
On-Line Failure Prediction in Safety-Critical
Systems∗

Roberto Baldoni and Luca Montanari
Cyber Intelligence and Information Security Research Center and

Department of Computer, Control, and Management Engineering Antonio Ruberti

“Sapienza” University of Rome, Italy

baldoni@dis.uniroma1.it - montanari@dis.uniroma1.it

Marco Rizzuto
Selex-ES, Rome, Italy

mrizzuto@selex-es.com

Abstract

In safety-critical systems such as Air Traffic Control system, SCADA systems, Rail-
ways Control Systems, there has been a rapid transition from monolithic systems
to highly modular ones, using off-the-shelf hardware and software applications pos-
sibly developed by different manufactures. This shift increased the probability that
a fault occurring in an application propagates to others with the risk of a failure
of the entire safety-critical system. This calls new tools for the on-line detection
of anomalous behaviors of the system, predicting thus a system failure before it
happens, allowing the deployment of appropriate mitigation policies.

The paper proposes a novel architecture, namely CASPER, for online failure
prediction that has the distinctive features to be (i) black-box : no knowledge of
applications internals and logic of the system is required (ii) non-intrusive: no
status information of the components is used such as CPU or memory usage; The
architecture has been implemented to predict failures in a real Air Traffic Control
System. CASPER exhibits high degree of accuracy in predicting failures with low
false positive rate. The experimental validation shows how operators are provided
with predictions issued a few hundred of seconds before the occurrence of the failure.

∗A preliminary version of this paper appeared at SAFECOMP 2012.

1

1 Introduction 2

Keywords: Failure Prediction, Complex Event Processing, Machine Learn-
ing, Complex Distributed Systems, Critical Infrastructures.

1 Introduction

A few years ago, safety-critical systems traditionally used in air traffic con-
trol, commercial aircraft, nuclear power, consisted of a monolithic (possibly
proprietary) system provided by a single vendor. Such systems thus incurred
in high cost of development and maintenance. To reduce such costs, systems
have been unpacked in a set of applications/services (usually developed by
different vendors) that interact through a set of well-defined interfaces.

Applications need to meet stringent Quality of Service (QoS) require-
ments in terms of availability in order to ensure, in their turn, the high
availability of the whole safety-critical system. To achieve this objective,
applications require to distribute and replicate data (e.g., flight routes in Air
Traffic Control system) on a number of nodes connected through a WAN
or a LAN. Due to the nature of such systems, the replicas of an applica-
tion need to be strictly consistent in order that they keep the same state
along the time, providing a client with the illusion that its request occurs
instantaneously [21].

In such complex distributed systems, failures are a matter of life thus
they have to be safely handled to ensure system survivability. Extensive test-
ing during the design phase of an application cannot avoid the occurrence at
operational time of failures that can lead to catastrophic consequences for
the entire system functioning. Keeping a set of replicas strictly consistent in
the presence of replica failures boils down indeed to solve the consensus prob-
lem [30]. Thus, if the distributed system has a good coverage of synchrony
assumptions (i.e, network and computing nodes are working nicely), there
are a number of fault tolerance mechanisms that can be used to overcome
the failure and to keep replicas consistent (e.g., failure detection through
heart-beating [9]). If a fault happens in a period when there is no cover-
age of synchrony assumption, replicas might manifest anomalous behaviors
due to well-known Fischer-Lynch-Paterson (FLP) impossibility result stat-
ing that distributed consensus cannot be reached in an asynchronous system
even in the presence of only one faulty process [15]. These behaviors could
transitively affect other applications bringing in the worst case to a system
failure such as, for example, an abnormal system shutdown. In this case, it
might take a long time to resume a correct functioning, severely reducing
system availability. The only way to avoid such abnormal system failures is
to predict them, sensing the occurrence of anomalous behaviors. Accurate

1 Introduction 3

and timely predictions can help to mitigate the effect of failures by taking
appropriate recovery actions before the failure occurs. Such actions can mit-
igate the loss of availability by reducing the time needed to resume a correct
system behavior.

The industrial trend is to split a safety-critical system in at least two
distinct sets of interconnected applications/services possibly developed by
two or more distinct manufacturers. The first one handles the application
logic (e.g. flight routes management in Air Traffic Control Systems) and
the second set is devoted to control and supervision that, among the others,
has the task of managing failures. Manufactures require that supervision
services interfere as less as possible with the application logic. This is due
to the fact that application logic has a long and complex deployment phase
at customer premises and the performance of the application logic cannot
be influenced in any way by the supervision mechanisms. This implies that
for example application logic and supervision cannot be co-located on the
same nodes.

For all these reasons, some prominent future challenges of next gener-
ation safety-critical systems relate to the capacity of keeping the same, or
even increase, the availability of such systems while considering this open
multi-manufacturers setting. In particular:

• High-level assurance of non-interference at run-time among distinct
applications forming the safety-critical distributed system. Some of
these applications should not have any interaction at all (e.g., super-
vision and application logic) in order to ensure the mutual correctness
of their behavior;

• An application, which is a part of the safety-critical distributed system,
would have a great value if agnostic with respect to the internals of
all others interacting applications. As an example, supervision should
have zero knowledge on the deployment and on the source code of the
application logic.

These challenges translate into having a supervision that acts like a both
non-intrusive and black-box observer. Non-intrusive means the failure pre-
diction does not use any kind of information on the status of the nodes (e.g.,
CPU, memory) of the monitored system; black-box means no knowledge of
the application internals and of the application logic of the system is ex-
ploited. Operationally, in safety-critical systems, a large amount of data,
deriving from communications among applications and services, transits on
the network; thus, the “observer” can focus on that type of data, only, in

2 Related Work 4

order to recognize many aspects of the actual interactions among the com-
ponents of the system.

