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Abstract: Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both
as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several
studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses.
MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to
investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes,
like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients’ biopsies. Indeed,
PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-
therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells
untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p
concomitantly reduced PD-L1, c-Myc and β-catenin expression and sensitized ovarian cancer cells to
olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-
3p with c-Myc and β-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression
associates with a less tumorigenic microenvironment. These findings provide new insights into
how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy,
targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.

Keywords: epithelial ovarian cancer; immune checkpoints; PARPi; ionizing radiation; miRNA-
based therapy

1. Introduction

Ovarian cancer (OC) is the fifth most common cancer worldwide. It includes highly
heterogeneous subgroups based on the primary site of origin, and the clinicopathologic,
immunohistochemical, and molecular profiles [1]. Its heterogeneity is represented by ep-
ithelial cancer cells, which belong to four main histological subtypes: serous, endometrioid,
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mucinous and clear cells [2]. Every histological subtype is characterized by a different
degree of differentiation starting from grade 1 (well differentiated) to grade 3 (poorly
differentiated) and, based on the aggressiveness and invasiveness, each is divided into
low-grade type 1 and high-grade type 2. According to the International Federation of
Gynecology and Obstetrics (FIGO), there are five stages of ovarian cancer, from stage
0, with no evidence of primary tumor, to stage IV, with severe metastases in several or-
gans [3]. Approximately 65% of ovarian neoplasms are epithelial ovarian cancers (EOC),
which include serous adenocarcinoma and high-grade serous ovarian cancer (HGSOC)
subtypes [4]. The mainstay therapy is de-bulking surgery followed by adjuvant, platinum
containing chemotherapy. Despite the first-line therapy, the prognosis of EOC patients
in terms of five-year survival rate decreases from 90% at stage I to 20% at stage III-IV
of the disease. The high mortality rate depends on the obsolete existence of early-stage
screening and development of resistance to platinum-based chemotherapy in almost 80%
of the patients [5,6]. To overcome therapeutic failures, targeted therapies including the
recently FDA approved poly(ADP-ribose) polymerase inhibitors (PARPi), radiotherapy
and immunotherapy have been developed [7,8].

A PARPi, such as olaparib, induces synthetic lethality in OC cells with mutated
breast cancer 1 or 2 (BRCA1/2) genes and homologous recombination deficient (HRD)
mechanisms by selectively targeting tumor cells that fail to repair DNA double strand
breaks (DSBs) [9]. When PARPi is combined with chemotherapy or IR, it may enhance
DNA damage in advanced EOC patients carrying mutated or wild type (wt) BRCA1/2,
although it is less effective in most BRCA1/2-proficient OC patients [10,11].

Chemotherapy, PARPi and radiotherapy, as monotherapies or combined, might either
enhance cytotoxic T lymphocytes against tumor cells or induce immunosuppressive effects
through up-regulation of PD-L1 (also known as CD274) [12,13]. High PD-L1 expression in
EOC cells has been associated with poor prognosis and antibodies against PD-1/PD-L1
have been used as a therapeutic option in patients with advanced EOC [14]. Intravenous
administration of anti PD-1 nivolumab antibody showed a 10–20% overall response rate
(ORR) in platinum-resistant and advanced OC patients [15]. A combinatorial therapeutic
approach of PARPi and anti-PD-L1 antibodies has shown promising antitumor activity and
increased the ORR further in platinum-resistant wtBRCA and non-HRD OC patients [16].
However, additional validation of the synergistic combination of these targeted agents
is needed.

MicroRNAs (miRNAs) are becoming important diagnostic and prognostic markers in
various cancer types, including OC [17] and they have also been proposed as therapeutic
agents against cancer [18,19]. MiRNAs are highly conserved small non-coding RNAs of
20–22 nucleotides (nt) that inhibit gene expression through base-pairing between the seed
sequence on the 5′-end of miRNAs and the 3′UTR of mRNA target genes. This binding
destabilizes mRNA target genes and/or inhibits mRNA translation [20]. This mechanism
of miRNA–mRNA interaction occurs in physiological as well as pathological conditions,
such as cancer [21,22]. In OC, the miR-200 family is considered a master regulator of
OC-related genes, which inhibit cell migration. This family consists of five members: miR-
200a, miR-200b, miR-200c, miR-429 and miR-141, clustered in two different chromosomal
locations: miR-200a, miR-200b and miR-429, on chromosome 1p36, and miR-200c and
miR-141, on chromosome 12p13 [23]. They usually function as tumor suppressors in
various types of cancer. Loss of miR-200 family members is associated with lack of E-
cadherin expression in breast and ovarian epithelial cells. Over-expression of miR-200
in these tumors is able to reconstitute E-cadherin expression and promote mesenchymal–
epithelial transition (MET) [24]. The transcription repressors of E-cadherin, ZEB1 and ZEB2,
which both promote the epithelial–mesenchymal transition (EMT), are known targets of
the miR-200 family [25]. Within the miR-200 family, miR-200c regulates EMT-mediated
tumor metastasis [26] and fibroblast growth factor receptor (FGFR)-mediated epithelial
proliferation [27,28]. Moreover, miR-200c represses the Wnt pathway by targeting β-
catenin in breast cancer [29,30]. High expression of β-catenin is associated with resistance
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to platinum-based chemotherapy in EOC patients [31]. Interestingly, high expression
of miR-200c in OC patients was associated with improved overall survival (OS) and
progression-free survival (PFS) [17]. Mounting evidence suggests a role for miR-200c and
miR-34a in regulating PD-L1 expression in other types of cancer [32–35]. However, the
effect of chemotherapy, PARPi and radiation therapy on miR-200c and consequently on
PD-L1 expression has not yet been thoroughly investigated in EOC.

In the present study, we sought to examine in clinical samples of EOC whether the
first line chemotherapy might have any impact on PD-L1 expression and if miR-200c-3p is
involved in this. The regulation of PD-L1, c-Myc and β-catenin by miR-200c alone or in
combination with olaparib and IR was further investigated in SKOV3 cells.

2. Materials and Methods
2.1. Biopsies and Cell Lines

Laparoscopic ovarian biopsies, before and after chemotherapy, were obtained from
a cohort of five EOC patients, classified as HGSOC (Table 1). All five patients involved
in this study gave their written consent. The study design was approved by the Ethics
Committee of Policlinico Umberto I Hospital, C.E. Ref: 1454/24.07.08, Prot. no. 702/08
(Rome, Italy). Biopsies were snap-frozen and stored at −80 ◦C. To identify differences in
gene expression by chemotherapy, we used biopsies from patients before chemotherapy
treatment as controls. After de-bulking surgery and biopsies, tumor cells were classified
as Grade 3, known also as high grade ovarian cancer cells. SKOV3 is a wtBRCA1 gene-
carrying ovarian serous adenocarcinoma cell line and was purchased from ATCC® (HTB-
77™). With one exception, the patients did not present with BRCA1/2 mutations. The
cells were cultured in RPMI-1640, (Sigma-Aldrich; Merck Life Science S.r.l., Milan, Italy,
Cat. n.R0883), supplemented with 10% FBS (Corning™; Cat.n.15377636), and 100 U/mL
penicillin, 100 µg/mL streptomycin, and 29.2 mg/mL of L-glutamine (Gibco™ Penicillin-
Streptomycin-Glutamine (100×) Cat.n.10378-016).

