
Decisions in Economics and Finance
https://doi.org/10.1007/s10203-021-00324-z

Betting on bitcoin: a profitable trading between directional
and shielding strategies

Paolo De Angelis1 · Roberto De Marchis1 ·Mario Marino2 ·
Antonio Luciano Martire1 · Immacolata Oliva1

Received: 1 April 2020 / Accepted: 23 February 2021
© The Author(s) 2021

Abstract
In this paper, we come up with an original trading strategy on Bitcoins. The method-
ology we propose is profit-oriented, and it is based on buying or selling the so-called
Contracts for Difference, so that the investor’s gain, assessed at a given future time t ,
is obtained as the difference between the predicted Bitcoin price and an apt threshold.
Starting from some empirical findings, and passing through the specification of a suit-
able theoretical model for the Bitcoin price process, we are able to provide possible
investment scenarios, thanks to the use of a Recurrent Neural Network with a Long
Short-Term Memory for predicting purposes.
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1 Introduction

For last decades, cryptocurrencies have been increasingly playing a leading role in
the worldwide economic and financial scenario. Among the various cryptocurrencies
currently available to potential buyers, Bitcoin (BTC, henceforth) is certainly the most
famous and most interesting example. As proof of this, it is sufficient to note that the
2019 BTC market capitalization was equal to about $bn 170, representing the 53% of
the leading cryptocurrencies market capitalization.1

Focusing on BTC, the literature has highlighted its peculiar structure. In some
respects, BTC can be likened to a standard currency, because of its limited intrinsic
value. In this perspective, the US dollar seems to represent to best touchstone, even
though, by definition, BTC is not issued by any central bank. Meanwhile, BTC shares
several interesting propertieswith some safe-haven assets, such as gold.However,BTC
cannot be considered a commodity, due to its inability to perform financial hedging,
see e.g., Byström and Kryger (2018) for further details.

There is at least a couple of conceivable reasons why both academics and practi-
tioners are currently participating in such a large development of the cryptocurrencies’
phenomenon.

The first motivation is related to their original task. It is worth recalling that the
cryptocurrencies were born as an alternative form of payment to the traditional ones,
see e.g., Nakamoto (2008) in reference to BTC, which can rightly be considered
the most famous issued cryptocurrency. More precisely, they represent a form of
digital payment, like the well-known bank transfers or, more generally, online money
transfers, such that the presence of intermediaries is not allowed, as in the case of cash
payments, see e.g., Ametrano (2016) and references therein.

The second rationale behind the aforementioned success for the family of cryptocur-
rencies is probably to be found in the ever-growing willingness on the part of financial
operators to find new forms of investment that guarantee large profit margins, without
taking into suitable account the level of risk associated with these financial transac-
tions. In other words, cryptocurrencies can be considered a new form of speculative
investment.

Compared to classical investment products (such as equity indices, or standard cur-
rencies), the cryptocurrencies are characterized by a significant volatility level, see
e.g., Bucko et al. (2015) and Kyriazis et al. (2019). As a consequence, these kinds of
products turn out to be highly palatable for risk-seeking investors, while remaining
less attractive to risk-averse investors. Thanks to the aforementioned remarks about
the BTC nature, and taking into account the crucial role played by volatility, recently
many authors have started to look at BTC (and, more generally, all the cryptocurren-
cies traded on the main platforms) as an example of pure risky securities. Roughly
speaking, BTC can be used as a classic financial tool, on which investors might act in
different ways. For example, an agent may directly focus on the security, namely by
betting on potential prices’ upturns or dips. Alternatively, the same agent can build any

1 See https://www.statista.com/statistics/730782/cryptocurrencies-market-capitalization/ for further
details.
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appropriate investment strategies involving derivative instruments, see e.g., Bistarelli
et al. (2019) for an in-depth analysis.

It is worth highlighting that the growing interest in cryptocurrencies is revealing
under several aspects. Many authors have been focusing on the study of appropri-
ate trading software systems, trying to identify both their strengths and weaknesses,
insisting on the transparency of the procedures, as well as the absence of fraud and
data manipulation, see e.g., Bauriya et al. (2019).

