynard et al., 2019; Zurell 
et al., 2010) to assess the contribution of different modelling set-
tings and violation of assumptions to the predictive accuracy and 
projected responses to climate change of SDMs for three com-
monly applied model algorithms (GLM, MaxEnt and random for-
est). Our approach allows validating model predictions against 
the virtual “reality,” therefore estimating true models’ predictive 
accuracy. We generated 50 virtual species distributions, fitted 
SDMs under different conditions and assessed the discrimination 
ability of present and future model predictions against the real 
distribution. We also compared this predictive ability with that 
estimated using a split-sample validation approach, which is the 
most common way of assessing models’ discrimination accuracy 
in most SDM studies, and a spatial block validation, often sug-
gested as a more robust alternative (Bahn & McGill, 2013; Roberts 
et al., 2017). We systematically assessed the combined effect of 
(a) the number of presence points (i.e., sample size), (b) the geo-
graphic extent over which background points are drawn, (c) the 
number of biologically relevant (i.e., true niche axes) and irrelevant 
predictors (i.e., spurious correlates), (d) the species prevalence 
(proportion of study area occupied by the species), (e) the sample 
prevalence (proportion of presences over background points), (f) 
the proportion of niche filling (the degree to which the species is 
at equilibrium with the environment) and (g) and the spatial bias in 
presence points. We then assessed model predictions using two 
common discrimination metrics: the AUC and the TSS.

2  | METHODS

2.1 | Literature review

We conducted a literature review on common practices in SDM pa-
pers that projected models to a different time period (past or fu-
ture). We queried Web of Science and focused on papers published 
in the last 5 years (2015–2019) to reflect the most recent trends in 
the field. We randomly selected 50 papers per year for a total of 250 
papers. From each paper, we extracted the following information: 
sample size, occurrence data type (e.g., presence-only vs. presence–
absence), models used, the variable selection criteria, whether 
probabilistic output was binarized or not and validation approach. 
A detailed description of the literature search and data extraction is 
presented in Appendix S1.

2.2 | Simulation study

2.2.1 | Environmental variables

We obtained 19 bioclimatic variables from CHELSA (http://chels​a-
clima​te.org; Karger et al., 2017) at 0.1° resolution (~11 km) for the 
present and for the future (year 2050) RCP 8.5 taking the median 
over all the general circulation models (GCMs). We also downloaded 
the human footprint index for 2009 from https://wcshu​manfo​otpri​
nt.org/ (Venter et al., 2016).

2.2.2 | Virtual species

We generated 50 virtual species using the “virtualspecies” R pack-
age (Leroy et al., 2016). We did not follow the classical procedure 
that first generates species with specific climatic niche tolerance 
and later project their distributions accordingly, because this pro-
cedure often results in disjunct ranges and species distributed 
across different continents. While some species are cosmopolitan 
and have disjunct ranges, the majority of species have small and 
connected distribution ranges (Gaston, 1996; Orme et al., 2006). 
Instead, we followed a procedure that starts from the selection of 
the geographic area where the species is present, and determines 
the climatic niche based on the climatic conditions of the area. This 
procedure assumes that the species is adapted to—and in equi-
librium with—the local conditions, but not present in potentially 
suitable—but very distant—geographic regions. For each virtual 
species, we first determined the study area by generating a ran-
dom extent between 3 and 10 decimal degrees (~330–1,100 km) in 
both longitude and latitude centred around a random location in 
the globe (Figure 1a). We then selected 6 random bioclimatic vari-
ables and sampled their values within the extent using 100 ran-
dom points. We used the mean and standard deviation estimated 
for the 6 bioclimatic variables to generate the niche tolerance for 
the virtual species (Figure 1b).

http://chelsa-climate.org
http://chelsa-climate.org
https://wcshumanfootprint.org/
https://wcshumanfootprint.org/
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We then projected the niche within the study area for present 
and future conditions (Figure  1c,d) and defined the occupied area 
using a threshold sampled randomly between 0.2 and 0.8 quantiles 
of the suitability values in the study area (Figure 1e,f). The threshold 
is meant to represent the values above which the species can survive 
and reproduce, and is assumed to be present for the validation of the 
distribution models (see Section 2.5). Note that the virtual species 
can potentially be present outside this study area in environmen-
tally analogous conditions, but we assume that the species is either 
limited by dispersal, absent because of biotic interactions or its pres-
ence outside the study area is simply unknown to the modeller. This 

is however uninfluential for the validation of the model, which is only 
performed within the original study area, analogously to modellers 
validating SDMs with the observed real distribution rather than the 
potential distribution.