Table 1. Overview of HGSOC patients. International Federation of Gynecology and Obstetrics (FIGO) classification.

Patient Age Grade FIGO Chemotherapy Regimen BRCA1/2
Status

A 56 G3 IV Carboplatin auc 5 a + TXL 175 b + BEVA 15 c (3 cycles) WT

B 43 G3 IIIC Carboplatin auc 5 + Caelyx 30 d (3 cycles)
mutBRCA1

class 5

C 46 G3 IIIC Carboplatin auc 5 + TXL 80 (3 cycles) WT

D 69 G3 IIIC Carboplatin auc 5 + TXL 175 (3 cycles) WT

E 55 n.d. IIIC Carboplatin auc 3 + TXL 80 (cycles n.d.) WT

Grade 3: (high grade) poorly differentiated ovarian epithelial cancer cells. FIGO classification: IIIC: Tumor involves one or both ovaries with
macroscopic (>2 cm) cytologically or histologically confirmed metastasis to the peritoneum outside the pelvis and/or to the retroperitoneal
lymph nodes. IV: Distant metastasis excluding peritoneal metastasis. Includes hepatic parenchymal metastasis. a AUC: area under the
curve, b TXL: paclitaxel 175 mg/m2, c BEVA: bevacizumab, d Caelyx: liposomal doxorubicin 30 mg/m2, WT: wild type, mutBRCA1:
mutatedBRCA1.

2.2. RNA Extraction from EOC Biopsies and Cell Lines

Biopsies were collected and stored at −80 ◦C in RNAlater™ Stabilization Solution
(Invitrogen, Milan, Italy; Cat. n.AM7021). Total RNA from OC biopsies was extracted with
Qiagen TissueLyser II using TRIzol™ reagent (Invitrogen, Milan, Italy; Cat. n.15596026).
Further details of RNA extraction are in Supplementary Materials and methods. A 5 mm2

piece from each biopsy was processed through three cycles of sonication of 2 min each at
30 Hrtz in 1 mL TRIzol™ (Invitrogen). RNA samples obtained with phenol-chloroform ex-
traction were quantified using a MaestroNano micro-scale spectrophotometer (MaestroGen
Inc., Hsinchu city, Taiwan) and evaluated for quality by a run on 1% agarose gel.
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2.3. Real-Time qPCR

Retro-transcription of 1 µg RNA from biopsies and cell lines was performed in a
BioRad Mycycler Thermal Cycler machine, with miScript II RT Kit (QIAGEN S.r.l., Milan,
Italy; Cat. n.218161) according to the manufacturer’s instructions and using HiFlex buffer,
for parallel quantification of miRNAs and mRNAs from the same cDNA. One microliter of
cDNAs was used as a template for qPCR with the miScript SYBR Green PCR Kit (QIAGEN;
Cat. n.218073). RNA from 3 × 106 SKOV3 cells were also extracted with 1 mL TRIzol™,
according to the manufacturer’s instructions. All of the quantitative PCRs were performed
in an Applied Biosystems\StepOne Software v2.2.2 QPCR machine. The fold change
of PD-L1 and miR-200c-3p was calculated by the 2−∆∆Ct formula and the results were
statistically analyzed by PRISM7, using two-tailed unpaired t test. Additional details
regarding the QuantiTect Primer Assays (QIAGEN) and KiCqStart™ (Sigma-Aldrich)
pre-designed primers and qPCR conditions can be found as Supplementary Materials.

2.4. Transfections

SKOV3 cells (0.5 × 106) were placed in a 12-well cell culture plate. After 24 h, they
were transfected with 1 µg of pCMVmiR-200c carrying the miR-200c precursor (pre-miR-
200c) (OriGene Technologies, Inc., Rockville, USA; Cat.n.SC400258) and the corresponding
empty vector, pCMV (OriGene; PCMVMIR). The plasmids were transfected with Lipofec-
tamine 3000 (ThermoFisher Scientific, Waltham, MA, USA; Cat. n.L3000008) following the
manufacturer’s instructions. After 48 h post transfection, the cells were resuspended in
fresh culture medium supplemented with 0.5 mg/mL G418 (Roche Diagnostics, Mannheim,
Germany; Cat. n.04 727 878 001) and distributed in a 96 well plate. After two weeks, G418
resistant, pCMV vector and miR-200c-expressing clones started to grow. A previously
established reporter system of PD-L1 3′UTR psiCHECK™-2 Vector (Promega Corporation,
Madison, WI, USA; Cat. n.C8021) was transiently transfected into SKOV3 pCMV Vector
and SKOV3 pCMVmiR-200c carrying SKOV3 cell lines [33]. Approximately 4 × 103 cells
per well were distributed in 96-well plates, one day before transfections and in sixpli-
cates. Forty nanograms of PD-L1 3′UTR Luciferase reporter construct per well was trans-
fected using DharmaFECT Duo Transfection Reagent (Dharmacon, Horizon a PerkinElmer
company, Diatech, Jesi, Italy; Cat. n.T-2010-02), according to the manufacturers’ instruc-
tions. Luciferase activity of PD-L1 3′UTR was measured in miR-200c-SKOV3 cells 48 h
post-transfection using GloMax® Explorer Multimode Microplate Reader (Promega). Fur-
thermore, 1 × 106 SKOV3 cells were transiently transfected in a 6 well plate and in trip-
licates with 40 nM mimic miR-200c-3p oligonucleotide (MISSION®, Sigma-Aldrich; Cat.
n.HMI0354-5NMOL) and the same amount of negative control 1 based upon an Arabidopsis
thaliana sequence (MISSION®, Sigma-Aldrich; Cat. n.HMC0002). After 48 h, the cells were
collected for RNA and protein extraction. In parallel, 4 × 103 SKOV3 cells per well were
seeded in sixplicates in a 96 well plate. The next day, the cells were co-transfected with
40 nM mimic miR-200c-3p oligonucleotide (MISSION®, Sigma-Aldrich; Cat. n.HMI0354-
5NMOL) and its negative control 1, along with 40 ng PD-L1 3′UTR psiCHECK™-2 Vector,
using DharmaFECT Duo Transfection Reagent (Dharmacon; Cat. n.T-2010-02). Luciferase
activity was measured 48 h post transfection, using GloMax® Explorer. Luciferase assay
was repeated twice and in sixplicates. Ratios of firefly/renilla were calculated and p-values
were calculated by two-tailed unpaired t-test.

