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Abstract— This letter discusses stochastic optimal con-
trol of an energy storage system (ESS) for reducing the
impact on the grid of fast charging of electric vehicles in
a charging area. A trade off is achieved between the ob-
jectives of limiting the charging power exchanged with the
grid, and the one of limiting the fluctuation, around a given
reference, of the ESS energy. We show that the solution
of the problem can be derived from the one of a related
deterministic problem, requiring the realistic assumption
that the charging area operator knows an estimate of the
aggregated charging power demand over the day. In addi-
tion, two alternative configurations of the charging area are
discussed, and it is shown that, while they share the same
solution, one better mitigates the demand uncertainty. Nu-
meric simulations are provided to validate the proposed
approach.

Index Terms— Optimal control, Pontryagin minimum
principle, energy storage system, plug-in electric vehicles,
fast charging control.

I. INTRODUCTION

HIS paper deals with the problem of controlling a grid-
connected microgrid equipped with an electric energy
storage system (ESS) and a set of charging stations (CSs),
providing fast recharging service to plug-in electric vehicles
(PEVs). We call such microgrid a “service area”. The service
area concept is relevant both for fast charging in urban
scenarios and during long-range trips. Given the high power
rates of PEV charging (up to several tens of kW), service
area operators are investigating strategies to make the charging
service convenient and, secondarily, to reduce its impact on
the grid. Since, in a fast charging scenario, there is limited
possibility to modulate the single charging sessions (as the
priority is to serve customers at maximum power and in
the minimum possible time), in this paper we focus on the
optimal control of the ESS in order to balance and control
the aggregated service area power exchange with the grid.
Two possible ESS configurations in the service area are
discussed, and a series of incrementally complex deterministic
and stochastic optimal control problems are discussed. The
control goals and requirements are:
i) control the ESS to flatten, namely to keep as low and
smooth as possible, the power flow at the point of connection
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(POC) of the service area with the grid. This lowers the
operation cost of the service area, currently one of the main
barriers (the higher the power flow at the POC, the higher
the grid connection fees and demand charges [1]). This action
should be transparent to PEV users (i.e., charging at the CSs
should still take place at maximum power);

ii) to keep the level of energy (LOE) of the ESS [kWh] close
to a desired reference (usually, 50% of the ESS maximum
capacity), to make sure the ESS has always a reserve of energy
to charge or discharge.

These requirements work in opposition each other, giving
raise to the need of formalizing an optimal control problem,
here addressed through customization of the linear quadratic
regulator framework and application of Pontryagin minimum
principle (PMP). Similar scenarios, where the energy flows
and the operation of an ESS need to be optimized, have been
tackled in literature with various methodologies. Among them,
calculus of variations and the PMP are emerging, especially
for the optimization of microgrids (see, e.g., [2] and [3], where
typical objectives are to minimize power flows, minimize
cost of operation, flatten the power profiles, etc.), and hybrid
vehicles (see, e.g., [4] and [5], for minimizing fuel consump-
tion, total consumption cost, etc.). These techniques allow
defining a continuous-time optimal solution, which is easy to
implement in real time, with no demanding hardware/software
requirements. However, in complex cases, finding a causal
or a closed loop solution might be difficult, or impossible.
In [2], the authors minimize the energy flows in a network
of microgrids hosting ESSs and renewables. They show that
the costate of the system (i.e., variable A in the following) is
constant, which simplifies the derivation of the optimal control.
In [3], the authors use PMP to derive the optimal control for
a lossy ESS in a microgrid (with the goal of minimizing fuel
consumption); inclusion of losses is an element of innovation
compared to previous works. In [4], the authors address mini-
mization of fuel consumption in a hybrid vehicle. They show
that, with good approximation, the costate can be considered
constant, and show that the fuel economy achieved is within
1% of the optimal one (derived numerically offline). In [5],
the authors combine PMP and model predictive control (MPC)
for energy management of a plug-in hybrid electric bus.

In more complex scenarios, the costate is not constant and,
in addition, the derivation of the optimal solution is only
possible when some key information about the problem is
available a priori (for example, in hybrid vehicles applications,
the information on the entire driving cycle). In these cases,
several references (see e.g., [6], [7]) introduce the so called
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A-control strategy, where the costate \ is adjusted online in a
feedback fashion.