2.2.3 | Scenario settings

For each virtual species, we fitted species distribution models using 
different cross-combinations of the settings presented in Table 1. To 
assess the influence of sample size, we sampled random presence 

F I G U R E  1   Modelling steps taken to generate virtual species and fit and project the species distribution model

(a)

(g)
(h) (i)

(l)
(m)

(n)

(b) (c) (e)

(d) (f)
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points (10, 25, 50, 100, 250, 500 and 1,000 points) within the dis-
tribution area of the species (Figure  1h). Presences were sampled 
randomly and not as a function of niche suitability values as there 
is no empirical evidence (Dallas & Hastings, 2018) or theoretical un-
derpinning (Jiménez-Valverde et al., 2020) that species abundance 
increases with niche suitability; additionally, observation probability 
is often a function of other factors such as vegetation structure or 
human presence. Then, to assess the influence of the geographic ex-
tent, we fitted a minimum convex polygon (MCP) around presence 
areas to generate a buffer expressed as percentage increase of the 
MCP, which delimited the geographic extent within which the back-
ground points were sampled (0%, 100%, 500%, 5,000%, 50,000%; 
the latter often resulting in the entire continent; Figure 1i). We set 
the number of background points depending on the number of pres-
ence points and the level of sample prevalence. We used three sam-
ple prevalence: 0.01, 0.1 and 1. Not all background points, however, 
could always be sampled depending on the selected geographic 
extent (i.e., insufficient number of cells), leading to variable sample 
prevalence values.

In each model, we used a total number of predictor variables 
between 3 and 12. To assess the influence of biologically relevant 
and irrelevant predictors of species presence, we sampled none, 3 
or 6 relevant bioclimatic predictors (those describing the true spe-
cies niche), and none, 3 or 6 irrelevant bioclimatic predictors (not de-
scribing the niche) from the other 13 bioclimatic variables (Figure 1l, 
Table 1). Combinations yielding 0 predictor variables were not con-
sidered. We tested collinearity using a stepwise variance inflation 
factor (VIF) selection for the environmental variables in the training 
dataset and only retained variables with VIF < 3 (Zuur et al., 2010), 
so the final number of biologically relevant or irrelevant predictors 
could be different from multiples of 3. As a measure of model trans-
ferability, we estimated the Multivariate Environmental Similarity 
Surface (MESS; Elith et al., 2010) between the present and future 
set of environmental variables used in the model fitting.

We also considered violations of two important assumptions un-
derlying SDMs that are common in real study cases: non-equilibrium 
with the environment (niche filling) and non-random sampling of 
presence points that results in a bias along an environmental gradi-
ent. Decreasing proportions of niche filling were simulated by only 

sampling presence points below a given quantile (0.33, 0.66, 1) of 
the human footprint index values within the study area (Figure 1g, 
Table 1). This mimics a scenario where a species is potentially pres-
ent (given climatic conditions) and yet absent because of human 
impact. Note that species may not be in equilibrium with the en-
vironment for different reasons (e.g., biotic interactions, dispersal 
limitations) but the result would be similar. For simplicity, we restrict 
our analyses to the case where species are not an equilibrium be-
cause of human impact.

Environmental bias was simulated by randomly sampling one of 
the biologically relevant bioclimatic predictors used in the distri-
bution model and sampling presences only below a given quantile 
(0.33, 0.66, 1) of the distribution of environmental values (Figure 1h, 
Table 1). This represents the situation where the species has only 
been observed under certain conditions (i.e., sampling bias cor-
relates with environmental gradients), therefore potentially biasing 
the estimation of the species niche. When no biologically relevant 
variable was included, an irrelevant predictor was selected instead.

The full set of combinations of settings in Table 1 corresponded 
to 7560 models (Figure 1m); to reduce the computational effort we 
sampled 500 model settings from the multidimensional space using a 
conditional Latin hypercube approach (Minasny & McBratney, 2006), 
which ensured that the subset of models is representative of the real 
variability occurring in the original 7560 models.

2.2.4 | Model fitting and validation

We used this synthetic dataset to fit three distribution model al-
gorithms: MaxEnt (using a “cloglog” transformation and linear and 
quadratic feature classes), generalized linear model (GLM, with 
a stepwise model selection based on AIC including linear and 
quadratic terms and weights set for equal sample prevalence) and 
random forest (with stratified sampling, 500 trees, and an “mtry” 
parameter equal to the rounded square root of the number of pre-
dictor variables). For each, we run two validations: (a) a repeated 
split-sample cross-validation by splitting the dataset into training 
(80%) and testing datasets (20%) 10 times, and (b) and a spatial 
block validation by dividing the study area into 3-by-3 blocks, fit-
ting the model on the presence points in eight blocks and validat-
ing it on the 9th block. We repeated this procedure repeated for 
all blocks with data (Roberts et al., 2017). This second approach 
is considered more robust to assess model transferability (Bahn 
& McGill,  2013; Roberts et  al.,  2017). For each of the two vali-
dations, we estimated the discrimination accuracy of the models 
with the area under the curve (AUC) and the true skill statistic 
(TSS; Lawson et  al.,  2014). Then, we fitted the model using the 
full sample and binarized the predictions into presence–absence 
by using the threshold that maximized TSS (Figure  1n). We esti-
mated contraction and expansion areas by overlaying the binary 
predictions for the present and the future. Finally, we validated 
the model predictions for the present, future and areas of con-
traction and expansion against the virtual reality using the same 

TA B L E  1   Summary of treatments considered for fitting the 
species distribution models on virtual species