2.5. Cell Treatments

SKOV3 cells, (1 × 106), stably transfected with pCMV Vector and miR-200c were
plated in T25 flasks. The next day, the cells were treated with 1.5 µM and 5 µM olaparib
(AZD-2281, Selleckchem, Suffolk, UK). Dimethyl sulfoxide (DMSO) (Sigma-Aldrich; Cat.
n.D 2650), 0.1 % (v/v), was used as a drug vehicle. At 48 h post-olaparib treatment, the
cells were irradiated using an ONCOR Impression Linear Accelerator (Siemens Medical
Solutions USA, Inc., Concord, CA, USA) at a dose rate of 4 Gray (Gy) (416 UM/min) in a
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field of 40 × 40. Twenty-four hours later, the treated cells were prepared for the clonogenic
assay and total or cytoplasmic and nuclear protein extractions.

2.6. Colony Formation Assay

At 72 h post-olaparib treatment and 24 h post-IR, 2 × 103 cells (SKOV3 pCMV Vector
and SKOV3 miR-200c) were placed in triplicates in 6-well plates for a couple of weeks to
estimate colony formation. Untreated cells (DMSO-treated), were used as controls. During
the clonogenic assay, the cell culture medium was replenished every three days. Clonogenic
assays were repeated at least three times. Further details are in Supplementary Materials
and Methods.

2.7. Immunoblotting

Three million pCMV Vector or miR-200c transfected SKOV3 cells were collected and
lysed in RIPA lysis buffer. Thirty micrograms of protein of each sample was loaded on 10%
polyacrylamide gels and run for 1.5 h at 120 V. The following antibodies were used: PD-L1
(E1L3N) (Cell Signaling Technology, Danvers, MA, USA; Cat. n.13684), β-catenin (E-5)
(Santa Cruz Biotechnology, Inc., Heidelberg, Germany; Cat. n.sc-7963), and c-Myc (D84C12)
(Cell signaling; Cat. n.5605). β-actin (C4) (Santa Cruz; Cat. n.sc-47778) and Lamin B1 (C-20)
(Santa Cruz; Cat. n.sc-6216) were used to ensure equal protein loading. HRP conjugated
anti-rabbit (SIGMA; Cat. n.A 6154) and anti-mouse (ADVANSTA; Cat. n.R-05071-500)
secondary antibodies were used, (1:5000 in 2% BSA) for 30 min. The chemiluminescent
signal was detected using WesternBright® ECL (ADVANSTA, San Jose, CA, USA; Cat.
n.K-12045-D20). Densitometry analysis was performed with ImageJ Software (v. 10.2).
Immunoblots were repeated three times with the same lysates and with protein lysates
derived from three different treatments of olaparib and irradiation. Additional details of
immunoblotting conditions can be found in Supplementary Materials and Methods.

2.8. Nuclear and Cytoplasmic Protein Extraction

Nuclear and cytoplasmic protein fractions were extracted from 3 × 106 miR-200c-
SKOV3 and pCMV-SKOV3 cells, untreated (DMSO) and treated with 1.5 µM or 5 µM
olaparib or in combination with ionizing radiation (IR). The cells were washed in PBS
twice and were pelleted at 1500 RPMI for 5 min. The cell pellets were lysed in 100 µL of
Cytoplasmic Extract buffer (CE): with 10 mM HEPES, 60 mM KCl, 1 mM EDTA, 0.075%
(v/v) NP-40, 1mM DTT, 1 mM PMSF, and adjusted to pH 7.6. The preparations were
incubated on ice for 3 min, and then centrifuged at 1300 rpm for 5 min. The supernatants
containing cytoplasmic extracts were collected in clean tubes, and re-centrifuged at a maxi-
mum speed for 10 min to pellet any remaining nuclei. The remaining nuclear pellets were
washed with 100 µL of CE buffer without NP-40 detergent, suspending gently to maintain
intact the fragile nuclei and centrifuged as above. After discarding the supernatant, nuclei
were lysed in 50 µL of Nuclear Extract buffer (NE): 20 mM Tris Cl, 420 mM NaCl, 1.5 mM
MgCl2, 0.2 mM EDTA, 1 mM PMSF and 25% (v/v) glycerol, and adjusted to pH 8.0. Salt
concentration was adjusted in each tube to 400 mM using 35 µL of 5 M NaCl. Finally,
glycerol at 20–25% (v/v) was added in the supernatants containing the cytoplasmic or
nuclear protein fractions and the samples were stored at −80 ◦C.

2.9. MiR-200c-3p and PD-L1, β-catenin, c-Myc Expression Correlation Studies in Cancer Cell
Line Encyclopedia (CCLE)

Expression of miR-200c-3p and of CD274, CTNNB1 and MYC genes, coding for PD-
L1, β-catenin and c-Myc respectively, were analyzed in publicly available data from the
most recent datasets of the Cancer Cell Line Encyclopedia (CCLE) portal [36]. These data
were downloaded from CCLE data portal (https://portals.broadinstitute.org/ccle/data,
accessed on 5 January 2021), specifically RNA-seq data normalized with the (RNA-Seq
by Expectation-Maximization) RSEM algorithm [37] to quantify both gene and transcript ex-
pression levels (files CCLE_RNAseq_rsem_genes_tpm_20180929.txt, CCLE_RNAseq_rsem_
transcripts_tpm_20180929.txt) and normalized expression on microRNA profiling from

https://portals.broadinstitute.org/ccle/data
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the Nanostring platform (file CCLE_miRNA_20181103.gct). Matched miRNA and mRNA
expression sequencing data were retrieved across 46 different untreated OC cell lines,
including SKOV3. Spearman correlation analysis was performed between hsa-miR-200c-3p
and CD274, CTNNB1 and MYC genes and relative transcripts. The CCLE data portal
also provides protein expression data from Reverse Phase Protein Arrays (RPPA, file
CCLE_RPPA_20181003.csv), which were considered to check whether the miRNA effect
could also be transcriptional. However, only β-catenin and c-Myc protein expression
profiles are available on the CCLE data portal. Analyses and visualization were performed
in R language (v. 3.5.1), using the R package ggstatsplot. For all statistical tests, p-values
less than 0.05 were considered statistically significant.

2.10. Immunohistochemistry of EOC Paraffin Sections

PD-L1, c-Myc, β-catenin and CD3 protein expression was assessed by immunohisto-
chemistry on formalin-fixed paraffin-embedded (FFPE) EOC tissue sections [38]. Protein
expression was detected by exploiting Ventana primary antibodies: MYC (Y69 clone; Cat.
n.790-4628), β-catenin (Cat. n.760-4242), PD-L1 (sp142 clone; Cat. n.740-4859) and CD3
(2GV6 clone; Cat. n.790-4341). All of the procedures were carried out automatically on
Bench Mark Ultra (Ventana, Monza, Italy) using extended antigen retrieval and DAB as
chromogen. The following tissues were used as positive controls: normal colon for MYC,
breast for β-catenin and tonsil for PD-L1 and CD3. As negative control, non-immune
mouse serum was used instead of the primary antibodies, as previously reported [38].
To quantify the expression and staining intensity of PD-L1, c-Myc and β-catenin, we per-
formed ImageJ analysis of three different areas from each pre- and post-chemotherapy
sample. The images were acquired at 20× magnification using a NanoZoomer digital
slide scanner (Hamamatsu photonics Italia S.r.l., Arese, Milan). An unpaired t test was
applied to demonstrate that differences in % total PD-L1, c-Myc and β-catenin-positive
cells between the pre- and post-therapy biopsies were statistically significant.