The demand to provide effective tools for weighing up cryptocurrencies’ trad-
ing strategies has led to a recent albeit substantial increase in statistical-econometric
papers to estimate and predict specific economic variables, see e.g., Katsiampa (2017).
Moreover, the key role played by cryptocurrencies as risky assets has sparked the inter-
est of academics toward potential (in)efficiency market issues, see e.g., Le Tran and
Leirvik (2020) and Brandvold et al. (2015). Finally, the research lines dedicated to the
explanation of cryptocurrencies’ pricing through behavioral economics is becoming
increasingly popular, especially thanks to social networks, see e.g., Kim et al. (2016).

Within such a broad literature, the present paper aims at enriching the recent strand
of the literature that studies technical trading rules in cryptocurrency markets, see
e.g., Detzel et al. (2018), Hudson and Urquhart (2019), Vo and Yost-Bremm (2018),
Cohen (2020), using statistical techniques of supervised learning for estimation and
inference.

More precisely, we would like to provide innovative trading strategies on BTC. Our
proposal can be seen as an appropriate compromise between gambling and building a
suitable hedging portfolio. In this way, the strategy affords to mitigate the extremely
speculative vocation of the former through an injection of risk aversion of the latter.
The idea behind our strategy is the following. Starting from the BTC time series, we set
up a predictive strategy over short time horizons. Given the number N of time buckets
where it is possible to trade over such a forecasting, at the fixed initial time t0 the trader
establishes to enter into as many N Contract for Difference agreements (CfDs), either
with short or long position, depending on the value that BTC is expected to reach
with respect to a fixed threshold. The gain is achieved by exploiting the definition of
CfD, viz. it is given by the difference between the BTC price and the threshold value,
assessed at each time bucket. In addition, the trader can also opt for a wait-and-see
strategy,which consists of selling or buyingCfDonly at the instantwhen themaximum
profit is expected to be produced.

Despite not being the main focus of the present paper, BTC price prediction is not
a mere byproduct. Flexible models skilful to detect hidden features driving prices are
desirable to carry out predictions over time, avoiding pitfalls stemming from structural
predictive models. Thanks to their capacity to process data, catching fundamental
patterns within them, machine and deep learning models are suitable tools. Probing
empirical BTC price demeanor, data-driven models represent prominent prototypes to
reach either accuracy and reliability in predicting chaotic behavior.

Among the various machine and deep learning models existing in the literature, in
this paper, we resort to the Neural Networks (NNs) framework. More properly, we
select a Recurrent Neural Network (RNN) model with a Long Short-Term Memory
architecture (LSTM, from now on), see e.g., Hochreiter and Schmidhuber (1997),
in order to elaborate the observed BTC price series and project it over a designed
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short term horizon. Our choice moves along the lines of Altan et al. (2019), Lahmiri
and Bekiros (2019) and Lahmiri and Bekiros (2020). The latter compares disparate
machine learning models to anticipate BTC price for high-frequency trading intents.
Lahmiri and Bekiros (2019), firstly in the literature, proposes LSTM to foresee BTC
price, bringing out RNN architecture proficiency to predict short and long fractal
patterns. Finally, Altan et al. (2019) designs a innovative forecasting system based on
LSTM achieving high closeness to the observed cryptocurrency prices.

Whatever the strategy undertaken by the investor, it is pivotal to assign to BTC
a mathematical model capable of capturing, and possibly replicating, the evolution
in time of its main characteristics and properties. The literature proposes several
approaches. Looking at volatility as an indicator of the evolution of the underly-
ing process, quite recently many authors rely on stochastic volatility models for BTC
price dynamics, see e.g., Bohte and Rossini (2019). Moreover, justified by the empir-
ical evidence that demonstrates the presence of large but infrequent fluctuations in
the cryptocurrencies’ prices, such models can be further generalized, assuming the
presence of discontinuities in the dynamics, see e.g. Hou et al. (2018). Besides, the
literature proposes a classic approach, based on the use of diffusive models for the
price dynamics, see e.g., Bistarelli et al. (2019) and references therein. This is not
a mere modeling simplification. Such a choice is justified by empirical evidence and
supported by theoretical considerations. One of the techniques existing in the literature
to verify whether a given phenomenon is driven by a (fractional) Brownian motion
(fBM) consists in measuring the associated so-calledHurst exponent H . In particular,
it is possible to prove that H = 0.5 is equivalent to saying that the corresponding fBM
is a Wiener process. For further details about fBM and its generalizations, we address
the reader to Bianchi and Pianese (2015) and Bianchi et al. (2015).

