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Abstract—A fundamental open question that has been studied
by sociologists since the 70s and recently started being addressed
by the computer-science community is the understanding of the
role that influence and selection play in shaping the evolution of
socio-cultural systems. Quantifying these forces in real settings is
still a big challenge, especially in the large-scale case in which
the entire social network between the users may not be known,
and only longitudinal data in terms of masses of cultural groups
(e.g., political affiliation, product adoption, market share, cultural
tastes) may be available. We propose an influence and selection
model encompassing an explicit characterization of the feature
space for the different cultural groups in the form of a natural
equation-based macroscopic model, following the approach of
Kempe et al. [EC 2013]. Our main goal is to estimate edge
influence strengths and selection parameters from an observed
time series. To do an experimental evaluation on real data, we
perform learning on real datasets from Last.FM and Wikipedia.

I. INTRODUCTION

The evolution of human culture has quite naturally been
the study of sociologists and anthropologists, since as early as
the mid 20th century. Research postulates that cultural traits,
such as language in use, religion, music preferences, and so on,
evolve to some extent because of influence exerted by groups
of the population to other groups [1]–[5] and in the last decade
this topic has also entered the field of study of economists and
physicists [6]–[8].

The idea behind the growing effort in developing math-
ematical models for explaining socio-cultural evolution is
grounded by the fact that, in describing many contexts, qual-
itative and even some quantitative properties of large-scale
phenomena depend to a large extent on high-level features,
such as symmetries, dimensionality, or conservation laws [8].

In 2012, Kempe et al. [9] introduced the problem to
the computer-science community, by presenting a family of
models for cultural evolution based on the concepts of influ-
ence and selection, and studying graph-theoretic properties of
the equilibria reached by these models. Following previous
work [6], in these graph-theoretic models (macroscopic mod-
els [10]), nodes in the graph do not model the interactions
between individual agents, as is typical in social-network
models (microscopic models); instead, each node corresponds
to a cultural type (or group) and it is associated with a
mass, which captures the percentage of the population of this
type. An edge between two nodes represents a possible flow
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Fig. 1: Example of cultural dynamics unfolding in a setting
with 4 distinct cultural groups and 2 subsequent observations
in time. The macroscopic model (above) abstracts the micro-
scopic interactions that occur at the microscopic level (below)
among the individuals. Between the two time steps, there is
transfer of mass from the green type to the other tree, and
from the red and blue types to the purple one.

from one type to another1. For instance, a node’s mass may
represent the english-speaking population of a given society,
whereas another may represent a spanish-speaking one, and an
edge between them corresponds to the potential of interaction
between the two population groups. The models are dynamic,
with continuous or discrete time steps, and the difference
between two consecutive time steps captures the transfer of
mass flow among the masses (see Figure 1).
Surprisingly, to our knowledge, there has not been any work
to validate these macroscopic models for culture evolution:
the literature on social dynamics exhibits a striking imbalance
between theoretical modelization and empirical evidence, in
favor of the former [8]. The work of Kempe et al. places
its emphasis on the theoretical properties of the introduced
models. Prior works, were more oriented towards modeling
theories developed by sociologists at a theoretical level. The
main goal of this work is to initiate a validation of such models
for cultural dynamics and verify what information they can
provide on the interdependence of different cultures. Inspired
by the models of Kempe et al. we propose two models and
fit them to large scale datasets that we have collected, of two
different kinds: music (what genres people listen to), and wiki
article editing (used as a proxy for users’ topical interests).

1Actually the model is more complicated with the presence of two graphs,
but for this informal discussion this description suffices; we describe the
complete model in Section III.



To summarize our contributions:

• We define new generic models for modeling cultural
dynamics in the presence of both influence and selec-
tion, which can account for the vicinity of different
culture types and allow for multiple features (Sec-
tion III).

• We perform learning (Section IV) and validation of
these models on real datasets (Sections V and VI),
and we show that they can be useful for predicting
future states.