2.11. Statistical and Bioinformatics Analyses

For RT-qPCR and immunostaining data with pairwise comparisons, a two-tailed
unpaired t-test was applied to estimate p-values of the mean fold change for each gene
expression, using Prism 7 software. For densitometry, clonogenic analysis and RT-qPCR
data with multiple comparisons, one-way ANOVA followed by Dunnett’s test were applied,
using Prism 7 software.

For bioinformatics analyses on cancer cell lines, RNA-seq data normalized with
RNA-Seq by Expectation-Maximization (RSEM) algorithm [37] to quantify both gene
and transcript expression levels (files CCLE_RNAseq_rsem_genes_tpm_20180929.txt and
CCLE_RNAseq_rsem_transcripts_tpm_20180929.txt), normalized expression on microRNA
profiling from Nanostring platform (file CCLE_miRNA_20181103.gct) and protein expres-
sion profiling from Reverse Phase Protein Arrays (RPPA, file CCLE_RPPA_20181003.csv)
were considered from the CCLE data portal. For bioinformatics analyses on ovarian can-
cer tissues, RSEM-normalized RNA-seq and miRNA data normalized for batch-effects
were downloaded from The Cancer Genome Atlas (TCGA), and the Pan-Cancer project
(https://gdc.cancer.gov/about-data/publications/pancanatlas, accessed on 5 January
2021). Samples showing BRCA1 and/or BRCA2 non-silent somatic mutation were filtered
out. T-cell infiltration, endothelial cells and cancer-associated fibroblast infiltration scores
were estimated from the RNA-seq data using MCP-counter, a gene-expression-based tumor
microenvironment deconvolution tool [39]. Spearman correlation analysis and scatter
plots on CCLE and TCGA data were done in R language (v. 3.5.1), using the R pack-
age ggstatsplot (v. 0.6.5). For all statistical tests, p-values less than 0.05 were considered
statistically significant.

https://gdc.cancer.gov/about-data/publications/pancanatlas
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3. Results
3.1. MiR-200c-3p and PDL1 Expression in EOC Biopsies before and after Chemotherapy

We first examined if PD-L1 is a predicted target of miR-200c-3p through the TargetScan
v7.1 algorithm [40]. A miR-200c-3p binding site was found in the 3′UTR of PD-L1 tran-
script variant 1 (NM_014143.3), from 434 nt to 440 nt (Figure 1A). To assess the effect of
chemotherapy on PD-L1 and miR-200c-3p expression, we performed RT-qPCR in a cohort
of five EOC patients (Table 1) before and after chemotherapy (Figure 1). We noticed that
the difference in miR-200c (Figure 1(Bi)), and PD-L1 (Figure 1(Bii)) levels was statistically
significant, in the pool of EOC biopsies before and after the chemotherapy. The relative
fold change of miR-200c-3p and PD-L1 for each patient after chemotherapy is shown in
Figure 1(Ci–v). These results suggest that the decreased expression of miR-200c-3p might
have most likely contributed to PD-L1 induction due to chemotherapy.
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for PD-L1 down-regulation, SKOV3 cells were transiently transfected with a mimic miR-
200c-3p. As seen in Figure 2(Bi,ii), at 48 h post-transfection, PD-L1 RNA and protein ex-
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Figure 1. MiR-200c-3p and PD-L1 expression by RT-qPCR are inversely correlated in a cohort of OC patients’ biopsies.
(A): TargetScan v7.1. prediction of miR-200c-3p seed sequence, highlighted in bold letters and underlined, complements
the 3′UTR of PD-L1, from 434 to 440 nucleotides (nt). (B) (i): miR-200c-3p and (ii) PD-L1 expression in a pool of five OC
laparoscopic biopsies before and after chemotherapy. (C) (i–v): miR-200c-3p and PD-L1 expression analysis in the OC
biopsies, comparing pre-chemotherapy to post-chemotherapy treatment in each patient (A–E). Fold change was calculated
as the average of miR-200c-3p and PD-L1 expression from all five OC patients. miR-200-3p and PD-L1 fold change
expression, was normalized by the housekeeping genes RNU6 and GAPDH, respectively. Fold change of miR-200c and
PD-L1 expression was calculated for each OC patient as 2−∆∆Ct, considering the difference of Ct (∆Ct) mean values for each
gene in the pre-chemotherapy biopsies compared to the mean of the Ct values in the post-chemotherapy biopsies. RT-qPCR
measurements were repeated at least three times and in technical triplicates. Two-tailed unpaired t-test was applied for
statistical significance, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3.2. PD-L1 Is Targeted by miR-200c-3p in SKOV3 Cell Line

To confirm that PD-L1 is an authentic miR-200c-3p target, we stably transfected SKOV3
with pCMV-miR-200c or the empty vector. The choice of SKOV3 cells was prompted by
the fact that akin to EOC biopsies previously described, it expresses low miR-200c and
moderate PD-L1, and it resembles advanced stage serous OC [41]. RT-QPCR analysis
(Figure 2(Ai)) confirmed higher levels of miR-200c-3p in SKOV3-pCMV-miR-200c trans-
fectants. A significant reduction of PD-L1 was noted in these cells at both transcriptional
and protein levels (Figure 2(Aii)). To check if miR-200c-3p is responsible for PD-L1 down-
regulation, SKOV3 cells were transiently transfected with a mimic miR-200c-3p. As seen
in Figure 2(Bi,ii), at 48 h post-transfection, PD-L1 RNA and protein expression were de-
creased. Luciferase activity of psiCHECK™-2 vector 3′UTR PD-L1 reporters decreased in
miR-200c and miR-200c-3p overexpressing cells in comparison to the vector transfected
cells (Figure 2(Ci,ii)). These results confirm the interaction of miR-200c-3p with 3′UTR of
PD-L1. Additionally, the higher miR-200c-3p expression did not have any further impact
on PD-L1 at the protein level (Figure 2(Bii)), suggesting that the PD-L1 decrease is not
miR-200c-3p dose dependent.
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Figure 2. PD-L1 expression decreases upon miR-200c overexpression in SKOV3 cell line. (A) (i): RT-qPCR analysis of
miR-200c-3p expression in miR-200c-stably transfected cells (pCMV-miR-200c). (ii): PD-L1 expression is reduced at both
transcriptional and protein level, as indicated by RT-qPCR and Western blot (WB). (B) (i): miR-200c-3p expression in
transiently transfected cells with mimic miR-200c-3p and mimic control (cntr), at 48 h, by RT-qPCR. (ii): At the same time
point (48 h) PD-L1 transcript and PD-L1 protein are downregulated. MiR-200c-3p and PD-L1 fold change expression were
normalized to the housekeeping genes RNU6 and GAPDH, respectively. The fold change analysis was performed, and
expression values are reported as 2−∆∆Ct. β-actin was used as loading control. (C) (i): Decrease of the 3′UTR of PD-L1
luciferase activity, measured as relative luminometer units (RLU) of firefly-normalized to renilla in miR-200c transfected
cells, relative to the empty vector-transfected cells. (ii): A decrease of PD-L1 3′UTR luciferase activity also occurs in the
SKOV3 cell line transiently transfected with the mimic miR-200c-3p relatively to the mimic control (cntr). Luminescence
detection was performed at 48 h with GloMax Luminometer (Promega). The experiments were repeated at least thrice and
in six technical replicates. Two-tailed unpaired t-test was applied in each analysis for statistical significance, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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3.3. PD-L1, β-Catenin (CTNNB1) and c-Myc Expression and Its Correlation with miR-200c-3p in
OC Cell Lines through CCLE Data Portal