Treatment Values

Presences 10, 25, 50, 100, 
250, 500, 1,000

Sample prevalence 0.01, 0.1, 1

Buffer (%) 0, 100, 500, 5,000, 
50,000

Bias (%) 33, 66, 100

Niche filling (%) 33, 66, 100

Relevant predictors 0, 3, 6

Irrelevant predictors 0, 3, 6
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discrimination metrics. This validation was performed within the 
area of background point sampling. We matched the predicted 
probabilities with the true presences and absences of the virtual 
species to estimate the true AUC, and the predicted presences 
and absences from the binarized model with the true presences 
and absences of the virtual species to estimate the TSS using the 
threshold that maximized TSS on the testing dataset. By doing 
this, we were able to both (a) estimate models’ discrimination ac-
curacy mimicking a typical ecological modeller, and (b) quantify 
the real models’ discrimination accuracy by comparing the model 
to the virtual reality.

2.2.5 | Evaluation of model settings

As a post-processing step, we used a random forest regression to 
estimate the influence of different modelling settings and con-
founding factors on the discrimination accuracy of the three dis-
tribution model algorithms. We fitted a random forest with 1,000 
trees to each species using all discrimination performance metrics 
(TSS and AUC, both estimated and true for the present and the fu-
ture) and estimated changes in distribution (% of range contraction 
and expansion) as dependent variable (one model per dependent 
variable), and the values of each treatment (number of presences, 
sample prevalence, species prevalence, environmental similarity, 
number of relevant predictors, number of irrelevant predictors; % 
buffer, degree of bias in sampling points, niche filling proportion) 
as independent variables. The “mtry” parameter in the random 
forest model was set to the number of predictors divided by 3 
(Breiman, 2001).

We then estimated the relative importance by permutation and 
partial response curves for each predictor per species and then av-
eraged all relative importance estimates and partial response curves 
per variable across all species. The estimated relative importance 
values were transformed to percentages (rescaled to 100) for inter-
pretability. Confidence intervals for both variable importance and 
partial response curves were estimated from the standard error of 
the mean across species models.

2.2.6 | R packages

All analyses were computed in R v. 3.5.3 (R Core Team, 2018) using 
the packages “virtualspecies” (Leroy et al., 2016), “raster” (Hijmans 
& van Etten, 2014), “PresenceAbsence” (Freeman & Moisen, 2015), 
“dismo” (Hijmans et  al.,  2017), “rgeos” (Bivand & Rundel,  2013), 
“pROC” (Robin et  al.,  2013), “usdm” (Naimi,  2013) and “GISTools” 
(Brunsdon & Chen, 2014) for generating virtual species and fitting 
species distribution models, and “clhs” for the conditional Latin hy-
percube sampling (Roudier, 2011). We used the R package “random-
Forest” (Liaw & Wiener, 2002) and “ranger” for fitting random forest 
models (Wright & Ziegler,  2017), “maxnet” package to fit MaxEnt 
(Phillips, 2017), and “pdp” for estimating the partial response curves 

(Benito Garzón et al., 2019; Greenwell, 2019). The codes used for the 
analyses of this paper are available as part of Appendix S1.

3  | RESULTS

3.1 | Common practices in SDMs

Among 250 papers reviewed, 92 included correlative species dis-
tribution models projected to different times and therefore were 
deemed relevant for the scope of the current study (Table S1). Based 
on our sample and using a bootstrapping approach, we estimated 
that the total number of papers published between 2015 and 2019 
that matched this criterion is 1194–1665 (95% CI), indicating that 
we sampled approximately between 5.5% and 7.7% of the total 
(Appendix S1).

Most of the papers inspected included models fitted on rela-
tively small sample sizes (N < 50; Figure 2a), with only 18.4% includ-
ing minimum samples larger than 50% and 16.1% not reporting the 
sample size used. More than 50% of the papers included all biocli-
matic variables with no biological justification (Figure  2b). Among 
these papers, in ~50% of the cases the authors reduced the number 
of variables using automatized approaches based on correlations 
or best fit to the data. A smaller number of studies selected vari-
ables a priori, some of which did not provide a justification for this 
choice (7.8%). Most of the studies used a single model (Figure 2c), 
with MaxEnt being the most common algorithm used (78.3%), fol-
lowed by linear models (GLM = 30.4%; GAM = 26.1%) and machine 
learning models (RF = 27.2%; GBM = 20.7%; Figure 2f). The majority 
of studies did not include real absences but used pseudo-absences, 
background data or presence-only methods (i.e., climatic envelopes; 
84.8%; Figure  2d). A large proportion of papers using pseudo-
absences or background points did not report the area of sampling 
(48.7%), while others used a variety of different approaches, the 
most common being sampling randomly across the pre-defined 
study area (Figure 2e). Most studies validated models using a split-
sample validation approach (94.2%), a minority validated the models 
using spatially independent samples (3%) and a few did not report 
any sort of validation (2%; Figure 2g). Finally, most studies binarized 
the continuous probability outputs based on discrimination metrics 
(e.g., max TSS or equal sensitivity and specificity; 73.9%), almost 
one-quarter of the studies reported the continuous output (22.8%), 
and a small per cent (3.3%) categorized probabilities into multiple 
arbitrary categories (e.g., 0.3, 0.6 and >0.6; Figure 2h).