Another relevant approach used in literature is MPC (see,
e.g., [8], [9]). MPC is conceptually simpler and it allows to
easily embed constraints and detailed models. Classic MPC
repeatedly solves a discrete time open loop control problem
through optimization, which often requires more advanced
hardware and software (e.g., a solver). In case of complex
(e.g., nonlinear) formulations, solving times might be high
(especially when a long prediction horizon is used), which
limits the control resolution. For these reasons, PMP appears
as a natural choice whenever an analytic solution to the
problem can be found, and its integration into a receding
horizon approach (like MPC) a winning strategy to combine
the strengths of both methods.

The distinctive features of this work are: i) a stochastic
formulation of the service area fast charging control problem
is presented, which only assumes the knowledge of the ex-
pected charging power demand in the service area over the
control window; ii) the solution is derived from the one of
a counterpart deterministic problem, which instead requires
the knowledge of the exact charging power demand over the
control window; iii) two alternative service area configurations
are presented, and it is shown that the associated control
problems have the same solution, but one is preferable over
the other in terms of reduced impact of uncertainties; iv) to
the best of our knowledge, this is one of the first applications
of PMP to ESS control in a smart charging area.

The reminder of the paper is organized as follows. Sections
II and III discuss the proposed optimal charging control
problem for two possible infrastructure setups (i.e., different
configurations of the involved devices). The sections present
incrementally complex, both deterministic and stochastic, op-
timal control problems, whose solutions build one on top of
the other. Section IV presents simple simulations to compare
the performance under the two infrastructure setups. Section
V concludes the work and discusses future works.

[l. INFRASTRUCTURE SETUP 1

The first analysed infrastructure setup is in Fig. 1. The
ESS and the CSs are directly connected to the POC with
the grid, each through its own power electronics. This is
a standard connection scheme for the ESS, used in many
applications at different power levels [10] [11] [12]. Let p(t)
denote the power flowing at time ¢ at the POC, u(t) the
ESS charging/discharging power, w(t) the cumulative power
absorbed by the PEVs (non-negative value at every time),
x(t) the difference of the ESS LOE from a reference value
(typically, 50% of the full charge).

A. Deterministic problem statement and solution

Problem 1. (Setup I - Deterministic optimal control problem).
Given an initial time (t;) and a final time (t;) of problem
definition, and given {w(t),t € [t;, ]}, find

min {J(u) = %s:z:(tf)2 +/ ' %[qac(t)2 +7p(t)?] dt}, (1)
—— b

u
=5(z(ts))

;:L(z(t),u(t),t)

Fig. 1.

System architecture, infrastructure setup |.

subject to
x(t;) = i, 2)
o(t) = f(a(t),u(t), t) = u(t), Vieltity], )
p(t) = u(t) +w(t), Vte [tity], )

with s,q,r > 0.

Problem 1 can be solved via PMP theory. The Hamiltonian
of the system is H := L(z(t), u(t),t) + A(t) f(x(t), u(t), ).
The necessary optimality conditions are: i) A(t) = agﬁ)
ii) % = 0, iii) A(ty) = az(tf) They define a two-point
boundary value problem, which can be solved as described
in [13, section 2.3.4] (in particular, the key variable to find
is A(t;)). The optimal solution has the implicit form: A(t) =
—qz(t), 2(t) = u(t), u(t) = 1)\( )— ( ). The initial costate
can be written as: A(t;) = cla(t;) + [ ¢ N 7)dr (with
c} a given constant and c3(7) a glven functlon) Consequently,
the optimal trajectories can be written as:

At) = ea()x(t;) + / ' e} (t, T)w(r)dr | (5)
x(t) = cf(O)x(t;) + /tv/f e (t, T)w(r)dr , (6)
plt) =~ A1) a)

with 3, ¢}, ¢¥, and ¢& known functions. In the following, for
any given w = {w(t),t € [t;,tf]}, we denote the optimal
control of Problem 1 at time ¢ as u(!)(w,t), and the related
system trajectories as x(!)(w,t) and p™)(w,t), where the
superscript reminds that these are the solutions of Problem
1. Notice that, at any given time, these quantities depend on
the entire signal w, from ¢; to ¢;. Similar notation is used for
the control problems presented in the next sections.