II. RELATED WORK

A number of models have been proposed in the literature,
and may be broadly divided in two categories, namely micro-
scopic and macroscopic models [10]. We start by mentioning
some work performed by sociologists in the area of cultural dy-
namics, proceeding by describing mathematical models, which
can be divided into microscopic and macroscopic models [10].

A. Sociological Studies on Cultural Dynamics
Sociologists have studied the topic of cultural dynamics

for several decades. Even the definition of what is meant
by culture has been the topic of extensive discussion [11].
Kashima [10] treats the definition of culture, as “a set of non-
genetic information that is available (i.e., information exists),
accessible (i.e., information can be acquired), and applicable
(i.e., information is usable) to a group of people”. His work
surveys the diverse existing methodologies for research on
cultural dynamics (longitudinal surveys, formal models and
computer simulation) comparing their ability to explain short-,
medium-, and long-term links between micro-level mecha-
nisms and macro-level dynamics.

B. Microscopic Models
Microscopic models constitute the vast majority of the

proposed work in the field: they represent a social system as
graph-type fixed structure where agents are initially associated
with an opinion that iteratively changes in time as long as
they interact with their neighborhood [2]–[4]. The concept of
bounded confidence is introduced by Hegelsmann et al. [12],
in this model an agent updates its opinion considering only the
neighbors whose difference in opinion lies inside a confidence
bound. Axelrod [1] proposed a cultural dissemination model
where the probability of interaction between two agents is
proportional to the number of dimensions in which they agree,
and after an interaction the agent copies the value of a random
differing dimension.

C. Macroscopic Models
This class of models mainly derives from the field of

statistical physics, whose aim is to study collective phenomena
emerging from the interactions of individuals as elementary
units in social structures. The models discussed in this work
belong to this category. The Abrams-Strogatz model [6] pre-
sented a two-language competition model to explain historical
data on the decline of endangered languages, proposing that
the attractiveness of a language increases with the number of
speakers and with its perceived status, foreseeing the extinction
of languages with “lower social statuses”. In a generalization
of this work, Patriarca et al. [7] introduce spatial dependence
with a reaction–diffusion equation allowing survival of both

languages under the assumption that they are spoken in differ-
ent zones and can interact only in a narrow transition region.
More recently, Kempe et al. [9] concentrated on the interplay
between selection and influence, envisioning a cultural system
represented by a graph of cultural types which may interact
and influence each other. The authors study the steady state
behavior of the system characterizing the set of the stable
equilibria.

III. MODELING CULTURAL DYNAMICS

Kempe et al. [9] propose a model of cultural dynamics
to characterize the evolution of networks under the combined
effect of selection and influence. These two forces have distin-
guishably different causal mechanisms and determine opposing
results: selection is the tendency of people to interact (and then
form ties) with similar peers, thus leading to fragmentation;
influence, spread through social ties, instead fosters homogene-
ity. More specifically, Kempe et al. consider the population as
divided into a set of types V (where the types may represent
opinions, cultural choices, language, etc.). The population is
represented as a continuum such that the relative mass of type
u ∈ V at time t is described by the real value xu(t). The
authors introduce two different undirected graphs representing
the relationships between types, namely the interaction graph
S (types that can interact with each other) and the influence
graph T (types that can influence one another), with T ⊆ S .
In particular, there is an edge (u,v) ∈ T if the two types are
sufficiently close in a cultural sense. The process unfolds in
discrete time steps, thus determining a discrete-time dynamical
system where people can interact, provided that interaction is
affected by selection: each person is more likely to choose
an interaction partner of its type rather than another type,
for a fixed parameter α ≥ 1. When a person of type u
interacts with a person of type v, then if (u,v) ∈ T , with
fixed probability p ∈ (0,1] she may switch to type v. The
quantity Mu(t) = αxu(t) +

∑
v∈V \{u} xv(t) represents the

interaction mass of type u, roughly speaking, the quantity of
mass with which type u interacts; later we will generalize this
expression for our models.