3.2 | Reliability of climate change predictions

The three algorithms showed a consistent pattern across pre-
sent and future scenarios and accuracy metrics. The predic-
tive accuracy of models’ predictions estimated by split-sample 
validation was consistently above the typically accepted perfor-
mance thresholds (AUC  =  0.7, TSS  =  0.5; Landis & Koch,  1977; 
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Swets,  1988), and higher than the true predictive accuracy for 
present, future predictions, and contraction and expansion areas 
(Figure 3). In contrast, the AUC estimated by mean of spatial block 
validation was slightly higher than the true AUC for the present 
but approximated well the AUC for the future. The TSS estimated 
using spatially independent samples was slightly lower the TSS for 
present and future predictions.

In general, the accuracy of binary predictions (TSS) was sub-
stantially lower than that measured for continuous predictive 
outputs (AUC), suggesting that the binarization of relative probabil-
ities of presence decreases models’ predictive ability considerably 
(Figure  3). Models’ predictions for the future and contraction and 
expansion areas showed lower predictive performance (Figure 3a), 
especially when binarized (Figure 3b).

Under optimal modelling settings (e.g., large sample size, rel-
evant predictors, no violation of assumptions regarding niche 
filling and unbiased sampling), models performed relatively well 
according to AUC (Figure  S1a), but poorly when considering bi-
nary outputs (Figure  S1c). The predictive accuracy estimated by 
split sample represented well the true predictive performance, 
whereas the one estimated using independent spatial blocks was 
underestimated. On the contrary, under poor modelling settings 
and conditions (small sample size, irrelevant predictors, viola-
tion of the main assumptions), the predictive abilities estimated 
by split-sample validation remained high, but the true predictive 
abilities dropped considerably, especially when predictions were 
binarized into presence–absence (Figure S1b,d). The validation by 
spatially independent blocks instead showed no clear differences 

F I G U R E  2   Summary of the literature review. (a) Number of presences used in the models (minimum among species if multiple species 
were modelled); PtP = geographic range polygons converted to presence points; NR = sample size not reported; (b) variable selection 
approach. all ClmVr = all climatic variables were considered; sel. ClmVr = a subset of climatic variable was considered; automatic 
selection = collinear variables were excluded using automatized approaches based on correlations, variance inflation factors or best fit to the 
data; informed selection = collinear variables were excluded based on expert opinion; no selection = collinear variables were not excluded, 
or no collinearity was not found or reported; no justification = no justification provided for the rationale underlying the subset of variables 
chosen; (c) percentage of studies using one or multiple models, or ensemble modelling approach; (d) percentage of studies using presences 
only, presences + background points/pseudo-absences, and those using presences and real absences; (e) pseudo-absences or background 
points sampling approach; bias = sampling that mimics sampling bias; buffer = random sampling within a buffer around presence points; 
distance-weighted = sampling with higher intensity near (−) or far from (+) presence points; globally = random sampling globally; outside 
climate envelope = beyond climatic conditions observed for presence points; study area = random sampling within a pre-defined study 
area; (f) percentages of studies using MaxEnt, generalized linear models (GLM), generalized additive models (GAM), random forests (RF), 
generalized boosted trees (GBM), multivariate adaptive regression splines (MARS), classification trees (CTA), artificial neural networks (ANN) 
and flexible discriminant analysis (FDA). Other models used in a minority of instances are not reported here (see Table S1); (g) percentage of 
studies performing a classical split-sample or K-fold validation, and of those performing a spatial block validation; (h) percentage of studies 
binarizing the probabilities into suitable/unsuitable, or in multiple arbitrary categories, or not applying any form of binarization
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across the two scenarios of optimal and poor modelling settings, 
reflecting an increase in estimated performance in species that 
were not in equilibrium with the environment (see Section 3.3). 
TSS and AUC were highly correlated, but while high TSS always 
corresponded to high AUC, the opposite was not always true 
(Figure S2).

3.3 | Determinants of estimated predictive ability

The importance and effect of different factors on the estimated 
predictive accuracy by split-sample validation was qualitatively 
similar when using TSS or AUC (Figures S2–S8). The most impor-
tant predictors of estimated predictive accuracy were species 