Previously published data showed that Wnt/β-catenin signaling is activated across
different types of cancer and miR-200c down-regulates β-catenin expression in breast
cancer [29]. Thus, we examined if there is an inverse correlation between miR-200c and
β-catenin in EOC. A broad assessment was performed across the 46 OC untreated cell
lines from the CCLE data portal [42]. We did not find a negative correlation between
PD-L1 and miR-200c-3p (Figure S1). However, two out of fifteen splice variants of the
CTNNB1 transcript were significantly inverse correlated with miR-200c-3p expression
(Figure S2A). Additionally, we asked if c-Myc, a downstream target of β-catenin, could be
regulated by miR-200c-3p. MYC proto-oncogene and all its five splice variant transcripts
were significantly inverse correlated with miR-200c-3p expression (Figure S2B), as well
as c-Myc at the protein level (p Spearman = −0.42, p = 0.004; Figure 3B). To confirm the
in silico analyses, we assessed the expression of c-Myc, at the mRNA and protein level
by RT-qPCR (Figure 3(Aii)) and WB (Figure 3(Bii)), respectively. Our results showed that
the presence of miR-200c decreased c-Myc either at the transcriptional or protein level,
corroborating the in silico analyses. In support of the inverse correlation observed between
c-Myc and miR-200c-3p, TargetScan prediction showed that there is a seed sequence
of miR-200c-3p complementary to the 3′UTR of c-Myc (Figure 3C). On the other hand,
according to TargetScan, β-catenin is not among miR-200c-3p targets. Furthermore, to
better evaluate the inverse correlation of PD-L1, c-Myc, and β-catenin with miR-200c-3p
we used another OC cell line, UWB1.289+BRCA1 (Supplementary Materials and Methods,
Figure S3), carrying wtBRCA1 [43]. First, we verified by RT-qPCR, that miR-200c-3p was
highly expressed in UWB1.289+BRCA1 compared to the SKOV3 cell line (Figure S3A).
Secondly, UWB1.289+BRCA1 was transiently transfected with anti-miR-200c-3p. After 48 h
hours post-transfection with miR-200c-3p inhibitors, expressions of all three proteins were
restored, as it was shown by WB analysis (Figure S3).

Taken together, our results show that miR-200c-3p inhibits the expression of PD-L1,
c-Myc and β-catenin in the OC cell lines, SKOV3 and UWB1.289+BRCA1.
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Figure 3. Transcriptional and translational regulation of c-Myc by miR-200c-3p (A) (i): RNA-sequencing data retrieved
from CCLE data portal of 46 cell lines showed an inverse correlation between MYC gene and miR-200c-3p. (ii): RT-qPCR
was used to verify the decrease of c-Myc transcript in both, stably transfected (pCMV V. and miR-200c) and transiently
transfected (mimic cntr and mimic miR-200c-3p). SD± shows the mean of three independent experiments and in technical
triplicates. * p < 0.05, ** p < 0.01, (B) (i): Reverse Phase Protein Arrays (RPPA) extracted from CCLE data portal in 45 OC
cell lines as in A, showed that c-Myc protein is inversely correlated with miR-200c-3p. Spearman correlation analysis
was reported, with statistical significance (p < 0.05). Confidence intervals at 95% are also reported. (ii): WB analysis of
c-Myc expression in stably transfected (pCMV V. and miR-200c) and transiently transfected (mimic control: cntr and mimic
miR-200c-3p). (C): TargetScan v7.1 prediction shows a miR-200c-3p binding site (seed sequence) in the 3′UTR of c-Myc from
358 to 354 nucleotides (top).

3.4. MiR-200c-3p Inhibits Its Target Genes in Olaparib/Ionizing Radiation (IR) Treated and
Untreated SKOV3 Cells

To further investigate the effect of miR-200c on its target genes PD-L1, c-Myc and
β-catenin, we treated SKOV3 pCMV-miR-200c transfectants with 1.5 µM and 5 µM olaparib,
and with 4 Gy IR, with each treatment alone or in combination. DMSO-treated SKOV3
pCMV Vector cells were used as controls.

Figure 4 shows WB analysis (A) and the corresponding densitometry (B) across
different types of treatment. The presence of miR-200c downregulated PD-L1, c-Myc and
β-catenin under all experimental conditions (Figure 4(A,Bi,Bii,Biii)). In the absence of miR-
200c, IR alone increases expression of PD-L1, c-Myc and β-catenin (Figure 4A). Olaparib
treatment at both concentrations induced a significant increase of c-Myc expression in
pCMV Vector carrying SKOV3 cells (Figure 4(A,Bii)). In the same cell line treated with
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olaparib, PD-L1 expression was only marginally increased (less than 1.5 fold compared to
the parental cell line), although this increase was statistically significant (Figure 4(A,Bi)). In
contrast with PD-L1 and c-Myc expression, β-catenin expression was reduced by olaparib
at either concentration. In contrast, IR treatment alone increased β-catenin. When both
treatments were combined, the negative effect of olaparib on β-catenin expression was
dominant. In all of the above treatments, the presence of miR-200c was able to counteract
any increase of PD-L1, c-Myc and β-catenin expression.
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Figure 4. MiR-200c overexpression in SKOV3 transfected cells down-regulates PD-L1, c-Myc and β-catenin protein levels.
(A): WB analysis of protein expression in SKOV3, transfected with pCMV-Vector and miR-200c and treated with DMSO,
1.5 µM or 5 µM of olaparib (OLAP), alone and in combination with 4 Gy irradiation (IR). β-actin is used as loading control.
(B): (i–iii) Relative quantification of PD-L1, c-Myc and β-catenin by densitometry shows that when olaparib treatment is
applied alone or in combination with IR, PD-L1 and c-Myc expression is induced only in the controls. β-catenin expression
is induced only in pCMV Vector (V.) IR. The ratio of each protein/β-actin was used for normalization. MiR-200c decreases
the expression of PD-L1, c-Myc and β-catenin, regardless of the type of treatment. WBs were repeated at least three times.
p-values were calculated with Dunnett’s multiple comparison test, one-way ANOVA, compared to p CMV V. transfected
cells treated with DMSO. Two-tailed unpaired t-test was applied between pCMV V. and the corresponding miR-200c cell
line for statistical significance, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant.
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3.5. Olaparib and IR Effect on miR-200c-3p and PD-L1 mRNA in SKOV3 Cells