Remark 1.1 (Constrained, lossy ESS model). The ESS
model can be extended to include the ESS losses [3]:
& = n(u(t))u(t), with n(u(t)) the charging/discharging ef-
ficiency function. For example, with constant charging and
discharging efficiencies (respectively, nen,nais € (0,1)), it
is n(u(t))u(t) = nepu(t)h(u(t)) + %h(fu(t)), where h is
the Heaviside function. Though more complex, Problem 1 can
still be solved as outlined above. The result is a two point
boundary value problem defined on a switching system (the
efficiency changes depending on the sign of u(t)). The initial
costate in this case can be found with numerical integration.
About constraints, it is immediate to include the box constraint
u™mn < u(t) < U™, using the PMP (see, e.g., [13, Section
2.3, Theorem C]: it is enough to saturate the control found
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to the upper and lower limits, if they are surpassed). More
complex is the inclusion of the box constraints on x, which
can be carried out following the procedure outlined, e.g.,
in [13, Section 2.5, Theorem D]. Still more complex is the
inclusion of the constraint p™" < p(t) < p™e®, since it
defines a time-varying constraint on u(t) (i.e., p™" —w(t) <
u(t) < p™m*® —w(t)). A practical approach is to include in
the objective function an additional barrier term penalizing
the violations of the constraint. This is illustrated, e.g., in [3]
and [4], where it is used to deal with the constraints on .

The analysis carried out in the rest of the paper refers to
the model adopted in Problem 1. The extension to the model
in Remark 1.1 is subject of future works.

B. Stochastic problem statement and solution

In this section, we consider a more realistic case in which
the signal w is a stochastic process, and we design a determin-
istic control u, based on the information available at ¢;, able
to fulfill the above mentioned requirements in a probabilistic
sense. Specifically, we assume we are given, at time ¢;, the
distribution of w(t) over the time interval (¢;,¢s). This is
a valid assumption since, through the charging management
system, the service area operator can perform analytics to
characterize the charging demand. We present in the following
two different possible stochastic problem formulations and
discuss the relation among them.

Problem 2. (Setup 1 - Stochastic optimal control problem a).

min {Jg(u):Z;Sx(tf)z—l— /t ' ;[qa:(t)2+rE[p(t)2]]dt}, ®)

subject to dynamics (2) - (3) and constraint (4).

Problem 2 can be seen as the natural evolution of Problem 1
to the case in which the lack of knowledge about the future
evolution of w makes the power flow p uncertain, as resulting
from the power balance (4); consequently, the term p(t)?
appearing in the cost function (1) is here replaced by its
expected value. The solution of Problem 2 can be found
through comparison between the cost functions J; and J
appearing, respectively, in (1) and (8), as described below.

Lemma 2.1. The optimal control of Problem 2 is given by

ul? (t) = uM (Ew], ). )

The resulting trajectories of x and E[p] are given by
23 (t) = 2 (Ew], 1), (10)
Ep® (1)) = p™M (E[w], ). (11)

Proof. Problems 1 and 2 include the same constraints. The
cost functions J; and J differ for the presence of terms
p(t)? and E[p(t)?] which, using (4), can be written as
p(t)? = u(t)? + 2u(t)w(t) + w(t)? and E[p(t)?] = u(t)® +
2u(t)E[w(t)] + E[w(t)?]. The terms w(t)? and Ew(t)?] do
not depend on the control u and, consequently, do not affect
its determination. Comparing the second terms in the above
expressions, the optimal control (9) follows. As (3) does not

explicitly depends on w(t), and the optimal control u(?) (¢) is
given by u")(E[w],t), i.e., the solution of Problem 1, where
signal w is replaced by its expected value, then x(?)(t) is
straightforwardly given by z(®)(t) = z()(E[w],t). Finally,
applying the expected value to both sides of (4) and using (9),
E[pP)(t)] is calculated as E[p® ()] = u?(t) + Elw(t)] =
uM(E[w],t) + Elw(t)] = pM (Ew], t). O

In order to give a further insight into the significance
of Problem 2, we now consider and discuss an alternative
problem formulation, characterized by the same solution.