F I G U R E  3   AUC (a) and TSS (b) of the models fitted. Estimated = estimated through split-sample validation; estimated SB = estimated 
through spatial block validation; present and future = true value validated against virtual reality for present and future; contraction and 
expansion = true value validated against virtual reality for predicted contraction and expansion areas; dashed line = null expectation (no 
better than random); dotted line = value typically considered as “good” performance thresholds. The box edges are the 25th and 75th 
percentiles of the distribution, and whiskers 1.5 the interquartile range
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F I G U R E  4   Relative variable importance of different settings and conditions on the TSS (a–d) and AUC (e–h) estimated by split-sample 
(a, e) and spatial block validation (b, f), and measured against virtual reality for the present (c, g) and future predictions (d, h). Relative 
importance values are rescaled to 100 for each species. Bars represent the mean over all virtual species and error bars the standard error 
around the mean
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prevalence, the environmental gradient sampled (inverse of en-
vironmental bias) and the geographic extent of background point 
sampling (Figure 4). Additionally, sample prevalence was important 
for random forest and the number of presence points for GLM 
(Figure  4). Predictive accuracy decreased with increasing species 
prevalence and decreasing environmental gradient sampled (i.e., in-
creased with environmental bias), and increased with increasing ge-
ographic extent sampled (Figures S3–S8). The number of presence 
points had a positive effect when fitting GLM and MaxEnt models, 
but had little effect when using random forests. Sample prevalence 
a had positive effect in random forests and weakly negative in the 
other two models. The number of relevant and irrelevant predictors 
had a weak but positive effect regardless of the model (Figures S3–
S8). When validating models using spatially independent samples, 
species prevalence remained important, but the number of pres-
ence points gained importance showing a strong positive nonlin-
ear effect. Interestingly, the environmental gradient being sampled 
gained importance, and as for the split-sample validation, the ac-
curacy estimated by the spatial block validation decreased with 
the environmental gradient sampled. This explains why under poor 
modelling settings this validation approach still over-estimates true 
model performance. On the other hand, predictive accuracy esti-
mated by spatially independent samples decreased with increasing 
niche filling and the number of irrelevant predictors.

3.4 | Determinants of true predictive ability

The true predictive accuracy (i.e., measured against the virtual real-
ity) of the models for the present was mostly affected by species 
prevalence, the number of presences and the environmental gradi-
ent sampled. The geographic extent was also important when fitting 
MaxEnt models (Figure 4). Both the number of presence points and 
the environmental gradient sampled had a positive influence on pre-
dictive accuracy, geographic extent had a weak positive effect, and 
the species prevalence had a negative effect (Figures S3–S8).

The number of biologically relevant and irrelevant predictors, 
and niche filling, was relevant for present predictions, but became 
especially influential for the predictive accuracy of models projected 
into the future, with the number of relevant predictors and niche 
filling increasing predictive performance, and the number of irrele-
vant predictors decreasing predictive performance (Figures S3–S8). 
An important predictor of the predictive accuracy of future projec-
tions was the degree of environmental similarity between the pres-
ent and future environmental conditions of the study area (Figure 4, 
Figures S3–S8).

Species with high prevalence were more likely to expand and 
less likely to contract the range. However, a number of additional 
factors contributed to these estimates (Figures S9–S12), such as the 
number biologically relevant and irrelevant predictors, showing a 
positive effect on contraction and expansion estimates in GLM and 
MaxEnt, and a negative effect on contraction areas in random forest 
(Figures  S10–S12). The environmental similarity between present 

and future conditions yielded a negative effect on contraction and 
expansion areas, but showed nonlinearity for contraction areas es-
timated by GLM and random forest models. Violation of equilibrium 
and random sampling assumption also contributed to increase range 
contraction and expansion estimates (Figures S10–S12).

4  | DISCUSSION

In this paper, we report on common practices in SDM and use this 
information to assess the effects of these practices on the predic-
tive accuracy of SDMs, and thus, on the reliability of future climate-
induced range shifts. Our literature review points out that a large 
part of papers that model species distribution under climate change 
rely on single models (typically MaxEnt), include models fitted on 
small samples (N < 50), use presence-only data and typically bina-
rize models' output to measure range shift, contraction or expan-
sion. Consistently with previous analyses (Araújo et al., 2019), it also 
highlighted how poor modelling practices are common in the litera-
ture, especially in relation to the use of very small samples, lack of 
ecological considerations in the selection of model predictors, and 
non-reporting of fundamental information on background sample 
selection and study area (Zurell et al., 2020). It also highlighted that 
despite recent recommendations (Bahn & McGill,  2013; Roberts 
et al., 2017), the vast majority of papers only validate models using a 
split-sample approach. When exploring the influence of these prac-
tices on the predictive accuracy using a virtual species approach, 
we found out that the estimated discrimination capacity by TSS and 
AUC commonly estimated by split-sample validation does not reflect 
the actual predictive ability of SDMs and tends to be over-optimistic 
compared to the real model performance when predicted under 
present conditions and especially when projected to future (differ-
ent) conditions. The ability of models to discriminate presences from 
absences as measured by the TSS is particularly low, even under op-
timal model settings, good ecological knowledge of the species cli-
matic requirements, and when modelling assumptions are fully met. 
The extent to which predictions are reliable depends on a number of 
model parameters (e.g., number of presence points), actual propor-
tion of the species distribution within the geographic extent (species 
prevalence), our degree of knowledge of the species ecology (predic-
tor variables included in the model) and difference between present 
and future environmental conditions. Under optimal settings and a 
good ecological knowledge of the species climatic requirements, fu-
ture predictions show low discrimination ability, whereas under non-
optimal settings, predictions may not be better than random. The 
more robust spatial block validation better approximated the true 
model predictive performance, but still over-estimated model per-
formance when species are in non-equilibrium with the environment 
(i.e., only part of the fundamental niche is realized). Ultimately, our 
results suggest that irrespective of the estimated performance, we 
may be unable to make meaningful future predictions for many spe-
cies, and even when we can, binarization of models’ outputs should 
be avoided. Based on our results, we elaborate in the following 
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paragraphs on guidelines and recommendations for good modelling 
practices when fitting SDMs.