This paper presents a first attempt in the direction of designing next gen-
eration highly available safety-critical systems by introducing a novel non-
intrusive and black-box failure prediction architecture, namely CASPER. It
works online since the failure prediction is carried out during the normal
functioning of the monitored system and it exploits only information travel-
ing on the network interconnecting nodes of the supervised and monitored
systems. Specifically, the aim of CASPER is to recognize any deviation
from normal behaviors of the monitored system by analyzing symptoms of
faults that might occur in the form of anomalous conditions of specific per-
formance metrics. In doing so, CASPER combines, in a novel fashion, Com-
plex Event Processing and machine learning algorithms designed through
Hidden Markov Models. The latter are used to classify at run time nice
states and anomalous states of the monitored system. Roughly speaking
when an anomalous state is detected an alarm is sent to the operator. In
this paper we show how CASPER can be effective also implementing the
simplest version of HMM. We indeed deployed CASPER for monitoring a
real Air Traffic Control (ATC) system developed by Selex-ES (a Finmec-
canica Company)and conducted a 6 months long experimental evaluation.
Results show CASPER timely predicts failures in the presence of memory
and I/O stress conditions while keeping reasonably low1 the number of false
positives.

2 Related Work

A large body of research is devoted to the investigation of approaches to
online failure prediction. The interested readers can find a comprehensive
taxonomy of them in [35]. In this section, we discuss only those that are
closer to our solution and that mainly inspired the approach we followed. We
can distinguish between approaches that make use of symptoms monitoring
techniques for predicting failures (as CASPER does), and approaches that
use error monitoring mechanisms. In the latter category, Salfner in [34]
presents an error monitoring failure prediction technique that uses Hidden
Semi-Markov Model (HSMM) in order to recognize error patterns that can
lead to failures. Hoffman et al. in [22] describe two non-intrusive data driven
modeling approaches to error monitoring, the first based on a Discrete Time
Markov Model and the second one on function approximation.

1 False positive rate less then 12%, F-Measure more then 80%, see Section 6.2 for details.

2 Related Work 5

In the context of symptoms monitoring, there exist failure prediction
systems that use black-box approaches, namely ALERT [36] and Tiresias
[38]. Both systems are intrusive in the sense that they interfere with hosts
running the application logic by sensing internal parameters such as CPU
consumption, memory usage, input/output data rate. Using such internal
parameters allow to quickly sense bad behaviors and alert operators. Thus,
one of the challenges of CASPER has been to get good accuracy and fast
response time while being non-intrusive. A more recent work [2] that can be
consider non-intrusive as it uses network traffic only, presents data-mining
techniques that extract essential models of anomalous behavior sequences
known to be precursors of system failure conditions, i.e., symptoms in our
sights. The main difference is that is designed to address network failures
only, while our work is more general in that sense. From a model point of
view, in the field of failure prediction, [31] presents prediction sub-model for
each component and combines them using component dependencies. This
is different from other approaches as usually the same model is used for all
the components. Note that [31] is intrusive as it requires the installation of
monitoring probes to the observed components.

Out of the area of failure detection systems, CASPER got inspired by
the following approaches: Aguilera et al. in [3] consider the problem of
discovering performance bottlenecks in large scale distributed systems con-
sisting of black-box software components. The system introduced in [3]
solves the problem by using message-level traces related to the activity of
the monitored system in a non-intrusive fashion (passively and without any
knowledge of node internals or semantics of messages). The main difference
respect to our work is that a bottleneck is not properly a failure, but can
be consider as a performance degradation. Fu and Xu in [16] analyze the
correlation in time and space of failure events and implements a long-term
failure prediction framework named hPrefects for such a purpose. hPrefects
forecasts the time-between-failure of future instances based on the correla-
tions among failures. The difference, in this case, is that we perform short
term online failure prediction: avoid the occurrence of an upcoming failure
basing on monitoring of symptoms, caused by faults, that will lead to that
failure while hPerfects addresses long-term failure prediction: it estimates
the occurrence of future failures using data on past failure occurrences, with-
out symptoms monitoring. A complementary work on how to react to the
determination of an “unsafe state” that requires to transition to a new “safe
state” can be done with functional composition techniques such as described
in [19].

3 Background 6

3 Background

The approach followed in this work combines Complex Event Processing
(CEP) and Hidden Markov Models (HMM) to analyze symptoms of failures
that might occur in the form of anomalous conditions of performance metrics
identified for such purpose. We used HMM in order to recognize the state
of the observed system starting from a set of timely changing performance
metrics, computed by a CEP engine. In this section, some basic definitions
about these two techniques are provided.

3.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model (i.e., a formalization
of relationships between variables in the form of mathematical equations) in
which the system modeled is assumed to be a Markov process with hidden
states. It can be considered as the simplest dynamic Bayesian network.
Differently from regular Markov model, in hidden Markov model the state
is not visible to the observer. The latter can just see the output(s) emitted
but a state. Then the observer looking at the sequence of outputs can infer
the sequence of hidden states. HMM allows thus to recognize the state of
the modeled system starting from observations of its output, building thus
a classification of the output symbols.

HMM are employed in several fields to detect temporal patterns, such as
voice recognition [32], clustering in time-series data [4], intrusion detection
[25], computational biology (e.g., [13, 27] just to name a few. In [39] a human
action recognition method based on a Hidden Markov Models is presented.
A set of time-sequential images is transformed into an image feature vector
sequence, and the sequence is converted into a symbol sequence by vector
quantization. The goal is to classify observed images sequences into human
actions categories. The predicting capabilities of the HMMs are used by
Dockstader et. all in [11]: the problem of the detection and prediction of
motion tracking failures with application in human motion and gait analysis
is presented. The approach defines a failure as an event and uses the output
probability of a trained HMM to detect and a logarithmically transformed
probability to predict such events. The vector observations for the model
are derived from the time-varying noise covariance matrices of a Kalman
filter that tracks the parameters of a structural model of the human body.
A medical application of HMM is presented in [26] where the hidden Markov
models are used to model ECG signals, [6] presents an original HMM ap-
proach for online beat segmentation and classification of electrocardiograms.