Given an influence graph T , Kempe et al. study three
different cases, progressively restricting the interaction graph
S ⊇ T : (1) the global model where S is the complete graph,
thus all types are allowed to interact with each other; (2) the
general model (where S is an arbitrary superset of T ; and (3)
the local model (where S = T ). In the three settings, they
aim at characterizing the (stable) equilibria: they prove that
the global model converges to an equilibrium2 for any initial
node masses, and find that stable3 equilibria are the ones in
which the nodes with positive mass form an independent set.
For the other two models they prove convergence results for
particular instances.

However, as we will see, these models are not sufficient
to capture the interactions that we are interested in. Thus, in
the next section, building on it, we detail two derived models,
which we will subsequently subject to the parameter-learning
process.

2An equilibrium occurs when the masses of the types do not change as the
system evolves.

3The notion of stability is the Lyapunov stability; see [9].



A. Our Models
The goal of our work is to fit models of cultural-dynamics

on real-life data as a means to study the dynamics and observe
how different culture types interact with each other. Thus we
need to characterize more precisely the types, how they relate
to each other, and how the corresponding population interacts.
Therefore we introduce some modifications to the models
in [9]. First we define exactly what we mean by types, and then
we present the first model (generalized global model), which
is a generalization of the global model in [9]. Subsequently
we modify it by introducing the hypercube model, which can
capture scenarios not possible to be captured by the other one.

We start by characterizing explicitly the cultural types
in terms of the different cultural traits (features) each type
may have. Furthermore, whereas the interaction and influence
graphs S and T are supposed to be known, this information is
not easy to obtain apriori. We will therefore need to contempo-
raneously identify the network structure and the influence and
selection parameters: to do so, we allow interactions between
any two types (as with the global model), while allowing the
probability of influence between any two types to be 0.

We consider a set V of n cultural types or groups).
Furthermore, each type u in V is characterized by an m-
dimensional cultural feature vector Fu = (F 1

u , F
2
u , . . . , F

m
u ),

where each feature F iu can take binary values. Feature vectors
represent configurations of cultural traits that span a domain
(e.g., language, music tastes, political affiliation). For instance,
point (1, 1, 0, 1, . . . ) may represent the type of population
listening to music of type “blues,” “jazz,” “not pop,” “rock,”
and so on; however, the feature vectors can be generalized to
span multiple domains [1], [9].

To model the evolution of the system, we assume that each
person in the population belongs at each time step to one of
the types. At each time t, for each type u, we have a mass
xu(t), that is, we model the system as a stochastic process
{x(t)}t=0,1,..., where x(t) = (x1(t), x2(t), . . . , xn(t)). We
assume that we have conservation of mass, so for each t we
have

∑
u xu(t) = B, for a constant B that represents the total

population mass.
For two types u and v we can define their cultural

distance D(u,v) as the number of features in which they
differ: D(u,v) =

∣∣{i : F iu 6= F iv}
∣∣. In other words, D(u,v)

corresponds to the Hamming distance between Fu and Fv .
Given that we don’t have any information about which

types may interact with each other, the types are assumed to be
connected forming an undirected clique over V (i.e., S = Kn).

The influence graph T = (V,ET , p(·,·)), differently from
[9], is a directed edge-weighted graph representing the in-
fluence relationships that exist over the set of cultural types.
Given two types u and v, the existence of an edge e = (u,v) ∈
T implies that type u can be influenced by type v, and the
influence probability is given by the weight p(u,v) = puv .
As with the interaction graph, this graph is a full clique,
although the influence between two groups may be zero. This
model generalizes the global model of [9] introducing different
influence strengths between each (directed) pair of types.