4.1 | Aim for large sample sizes

An important determinant of predictive accuracy that is often un-
dervalued is sample size. Previous studies suggested a minimum 
of 50 points (Hernandez et  al.,  2006; van Proosdij et  al.,  2016; 
Stockwell & Peterson,  2002; Wisz et  al.,  2008) suggested even 
fewer were needed. However, these studies assessed the number 
of points needed under optimal conditions where the modeller uses 
biologically relevant environmental predictors, points are sampled 
randomly, and species are in equilibrium with the environment; or 
used real species (therefore estimating accuracy with testing data, 
e.g., Wisz et al., 2008). Our results show that while sample size has a 
little influence on the estimated (cross-validated) accuracy, it is one 
of the most important predictors of true accuracy. The relationship 
with sample size is asymptotic and tends to stabilize around 200–
500 points. We must stress, however, that no magic number exists, 
and these values are contingent on the settings in our simulation 
(e.g., the number of predictor variables used in the models). Because 
we are rarely aware if the predictor variables are directly linked to 
species ecology, or if the species is in equilibrium with the environ-
ment or presence points are biased, one should always aim for the 
largest possible sample. This may be impracticable for many species, 
that are either poorly known, or have restricted geographic ranges. 
In the absence of biological information on, for example, species’ 
thermal tolerance, it is hard to say, however, if species that are nar-
row ranged are specialist of specific climate conditions, or are not 
in equilibrium with the environment. This second case likely would 
result in an under-estimation of niche tolerance and over-prediction 
of range contraction under climate change (Araújo & Pearson, 2005; 
Faurby & Araújo,  2018; Martínez-Freiría et  al.,  2016). Modelling 
approaches to estimate the uncertainty of models fitted on small 
samples exist (e.g., Breiner et al., 2018), but do not relax the assump-
tion of equilibrium with environment. Other authors relaxed this 
assumption by pooling together occurrences of congeneric species 
(e.g., Mammola et  al.,  2018), which makes the assumption closely 
related species share the same climatic requirements. Yet, this as-
sumption, however, may not hold in many cases (e.g., Benítez-López 
et al., 2014; Cascella et al., 2015). So while some options exist, we 
believe that alternative conservation assessments should be consid-
ered when possible. Projecting SDMs trained on insufficient samples 
does not improve our knowledge in any meaningful way and may 
actually be detrimental.

4.2 | Emphasize sample prevalence, not the 
absolute number of background points

Many SDM studies using presence-only data sample a large num-
ber of background points or pseudo-absences (e.g., 10,000), often 

citing Barbet-Massin et  al.  (2012) or Phillips and Dudík (2008) as 
supporting reference. However, Barbet-Massin et al. did not test 
MaxEnt, and showed important differences between algorithms. In 
turn, Phillips and Dudík (2008) tested MaxEnt but they report their 
results for many species with different numbers of presence points. 
Hence, the positive relationship between AUC and the number of 
background points they found should be interpreted carefully as it is 
mediated by sample prevalence. A recent study concluded that the 
number of background points depends on the modelling technique 
used (Liu et al., 2019), with accuracy in MaxEnt stabilizing above a 
few hundreds of background points, and large numbers being only 
relevant for common species with small samples of training pres-
ences. Our results show that GLM and MaxEnt work best when 
sample prevalence is very low, supporting the practice of sampling 
a large number of background points or pseudo-absences compared 
to the number of presences. However, matching the findings by 
Barbet-Massin et  al.  (2012), we found that random forest models 
perform best with high sample prevalence. This reinforces the no-
tion that no rule of thumb exists and settings should be model- and 
sample-specific, which is often ignored in ensemble forecasting ap-
proaches that fit all models on the same dataset (e.g., del Rosario 
Avalos & Hernández, 2015; Sales et al., 2017).

4.3 | Choose predictors carefully

The number and quality of predictors does not seem to have a clear 
effect on estimated accuracy by split-sample validation; if any, in-
creasing the number of predictors irrespective of the true underly-
ing relationship tends to deceitfully increase estimated performance 
and increase or decrease the estimated range contraction and ex-
pansion. On the contrary, the spatial block validation is sensitive to 
the addition of irrelevant predictors. Choosing biologically meaning-
ful predictors may not be particularly important when predicting 
to present conditions (Fourcade et al., 2018), but it becomes a seri-
ous issue when the model is transferred in space or time (Sequeira 
et  al.,  2018; Wenger & Olden,  2012). Here we considered an op-
timistic scenario where only 6 climatic variables influence species 
distributions. In reality, there might be many biologically relevant 
variables that determine or influence the distribution of a species, 
but our results suggest that when models are projected under dif-
ferent conditions is better to aim for few variables for which we have 
clear biological expectations than many variables with unclear ef-
fects on the species’ distribution (Araújo & Guisan, 2006; Austin & 
Van Niel, 2011).