3 Background 7

The HMM framework has been visited because of its ability of beat detec-
tion, segmentation and classification, highly suitable to the electrocardio-
gram problem. The same author published [5] which originally combines
HMM and wavelets providing new insights on the ECG segmentation prob-
lem. P2P-TV traffic has been modeled using HMM in [17], by proposing
a simple traffic model that can be representative of P2P-TV applications.
HMM is often used for deviation detection and state diagnosis; [10] uses the
Hidden Markov Model formalism considering three aspects involved in com-
ponent’s state diagnosis: the monitored component, the deviation detection
mechanism and the state diagnosis mechanism.

The model In this paragraph the baseline of the model is provided. Inter-
ested readers can refer to [32] for further details. In this work we consider
the simplest version of Hidden Markov Model, i.e., a bivariate stochastic
process {st, ot}t>0, which consist of:

a) an unobserved sequence (hidden state process) {st}t>0, which is an ho-
mogeneous first order Markov chain, with state space Ω = {ω1, . . . , ωN},
initial probability vector π(0) such that the generic element πi(0) is de-
fined as

πi(0) := p(s0 = ωi), ∀i = 1, . . . , N

and the transition matrix A whose elements are:

ai,j := p(st = ωj |st−1 = ωi), ∀i, j = 1, . . . , N.

b) the observed sequence {ot}t>0, that is conditioned to{st, ot}t>0 forms a
sequence of conditionally independent random variables, with values in
Σ = {σ1, . . . , σM}, characterized by the matrix B, whose elements are:

bk(σj) := p(ot = σj |st = ωk), ∀k = 1, . . . , N, ∀j = 1, . . . ,M.

Those elements represents the probabilities to emit a symbol σj at time
t, given that the state of the Markov chain is ωk. Each symbol of the
alphabet Σ can be emitted, according to a given probability, if the Markov
model is in state ωk.

This paper will target homogeneous first-order Markov chain that is
completely characterized by the triple (A,B, π(0)).

3 Background 8

3.2 Complex Event Processing

Detecting event patterns, sometime referred to as situations, and reacting to
them are at the core of Complex Event Processing (CEP) [28]. Business in-
telligence, air traffic control, collaborative security, complex system software
management are examples of applications built using CEP technology [14].
CEP is defined as an event processing that aggregates and correlates data
from multiple (possibly heterogeneous) sources to infer high level events or
patterns. In CEP, three fundamental concepts are defined: event streams,
correlation rules, and event engine. An event is a representation of a set of
conditions in a given time instant. Events belong to streams: events of the
same type are in the same event stream. Correlation rules are commonly
SQL-like queries (but also other types of queries are possible [12]) used by
the event engine in order to correlate events: i.e., in order to discover tem-
poral and spatial relationships between events of possibly different streams.
There are several commercial products that implement the CEP paradigm.
Among those currently available, we have chosen the well-known open source
event engine ESPER [1]. The use of ESPER is motivated by both its low
cost of ownership compared to other similar systems, its offered usability,
and the ability of dynamically adapting the complex event processing logic
by adding at run time new queries. In ESPER, while the events pass through
memory, the query engine continuously sieves for the relevant events that
may satisfy one of the queries. The queries are defined using an SQL-like
query language named Event Processing Language (EPL). EPL can thus
support all SQL’s conventional constructs such as Group By, Having, Order
By, Sum, etc. However, it adds further constructs (e.g., the pattern) that
allows it to perform complex correlations among events. CEP engines are
usually very optimized in order to grant a very high throughput (hundreds
of thousands of events per second) even if deployed in common off-the-shelf
computers. The interested reader can refer to [14] for additional detail on
how to use, design, and build CEP-based applications.

3.3 Failure and Prediction Model

We model the distributed system to be monitored as a set of nodes that
run one or more services. Nodes exchange messages over a communication
network. Nodes or services are subject to failures. A failure is defined as an
event that occurs when the delivered service deviates from correct service[7].
A failure is always preceded by a fault (e.g., I/O error, memory misusage);
however, the vice versa might not be always true, i.e., a fault inside a system

3 Background 9

Time

Failure

Symptom

Fault

Prediction Limit

time-to-prediction time-to-failure

Fig. 1: Fault, Symptoms, Failure and Prediction

could not always bring to a failure as the system could tolerate, for example
by design, such fault.

Faults that lead to failures, independently of the fault’s root cause (e.g.,
an application-level problem or a network-level fault), affect the system in an
observable and identifiable way. Thus, faults can generate side-effects in the
monitored systems until the failure occurs (see Figure 1). Our work is based
on assumptions similar to [23, 37, 38] i.e., (i) a fault generates unstable
performance-related symptoms indicating a possible future presence of a
failure, and (ii) the system exhibits a steady-state performance behavior
with a few variations when a non-faulty situation is observed.

A failure prediction mechanism consists in monitoring the behavior of
the distributed system looking for possible symptoms generated by faults,
and in raising timely alerts regarding software failures if symptoms become
severe. Proper countermeasures can be set before the failure to either miti-
gate damages or enable recovery actions. Figure 1 shows the time-to-failure
as the distance in time between the occurrence of the prediction and the
software failure. The prediction has to be raised before a Limit, beyond
which it is not sufficiently in advance to take some effective actions before
the failure occurs. Finally, the time-to-prediction represents the distance
between the occurrence of the first symptom of the failure and the predic-
tion. An ideal failure prediction system would produce zero false positives,
i.e., no mistakes in raising alerts regarding failures, maximizing at the same
time time-to-failure.