Problem 3. (Setup 1 - Stochastic optimal control problem b).

i {00 = L [st07) - 500+

%/t fE[q(w(t)_x(l)(w,t))2+r(p(t)—p(l)(w,t))2]dt}’
| (12)

subject to dynamics (2) - (3) and constraint (4).

Lemma 3.1. The optimal control and system trajectories
related to Problems 2 and 3 are the same, namely

u® (t) = u(l)(E[w],t), (13)
2P (t) = M (Ew], 1), (14)
Ep® ()] = p(Ew], t). (15)

Proof. Consider the unconstrained version of Problem 3. The
optimal values (denoted with ) of x and E[p] minimizing J3
are easily found noting that the latter can be decomposed in
separate functions of x and p, and consequently calculating
their stationary points. This gives z*(t) = E[z(!)(w,t)] and
E[p]*(t) = E[p™ (w,t)]. Using (6) to expand E[z™) (w, )]
gives

s - [ [cm)x(m + Y (0 ) ()i =

—@att)+ [ @t Bhuldr =2t (Blul, 0,
" 16)
The same calculation applies to E[p]*(t), using (7)
Elp)*(t) = pV (E[w], t)

Comparing (16)(17) and (10)(11), equations (14)(15), and
consequently (13), follow. [

a7)

Remark 3.1. In Problem 3, the cost function J3 is designed so
as to penalize the square deviation of the controlled trajecto-
ries from the optimal ones resulting from Problem I; since w is
a stochastic process, this deviation is considered on “average”
through its expected value. In the light of Lemma 3.1, the
control (9) keeps this deviation minimum, taking into account
all the possible realizations of w.

Remark 3.2. The optimal control of Problems 2 and 3 is
formally the same of Problem 1, with the peculiarity of being
computed as a function of E|w] instead of w. Hence the plant
is controlled based on the average behaviour of the charging
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power demand and, consequently, the realization of the power
flow p is generally affected by the uncertainty of the stochastic
process w. Indeed notice that

p® (&) =u® () +w(t) =u (Efw], ) +w(t) =
= pW(E[w],t) + (w(t) - Blw(t)])

and, consequently, the smaller the deviation of w from E[w]
is, the higher the significance of Problem 2 is.

(18)

As resulting from Remark 3.2, the uncertainty in the charg-
ing demand w, including the presence of spikes due to the
activation of new charging sessions, can significantly affect
plant performances and, specifically, the possibility of satisfy-
ing requirement 1. We analyse in the following an alternative
setup which, based on the same available knowledge at ¢; and
previous results, can guarantee better performances in practical
terms, even when the charging demand w is affected by a high
degree of uncertainty.

I1l. INFRASTRUCTURE SETUP 2

In this infrastructure setup, the ESS is placed in between the
CSs and the grid, as shown in Fig. 2 (refer to this figure for
the nomenclature used in this section). This is also a standard
connection scheme for the ESS, mainly used in applications
where the main requirement is avoiding interruptions of the
power supply. Though it can be realized in several ways, the
key difference from setup 1 is the presence of a common direct
current bus for connecting the batteries and the load, together
with a grid connected inverter able to control the power flow
[14] [15, Fig. 2]. The resulting ESS dynamics is given by
z(t) = wu(t) — w(t), where u represents both the controlled
component of the total ESS charging/discharging power and
the power flow at the POC, to be minimized.

A. Deterministic problem statement and solution

Problem 4. (Setup 2 - Deterministic optimal control problem).

ngn{J4(u) =yt [ é[qx<t>2+ru<t>21dt}, (19)

i

subject to:

#(t) = u(t) —w(t), Vte[t,ts], =)=z (20)

It is easy to check that the necessary optimality conditions
for Problem 4 define the same two-point boundary value
problem as for Problem 1, and consequently equations (5) and
(6) still hold. We summarize this result as

2 (t) = M (w,1),
AD (1) = XD (w, 1).

2y

(22)

ESS

Fig. 2. System architecture, infrastructure setup II.

