
Optimal Mobile Byzantine Fault Tolerant Distributed
Storage

[Extended Abstract]

Silvia Bonomi
DIAG - University of Rome “La

Sapienza”
Rome, Italy

bonomi@dis.uniroma1.it

Antonella Del Pozzo
DIAG - University of Rome “La

Sapienza”
Rome, Italy

Sorbonne Universités, UPMC,
LIP6-CNRS 7606

Paris, France
delpozzo@dis.uniroma1.it

Maria Potop-Butucaru
Sorbonne Universités, UPMC,

LIP6-CNRS 7606
Paris, France

maria.potop-
butucaru@lip6.fr

Sébastien Tixeuil
Sorbonne Universités, UPMC,

LIP6-CNRS 7606
Paris, France

sebastien.tixeuil@lip6.fr

ABSTRACT
We present an optimal emulation of a server based regu-
lar read/write storage in a synchronous round-free message-
passing system that is subject to mobile Byzantine failures
and prove that the problem is impossible to solve in asyn-
chronous settings. In a system with n servers implement-
ing a regular register, our construction tolerates faults (or
attacks) that can be abstracted by agents that are moved
(in an arbitrary and unforeseen manner) by a computation-
ally unbounded adversary from a server to another in order
to deviate the server’s computation. When a server is in-
fected by an adversarial agent, it behaves arbitrarily until
the adversary decides to ”move” the agent to another server.
We investigate the case where the movements of the mo-
bile Byzantine agents are decided by the adversary and are
completely decoupled from the message communication de-
lay. Our emulation spans two awareness models: servers
with and without self-diagnosis mechanism. In the first case
servers are aware that the mobile Byzantine agent has left
and hence they can stop running the protocol until they re-
cover a correct state while in the second case, servers are not
aware of their faulty state and continue to run the protocol
using an incorrect local state. Our results, proven optimal
with respect to the threshold of the tolerated mobile Byzan-
tine faults in the first model, are significantly different from
the round-based synchronous models. Another interesting
side result of our study is that, contrary to the round-based
synchronous consensus implementation for systems prone to

ACM ISBN .

DOI:

mobile Byzantine faults, our storage emulation does not rely
on the necessity of a core of correct processes all along the
computation. That is, every server in the system can be
compromised by the mobile Byzantine agents at some point
in the computation. This leads to another interesting con-
clusion: storage is easier than consensus in synchronous set-
tings, when the system is hit by mobile Byzantine failures.

1. INTRODUCTION
Byzantine fault tolerance is at the core of Distributed

Computing and a fundamental building block in any reason-
ably sized distributed system. Byzantine failures encompass
all possible cases that can occur in practice (even unforeseen
ones) as the impacted process may simply exhibit arbitrary
behavior. Specifically targeted attacks to compromise pro-
cesses and/or virus infections can indeed cause malicious
code execution.

In classical Byzantine fault-tolerance, attacks and infec-
tions are typically abstracted as an upper bound f on the
number of Byzantine processes that a given set of n pro-
cesses should be able to tolerate. Such bounds permit to
characterize the solvable cases for benchmarking problems
in Distributed Computing (e.g. Agreement and Register
Emulation). However, this abstraction fails the reality test
of long-lived distributed services. With new exploits being
publicized daily and hackers offering services at amazingly
low prices, every process is bound to be compromised in
a long lasting execution. On the light side, dedicated cure
and software rejuvenation techniques increase the possibility
that a compromised node does not remain compromised for-
ever, and may be aware about its previously compromised
status [16]. To integrate both aspects, Mobile Byzantine
Failures (MBF) models have been introduced. Then, faults
are represented by Byzantine agents that are managed by
a powerful omniscient adversary that “moves” them from
a process to another. Mobile Byzantine failures that have
been investigated so far consider round-based computations,
and can be classified according to Byzantine mobility con-

straints: (i) Byzantines with constrained mobility [6] may
only move from one process to another when protocol mes-
sages are sent (similarly to how viruses would propagate),
while (ii) Byzantines with unconstrained mobility [1, 3, 7,
12, 13, 14] may move independently of protocol messages.