4 Casper Architecture 10

Pre-
Processing

Failure
PredictionEvents

System
State

Recognized

Host
Rank

CASPER

Local Area Network

Host
1

Host
2

Host
3

Host
N

Monitored System

AlertsNetwork
Packets

Actions

Symptoms Detection

Host Activity Detection

Topology
Detection

Services
Ranker

Hosts
Ranker

Performance
Metrics

Computation

Symbols System
State

Recognizer
KB

Graph Rank

Fig. 2: The modules of the CASPER failure prediction architecture

4 Casper Architecture

The architecture we designed for online black-box non-intrusive failure pre-
diction is named CASPER and it is deployed in the same subnetwork as the
distributed system to be monitored. Figure 2 shows the main modules of
CASPER. Next subsections provide a description of each of such modules.
CASPER takes as input network packets flow, detects in parallel if the sys-
tem is behaving correctly and if there are some hosts that is experiencing
problems. Such information, coming from these two modules is correlated
and alerts are sent to an operator. Activities of CASPER architecture are
synchronized through a clock mechanism. At the beginning of the clock cycle
events fed to the Host Activity Detection and Symptom Detection modules
and alerts are generated at the end of the clock cycle. In the experimental
validation we set the clock cycle to 800ms finding a good trade off between
performances and accuracy2.

2 Details about the experimental validation for tuning the clock period (that is not
considered in this work) can be found in the following technical reporthttp://www.dis.
uniroma1.it/~midlab/articoli/MidlabTechReport3-2012.pdf

4 Casper Architecture 11

Performance Metrics Computation

CEP
engine Aggregator

1
2

n

σm∈Σ
Event
Stream

Symbols

Fig. 3: Performance Metrics Computation component

4.1 Pre-Processing module

It is mainly responsible for capturing and decoding network data required
to recognize symptoms of failures and for producing streams of events. The
streams of events carry a large amount of information that is obtained from
the entire set of network packets exchanged among the interconnected nodes
of the monitored system. The Pre-Processing module receives as input net-
work data exchanged by the hosts of the monitored system. More specif-
ically, the pre-processing module extracts headers of network packets such
as TCP/UDP headers, SOAP, GIOP, etc. The rationale is to extract from
packets only the information that is relevant for the detection of specific
symptoms (e.g., the timestamp of a request and of a reply, destination and
source IP addresses). Finally, the Pre-Processing module transform protocol
headers into an events stream that become input of both the Host Activity
detection module and the Symptoms detection module.

4.2 Symptoms detection module

The stream of events received as input by the Symptoms detection mod-
ule is used to discover specific performance patterns through complex event
processing (i.e., event correlations and aggregations). The result of this pro-
cessing is a system state that must be evaluated in order to detect whether
it is a safe or unsafe state. To this end, we divided this module into two dif-
ferent components, namely a Performance Metrics Computation component
and a System State Recognizer component.

4.2.1 The Performance Metrics Computation component

This component embodies a CEP engine and an Aggregator. It periodically
(e.g., once per second) produces as output a representation of the system

4 Casper Architecture 12

behavior in the form of symbols taking as input the event stream, (see Fig-
ure 2).

The CEP engine computes a vector V ∈ RN of performance metrics,
i.e., a set of time-changing metrics whose combination indicates how the
system is behaving (an example of network performance metric can be the
round trip time). A vector V of performance metrics is produced per each
clock cycle and is provided as input to the Aggregator. The Aggregator is
a software component that takes in input a vector V ∈ RN and gives in
output a single value in an interval A ⊂ N, with |A| = M (see Figure 3).

Aggregator internals The Aggregator works using a fix square grid of RN

constituted by M = DN N−dimensional intervals, where D is the number
of 1-dimensional intervals per each component of RN . The N-dimensional
intervals are numbered from 1 to M . Figure 4 represents an example of
the defined square grid in R2 with M = 16. In order to perform its task,

ℝ1 2 3 40

1

2

3

4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ℝ

Fig. 4: Example of square grid in R2 with D = 4.

the aggregator needs to know a maximum and a minimum value of the
components of V. These values have to be provided during a configuration
phase. Starting from V = (v1, v2, . . . , vN) the aggregator defines a new
vector Vnormalized = (v′1, v

′
2, . . . , v

′
N) as follows:

v′i :=
D(vi − vMin

i)

vMax
i − vMin

i

, ∀i = 1, . . . , N. (1)

4 Casper Architecture 13

The (1) simply normalizes each component vi (according to its maximum
and minimum values) in order to have v′i ∈ [0, D], for all i. This means
that Vnormalized identifies a point in the square grid defined before. Each
component of Vnormalized is now compared with the intervals of the grid in
order to identify the N−dimensional interval Vnormalized belongs to. The
number of the interval will be the symbols σm.

Consider an example to better explain the Aggregator work: Assume an
aggregator in R2 tuned with a square grid of M = 16 2-dimensional intervals.
This means that there are D = 4 1-dimensional intervals per component.
Assume also that vMin

1 = vMin
2 = 0 and vMax

1 = vMax
2 = 100 Consider an

input vector V = [51.34, 58.22]. Applying Equation 1, we have:

Vnormalized = (
4(51.34− 0)

(100− 0)
,
4(58.22− 0)

100− 0
) = (2.05, 2.034).

The vector Vnormalized is shown in Figure 5. A comparison with the inter-
vals boundary can easily identify the 2-dimensional interval which the point
belongs to. In this case the interval is the number 11.

1 2 3 40

1

2

3

4

(v’1,v’2)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ℝ

ℝ
Fig. 5: Example of aggregator behavior with N = 2 and D = 4.

4.2.2 System State Recognizer component

This component receives a symbol from the previous component at each
CASPER clock cycle and recognizes whether it represents a correct or an

4 Casper Architecture 14

incorrect behavior of the monitored system. To this end, the component
uses Hidden Markov Models. We recall that HMM consists of a hidden
stochastic process, a set of symbols Σ and two probability matrices A and B
as defined in Section 3.1. Figure 6 shows how we instantiated HMM in our
architecture.

Unsafe2 Unsafek

Hidden Process

0.8

0.2 0.6 0.4 0.2 1

0.2 0.7

0.3

σ1 σ2 σ3 σM

Symbols

Unsafe1Safe

Fig. 6: Hidden Markov Models graph used in the System State Recognizer
component

We model the state of the system to be monitored by means of the hidden
process. We define the states of the system (see Figure 6) as:

• Safe: the system behavior is correct as no active fault ([7]) is present;

• Unsafei: a fault of type i, and then related symptoms, is present. We
assume a finite number of k types of faults (e.g., memory stress, disk
overload, cpu overload).