For the optimal control we have: 327&) = 0, ie, u(t) =

—%)\(t) which, using (22) and (7), can be written as

uM (@) = pM(w, t) = uM (w, t) + w(t).

(23)

The form of the optimal control (23), as well as the trajectory
of the state (21), should not surprise the reader: in the
infrastructure setup 2 the ESS control w represents the power
flowing at the POC, the same role played by the variable p in
the infrastructure setup 1. Problems 1 and 4 describe, in the
deterministic case, the same control problem with reference
to two different charging infrastructure configurations. We
discuss in the following the peculiarity of setup 2 with respect
to setup 1, through the natural evolution of Problem 4 to the
stochastic case presented hereinafter.

B. Stochastic problem statement and solution

Consider the following control problem, in which, w is
subject to the same assumptions considered in section II-B.

Problem 5. (Setup 2 - Stochastic optimal control problem).

min {J4<u> =3B+ [ SlaBlet 0]+ rat(e)de .
" (24)

subject to dynamics (20).

Following the logic used for introducing Problem 2, Prob-
lem 5 can be seen as the natural evolution of Problem 4 to
the case in which the lack of knowledge about the future
behavior of w makes the trajectory of the state x uncertain,
as resulting from the dynamics (20); consequently, the term
22 appearing in the cost function (19) is here replaced by its
expected value. Again, the solution of Problem 5 can be found
making a comparison between the cost functions J; and Js
(respectively, (19) and (24)), as reported below.

Lemma 5.1. The optimal control of Problem 5 is given by

u®(t) = p (B[], ). (25)
The resulting trajectory of E[x] is given by
E[z® ()] = =V (B[u], ). (26)

Proof. Problems 4 and 5 are characterized by the same dy-
namics which, in its explicit form, is given by

x(t) = z(t;) —|—/ [u(T) — w(T)]dr.

t;

(27
Cost functions J4 and J5 appearing in (19) and (24) differ

each other respectively by the presence of terms x(t)? and
E[x(t)?]. Inspection of these two terms using (27) gives

x(t)? =x(t;)? 4 2x(t;) /tu(T)dT n (/tU(T)dT)2+

ti ti

2 /t j w(r)dr /t t w(r)dr+

+( /tjw(r)dfj — 2a(t;) /t w(r)r,

2
i

(28)
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2

Elz(t)?] x(ti)2+2x(ti)/:u(7-)d7—+ (/ttU(T)dT) 4

i

—2/ u(r)dr | Elw(r)]dr+

t; ti

+EK / tw(T)dTﬂ — 2(t;) tE[w(T)]dT.

t i t i

The terms in the third row of (28) and (29) are contributions
to Jy and J5 that can not be reduced via u(t). Comparing the
terms in the second rows of the equations results in

u®(t) = u (E[w], 1) (30)

and, remembering (23), the optimal control (25) follows.
Finally, applying the expected value to both sides of (27),
using (30) and (21), E[z®)(t)] is calculated as

Bz ()] = Elo(t) + [ [u() — w(r)ldr] =

ti

—alt)+ [ WOBlul7) - Bl = OV

=W (Blw],t) = 2 (E[w], t).
O

Remark 5.1. The optimal control of Problem 5 is obtained
calculating the optimal control of Problem 4 as a function
of Elw] instead of the real signal w. The optimal control
evolves as the expected value of power p in the infrastructure
setup 1 (see (25) and (11)). The plant is controlled based
on the average behaviour of the charging demand w and,
consequently, any deviation of the realization of w with respect
to its expected value affects the actual trajectory of the state
x. Indeed notice that

2O (t) = x(t;) + / [w® (1) — w(r))dr =

(32)

t
= 2Bl 1) —/ (w(r) — Efuw(r)])dr.
t;

Looking at Problems 2 and 5, it is straightforward to realize
that they give rise to the same average behavior of variables
x and p, obtained when w = FE[w] (compare (11)(10) and
(25)(26), and notice that u in Problem 5 plays the role of p in
Problem 2). The peculiarity of the infrastructure setup 2, with
respect to setup 1, is that the uncertainty appearing in p(®) in
(18) is moved to the state ) in (32). This uncertainty affects
the state through the smoothing action of an integral, instead
of directly affecting, without any filtering action, the power
flow at the POC between the charging service area and the
power network. Consequently, the application of the optimal
control (25) to the plant characterizing the infrastructure setup
2 allows to better fulfill the control requirements, provided
that the ESS converter is properly sized to be able to manage
the mismatch between F[w] and the realization w. Further

300

Power [kW]

Time [hours]

Fig. 3. Actual (black line) and expected charging power.