From an operational point of view, the literature provides several standardized algo-
rithms to calculate the Hurst index associated with a given time series; some examples
are given by the rescaled range analysis (R/S), the Fourier spectral techniques (PSD),
orwavelet variance analysis, see e.g., Serinaldi (2010) for further details. In this paper,
following the intuition exploited in Bariviera et al. (2017), we exploit the Detrended
FluctuationAnalysis introduced in Peng et al. (1995) and Peng et al. (1994).We refer to
the BTC instantaneous returns financial time series, ranging between January 1, 2019,
and December 31, 2019. The empirical analysis carried out on the dataset shows that
H = 0.5, which authorizes to assume a log-normal dynamics for the BTC prices on
a short time horizon.

The novelty of our proposal resides in introducing a suitable boundary solely linked
to the underlying diffusive price dynamics. To the best of our knowledge, this occurs
for the first time in the literature. Such a comparison shows once again the potential
of our proposal: the technical analysis performed highlights that our strategy is com-
parable with the others in terms of returns, but is more conservative, as it guarantees
significantly lower losses.

The rest of the paper is organized as follows. In Section 2, we describe the method-
ology we use. In particular, we recall the financial model, as well as the main empirical
results related to the data we are considering. Section 3 is devoted to the implemen-
tation of the trading strategy we present, while Sect. 4 shows numerical results that
corroborate our proposal. Section 5 concludes the paper.
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Fig. 1 BTC prices. Period: January 1, 2019–December 31, 2019

Fig. 2 BTC instantaneous returns. Period: January 1, 2019–December 31, 2019

2 BTC analysis

2.1 Dataset

In order to carry out our empirical investigations, we refer to the 2019 BTC price
quotes (USD) collected from gemini.com. The analyzed data span from January 1,
2019, to December 31, 2019, representing the intraday 1–minute price time series,
with a total of 483826 observations. In Fig. 1, we plot the BTC prices, while Fig. 2
shows the BTC returns.

For the sake of completeness, we report some statistical details related to the time
series under inspection. We gather all the information in Table 1.

123



P. De Angelis et al.

Table 1 Descriptive statistics of
intraday BTC prices (1 minute
basis)

Descriptive statistics Values

Observations 483826

Mean 7222.06

Min 3341.6

Max 13850

Standard Deviation 2600.4

Skewness −0.07116

Kurtosis −1.26223

Jarque-Bera 32527

Data spans from January 1, 2019 to December 31, 2019

2.2 Empirical findings

The time series analysis described in Sect. 2.1 has a twofold relevance. On the one
hand, such an investigation allows to detect the validity of the well-known efficient
market hypothesis. On the other hand, the results might help to understand whether
there exists themost suitable mathematical model to describe the evolution of the price
process.

To attempt to justify both the previous points, the literature proposes the evaluation
of theHurst exponent H ∈ (0, 1), see e.g., Biagini et al. (2008) and references therein
for a detailed study of the topic. In other words, H means that the process, associated
with the time series of which we are calculating the corresponding index, is driven by
a Fractional Brownian Motion. Furthermore, the value assumed by H is an indicator
of the presence (or absence) of long memory in the data, see e.g., Sanchez Graneroa
et al. (2008).

The literature proposes severalmethodologies to evaluateH . In the presentwork,we
refer to the instantaneous returns and exploit theDetrendedFluctuationAnalysis (DFA,
from now on), according to the study performed in Bariviera et al. (2017). In particular,
our findings show that the Hurst exponent is H = 0.5 for the BTC instantaneous
returns, assessed over the whole 2019. The results are obtained employing the DFA
algorithm for several timewindows, namely from1 to 12 h, andweuse slidingwindows
of 500 datapoints, as in Bariviera et al. (2017). We report such results in Figs. 3 and
4.