RT-QPCR analysis was performed to study if olaparib and IR treatments had any
effect on miR-200c-3p and consequently on PD-L1 mRNA expression. The PD-L1 transcript
was decreased when miR-200c-3p was over-expressed in non-irradiated SKOV3 cells,
untreated (DMSO) and treated with 1.5 µM or 5 µM olaparib (Figure 5(Ai,Bi)), according
to the results obtained by immunoblotting (Figure 4). At both doses, olaparib-treated
SKOV3 miR-200c transfected cells significantly induced the levels of miR-200c-3p (forth
bar) compared with the untreated counterpart (second bar) (shown in each graph of Figure
5(Ai,Bi)). Olaparib treatment at both concentrations seemed to have a marginal effect on
mRNA levels of PD-L1 in SKOV3 pCMV V. (lower graphs, third bar in Figure 4(A,Bi)).
Nevertheless, olaparib treatment induced PD-L1 protein expression in the same cell line,
although this induction seemed marginal, it was statistically significant (Figure 4(A,Bi)).
In SKOV3 miR-200c transfected cells, IR in combination with 1.5 µM and 5 µM olaparib,
induced PD-L1 mRNA, followed by a small reduction of miR-200c-3p expression (forth
bar) compared with the untreated SKOV3 miR-200c transfected cells (second bar) in Figure
5(Aii,Bii). This PD-L1 induction was only at the transcriptional level since, as previously
shown in Figure 4(A,Bi), the levels of PD-L1 protein were significantly reduced by miR-
200c-3p under the same conditions. In conclusion, even if IR induced the PD-L1 transcript,
the presence of miR-200c-3p was able to maintain low PD-L1 expression.
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in both DMSO and 1.5 µM olaparib-treated SKOV3 cells, (A) (ii): Irradiated: In DMSO-treated SKOV3 cells, miR-200c-3p 
and PD-L1 are inversely correlated. Co-treatment with 1.5 µM olaparib and irradiation shows an increase of PD-L1, re-
gardless of high miR-200c expression. (B) (i): Non-irradiated: At the higher dose of olaparib, 5 µM, PD-L1 is inversely 
correlated to miR-200c-3p. (B) (ii): Irradiated: PD-L1 mRNA is induced in untreated and olaparib 5 µM-treated cells. Ex-
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3.6. MiR-200c Reduces Colony Formation Ability of SKOV3 Cells 

Figure 5. Analysis of miR-200c-3p and PD-L1 expression by RT-qPCR in SKOV3 cells treated with olaparib and irradiation.
(A) (i): Non-irradiated: miR-200c-3p (upper-left graph) is inversely correlated with PD-L1 expression (bottom-left graph) in
both DMSO and 1.5 µM olaparib-treated SKOV3 cells, (A) (ii): Irradiated: In DMSO-treated SKOV3 cells, miR-200c-3p and
PD-L1 are inversely correlated. Co-treatment with 1.5 µM olaparib and irradiation shows an increase of PD-L1, regardless
of high miR-200c expression. (B) (i): Non-irradiated: At the higher dose of olaparib, 5 µM, PD-L1 is inversely correlated to
miR-200c-3p. (B) (ii): Irradiated: PD-L1 mRNA is induced in untreated and olaparib 5 µM-treated cells. Experiments were
repeated three times and in technical triplicates. p-values were calculated by Dunett’s multiple comparisons: * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant.

3.6. MiR-200c Reduces Colony Formation Ability of SKOV3 Cells

In order to determine if miR-200c affects the clonogenic potential of SKOV3 cells
treated with olaparib and IR in comparison with untreated cells, we performed a colony
formation assay. We noticed that there was a cytotoxic effect of olaparib at both concen-
trations and IR alone (Figure 6A–C). Most importantly, the presence of miR-200c reduces
the clonogenic ability of untreated and treated SKOV3 cells (second row in Figure 6A–C).
Moreover, miR-200c reduced the colony formation significantly at the highest concentra-
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tion of 5 µM olaparib, thus indicating that miR-200c sensitized SKOV3 cells to olaparib
treatment, in accordance with previous results by our group [44].
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Figure 6. MiR-200c reduces colony formation of the SKOV3 cell line. (A–C): Representative images of one well out of three
for each experimental condition of the colony formation assay, after two weeks. Under all of the experimental conditions:
untreated (DMSO), irradiated only, 1.5 µM olaparib and 5 µM olaparib alone or in combination with irradiation, the number
of colonies formation was reduced in the presence of miR-200c. The number of colonies in each experimental condition was
determined by ImageJ, using the “analyze particles” command according to the software instructions. Particles considered
as colonies under 100 mm2 pixels were excluded in order to measure only the largest colonies formed. The results of the
scanned clonogenic assay images in A, B and C were plotted as means ± standard deviations of three separate experiments,
each one with three replicates. Dunnett’s multiple comparisons test was applied for statistical significance in all the scatter
dot plots. * p < 0.05, **** p < 0.0001.

We performed MTT assays at 24, 48 and 72 h to estimate the cell growth in a shorter
period of time than the one used in the clonogenic assay (Figure S4A and Supplementary
Materials and Methods). We noticed that the presence of miR-200c slows the proliferation
of SKOV3 untreated cells, compared to the parental cell line. Since we showed, through
MTT assay, that the difference in absorbance was significant at 72 h, we performed cell
counting of SKOV3 pCMV V. and miR-200c transfected cells, seeded in a 6-well plate and
in triplicates (0.3 × 106 cells/well, for each condition). At 72 h, there was a significant
reduction in the number of cells in the presence of miR-200c (Figure S4B). Furthermore,
since miR-200c over-expression in SKOV3 cells decreased the expression of β-catenin and
c-Myc, we assessed the expression of cyclin D1 (Figure S4C). Cyclin D1 is a downstream
target of β-catenin and is involved in cell cycle progression in OC [45,46]. MiR-200c
reduced the expression of cyclin D1. Our results corroborate the ones obtained through the
clonogenic assays, that miR-200c slows proliferation of untreated and treated OC cells.
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3.7. Subcellular Localization of β-Catenin and c-Myc Is Altered by miR-200c