100

Power [kW]

-100

-200
0

Time [hours]

Fig. 4. ESS charging/discharging power.

this control setup poses the basis for a future extension
of Problem 5, aimed at minimizing the probability of state
saturation, while keeping the size of the ESS properly small.

IV. NUMERICAL SIMULATIONS

Simulations aim to compare the evolution of the service area
according to the control proposed in Problem 2 and Problem
5, i.e., the proposed stochastic control problems for the two
addressed infrastructure setups. We consider a service area that
can deliver a maximum of 280 kW of charging power. This
in practice can reflect different numbers of CSs, depending on
the adopted charging standards. Simulations were performed in
Matlab and span 12 hours. We chose ¢ = 1, » = 1 and s = 10.
Figure 3 displays F(w) and the realization w considered in
the simulation. They reflect a realistic scenario with two peaks
of charging requests during the day. Figures 4 and 5 report, in
black line, respectively, the ESS charging/discharging power
(i.e., u® — w) and the ESS LOE trajectory resulting from
Problem 5. The gray lines instead refer to Problem 2. In
Problem 5 (i.e., in the second setup), it is the ESS that absorbs
the mismatches between the expected charging power and
the actual one, as visible from Fig. 4. On the other hand,
from Fig. 6, which reports the power flow at the POC with
the grid, it can be seen that Problem 5 results in a power
flow (black line) that is smooth and in line with the desired
requirement, while Problem 2, i.e., setup 1, results in large
power variations injected into the grid. In addition, it can be
shown that, in the figures, the smooth lines also represent the
evolutions that would result from all the Problems in case the
realization w coincided with the expected value E[w] (looking
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Fig. 5. ESS relative level of energy (LOE).
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Fig. 6. Power flow at the connection with the grid.

at Fig. 4 for instance, this can be seen from (18) and (25),
considering w = E[w]). The above results confirm that setup 2
can effectively meet the requirement on power flow smoothing,
with a limited deviation (thanks to the integral action of the
ESS) of the ESS SOC curve from the ideal profile obtained
when w = E[w]. Setup 2 is consequently preferable over
setup 1, for the reduced impact of uncertainties on the POC.

For completeness we remark that the choice of one setup
over the other should also take into account additional elec-
trical and economic aspects, such as the size and cost of the
ESS, the inefficiencies of power converters, and the reliability
of the equipment. Regarding the ESS, in principle setup 1
may be implemented using an ESS having smaller capacity
than in setup 2, as the CSs are directly fed both by the
ESS and the grid; however, in case uninterruptible power
supply is required, the size of the ESS has to be same in
both configurations. For what concerns inefficiencies, it is
important to highlight that both the setups may be realized
in several different ways, in terms of number, typology and
connection schemes of power converters [10] [14]; this is
the reason why this electrotechnical insight is left to future
works. However we remark that, among the aspects to be
evaluated for choosing a setup over the other, the impact of
uncertainty appears relevant compared to inefficiencies; indeed
while different connection schemes may results in different
losses of energy, large deviations of w from E[w] may actually
compromise the possibility of achieving the desired system
behaviour at the POC when using setup 1.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented deterministic and stochastic op-
timal control strategies for control of a PEV charging area
equipped with CSs and an ESS. The main control goal is
to use the ESS to flatten the power profile at the point of
connection with the grid, which lowers the operation costs
of the charging area. Future works will focus on the detailed
modelling of w as a stochastic process, and on the design of
an updated optimal stochastic version of the problem [16], to
better model the ESS, to include a probabilistic formulation
of constraints (extending Remark 1.1), and to integrate the
proposed approach into a receding horizon scheme.
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