Likewise, the expression of the interaction mass is similar
as in [9], with the generalization of having a different selection
parameter αu for each node (representing the unique extent to

which each cultural combination may give rise to selection):

Mu(t) = αuxu(t)+
∑

v∈V \{u}

xv(t) = (αu−1)xu(t)+B. (1)

The probability for a person of type u of interacting with
another person in u at time t is therefore αuxu(t)

Mu(t)
and the

probability of interacting with another type v is xv(t)
Mu(t)

.
Next we describe in detail our models, which differ on how

the masses are being updated.
1) Generalized Global Model: Before stating the update

rule for the generalized global model it is useful to introduce
the notion of flow, which is instrumental to identify the contri-
bution of each type–type relationship to the overall dynamics
of the system. Given two types u and v with masses at time t
xu(t) and xv(t), respectively, their interaction is affected by
selection and by influence (captured by parameter puv) leading
to a (directed) flow of mass fuv(t) from type u to type v:

fuv(t) = xu(t)
xv(t)

Mu(t)
puv. (2)

Intuitively, the flow fuv(t) represents the expected transfer of
mass from type u to type v. It is proportional to the masses
and to the influence probability puv . Then, for each v ∈ V we
have the update rule:

xu(t+ 1) = xu(t) +
∑

v∈V \{u}

fvu(t)− fuv(t). (3)

2) Cultural Hypercube Model: As we stated previously, the
global model is a direct generalization of the model in [9], with
multiple parameters for influence and selection. However, in
these models, when a person of cultural type u interacts and
is influenced by a person of type v, at the next time step she
will be part of group v: this means that she must change all
her features to turn to the ones of v. Even though such a
modeling choice may be generally appropriate for issues such
as religion, in several real-life setting this is not realistic [1].
Consider the music scenario where the feature of each type
corresponds to a music type. A person who enjoys rock music
(type “rock”), may be influenced towards jazz by a person
of type “jazz and country,” and as a result start listening to
jazz as well, becoming of type “rock and jazz”; this cannot be
captured by the existing models.

For this reason, along the lines of the model of Axelrod [1],
we introduce the cultural hypercube model: we still allow all
the types to interact and potentially influence each other; yet,
for each timestamp there will be an actual flow of mass only
between types that are neighbors in the culture transition graph
C, an undirected graph where there is an edge only between
types at cultural distance D(u,v) = 1 (see Figure 2). (It can
be generalized to be connected to nodes of larger distance, but
D(u,v) = 1 is the simplest and most natural model.)

The interaction and influence graph S and T are un-
changed, whereas the culture transition graph C has a hy-
percube structure whose dimension is equal to the number
of features that we consider. C represents the possible flow
exchanges: given two types u and v there is a possibility of
having flow from node u to node v at a given time t if and
only if D(u,v) = 1.

Let us now see how this flow between culturally adjacent
types is created. Let i be the feature in which u and v differ.
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Fig. 2: Example of cultural flow from node u to node v
(m = 3, n = 8). The blue links forming the edges of the 3-
dimensional hypercube are the edges of the cultural transition
graph C. Notice that u’s feature vector (100) and v’s (101)
differ on the third feature. The flow from u to v originates
from the interaction of u with all nodes on the highlighted
2-dimensional hypercube (i.e., nodes whose third feature is
1). The interaction of u with v leads to direct flow, and the
interaction of u with the others, to indirect one.

The flow can be decomposed into two components: first, a
direct flow of mass from node u to v, is the result of interaction
between types u and v, as in the previous models. In addition,
we also have an indirect flow from u to v, which originates
from the interaction of the mass of type u with the mass of
each type z /∈ NC(u)4 that belongs to the m− 1 dimensional
hypercube such that F iv = F iz . Informally, we have indirect
flow from u to v by the interaction of u with the nodes z that
share with v the feature i where u and v differ (see Figure 2).