However, it is worth stressing that the goal of this paper is to describe a trading
strategy involving BTC such that the trader can operate on a very short time horizon.
To be sure that the behavior of the time series on the table remains unchanged, even
when considering short time horizons, we calculate the Hurst exponent H on a time
window of only one hour. The results confirm that H = 0.5 holds true also in this
case, as it can be seen by inspection of Fig. 3a. The same behavior is exhibited when
we look at 2 hours, see Fig. 3b.
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Fig. 3 Hurst exponent for 1 to 6 hours BTC returns, using a sliding window of 500 datapoints. Period:
January 1, 2019–December 31, 2019

2.3 Theoretical framework

Once an appropriate value has been assigned to the Hurst parameter H as regards, the
time series of the BTC instantaneous returns, the concluding step consists in defining
a theoretical model able to characterize the BTC prices.

Let {St }t ∈ [0,T ] be a stochastic process on
(
Ω,F , {Ft }t ∈ [0,T ],P

)
, and set Xt =

log(St ), t ∈ [0, T ]. Then, the process St describes the BTC price, while Xt repre-
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Fig. 4 Hurst exponent for 7 to 12 hour BTC returns, using a sliding window of 500 datapoints. Period:
January 1, 2019–December 31, 2019

sents the corresponding log-price process. We are interested in the time-continuous
dynamics over the interval [0, T ], where T represents the end of a very short time
horizon.

The upshot previously produced by the empirical findings, namely H = 0.5, reveals
that the process Xt evolves according to an Arithmetic Brownian motion (ABM)
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dXt =
(

μ − σ 2

2

)
dt + σdWt , (2.1)

with μ ∈ R
+, σ > 0, andWt is a Wiener process, for t ∈ [0, T ]. This is justified by

observing that from the empirical point of view, weworkwith Xt−u = ln(St )−ln(Su),
for all 0 ≤ u < t ≤ T , being Xt−u the instantaneous return associated with the time
increment t − u. An application of Ito’s Lemma ensures that the BTC price dynamics
can be easily written as

dSt
St

=
(

μ − σ 2

2

)
dt + σdWt , t ∈ [0, T ] . (2.2)

Remark 1 The empirical data show that it is possible to assume that BTC prices are
locally distributed according to a log-normal random variable. Here, locally means
that we are considering stochastic processes in which time moves on sufficiently small
intervals [0, T ], where the order of magnitude of T is given by hours.

Therefore, the results we obtained do not conflict with the main contributions of the
literature, according towhich, ifwe refer to a very large time span,BTC is characterized
by aHurst index H > 0.5.This implies that the process describing BTC prices evolves
according to a Fractional Geometric Brownian motion, see e.g., Tarnopolski (2017)
and references therein.

The local log-normality for the BTC price process represents one of the key points
in the trading strategy we are going to describe in this paper.

3 A new trading strategy

In this section, we give survey of the main trading strategies existing in the literature
and we introduce our proposal.

3.1 Technical trading strategies: an overview

The literature offers a broad range of cryptocurrencies trading strategies, see e.g.,
Hudson and Urquhart (2019) and Hsu et al. (2016) among others. The first family of
trading rules is given by the so-called filter rules, see Alexander (1961). Dating back
to the early 60s of the last century, these strategies act on fluctuations in the price trend,
attempting to correctly identify each change in direction. A trading technique similar
to filter rules is given by the support-resistance rules. The latter consist in creating
suitable trendlines that warn to buy (resp., sell) in case of overcoming the bound from
above (resp., from below). When the support/resistance levels are time-varying, the
literature refers to the so called channel breakout rules.
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A second class of trading strategies involves the oscillator trading rules, see e.g.,
Taylor and Allen (1992), where the trading signal is triggered by detecting periods of
excessive buying/selling, the latter being an indicator of impending trend reversals.
The indicator is given by

Kt = Ct − L p

Hp − L p
· 100 , (3.1)

where Ct is the current price at time t, while Hp (resp., L p) indicates the highest
(resp., lowest) price recorded in the previous p observations. The mark is given when
Kt crosses a signal line, given by a moving average of length N .