4.4 | Geographic extents should accommodate the 
purpose of the study

Previous studies suggest sampling background points in areas that 
are potentially accessible to the species (e.g., biome or continent; 
Araújo et  al.,  2019) or considering the historical biogeography of 
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the species (Barve et  al.,  2011; Cooper & Soberón, 2018; Merow 
et al., 2013). This is meant to allow a fair comparison between what 
is used and what is available. Sampling over large areas tends to in-
flate estimated predictive accuracy, whereas the effect on true pre-
dictive accuracy of present and future predictions is inconsistent 
across metrics (positive for AUC and negative or flat for TSS) and 
models. This suggests that the most appropriate geographic area for 
sampling background points varies across species and it should be 
tailored to the objective of the study. Setting a biologically meaning-
ful sampling area requires a deep knowledge of species ecology (e.g., 
dispersal distance, physical and biotic barriers) and biogeography 
(e.g., historical distribution), which is lacking for most species. An im-
portant future avenue of research may be delineating rules of thumb 
for setting an study area that maximizes the accuracy of SDMs fitted 
on species for which we have limited ecological knowledge.

4.5 | Noise is inevitable

An important driver of the variation in model performance is spe-
cies prevalence (Leroy et al., 2018). Our results concur with previous 
studies showing that generalist species are harder to predict than 
specialist species (Evangelista et  al.,  2008). However, “generalist” 
and “specialist” are relative terms in the context of species distri-
bution models, as they are defined based on the geographic extent 
being sampled. Species prevalence over the geographic extent is 
something we are unaware of in real study cases, and will always 
be an unknown factor that affects our predictive ability (Leroy 
et al., 2018). In this sense, we should aim to optimize other model 
settings that can be controlled for, such as the choice of predictors, 
the sample prevalence or having a biologically plausible geographic 
extent.

Our results also show that when future environmental conditions 
are very dissimilar from present conditions, model's projections tend 
to perform poorly. While entirely expected as model predictions ex-
trapolate beyond the model domain (Elith et al., 2010), this is in a way 
paradoxical. In fact, the more dissimilar future conditions will be, the 
more species are expected to shift their distributions and the more 
important become the projections to inform conservation science. 
Our results not only corroborate previous studies emphasizing the 
importance of identifying extrapolation areas for highlighting pro-
jection uncertainty (Elith et al., 2010; Owens et al., 2013), but also in-
dicate that extrapolating beyond the observed conditions decreases 
substantially an already low predictive performance.

4.6 | Violation of modelling assumptions provides a 
false sense of accuracy

Species distribution models rely on the assumptions of random sam-
pling and species equilibrium with the environment. Worryingly, 
here we show that when these two assumptions are not met, the 
estimated accuracy by split-sample validation can be inflated, 

therefore giving the false impression that the model performs well. 
Using a more robust validation approach with spatially independ-
ent samples can be informative regarding species non-equilibrium, 
but is equally deceitful when data are biased over an environmental 
gradient. The extensive use of citizen science data in SDMs makes 
models particularly prone to sample bias (e.g., Jarić et al., 2020), with 
points more often collected in areas highly accessible to humans 
(Bean et  al.,  2012), or in countries that upload their data to plat-
forms like GBIF more consistently (Meyer et al., 2016). Bias can be 
controlled via a number of techniques, such as including covariates 
that act as a proxy for the bias (Warton et al., 2013), manipulating 
background points (Ranc et al., 2016; Vollering et al., 2019), thinning 
presence points across the geographic (Veloz, 2009) or the environ-
mental space (de Oliveira et al., 2014), or weighting data points (Elith 
et al., 2010). While sampling bias can be sometimes obvious when 
we compare our sample to the known approximate distribution of 
the species (e.g., by using IUCN range maps, or atlases), niche fill-
ing is harder to evaluate, as we only have good knowledge of the 
historical biogeography of a relatively small number of species. In 
many cases, the current distribution of species may result in a circu-
lar reasoning, where small ranges may suggest narrow climatic toler-
ance while the species only persists in a given geographic area for 
different reasons, for example because of anthropogenic impact (Di 
Marco & Santini, 2016). Multiple studies have discussed the under-
estimation of the niche due to historical range contractions (Faurby 
& Araújo, 2018; Maiorano et al., 2013; Martínez-Freiría et al., 2016; 
Varela et al., 2009) and demonstrated these may largely influence 
our future projections (Faurby & Araújo,  2018; Martínez-Freiría 
et  al.,  2016). A possibility to alleviate this effect is using a multi-
temporal approach (or time-calibrated models) by including historical 
data associated with the corresponding temporal climatic variables 
in the model training (Maiorano et al., 2013; Nogués-Bravo, 2009). 
Yet, historical records are rarely available, so we should expect that 
the niche always tends to be under-estimated by an unknown extent 
compared to the true species potential, and climatic projections may 
therefore tend to be pessimistic on average about future species oc-
currence (Faurby & Araújo, 2018; Martínez-Freiría et al., 2016).