Buhrman et al. [6] studied the problem of Agreement when
Byzantines have constrained mobility. In the case of uncon-
strained mobility, several variants were investigated, still for
the Agreement problem [1, 3, 7, 12, 13, 14]. Reischuk [13]
considers that malicious agents are stationary for a given
period of time. Ostrovsky and Yung [12] introduce the no-
tion of mobile viruses and define the adversary as an entity
that can inject and distribute faults. Garay [7], and more
recently Banu et al. [1], and Sasaki et al. [14] or Bonnet et
al. [3] consider that processes execute synchronous rounds
composed of three phases: send, receive, and compute. Be-
tween two consecutive such synchronous rounds, Byzantine
agents can move from one node to another. Hence the set of
faulty processes at any given time has a bounded size, yet
its membership may evolve from one round to the next. The
main difference between the aforementioned four works [1,
3, 7, 14] lies in the knowledge that processes have about
their previous infection by a Byzantine agent. In Garay’s
model [7], a process is able to detect its own infection after
the Byzantine agent left it. More precisely, during the first
round following the leave of the Byzantine agent, a process
enters a state, called cured, during which it can take preven-
tive actions to avoid sending messages that are based on a
corrupted state. Garay [7] proposed, in this model, an al-
gorithm that solves Mobile Byzantine Agreement provided
that n > 6f . This bound was later dropped to n > 4f
by Banu et al. [1]. Sasaki et al. [14] investigated the same
problem in a model where processes do not have the ability
to detect when Byzantine agents move, and show that the
bound raises to n > 6f . Finally, Bonnet et al. [3] considers
an intermediate setting where cured processes remain in con-
trol on the messages they send (in particular, they send the
same message to all destinations, and they do not send ob-
viously fake information, e.g. fake id); this subtle difference
on the power of Byzantine agents has an important impact
on the bounds for solving agreement: the bound becomes
n > 5f and is proven tight.

Traditional solutions to build a Byzantine tolerant stor-
age service (a.k.a. register emulation) can be divided into
two categories: replicated state machines [15], and Byzan-
tine quorum systems [2, 9, 11, 10]. Both approaches are
based on the idea that the current state of the storage is
replicated among processes, and the main difference lies in
the number of replicas that are simultaneously involved in
the state maintenance protocol. Recently, Bonomi et al. [4]
proposed optimal self-stabilizing atomic register implemen-
tations for round-based synchronous systems under the four
Mobile Byzantine models described in [1, 3, 7, 14].
Our Contribution. The main motivation for our work

comes from realizing that the hypothesis that Byzantine
agent moves are tightly synchronized with protocol rounds
is not a realistic assumption, when Byzantine agents are
driven by an adversary that can make use of out of band
resources for coordinating them. Indeed, infection and cure
are independent from the protocol that is executed on the
servers, and typically result from external actions.

Our first contribution (Section 3) is to propose and for-
malize a general mobile Byzantine model, where Byzantine

agent movements are decoupled from the protocol computa-
tion steps (in particular, movements of the Byzantine agents
are no more related to messages that are exchanged through
the protocol). We explore the fundamental implications of
the relaxed hypothesis about Byzantine agent movements,
and nevertheless retain the dimension related to process
awareness about its failure state.

The second contribution of the paper is a protocol to
emulate a regular register in our general mobile Byzantine
model. We first explore (Section 4) the instances of the
model where this problem is solvable (e.g. we provide im-
possibility results for the asynchronous setting), and in the
solvable cases, we present and prove a protocol (Section 5)
whose resilience is optimal with respect to the number of
Byzantine agents.

2. SYSTEM MODELS
We consider a distributed system composed of an arbi-

trary large set of client processes C and a set of n server
processes S = {s1, s2 . . . sn}. Each process in the distributed
system (i.e., both servers and clients) is identified by a unique
identifier. Servers run a distributed protocol emulating a
shared memory abstraction and such protocol is totally trans-
parent to clients (i.e., clients do not know the protocol ex-
ecuted by servers). The passage of time is measured by a
fictional global clock (e.g., that spans the set of natural in-
tegers). Processes in the system do not have access at the
fictional global time. At each time t, each process (either
client or server) is characterized by its internal state i.e., by
the set of all its local variables and the corresponding values.
We assume that an arbitrary number of clients may crash
while up to f servers are affected, at any time t, by Mobile
Byzantine Failures. The Mobile Byzantine Failure adversar-
ial model considered in this paper (and described in details
below) is stronger than any other adversary previously con-
sidered in the literature [1, 3, 6, 7, 12, 13, 14].