The number of states N is the sum of the k Unsafe states and the Safe
state: N = k + 1. We assume that initially the system is in the Safe state:

πi(0) = 1.

Since the state of the system is not known a priori, we can observe it only
looking at the emissions of symbols. Figure 6 represents the emitted symbols
as the set of {σ1, σ2, σ3, . . . , σM}. In addition, Figure 6 shows labeled edges
among the vertices of the hidden process; these represent the values of the A
matrix. In contrast, the edges that connect the states of the hidden process
to the symbols are the probabilities to emit a given symbol σm, that is, the
B matrix of HMM. Note that the values in Figure 6 are example values,
according to them, if we assume that the system is in Unsafe2 state, the
probability to see the σM symbol emitted is 1.

4 Casper Architecture 15

4.3 Hosts Activity Detection Module

The symptoms detection module analyzes the observed distributed system
as a single component. Therefore, the recognized system state represents
the state of the whole distributed system: nothing can be stated regarding
the single node. The Host Activity Detection Module (HADM) handles this
problem by providing a periodic snapshot of the nodes health status. In
particular, the HADM allows to:

• disclose the network topology of the observed system in a completely
non-intrusive fashion;

• create a ranking among the network level services based on their reg-
ularity in terms of network activity, i.e. the mean number of messages
produced in a given temporal window;

• create a ranking of the network nodes based on the per-host services
ranking.

In order to perform these actions, the HADM uses as input the event stream
produced by the pre-processing module. The HADM architecture embodies
three components namely Topology Detector Component, Service Ranker
and Hosts Ranker. A description of these components is now provided.

4.3.1 Topology Detector Component

Since each event received by HADM represents a network packet exchanged
by two hosts using a given port number, it is easy to represent all the
interactions among the hosts using a graph. The aim of this component is
to provide a representation of the network topology of the system observed
that is updated in real-time. Each host is represented as a vertex of a
graph. Each logical link between two hosts is represented as a directed edge
between two vertices. A logical link (edge) represents a connection between
two hosts using a source port and a destination port. This idea is similar
to the one used by iLand middleware [18] that supports also monitoring of
resource consumption and deadline fulfillment of time sensitive operations.
The graph takes the time dimension into account by considering an edge has
two states, namely active and inactive. An active edge is logical link that
experienced at least a message exchange during last CASPER clock cycle.
Otherwise it is inactive. As far as nodes is concerned, we consider a sink
node, a node that only received messages during the last CASPER clock
cycle. A node is called source if it only sent messages in the last cycle.

4 Casper Architecture 16

Figure 7 shows the network topology of the SELEX-ES Air Traffic Con-
trol system realized through JUNG library 3. Black nodes represent sink
nodes, white nodes sources, while green nodes are neither sink or source
nodes. Dotted edges are inactive network links.

Fig. 7: An example of graph representing a 9-nodes Air Traffic Control sys-
tem. At the given CASPER clock cycle, the system has 3 sink (black)
nodes, 1 source (white) node and 4 green nodes.

3 A video of the output produced in real-time by this module during its functioning is
available at the following link www.cis.uniroma1.it/projects/casper.php

4 Casper Architecture 17

4.3.2 Services Ranker component

The Service Ranker Component takes as input a live updated network topol-
ogy graph generated by HADM and extracts information about services run-
ning at each host looking at each graph node and the label of each outgoing
edge. Then the component assigns periodically to each service a vote based
on its regularity in message exchange. The Services Ranker component
outputs a real-time ranking of the liveness of all services of the monitored
system.

The vote is based on a mathematical function of the service outer mes-
sage rate. CASPER computes if the average message rate of a service is
near its historical rate. In the affirmative the vote is decreased, otherwise
it is increased. To compute the historical rate CASPER uses the exponen-
tial moving average, also known as exponentially weighted moving average
(E.M.A.) defined as follows:

E.M.A. :=

{
S1 = Y1

St = αYt + (1− α)St−1 t > 1.

where the coefficient α represents the degree of weighted decrease, a constant
smoothing factor between 0 and 1. A higher α discounts older observations
faster. Yt is the observation at a time period t. St is the value of the E.M.A.
at any time period t.

There are two adjustable parameters in this ranking feature: (i) the devi-
ation (how much the Yt is far from the average) and (ii) α. Both parameters
can be tuned in real-time using the CASPER GUI4.

4.3.3 Hosts Ranker Component

Host Ranker component takes the output of the Services Ranker component
as input and computes a ranking among the hosts. This ranking is used as
an input by the Failure Prediction Module that correlates this stream with
the one emitted by the Symptoms Detection module.

The hosts ranker component first of all computes a per-host vote from
input received by the service rank component by summing up votes of all
services of a host. This vote is then multiplied by the request over replies
ratio forming the final host’s vote. This ratio represents, for each host, the
number of requests sent to that host during a CASPER clock cycle over

4 CASPER GUI in action can be seen at the following link www.cis.uniroma1.it/

projects/casper.php

5 Training of the model 18

the number of replies produced by the host in the same cycle. The ratio
greater than 1 means there is a number of requests not served by the host
(probably the host is overloaded). If the host is working well, we expect a
ratio that will be very close to 1, thus the final host’s vote will be equal to
the one obtained by summing up votes of services managed by that host. If
the ratio is greater than 1, the final host’s vote will get higher, amplifying
the host non-regularity.

4.4 Failure Prediction module

This module is mainly responsible for correlating the information about the
state received from the System State Recognizer component and from Host
Ranker component. It takes as input the recognized state of the system at
each CASPER clock-cycle and the host ranking. The recognized state can be
a safe state or one of the possible unsafe states Unsafei . . . Unsafek. Using
the CEP engine, this module counts the number of consecutive Unsafei
states and produces a failure prediction alert when that number reaches a
tunable threshold. The alert will also contain the ranking of the hosts so
the operator can have an overview of the single hosts, in the moment of the
prediction.