4.7 | Binarization

Accuracy metrics can fool us easily, and should not be used un-
critically to assess the reliability of a model, especially considering 
that they can provide higher estimates in sub-optimal conditions 
as we have shown here (Figure  S1). Some of the problems dis-
cussed above arise from the binarization of probabilistic model 
outputs into suitable and unsuitable areas (e.g., to determine the 
area of range contraction or expansion) based on a threshold (Liu 
et al., 2013). In fact, the true AUC tends to perform better than TSS 
(Figures S1 and S2), and the estimated AUC has similar values to 
those of the true AUC under optimal conditions, whereas the esti-
mated TSS is consistently higher than the TSS, thus overestimating 
accuracy. Studies using MaxEnt typically only show AUC values 
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(standard output of the software), even though model predic-
tions are binarized. Here we show that while AUC is, as expected, 
highly correlated with TSS, high AUC can correspond to low TSS 
(Figure S2). The problem arises from the fact that even when the 
model performs well, the threshold that maximizes discriminatory 
ability on the training dataset may not discriminate well true pres-
ence/absence, especially under different environmental condi-
tions. Additionally, classical cross-validation is performed by using 
a split-sample approach, but a better and more informative op-
tion is to cross-validate on spatially independent samples (Bahn 
& McGill, 2013; Roberts et al., 2017). Additionally, other perfor-
mance metrics focusing on probabilities (e.g., Boyce index) should 
be considered when possible. Several authors have argued that 
binarization should be entirely avoided unless it is clearly justified 
by the model application's objective (Guillera-Arroita et al., 2015). 
Our results support this recommendation and actually indicate 
that binary outputs should never be used to quantify changes in 
distribution areas. Alternative approaches to summarize the re-
sults should be considered, such as looking at trends in predicted 
probabilities per areas.

4.8 | Additional sources of uncertainty to 
be considered

In this study, we evaluated the sensitivity of SDM predictions to a 
number of modelling settings and common violations of SDM as-
sumptions. However, there are additional factors that we did not 
consider that can further contribute to making predictions less 
reliable. These include the spatial accuracy of data points in rela-
tion to the resolution used (Graham et al., 2008), the taxonomic 
accuracy of the data points (i.e., species confused with others, es-
pecially from citizen science data) and the ambiguous taxonomy 
of the species that may lead to merging data for different species 
or vice versa not considering part of the distribution of a species 
(Araújo et al., 2019). Furthermore, species distribution models as-
sume that the species niche is static, thereby ignoring intraspe-
cific variation and local adaptations across populations (Pearman 
et al., 2010; Valladares et al., 2014). This can be particularly prob-
lematic in climate change studies, as populations can adapt to 
climate change (Hoffmann & Sgró, 2011), and different popula-
tions can hold diverse degrees of adaptation potential (Razgour 
et  al.,  2019). For example, integrating phenotypic trait variation 
in species distribution modelling has been shown to lead to less 
pessimistic conclusions than classical species distribution model-
ling studies, as phenotypic plasticity can help species to adapt to 
climate change (Benito Garzón et al., 2019).

5  | CONCLUDING REMARKS

Estimating the distribution of a species is a non-trivial task, as it 
requires a careful consideration of the biology of the species and 

its historical biogeography. Uncertainty is expected to be particu-
larly high in studies modelling hundreds or thousands of species 
(Newbold, 2018; Thuiller et al., 2019; Visconti et al., 2016; Warren 
et  al., ,,2013, 2018), where species-specific considerations on the 
geographic extent or variables to include become impracticable, 
and normally the same geographic extent for sampling background 
points or set of variables is used. These studies are powerful for 
communicating important messages at the level of geographic areas 
(e.g., biomes) and entire communities, but need to be interpreted 
with extreme caution, and are ill-suited for drawing inferences at the 
level of species.

Our study indicates that our ability to predict future species 
distribution is low on average, and can be low to the point of not 
being meaningful when conditions are far from optimal, especially 
when models’ predictions are binarized. Hence, SDM-based climate 
change forecasting studies must adhere to the highest standards, 
must be clearly described (Zurell et al., 2020), and the estimated ac-
curacy of models should be interpreted with extreme care, as well as 
the results, especially in relation to the quantification of range shifts, 
contraction and expansion, and the identification of areas that will 
be lost or gained. A robust validation by spatially independent sam-
ples is needed, and is certainly more informative than the classical 
split-sample validation, but our results show it is not a panacea either 
as environmental bias can inflate accuracy estimates. These consid-
erations are also valid (and perhaps more problematic considering 
the wide temporal window and static niche assumption) in the case 
of hind-casting to palaeoclimates, which is now common in studies 
focused on refugia and phylogeography (e.g., Svenning et al., 2011). 
Future research should focus on developing novel approaches to 
improve, synthesize and communicate SDM projections and their 
uncertainty accurately and transparently.
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