Let us now formalize the previous discussion. The flow
between nodes u and v, which differ in feature i, is the sum
of the direct and indirect flows:

fuv(t) = xu(t)
xv(t)

Mu(t)

puv
m

+
∑

z∈Cuv \v

xu(t)
xz(t)

Mu(t)

puz
m

(4)

where Cuv = {z ∈ V : (u,z) ∈ ET ∧ F iv = F iz}. Thus:

fuv(t) = xu(t)
∑
z∈Cuv

xz(t)

Mu(t)

puz
m
. (5)

The intuition of this expression is (as before) that the
probability of interaction of u and v is proportional to their
masses. Furthermore, when u and v interact, given that we
have m features, we assume that the probability that they
interact on feature i is 1/m. Note that this equation holds
both for attaining a feature as well as losing it; even though
this assumption may sound unnatural, we decided to make it,
in line with the symmetric treatment in previous work [1].

The update rule for type u can thus be written in the form
of a difference equation, where the mass for type u at time t+1
is given by its mass at time t plus the incoming cultural flows,
from neighboring cultural types, minus the outgoing flow:

xu(t+ 1) = xu(t) +
∑

v:u∈NC(v)

fvu −
∑

v∈NC(u)

fuv. (6)

The global mass update rule is a vector valued function
where each dimension (xi(t)) is determined by the update
rule (6) of each type.

4We use the standard notation NX(u) to indicate a neighboring node of u
in graph X .

IV. LEARNING

Now we explain how we can learn the parameters αu and
puv of the models described in Section III-A. Our starting point
is a time series of observed group masses (in terms of number
of people belonging to each group).

A. Large-Scale Nonlinear System Identification
The update rules of the two models described in Sec-

tion III-A have a closed form expressed by Equations 3 and 6:
these equations relate the mass-vector x(t) of the different
cultural masses to the previous x(t−1) through the (unknown)
parameters of selection and influence. Thus, they both identify
a discrete-time dynamical system in the form of a multivariate
nonlinear autoregressive process or order 1 (Markovian). Note
that these systems are nonlinear both in the state x(t) and in the
parameters θ =

(
θα
θp

)
, where θ is a static (time-independent)

vector of parameters: θα = (α1, . . . , αn) ∈ Rn with αi ≥ 1,
is a vector encoding the values αu for every type u ∈ V
and θp contains all the influence probabilities pij ∈ [0,1]
over the edges of the influence graph T . Recalling that the
number of types is n, let O be an n × (T + 1) matrix
where each row Ot = [xobs,t1 , xobs,t2 , . . . , xobs,tn ] contains the
n-dimensional observations of the cultural masses for every
time step t ∈ {0,1, . . . ,T}.

For each model M we want to find the parameters θ that
best fit the observed data under M.

We choose an estimator that takes into consideration the
cumulative error between the real observed trajectory O and
a simulation of the model from the initial time instant over
the whole timespan. As a cost function it is standard to
choose a least-squares formulation; to avoid overfitting, we
perform regularization using two different regularization co-
efficients, λα for the parameters λp for the parameters αu
and puv respectively, in an `1 norm penalization scheme.
We use two regularizers because the parameter space for
the αu and puv are very different. We use the `1 norm to
enforce sparsity of the learnt parameter vector: this choice
is motivated by a high number of parameters that are likely
to be zero; for example, pairs of types for which there
might be observations of no influence among them. Thus, let
x̃Mθ
u = update rule(O0,θ,T ) = (xobs,1u , xobs,2u , . . . , xobs,Tu )

be a vector representing the ordered outcomes of T recursive
applications of the update rule (Equation (3) or (6) depending
on the model) of node u for model M.

The regularized least squares estimator is:

θ̂M = argmin
θ

T∑
t=1

n∑
u=1

(
xobs,tu − x̃Mθ,t

u

)2
+λα‖θα‖1+λp‖θp‖1.

(7)
We tested several learning approaches (line-search, simu-

lated annealing, genetic algorithms) and we ended up selecting
a specific kind of population-based algorithm which is par-
ticle swarm [13]. We exploited an efficient implementation
in MATLAB5, which is able to parallelize the evaluation of
the objective function of the particles in a convenient way
(given the very high number of parameters), achieving good
performances in terms of execution time.