A further well-known group of trading rules is represented by the Moving Aver-
age Convergence Divergence (MACD, hereafter). Introduced in the 1970s, see e.g.,
Appel (2005), it is one of the most used momentum indicator, thanks to its ease of
implementation. Roughly speaking, MACD captures bearish or bullish tendencies,
analyzing the relationship between two price moving averages. More precisely, the
indicator is given by

MACDt = EMAp(Ct ) − EMAq(Ct ) , (3.2)

whereCt is the current price at time t and EMAp(Ct ), EMAq(Ct ) are theExponential
Moving Averages over periods p and q, respectively, with p < q. In this case, the
signal line is obtain by performing the exponential moving average of MADCt of
fixed length r .

The aforementionedmoving average (MA) is the key tool for another type of trading
strategies. Such Moving Average trading rules slightly differ from the techniques
previously introduced, as they directly look at the traded asset prices, without resorting
to any momentum indicator, and the signal line coincides with the MA considered.
The main disadvantage of such a method lies in its own asynchrony w.r.t. the true price
trend, as well as the strict dependence on the length of observed data.

3.2 The proposal: the trading strategy à la Kim

We want to experiment a profit-oriented strategy at a fixed time, say t0, in which
the trader bets on BTC price changes, entering a foreordained number of financial
contracts, either in short or long positions. The latter depend on the profit margin the
trader would like to establish, in terms of spread between the predicted BTC price
and a given benchmark. We agree upon letting the aforementioned starting time t0
coincide with the last observation date in the time series.

The best-suited financial tool is given by the so called Contract for Difference
(CfD).

A CfD is a derivative on a financial asset. It provides that two parties agree to
exchange financial flow stemming from the differential between the prices of an under-
lying at the beginning time of the contract and at the time of its closing. Therefore,
CfDs operate on the price differences, implying gain or loss according to the difference
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between the purchase price and the sale price of the underlying. For the sake of sim-
plicity, in the following, we will not consider transition and financial costs associated
with CfD operations.

The touchy point is to define an appropriate benchmark. Let K be the (arranged)
price agreed between the parties in the CfD, to be compared with the underlying. In
t0, we design a decision set D := {dt : t ∈ [0, T ]} such that a given rule-of-thumb is
satisfied, starting from K = St . In such a case, neither a longnor a short positiononCfD
would guarantee speculation. This form of indifference is represented by constructing
a time-dependent benchmark, say B(t), that takes into account the market parameters
(e.g., BTC price volatility level). Therefore, the buccaneering investor must define in
t0 the position to handle in order to always reach |St − K | as margin. Typically, this
translates in keeping a short position, when the downside risk is potentially unlimited.
Indeed, it is straightforward to see that

K > St , or equivalently, max(K − St , 0) > 0 .

Vice-versa, if K < St , then

K − St < 0, or equivalently, max(K − St , 0) = 0 .

This means that no profit is obtained by assuming short positions, thus a change
of position toward the CfD is needed. In other words, the benchmark B(t) comprises
the time steps in which, at the same time, no trades take place and short/long position
areas are defined.

Summing up, we create B(t) by means of a synthetic derivative with payoff HT =
max(K − ST , 0) so that

– on B(t), we have K = St , that is, no decision is taken;
– under B(t), we have K > St so dt = short position;
– above B(t), we have K < St so dt = long position.

We observe that the BTC price evolves according to (2.2) over very short time
horizons, as already stressed in Sect. 2.3. Hence, we can exploit the results given in
Kim (1990), provided that the risk-neutral probability measureQ ∼ P is defined. The
boundary à la Kim B(τ ), as a function of the time to expiration τ = T − t and in the
absence of continuous dividend yields δ, coincides with the (unique) solution to the
following weakly singular Volterra integral equation

K − B(τ ) = Ke−rτΦ

⎛

⎝−
log

(B(τ )
K

)
+ (r − σ 2

2 )τ

σ
√

τ

⎞

⎠

− B(τ )e−δτΦ

⎛

⎝−
log

(B(τ )
K

)
+ (r + σ 2

2 )τ

σ
√

τ

⎞

⎠

+ Kr
∫ τ

0
e−r(τ−s)Φ

⎛

⎝−
log

(B(τ )
B(s)

)
+ (r − σ 2

2 )(τ − s)

σ
√

τ − s

⎞

⎠ ds , (3.3)
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where Φ is the standard cumulative normal distribution function. Moreover, an appli-
cation of (Kim 1990, Proposition 2) shows that our benchmark B(τ ) is a continuously
differentiable function on (0, T ] and limτ→0 B(τ ) = K .