As seen in Figure 4, protein expression of c-Myc and β-catenin was significantly down-
regulated by miR-200c in SKOV3 cells. Since c-Myc is activated by β-catenin translocation
from the membrane into the nucleus, we evaluated whether there was any differential ex-
pression of the nuclear and cytoplasmic fraction of these two proteins in miR-200c-SKOV3
cells [47]. Notably, our analysis of subcellular fraction proteins in Figure 7A–C demon-
strated that while both c-Myc and β-catenin are expressed in the nucleus of the vector trans-
fected cells, the presence of miR-200c significantly blocked their nuclear localization, upon
combinatorial treatment with olaparib and irradiation (Figure 7(Aiii,Av,Biii,Bv,Ciii,Cv)).
Olaparib treatment alone at both doses in the presence of miR-200c reduced expression
of c-Myc and β-catenin in the nuclear fractions with one exception, at the lower dose of
olaparib (Figure 7(Biii)). Interestingly, there was an accumulation of c-Myc in the cyto-
plasm when treated with olaparib and irradiation (Figure 7(Bii,Cii)). Similar cytoplasmic
retention of β-catenin was seen in the presence of miR-200c in cells treated with the higher
dose of olaparib (Figure 7(Civ)). Taken together, our data suggest that miR-200c could be
instrumental in retention of both c-Myc and β-catenin in the cytoplasm.
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Figure 7. Effects of miR-200c on the distribution of c-Myc and β-catenin expressions in SKOV3 cell line. Cytoplasmic (C)
and nuclear fractions (N) were analyzed by WB. β-actin and Lamin B1 are the housekeeping proteins used for cytoplasmic
and nuclear extracts, respectively. (A) (i): empty vector (pCMV V.) and pCMV miR-200c SKOV3 cells treated with DMSO
and 4 Gy irradiation (IR). (B) (i): vector and miR-200c transfected SKOV3 treated with 1.5 µM olaparib-only (OLAP) or in
combination with 4 Gy irradiation. (C) (i): vector and miR-200c transfected SKOV3 treated with 5 µM olaparib-only (OLAP)
treated vector and miR-200c or in combination with 4 Gy irradiation. The histograms reported below the WBs represent
densitometric analysis by ImageJ of c-Myc and β-catenin, for each treatment. (ii,iii): the graphs indicate cytoplasmic and
nuclear fractions of c-Myc respectively normalized to β-actin and Lamin B1 (iv,v): β-catenin expression in cytoplasmic and
nuclear fractions. All the samples were normalized to the vector control SKOV3. The number of pixels from each protein
signal imprinted on a film was normalized to the number of pixels of the respective housekeeping gene (β-actin or Lamin
B1), calculated as a ratio. Three WB repetitions were performed with the same lysates and with protein lysates derived
from three treatments upon olaparib and irradiation. Dunett’s multiple comparison statistical analysis was carried out with
Prism 7 software, between pCMV V. DMSO/1.5µM OLAP/5 µM OLAP/IR-treated and the corresponding treated miR-200c
transfected cells. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant.
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3.8. Differential Expression of PD-L1, c-Myc, β-Catenin and CD3+ T-Cell Infiltration in Clinical
Samples Obtained before and after Chemotherapy

Since miR-200c-3p was inversely correlated with PD-L1 expression before and after
chemotherapy, we assessed PD-L1, c-Myc and β-catenin expression by IHC and RT-qPCR
in the same biopsies (Figure 8(A,Bi,Bii)). Chemotherapy increased PD-L1 expression in
all of the neoplastic cells with complete membrane reinforcement compared to a weak
cytoplasmic positivity with partial membrane reinforcement in 10% of the neoplastic cells
before chemotherapy (Figure 8(A,Bi), first panel). c-Myc nuclear positivity was increased
in 70–80% of neoplastic cells in post-chemotherapy biopsies compared to a weak nuclear
positivity in 10–30% of neoplastic cells before chemotherapy (Figure 8(A,Bi), second panel).
β-catenin showed a complete membrane staining in all neoplastic cells after chemotherapy
(Figure 8(A,Bi), third panel). The overall increase of c-Myc and β-catenin in the post-
chemotherapy patient’s biopsies was further confirmed by RT-qPCR (Figure 8(Bii), pooled
graphs of the five patients and Figure S5, graphs for each patient). Figure 8(Bii) shows the
same graph of PD-L1 expression in all five patients pooled together, which was previously
shown in Figure 1(Bii).

In EOC patients, tumor infiltrated lymphocytes (TILs) might be associated with im-
proved overall survival [48], but at the same time stromal cells of the tumor microenviron-
ment (TME) might generate an immunosuppressive state [49]. Figure 8(Ci–iv) shows that
after chemotherapy, peritumoral CD3+ T cell infiltration increases, sometimes organized
into follicular structures. To assess if there is any correlation between PD-L1, c-Myc, and
β-catenin expression with T-cell infiltration we performed correlation analysis by using the
Microenvironment Cell Populations-counter method of TCGA datasets of EOC patients
(Supplementary Materials and Methods and Figure S6) [39]. We found a trend of positive
correlation between PD-L1 expression and T-cell infiltrates, whilst MYC and β-catenin were
inverse correlated with T-cell infiltrates (Figure S6(Ai–iii)). Using the same dataset, it was
noted that a higher miR-200c-3p expression correlates with less abundant tumor-associated
endothelial cells and cancer-associated fibroblasts (CAFs) (Figure S6(Bi,ii)). Taken together,
the IHC and TCGA data suggest that an increased PD-L1, MYC and β-catenin expression
might favor a less immunogenic TME and low levels of miR-200c-3p might characterize a
more aggressive TME in EOC patients [49].
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Figure 8. PD-L1, c-Myc, β-catenin expression and CD3+T cell infiltration increases in EOC patients’ biopsies after chemother-
apy. (A) Formalin-Fixed Paraffin-Embedded (FFPE) tissue sections from all OC patients’ biopsies were immunoassayed
for PD-L1, c-Myc and β-catenin staining using an automated Bench Mark Ultra (Ventana, Monza, Italy). One out of four
representative images (Patient C) is shown. After extended antigen retrieval by heat-induced antigen retrieval (HIER),
detection of the three proteins was performed with Ventana primary antibodies, using (3,3′-diaminobenzidine) (DAB) as
chromogen. Deposition of brown staining reveals the presence of each protein. The stained tissue sections were digitalized
at a 20× magnification using a NanoZoomer Digital Slide Scanner. (B) (i): The percentage of intensity staining for each
protein was evaluated by counting the total PD-L1, β-catenin and c-Myc positive cells (neoplastic and stromal cells) in three
squared areas from each clinical sample, using ImageJ. The % of immunostaining intensity from four biopsies pre- and
post-chemotherapy was graphically calculated as a mean of four samples. Two tailed unpaired t test demonstrated the
statistically significant differences among pre- and post-chemotherapy biopsies, * p < 0.05, ** p < 0.01, **** p < 0.0001. (ii):
RT-qPCR analysis of PD-L1, c-Myc and β-catenin transcripts was done by pooling together all the biological replicates
from the five patients. Each graph represents the mean standard deviation of c-Myc and β-catenin fold change, normalized
to GAPDH housekeeping gene, from three independent experiments and in technical triplicates. Statistical significance
was calculated using two tailed unpaired t test through PRISM7. **** p < 0.0001, ** p < 0.01 (C). CD3+ T cell infiltration in
the tumor area of each biopsy, in four patients (i–iv) pre- and post-chemotherapy. The brown staining reveals an increase
of CD3+ T cell infiltration in post-chemotherapy samples. A marked increase of peritumoral CD3+ T-cells, sometimes
organized into follicular structures, was reported in post-chemotherapy biopsies in respect to pre-chemotherapy specimens.