5http://www.mathworks.com/help/gads/particle-swarm.html



Dataset Period Duration # Users # actions
Wikipedia 2004/10-2007/10 3 years 2573 2876974
Last.FM 2009/05-2014/05 5 years 38213 627138188

TABLE I: Summary statistics on the datasets used for exper-
imental validation.

V. DATASETS

To study the performance of our models on real data, we
take two different case studies: the first is the famous music
social network Last.FM (we observed users’ listening history)
and the second comes from Wikipedia (we observed users’
editing history). As we have discussed, our models deal with
groups of users having given features, For both cases, we
use datasets6 that contain complete information about songs
(articles, for Wikipedia) listened (modified) by a set of users
in a period of time. Furthermore, the processing of the history
for a user accounts for a behavior model, in a way to derive,
for each time instant considered a feature vector encoding
that user’s activities (the cultural group he belongs to). We
then consider the time series of the resulting cultural group
populations to fit our models.

In Sections V-A and V-B we describe in detail the collec-
tion and preprocessing phases performed on the datasets, and
in Section V-C we detail the user model.

A. Last.FM
Motivated by Lewis et al. [5], our first dataset captures

the music preferences of users over time. To obtain our user
set, we used the Two Million Last.FM User Profiles dataset
[14], containing the profile information of 1,840,647 users. We
then extracted a total of 44,154 users with more than 10k and
fewer than 40k listens. For these users we downloaded the
full listening history for the 5-years period from May 2009
to May 2014, obtaining an amount of 721 million listenings
and around 4.6 millions unique tracks (see Table I). We then
assigned each song to a set of predefined music genres, which
form the features of our types. We omit the details of this
step for paucity of space. To limit the number of parame-
ters to learn, we grouped the genres into 5 macro genres:
“Pop and Rock,” “Hip-Hop and Electronic,” “Jazz,” “World
Music,” and “Classical”. Given that “Classical” was highly
underrepresented in our dataset (< 0.01%) we removed it from
the classification and divided “Hip-Hop/Electronic” into “Hip-
Hop/RnB” and “Electronic.” We then assigned each song to a
set of predefined music genres, which form the features of our
types. We omit the details of this step for paucity of space.
To limit the number of parameters to learn, we grouped the
genres into 5 macro genres: “Pop and Rock”, “Hip-Hop and
Electronic”, “Jazz”, “World Music”, and “Classical”. Given
that “Classical” was highly underrepresented in our dataset
(< 0.01%) we removed it from the classification and divided
“Hip-Hop/Electronic” into “Hip-Hop/RnB” and “Electronic.”
Note that even 5 features result in n = 32 cultural types and a
total of 1024 parameters (|θα| = 32, |θp| = 992) to be learnt.

B. Wikipedia
For Wikipedia, we take edits to articles as expressions of

interests on specific topics. We started from a dataset contain-
ing the full English Wikipedia edit history (up to 2008) [15]:

6All the datasets created by us (or resulting from a processing of exist-
ing ones) are available at http://wadam-data.dis.uniroma1.it/wadam-datasets/
cultural-dynamics/index.html.

timestamped metadata about all article edits (modification
of pages) made by users. We limited our study to Active
Wikipedians7, i.e., registered users with more than 5 edits
per month on average. After this filtering phase, we selected
the three years period from 24 October 2004 to 24 October
2007. This led to a set of 2576 users (see Table I). Using the
Wikipedia taxonomy8 we categorized each page into one of
five categories, which define the features for our cultural types:
“Science and Technology”, “Politics, Society, Religion and
Philosophy”, “History and Events”, “Arts, Culture, Literature
and Music”, and “Geography and Environment”. The details
of how exactly we performed the categorization will appear in
an extended version of this paper.