5 Training of the model

The knowledge base (see Figure 2) concerning the possible safe and unsafe
monitored system states is composed by the matrices A and B (see Section
3.1) of the System State Recognizer component. This knowledge is built
during an initial training phase. If the A matrix represents how the system
behaves, the B matrix represents what we can see about the system behav-
ior. Adjust the entries of these matrices is the solution to the known training
problem of the HMM. There is no known way to solve for a maximum like-
lihood model analytically; moreover solve this problem without knowledge
about the path of system states is a NP Complete problem and it can
only be approximate using complex heuristics. Nevertheless, if the path of
hidden states that generates the observations is known, the parameters of
the matrices can be computed using the maximum likelihood re-estimation
technique [32].

We followed a supervised learning approach, that is, we considered the
case in which the sequence of hidden states is known.This choice is motivated
by two main reasons: The first one is performance of the learning phase: the
system has been designed in order to be deployed in a critical environment,

5 Training of the model 19

in which a new anomalous condition has to be learnt in near real time, so
unsupervised algorithms (e.g., Baum-Welch or Viterbi algorithm), usually
computationally too slow, have not been considered. The second reason is
that, due to the complexity of the observed system, the effects of faulty con-
ditions can be unpredictable, thus it is very important to recognize the type
of fault that caused the deviation. This can be effectively obtained with a
supervised learning approach, where the system is trained with sequences of
faulty observations, that we extracted from the testing environment. Thus,
in our case, parameters of the HMM can be computed as follows, according
to methodology presented in [33]:

• the probabilities πi are determined by the relative frequency of se-
quences starting in state ωi:

πi =
number sequences starting in ωi

total number of sequences
;

• the elements of the A matrix are determined by the number of transi-
tions from ωi to ωj divided by the total number of transition from the
ωi state:

aij =
number of transitions(ωi, ωj)

number of transitions(ωi, ωk)∀ωk ∈ Ω
;

• the elements of the B matrix are determined by the number of times
the process has generated symbol σj (i.e. an emission of σj) being in
the state ωi divided by the number of time the process has been in the
state ωi:

bi(oj) =
number of σj emissions

number of times the process has been in stateωi
.

Having the sequences of states known, what described is sufficient to build
the A and B matrices and the πi as well.

In order to have the hidden state sequences, during the training CASPER
is fed concurrently by both recorded network traces and a sequence of pairs
<system-state,time> that represents the state of the monitored system
(i.e., Safe, Unsafe1, . . . , Unsafek) at a specific time. Since the training is
offline, the sequence of pairs <system-state,time> can be created offline
by the operator using network traces and system log files. No training is
required for the other components of CASPER.

6 Results 20

6 Results

We deployed and tested CASPER failure prediction capabilities in a real Air
Traffic Control system owned by Selex-ES that manufactures and manage
ATC systems. We worked on an ATC system in production and on a perfect
copy of the system deployed in a testing environment.

We first collected a number of network traces from the ATC representing
steady state performance behavior and stress conditions leading to software
failures. The former traces have been collected in the production environ-
ment. The latter ones have been collected in the testing environment where
we injected memory and I/O stress in one of the nodes of the ATC system.

After the collection of the traces, we trained CASPER and once the
training phase was over we deployed CASPER on the testing environment
of the ATC system in order to conduct our experiments campaign. We
studied (i) the CASPER accuracy in detection of the state of the monitored
system and (ii) the CASPER capability to predict a failure caused by these
conditions. The implementation of all CASPER components has been done
in Java.

6.1 HMM and Aggregator parameters

During the experimental campaign we had to choose the number of hidden
states of the HMM model (and what each of them represents) and to tune
parameters of the Aggregator (see Section 4.2.1), i.e., number of symbols
M = DN , the possible values per each performance metric D, and the
number of performance metrics N .

In particular, for the HMM, we considered a total of three hidden states:
Safe, Unsafe1, Unsafe2 according to the two stress condition (memory
and I/O) that we injected in the system.

We consideredN = 3 performance metrics, in particular: round trip time
(average time between the requests and the relative replies within a clock
cycle), message rate (average number of messages per second of the clock
cycle) and number of requests without reply (number of requests that are
still waiting for a reply within a clock cycle). These metrics are computed by
the CEP engine and produced one time per CASPER clock cycle, as vector
V entries (see Section 4.2.1).

The number of emissions is M = |Σ| = 216 symbols and is due to the
number of performance metrics considered N = 3 and the possible values
per each performance metric D. In this campaign we chosen D = 6. These

6 Results 21

parameters have been chosen empirically, after a campaign of experiments5.

6.2 Results of CASPER failure prediction

We have run two campaigns of experiments once CASPER was trained and
tuned. In the first one, we injected faults in the ATC testing environment
and we carried out 8 tests for each type of fault. In the second one, we
observed the accuracy of CASPER when monitoring for 24h the ATC system
in operation. From the point of view of the accuracy, we found during the
tests of the first campaign the mean results reported in Tab. 1, where
Ntp (number of true positives) means the system state is unsafe and the
recognized state is “system unsafe”; Ntn (number of true negatives): the
system state is safe and the recognized state is “system safe”; Nfp (number
of false positive): the system state is safe but the recognized state is “system
unsafe”; and Nfn (number of false negatives): the system state is unsafe but
the recognized state is “system safe”.

Tab. 1: Accuracy metrics.