We summarize the main steps to be done in t0 to obtain our trading strategy. Recall
that t0 represents the last observation time in the BTC time series. We assume that t0
coincides with the starting point of our strategy.

Step 1. Given the time interval [0, T ], set the partition π such that

0 = t0 < t1 < . . . < tN−1 < tN = T .

Step 2. Determine the future trajectory {Vt }t ∈π .
Step 3. Construct a synthetic American-style derivative with strike price K ,maturity

T ∗ and payoff HT ∗ = max(K − VT ∗ , 0). More precisely, T ∗ is chosen in
such a way that it coincides with the end of the trading period, i.e., T ∗ = T ,

while the strike price is such that K = Vt1 , i.e., it coincides with the predicted
price of the BTC assessed in the first forecasting time step.

Step 4. Solve the integral Eq. (3.3) by means of the trapezoidal rule, to determine
the optimal boundary B(τ ). Recall that here τ = T − t, with t ∈ π. Hence,
to be able to make the values of V and B comparable, we must flip the latter.
The model parameters are estimated by exploiting the maximum likelihood
method suggested in Brigo et al. (2007).

Step 5. For all ti ∈ π, define

Yi := Bti − Vti

⎧
⎪⎨

⎪⎩

> 0, implying that a short position is requested,

= 0, implying that no trades are done

< 0, implying that a long position is requested.

Consequently, we set h (resp. k, j) the amount of times in which Yi is greater
than (resp., equal to or smaller than) zero. Then, the strategy is composed of
h long CfDs and j short CfDs.

Step 6. (Optional) Evaluate the overall profit

G :=
h∑

i=0

(Bti − Vti ) +
j∑

i=0

(Vti − Bti ) .

Step 7. (Optional) Determine the time step t ′ ∈ π (resp., t ′′ ∈ π ) where the
maximum gain from short position (resp., long position) is obtained.

4 Numerical experiments

To proceed with our proposal, we must perform the algorithm provided in Sect. 3.2.

123



Betting on bitcoin: a profitable trading...

4.1 BTC price forecasting

Once the time horizon has been partitioned, the first stumbling block is to predict the
BTC price.

We exploit the LSTM network endorsing an autoregressive approach on 1-minute
basis. We refer the reader to Nigri et al. (2020) for more technical and theoretical
details related to the LSTM network.

Therefore, we can properly formalize each realization, over time, of the future BTC
price as follows:

S̄t = fLST M
(
S̄t−1,Θ

) + εt , (4.1)

with fLST M the NN function, Θ the set of NN parameters and εt a zero mean error
component with variance σ 2

ε . The future BTC price trajectory, (Vt )t∈π , is given by the
following point prediction equation:

Vt = E
P

(
S̄t

∣∣S̄t−1
) = fLST M

(
S̄t−1, Θ̂

)
. (4.2)

Starting from the original BTC price dataset mentioned in Sect. 2.1, we proceed to
calibrate the LSTM network selecting three different closing price samples. More
in details, we consider intraday 1-minute price for windows of 180, 360 and 720
datapoints, to train and test the LSTM model. Training and testing sets are generated
according to the splitting rule 80%-20%. Moreover, to define the composition of the
LSTM architecture, a fine tuning process is implemented by adopting a grid search
technique. Because of that, a limited, discrete parametric space is established a priori,
whose possible values are arbitrarily chosen, acting as LSTMhyperparameters. Fixing
a combination of hyperparameters in the parametric space, the training procedure
begins by minimizing the mean squared error as loss function. We elect the optimal
NN architecture the one identified by the hyperparameters combination returning the
minimum error on the testing set.

The analysis is implemented using the R software (version 3.6.3) exploiting the
Keras package. In Table 2, the LSTM calibration results are summarized.