C. User Model
We now need a way to identify the group (a collection of

feature values) to which each user belongs, at each examined
point in time. We want to use the user activity information to
determine a (possibly changing over time) profile that ideally is
able to capture the moment in which a user’s activity features
(her currently preferred genres/interest topics) change in time,
while accounting for more long-term interests in the domain,
in a way to mimic the natural “forgetting” behavior of the
user. To this end, we adopt an exponential decay function
to weigh each sequence of actions according to its position
in the user timeline. More formally, we segment the activity
history of each user u into time frames, and for each time
frame t we keep an interest score vector Sut , which stores
the normalized score of actions performed by the user relative
to genres listened or topics of articles edited in that time
frame. We then keep a user profile using a time-sensitive
exponential decay weighting scheme; that is, u’s profile at
time τ is: Puτ =

∑τ
t=0 Sut · e−λf (τ−t). The parameter λf

represents the forgetting decay parameter. The resulting vector
is then normalized to have all components sum to 1 and
with a thresholding mechanism the user is assigned to the
corresponding cultural group for each timestamp.

VI. EXPERIMENTAL RESULTS

In this section, we study, compare and validate the models
proposed in section III on our datasets.

A. Experimental Setup
We use the Last.FM and Wikipedia datasets described in

Section V where we have access to observed masses for the
different cultural groups for, respectively, periods of 5 and 3
years.

For both datasets, we have m = 5 features, n = 2m = 32
cultural groups. The sampling period is 1 month and we set
the forgetting threshold λf of the user model (Section V-C)
to the value 0.5, which after the exponential decay gives
a very small weight to scores after about 6 months. We
divide all the observed periods in training and test portions
in the following way: 80%-20% (Last.FM) and 83%-17%
(Wikipedia) and evaluate on both portions the performance of
the generalized global model and the cultural hypercube model
(subsequently, respectively, global and hypercube). Let T be
the length of the observed group masses time series (for either
the training or test portion) and ε2t =

∑n
u=1(x

obs,t
u −x̃Mθ,t

u )2 be

7http://stats.wikimedia.org/EN/TablesWikipediansEditsGt5.htm
8http://wikimedia.wansec.com/archive/enwiki/20080103/
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Fig. 3: Comparison between observed data and a simulation of
the global and hypercube models using the learnt parameters
θopt for some cultural groups. The red block highlights the test
portion.

the absolute squared error of the predicted mass values with
respect to the observed data for timestamp t. A measure of
performance of the fitted models is the RMSE (Root Mean

Squared Error): RMSE =
√

1
T

∑T
t=1 ε

2
t . however, this error

metric is sensitive to the scale of the input data. Hence we
use the normalized version: NRMSE = RMSE/

∣∣xobs
max − xobs

min

∣∣,
where xobs

max = maxu,t(x
obs,t
u ) and xobs

min = minu,t(x
obs,t
u ) are the

maximum and minimum values of all observed group masses.
Figures 3a and 3b show a comparison between observed

data (test and training) and predictions made by the models
simulated using the fitted θopt parameters: due to space con-
straints we selected 4 out of the total 32 cultural groups for
both datasets. These 4 groups were chosen on the basis of
the average mass they exhibit during the examined periods,
listed in decreasing order (first: high average mass, last: low
average mass). Quite surprisingly, we observe that we have a
good fit even in the test data and predict future (short-term)
trends. The performance of the fitted models on Last.FM are
consistently better than the ones on Wikipedia, mainly because
of the higher amount of training data and the bigger population
sample. For both datasets, the hypercube model is found to
have consistently higher performance both over training and
over prediction data.

VII. CONCLUSION

To the best of our knowledge we are the first to do an
experimental validation of a nontrivial macroscopic model for
cultural dynamics. ( [6] performed some experiments on a toy
example consisting of two nodes). To do this we introduced
new models, modifying the model of [9]. Fitting the models
requires learning a very large number of parameters. We
discovered that we obtain a good fit on the training data, and
rather surprisingly (given that we are dealing with systems
that in real life are not closed, as the models here assume) we
discovered that our models are able to follow closely actual
real data. These findings indicate that our model is able to
characterize to some extent the evolution of some cultural
traits, complementing the long line of work of sociologists,
anthropologists, psychologists, and computer scientists who
have proposed such models for cultural dynamics.
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