Precision: p =
Ntp

Ntp+Nfp
88.51%

Recall (TP rate): r =
Ntp

Ntp+Nfn
76.47%

F-measure: F = 2× p×r
p+r 82.05%

FP Rate: f.p.r. =
Nfp

Nfp+Ntn
11.26%

In order to evaluate the ability of CASPER of predict failures due to
memory stress, we injected this kind of stress in one of the node of the
ATC system until a service failure. Figure 8 shows the anatomy of this
failure in one of the tests. In Figure can be appreciated how CASPER have
run with some wrong recognized state (false positive) until the time the
memory stress starts at second 105. The sequence of false positives starting
at second 37 is not sufficiently long to create a false prediction. After that
memory stress starts, the failure prediction module outputs a prediction at
second 128; thus, the time-to-prediction is 23s. The failure occurs at second
335, then the time-to-failure is 207s, which is satisfactory with respect to
ATC system recovery requirements. We can also see a little burst of system
state inference component false negatives starting at second 128, successfully
ignored by the failure prediction module.

5 Details about the accuracy of CASPER varying D are available in the technical report:
http://www.dis.uniroma1.it/~midlab/articoli/MidlabTechReport3-2012.pdf

6 Results 22

0 37 100 200 300 335128
Safe State

Unsafe State

Time (seconds)

System State Recog.

Real System State

Prediction

Service
Failure

time−to−failuretime−to−prediction

Fig. 8: Failure prediction in case of memory stress starting at second 105.

Figure 9 shows the anatomy of the failure in case of I/O stress in one
test. A failure caused by I/O stress happens after 408 seconds from the
start of the stress (at 190s) and has been predicted at time 222 after 32s
of stress, with a time-to-prediction equal to 376s before the failure. There
is a delay due to the false negatives (from 190s to 205s) that the system
state inference component produced at the start of the stress period. The
time-to-prediction is 21s.

0 100 300 400 500222 598
Safe State

Unsafe State

Time (seconds)

System State Recognized

Real System State

Prediction
 time−to−failuretime−to−prediction

Service
Failure

Fig. 9: Failure prediction in case of I/O stress starting at second 408.

In general, we obtained that in the 8 tests we carried out, the time-to-
failure in case of memory stress varied in the range of [183s, 216s] and the
time-to-prediction in the range of [20.8s, 27s]. In case of I/O stress, in the 8

7 Conclusion 23

tests, the time-to-failure varied in the rage of [353s, 402s] whereas the time-
to-prediction in the range of [19.2s, 24.9s]. Note that the time-to-prediction
can be influenced by the stress tools used, thus they have been accurately
tuned to match the real faulty situations the ATC system usually suffers.

6.3 Results of CASPER hosts ranking

The host ranking is a real time ranking among the hosts. Figure 10 repre-
sents a situation in which, at second 128, a memory stress application has
been run in host 102 until its failure. The regularity of this host is highly
affected by the stress. The host ranking module recognizes this fact and
assigns, to host 102, a higher and higher vote. Also the other hosts have
suffered the misbehavior of host 102 thus implying the increase of the related
votes. At 270s host 102 halted and its vote starts to increase linearly. The
failure prediction has been triggered at 191s.

100 128 191 250 270 3000

500

1000

1500

2000

2500

3000

3500

4000

Time (seconds)

Vo
te

host 102 − unsafe
host 67 − safe
host 101 − safe
host 68 − safe

Fig. 10: Hosts ranking behavior. At second 128 a memory stress starts on
host number 102.

7 Conclusion

We presented an architecture to online predict failures of safety-critical dis-
tributed systems. The failure prediction architecture, namely CASPER,
provides accurate predictions of failures by exploiting only the network traf-
fic of the monitored system. In this way, it results non intrusive with respect
to the nodes hosting the safety-critical system and it executes a black-box

7 Conclusion 24

failure prediction as no knowledge concerning the layout and the logic of the
safety-critical distributed system is used. To the best of our knowledge, this
is the first failure detection system exhibiting all these features together.
Such failure prediction mechanisms sense anomalous behaviors that propa-
gate through software applications and services forming the safety-critical
systems. Results have shown that CASPER exhibits pretty good accuracy
and it is able to generate predictions with a margin of time that allows
recovery actions to mitigate the upcoming occurrence of a failure of the
system.

In the last couple of years, researchers started investigating how to man-
age and predict failures in complex infrastructures like cloud computing ones
[24, 20, 29]. We are currently studying how to specialize CASPER to cloud
computing infrastructures. Specifically, we are using network traffic and
power consumption data, taken from a datacenter enclosure, as input, for
showing how the prediction accuracy of failures, occurring inside the enclo-
sure, can be improved through the correlation of those inputs. Preliminary
results have been published in [8].

Acknowledgments

The authors would like to thank Luca Iocchi for comments and suggestions
on the HMM internals and the anonymous reviewers for their insightful
comments that greatly improved content and presentation of this paper.
This work has been partially supported by the TENACE project (MIUR-
PRIN 20103P34XC), by the CINI-SELEX-ES project ”Iniziativa Software”
and by the EU project PANOPTESEC.

References

[1] Esper project web page, 2012. http://esper.codehaus.org/.

[2] Hesham J Abed, Ala Al-Fuqaha, Bilal Khan, and Ammar Rayes. Ef-
ficient failure prediction in autonomic networks based on trend and
frequency analysis of anomalous patterns. International Journal of Net-
work Management, 23(3):186–213, 2013.

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick
Reynolds, and Athicha Muthitacharoen. Performance debugging for
distributed systems of black boxes. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, SOSP ’03, pages
74–89, New York, NY, USA, 2003. ACM.

7 Conclusion 25

[4] Jonathan Alon, Stan Sclaroff, George Kollios, and Vladimir Pavlovic.
Discovering clusters in motion time-series data. In In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
375–381, 2003.

[5] Rodrigo Varejão Andreão and Jérôme Boudy. Combining wavelet trans-
form and hidden markov models for ecg segmentation. EURASIP J.
Appl. Signal Process., 2007(1):95–95, January 2007.

[6] R.V. Anreão, B. Dorizzi, and J. Boudy. Ecg signal analysis through
hidden markov models. In IEEE Transactions on Biomed. Eng.,
53(8):1541–9, August 2006.

[7] A. Avizienis, J. Laprie, B.Randell, and C.E. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. De-
pendable Sec. Comput., 1(1):11–33, 2004.