4. Discussion

MiR-200c is one of the most deregulated and well-studied miRNAs in OC. However,
there is disagreement as to whether it is a tumor suppressor miRNA since its overexpression
was correlated with shorter overall survival in EOC patients [50]. Therefore, it becomes
imperative to clarify the role of miR-200c in the present context. Our data contribute the
following critical insights to the ongoing debate. We identified an inverse correlation
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between miR-200c-3p, PD-L1 and two oncogenes, c-Myc and β-catenin, in EOC patients
who had undergone chemotherapy with carboplatin/paclitaxel. We confirmed that c-
Myc and β-catenin were significantly inverse correlated with miR-200c-3p, analyzing in
silico data from the Cancer Cell Line Encyclopedia (CCLE), in 46 ovarian cancer cell lines.
Notably, from the same database, we found a significant inverse correlation between c-Myc
and miR-200c-3p, both at transcriptional and translational level, and it was confirmed in
SKOV3 stably transfected with miR-200c. This result was also supported by TargetScan
prediction. Most significantly, we found that miR-200c overexpression in the SKOV3 cell
line inhibited PD-L1, c-Myc and β-catenin expression. We further validated these results
in another EOC cell line, UWB1.289+BRCA1, which exhibits high endogenous levels of
miR-200c-3p and moderate levels of PD-L1. In this cell line, inhibition of miR-200c-3p de-
repressed the expression of PD-L1, c-Myc and β-catenin. Subsequently, we investigated the
reason behind the induction of PD-L1, c-Myc and β-catenin expression observed in clinical
samples derived from patients who underwent chemotherapy. Several studies support
the same induction of PD-L1 by not only chemotherapy, but by olaparib and irradiation
therapies as well [51–53]. Hence, we treated SKOV3 cells with olaparib, radiation, and both
combined, to investigate any increase of PD-L1, c-Myc and β-catenin expression, which
might worsen the outcome of these therapies. We provided experimental evidence that
miR-200c slows proliferation of untreated and treated OC cells, by inhibiting PD-L1, c-Myc
and β-catenin expression.

In olaparib-treated parental SKOV3 cells, the expression of PD-L1 was significantly
induced, although to a lesser extent compared to c-Myc expression. Our data are in line
with a previous study that showed PD-L1 induction mediated by PARPi in breast cancer
cell lines and in mice models and rendered PARPi-treated breast cancer cells resistant to
T-cell killing [54]. Another study showed that WNT/β-catenin activation in EOC cell lines
contributed to PARPi resistance, but SKOV3 was not among these cell lines [55]. In contrast,
we showed that, the SKOV3 cell line had increased basal levels of β-catenin and after
olaparib treatment β-catenin expression was significantly decreased. This might explain
the reduced clonogenic potential of olaparib-treated SKOV3 cells. As seen for PD-L1, IR
and olaparib treatment significantly increased c-Myc protein levels. In spite of this increase
in c-Myc, the treated SKOV3 cells showed less colony formation. This is most likely due
to the fact that deregulated c-Myc expression induces apoptosis as a safeguard towards
unwarranted cellular proliferation. Our observation of low clonogenicity in spite of higher
c-Myc is consistent with pro-apoptotic functions of c-Myc [56]. The presence of miR-200c
in either treated or untreated SKOV3 cells, was sufficient to reduce their clonogenicity and
proliferation and further sensitized them to olaparib and IR treatment [44]. Based on our
results, we suggest that miR-200c-3p might decrease c-Myc expression directly by targeting
the 3′UTR. Interestingly, c-Myc represses the miR-200 family by directly binding to its
promoter, which has been confirmed in endometrial carcinoma [57]. Our data showed that
miR-200c-3p can negatively regulate c-Myc, suggesting a reciprocal regulation through a
negative feedback loop between c-Myc and miR-200c-3p. Interestingly, Casey et al. have
recently shown that c-Myc induces PD-L1 expression [58]. On the other hand, a recent
study showed that PD-L1 positively regulates β-catenin expression and EMT, suggesting
a pro-tumorigenic role of PD-L1 in lung cancer [59]. We cannot exclude the possibility
that PD-L1 might have a similar function in OC. In addition, accumulating evidence
shows that the Wnt/β-catenin pathway suppresses the immune response within the tumor
microenvironment [60]. Based on these studies, it is tempting to speculate that c-Myc
might induce PD-L1, which in turn induces β-catenin, enhancing tumor progression and
immune-evasion. MiR-200c-3p might act as a double-edged sword by reducing PD-L1
directly by binding to its 3′UTR and indirectly through downregulation of c-Myc. At the
same time, miR-200c-3p can target β-catenin directly, or through targeting PD-L1. Hence,
the results in the present study corroborate miR-200c-3p as a tumor suppressor in EOC.

In the primary tumors, chemotherapy restricted the tumor area into a dense fibrotic
stroma but did not completely eliminate it, thus indicating a good response to the treatment
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as also reported previously [61]. However, there was a significant increase in the percentage
(%) of PD-L1, c-Myc and β-catenin positive cells (tumor cells and stromal cells) after
chemotherapy treatment. Induction of β-catenin in EOC is a marker of poor prognosis [62].
While constitutive expression of c-Myc protein has become a clinical biomarker for the
diagnosis and prognosis of aggressive B-cell lymphoma [63], most likely in advanced EOC
patients, it could be an independent prognostic factor. However, a study showed that c-Myc
protein levels were higher in cisplatin-resistant cells and may be a potential therapeutic
target of OC [64]. Similarly, the possibility that the increased expression of c-Myc observed
in the biopsies after chemotherapy and in vitro treated SKOV3 cells could be due to the
presence of OC cells resistant to all of these treatments can certainly not be excluded.

An increase in PD-L1 expression accompanied by a strong increase of CD3+ T cell
infiltration after chemotherapy suggested that the treatment is most likely responsible for
the increase in number of TILs in the surrounding microenvironment. The presence of
TILs and high PD-L1 expression in the TME might be an indicator of impaired function of
CD4+ and CD8+ T cells against tumor cells [48,65] or might be associated with improved
OS and PFS in EOC patients [66,67]. Since Wnt/β-catenin signaling is involved in immune
evasion in OC as PD-L1 is, the increase of β-catenin along with PD-L1 in the biopsies of
chemotherapy-treated patients, might worsen the outcome of these therapies. Notwith-
standing the small cohort and lack of treatment comparison in the TCGA analysis, our data
lend support to the notion that a decreased miR-200c-3p and the concomitant increase in
PD-L1, c-Myc and β-catenin after chemotherapy could lead to an immunosuppressive TME
and might be an indicator of worse prognosis. Furthermore, our data provide evidence that
reconstitution of miR-200c-3p tumor suppressor function in EOC might contrast with the
induction of PD-L1, c-Myc and β-catenin expression by carboplatin/paclitaxel, olaparib
and radiation treatments.

In conclusion, since miRNA-based clinical trials are gaining traction [19], miR-200c-
based therapy, either alone or in combination with conventional therapeutic regimens,
might provide additional means to reconstitute anti-tumor immunity and contrast a pro-
tumor microenvironment and progression.
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