The results in Table 2 can be integrated into the preexisting literature: indeed, on top
of Lahmiri and Bekiros (2019), we show that the LSTM is an accurate predictor also
in the absence of chaoticity. Moreover, although the LSTM is typically employed in
managing big data, our RMSE and MAE suggest an efficient envisage capability also
for smaller samples. This further ensures a significant shrinking of the computational
burden.

4.2 Performance analysis

To establish the accuracy of the new trading strategy,we compare our results with those
obtained by applying other trading rules already known in the literature. Among the
possible methodologies introduced in Sect. 3.1, we choose three competitors, namely
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the MACD, the Stochastic Oscillator and the Moving Average with different time
windows.

The comparison has been performed by using proper indicators, capable to assess
the risk-return profile of each strategy involved.More properly, we begin by evaluating
the Sharpe ratio (SHR). To further distinguish among trading strategies with similar
behaviors in terms of average returns, we check the excess return against a mini-
mum acceptable (risk-free) rate, thanks to the Sortino ratio (SOR). The risk measure
involved is the Downside risk (DSR), ensuring to look at the distribution left tail. It is
worth recalling that a greater SORmeans that the variability is concentrated above the
fixed threshold; vice versa, a smaller SOR means that the variability is concentrated
below the fixed threshold.

It is also important to measure the strategy’s historical loss. This is assessed by the
Maximum Drawdown (MDD), i.e., the largest loss the investors might face when they
buy at highest level and sell at lowest level.

Finally, a meaningful parameter is given by the so calledWin ratio (WR), serving as
a measure of investments’ profitability.WR is defined as a ratio, comparing the trading
periods with positive gains and the overall trading times. A greater WR represents a
better accuracy in the predicted trading strategy.

4.2.1 Trading strategy à la Kim vs. MA-based trading strategy

We would like to stress once again that our proposal is based on the construction of
a specific threshold which ensures to evaluate gains/losses in terms of CfDs. On the
other hand, it is equally undeniable that the moving average represents, by its very
nature, a comparison level for BTC price. Hence, theMA strategy embodies a feasible
competitor, whatever the size of the time window taken into account.

The comparison between our proposal andMA is shown in Table 3. Scrutinizing the
results obtained, we find out that the uppermost Sharpe ratio is provided byMA(10) for
60-minute and 90-minute predictions. Consequently, the average return of the entire
strategy results to be the highest. For the 120-minute case, the first-past-the-post-
strategy is MA(120). Such excellent upshot basically depends on the intrinsic nature
of such a strategy; in fact, for MA rules, the threshold closely follows the prediction
evolution.

However, the latter also reveals some notable drawbacks. First, too few observations
for the moving average are meager to properly identify the flawless trading times. This
clearly comes to light by looking at MA(5). In this perspective, our proposal soundly
differs from the aforementioned investment rule, as our barrier is independent of the
BTC price paths. Even though this could imply lower profits, the maximum drawdown
shows that our proposal always ensures the lowest loss, highlighting its safeguarding
role. Furthermore, it is worth noting that the risk measures are not computable for
each MA-based strategy, since the barrier is constructed in such a way that the zenith
never takes place after the nadir.

Finally, combining the ability to limit losses (given by MDD) with the penchant
for obtaining a considerable percentage of positive profits (measured through WR),
we can conclude that the strategy à la Kim is successful and promising.
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Fig. 5 Trading strategy over different time horizons. The forecasting starting time is December 31, 2019–
23:59. The solid line represents the LSTM forecasting for BTC price, the dotted line is optimal boundary.
The two circles indicate the maximum profit realized by the investor, both in long and short position

In Figure 5, we depict our trading strategy à la Kim, compared to the MA-based
trading strategy. The solid line represents the forecast for the BTC price over a dif-
ferent time intervals, measured minute by minute. The forecasting was obtained by
implementing the LSTM method introduced above. The dotted line represents the
benchmark, i.e., the optimal boundary related to the synthetic derivative evaluated à
la Kim (left charts) and the moving average (right charts). The two circles indicate
the optimal trading times t ′ and t ′′, with t ′ < t ′′, if the investor would like to opt for
a wait-and-see strategy. We further note that t ′ is the optimal time for the long CfD
position, while t ′′ represents the optimal time for the CfD short position.