[8] Roberto Baldoni, Adriano Cerocchi, Claudio Ciccotelli, Alessandro
Donno, Federico Lombardi, and Luca Montanari. Towards a non-
intrusive recognition of anomalous system behavior in data centers.
In Computer Safety, Reliability, and Security, pages 350–359. Springer,
2014.

[9] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267, March 1996.

[10] A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna.
Hidden Markov models as a support for diagnosis: Formalization of the
problem and synthesis of the solution. In Proceedings of 25th IEEE
Symposium on Reliable Distributed Systems (SRDS 2006), pages 245–
256, Leeds, UK, October 2006.

[11] Shiloh L. Dockstader, Nikita S. Imennov, and A. Murat Tekalp.
Markov-based failure prediction for human motion analysis. In Proceed-
ings of the Ninth IEEE International Conference on Computer Vision -
Volume 2, ICCV ’03, pages 1283–, Washington, DC, USA, 2003. IEEE
Computer Society.

[12] Bugra Gedik Henrique Andrade Kun-Lung Wu Philip S.
Yu MyungCheol Doo. Spade: The system s declarative stream
processing engine. In Proceedings of ACM SIGMOD international
conference on Management of data, Vancouver, BC, Canada, June
9–12 2008.

7 Conclusion 26

[13] Sean R. Eddy. Profile hidden markov models. Bioinformatics,
14(9):755–763, 1998.

[14] Opher Etzion and Peter Niblett. Event Processing in Action. Manning
Publications Co., Greenwich, CT, USA, 1st edition, 2010.

[15] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-
possibility of distributed consensus with one faulty process. J. ACM,
32(2):374–382, April 1985.

[16] Song Fu and Cheng zhong Xu. Exploring event correlation for fail-
ure prediction in coalitions of clusters. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age, and Analysis (SC07), 2007.

[17] Maria Antonieta Garcia, Ana Paula Couto da Silva, and Michela Meo.
Using hidden markov chains for modeling p2p-tv traffic. In GLOBE-
COM, pages 1–6, 2010.

[18] M. Garcia Valls, I.R. Lopez, and L.F. Villar. iland: An enhanced mid-
dleware for real-time reconfiguration of service oriented distributed real-
time systems. Industrial Informatics, IEEE Transactions on, 9(1):228–
236, Feb 2013.

[19] Marisol Garćıa Valls and Pablo Basanta Val. A real-time perspective
of service composition: key concepts and some contributions. Journal
of Systems Architecture, 59(10):1414–1423, 2013.

[20] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of bayesian pre-
dictors and decision trees for proactive failure management in cloud
computing systems. Journal of Communications, 7(1):52–61, 2012.

[21] M. Herlihy. A methodology for implementing highly concurrent data
structures. In Proceedings of the Second ACM SIGPLAN Symposium
on Principles &Amp; Practice of Parallel Programming, PPOPP ’90,
pages 197–206, New York, NY, USA, 1990. ACM.

[22] Günther A. Hoffmann, Felix Salfner, and Miroslaw Malek. Advanced
Failure Prediction in Complex Software Systems. Technical Report
172, Department of Computer Science, Humboldt-Universität zu Berlin,
Germany, 2004.

[23] C.S. Hood and C. Ji. Proactive network-fault detection. In IEEE
Transactions on Reliability, 46(3):333 –341, september 1997.

7 Conclusion 27

[24] Ravi Jhawar, Vincenzo Piuri, and Marco Santambrogio. Fault tolerance
management in cloud computing: A system-level perspective. Systems
Journal, IEEE, 7(2):288–297, 2013.

[25] R. Khanna and Huaping Liu. Control theoretic approach to intrusion
detection using a distributed hidden markov model. Wireless Commun.,
15(4):24–33, August 2008.

[26] Antti Koski. Modelling ecg signals with hidden markov models. Artif.
Intell. Med., 8(5):453–471, October 1996.

[27] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, and
David Haussler. Hidden markov models in computational biology: ap-
plications to protein modeling. Journal of Molecular Biology, 235:1501–
1531, 1994.

[28] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[29] Reza Farrahi Moghaddam, Fereydoun Farrahi Moghaddam, Vahid As-
ghari, and Mohamed Cheriet. Cognitive behavior analysis framework
for fault prediction in cloud computing. In Network of the Future
(NOF), 2012 Third International Conference on the, pages 1–8. IEEE,
2012.

[30] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, April 1980.

[31] Teerat Pitakrat. Hora: Online failure prediction framework for
component-based software systems based on kieker and palladio. In
KPDAYS, pages 39–48, 2013.

[32] L. Rabiner and B. Juang. An introduction to hidden markov models.
ASSP Magazine, IEEE, 3(1):4 – 16, jan 1986.

[33] L. R. Rabiner. A tutorial on hidden markov models and selected ap-
plications in speech recognition. In Proceedings of IEEE, volume 77,
pages 257–286. IEEE, 1989.

[34] F. Salfner. Event-based Failure Prediction: An Extended Hidden
Markov Model Approach. PhD thesis, Department of Computer Sci-
ence, Humboldt-Universität zu Berlin, Germany, 2008.

7 Conclusion 28

[35] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online fail-
ure prediction methods. ACM Computing Surveys (CSUR), 42, 2010.

[36] Yongmin Tan, Xiaohui Gu, and Haixun Wang. Adaptive system
anomaly prediction for large-scale hosting infrastructures. In Proceed-
ing of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, PODC ’10, pages 173–182, New York, NY, USA,
2010. ACM.

[37] Marina Thottan and Chuanyi Ji. Properties of network faults. In Pro-
ceeding of IEEE/IFIP Network Operation and Management Symposium
(NOMS 2000), pages 941–942, 2000.

[38] Andrew W. Williams, Soila M. Pertet, and Priya Narasimhan. Tire-
sias: Black-box failure prediction in distributed systems. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2007), Los Alamitos, CA, USA, 2007.

[39] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-
sequential images using hidden Markov model. Proceedings 1992 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 379–385, 1992.