4.2.2 Trading strategy à la Kim vs. MACD and Stochastic Oscillator

We recall that MACD and stochastic oscillator rules are defined in terms of suitable
parameters. The latter can be explicitly evaluated, thanks to (3.2) and (3.1), respec-
tively. This makes the aforementioned strategies particularly all-around. Hence, to
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Table 4 Performance analysis Kim strategy vs. standard trading strategies

SHR SOR WR MDD No. Buys No. Sells Av. returns (%)

Panel A: 60 minutes forecasting

Kim 0.0169 0.0232 0.9167 −0.1540 55 5 1.2677

MACD −0.0887 −0.1621 0.3333 −0.5412 1 2 −0.0091

St. os. 0.0097 0.0120 0.6842 – 13 6 4.2214 · 10−4

Panel B: 90 minutes forecasting

Kim −0.0164 −0.0215 0.9778 −0.0950 88 2 −2.6252

MACD −0.0670 −0.1122 0.4000 −0.5412 2 3 −0.0049

St.Os. 0.0513 0.0658 0.7600 – 19 6 0.0019

Panel C: 120 minutes forecasting

Kim 0.0896 0.1623 0.9917 −0.0271 119 1 4.1879

MACD 0.8197 6.7854 0.8333 −0.1062 5 1 0.0575

St.Os. 0.2215 0.3651 0.7879 −0.6949 26 7 0.0094

The best performances are highlighted in bold

complete our investigation, we exhibit the performance analysis for MACD, Stochas-
tic Oscillator and our strategy: the comparison is illustrated in Table 4.

Looking at the parameters involved, we can claim that our proposal comes out on
top, both in terms of risk and return, when we consider an hourly forecasting time
window. When the time horizon increases the performances of all strategies slightly
worsens. More precisely, for the 90-minute prediction, our proposal and MACD pro-
vide negative returns; any risk-seeking investor would be geared toward the stochastic
oscillator rule. As the investors’ risk aversion increases, the role played by MDD
becomes prominent. For the longest forecast, namely 120 minutes, although our strat-
egy is dominated by the other two if we refer to the Sharpe ratio only, the results are
certified to be outstanding when considering its ability to contain losses.

The comparison between our strategy à la Kim and MACD or stochastic oscillator
captures additional value when we examine our proposal per se: it is well-known that
BTC represents a highly volatile asset. Therefore, wise investors are led not to directly
invest in BTC, in order not to incur potentially significant losses of their wealth. This
can be inferred by observing the risk indicator taken into consideration, i.e., MDD,
in Table 4. The curtailment of these values, emerging whenever the investor prefers
our proposal, is justified precisely in terms of CfDs: such a form of derivative on
BTC, which is an integral part of the proposal introduced in this work, enhances the
strategy’s performances and makes it attractive to a wide range of potential investors.

5 Conclusions

In this article, we exhibit an original profit-oriented trading strategy on BTC for risk-
seeking investors.
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The idea is simple, but compelling. We can set up the strategy, by taking into
account a given number of suitable financial instruments (the so-called contracts for
difference) that provide profit in terms of the spread between the underlying value and
the optimal frontier of a synthetic American-style derivative.

One of the key points of this work is the possibility of evaluating the BTC price
through a geometric Brownian motion over very short time horizons. This is empir-
ically justified by the observation that, for such time frames, the log-returns show a
Hurst index equal to H = 0.5.

The results presented here, stemming from the comparison between the NNs BTC
price prediction and a suitable model-based investment boundary, represent a first,
albeit significant, attempt. The technical analysis pursued on the proposedKim-barrier
strategy, in comparison with other trading rules widely used by insiders, provides
encouraging results about the appropriateness of our proposal. The latter can be
legitimately deemed as a viable alternative for investors looking for a profitable-but-
protective trading blueprint.

One further development, which is already subject of our ongoing research, is the
extension of such a type of trading strategy when the underlying evolves according to
more realistic models, such as the fractional geometric Brownian motion or stochastic
volatility models with jumps.
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