No agreement abstraction is assumed to be available at
each process (i.e. processes are not able to use consensus
or total order primitives to agree upon the current values).
Moreover, we assume that each process has the same role in
the distributed computation (i.e., there is no special process
acting as a coordinator).
Communication model. Processes communicate trough
message passing. In particular, we assume that: (i) each
client ci ∈ C can communicate with every server trough a
broadcast() primitive, (ii) each server can communicate with
every other server trough a broadcast() primitive, and (iii)
each server can communicate with a particular client trough
a send() unicast primitive. We assume that communications
are authenticated (i.e., given a message m, the identity of
its sender cannot be forged) and reliable (i.e., spurious mes-
sages are not created and sent messages are neither lost nor
duplicated).
Timing Assumptions. We consider two types of systems:
(i) asynchronous (see Section 4.2), and (ii) round-free syn-
chronous (see Section 5).
The system is asynchronous in the sense that there not ex-
ists any upper bound on communication and computation
latencies. As a consequence, messages are delivered but it is
not possible do compute any upper bounds on their deliv-
ery time. The system is round-free synchronous if: (i) the
processing time of local computations (except for wait state-
ments) are negligible with respect to communication delays,

and are assumed to be equal to 0, and (ii) messages take
time to travel to their destination processes. In particular,
concerning point-to-point communications, we assume that
if a process sends a message m at time t then it is delivered
by time t+ δp (with δp > 0). Similarly, let t be the time at
which a process p invokes the broadcast(m) primitive, then
there is a constant δb (with δb ≥ δp) such that all servers
have delivered m at time t + δb. For the sake of presenta-
tion, in the following we consider a unique message delivery
delay δ (equal to δb ≥ δp), and assume δ is known to every
process.
Computation model. Each process of the distributed sys-
tem executes a distributed protocol P that is composed by
a set of distributed algorithms. Each algorithm in P is rep-
resented by a finite state automata and it is composed of a
sequence of computation and communication steps. A com-
putation step is represented by the computation executed
locally to each process while a communication step is repre-
sented by the sending and the delivering events of a message.
Computation steps and communication steps are generally
called events.

Definition 1 (Execution History). Let P be a dis-
tributed protocol. Let H be the set of all the events gener-
ated by P at any process pi in the distributed system and
let → be the happened-before relation. An execution history
Ĥ = (H,→) is a partial order on H satisfying the relation
→.

Definition 2 (Valid State at time t). Let Ĥ = (H,
→) be an execution history of a generic computation and let
P be the corresponding protocol. Let pi be a process and let
statepi be the state of pi at some time t. statepi is said to
be valid at time t if it can be generated by executing P on
Ĥ.

3. ADVERSARY MODEL
The Mobile Byzantine Failure (MBF) models considered

so far in literature [1, 3, 6, 7, 12, 13, 14] assume that faults,
represented by Byzantine agents, are controlled by a pow-
erful external adversary that “moves” them from a server
to another. Note that the term “mobile” does not necessary
mean that a Byzantine agent physically moves from one pro-
cess to another but it rather captures the phenomenon of a
progressive infection, that alters the code executed by a pro-
cess and its internal state.

3.1 Mobile Byzantine Models for round-based
computations

In all the above cited works the system evolves in syn-
chronous rounds. Every round is divided in three phases:
(i) send where processes send all the messages for the cur-
rent round, (ii) receive where processes receive all the mes-
sages sent at the beginning of the current round, and (iii)
computation where processes process received messages and
prepare those that are to be sent in the next round. Con-
cerning the assumptions on agent movements and servers
awareness on their cured state the Mobile Byzantine Models
defined in [3, 7, 6, 14] are summarized as follows:

• Garay’s model [7]. In this model, agents can move
arbitrarily from a server to another at the beginning
of each round (i.e. before the send phase starts). When
a server is in the cured state it is aware of its condition

and thus can remain silent for a round to prevent the
dissemination of wrong information.

• Bonnet et al.’s model [3] and Sasaki et al.’s model [14].
As in the previous model, agents can move arbitrar-
ily from a server to another at the beginning of each
round (i.e. before the send phase starts). Differently
from the Garay’s model, in both models it is assumed
that servers do not know if they are correct or cured
when the Byzantine agent moved. The main difference
between these two models is that in the [14] model a
cured process still acts as a Byzantine one extra round.

• Buhrman’s model [6]. Differently from the previous
models, agents move together with the message (i.e.,
with the send or broadcast operation). However, when
a server is in the cured state it is aware of that.

Most of the previously cited models [1, 3, 6, 7, 14] con-
sider that the Byzantine agents mobility is related to the
round-based synchronous system communication. That is,
processes execute synchronous rounds composed of three
phases: send, receive, compute. Only between two consecu-
tive rounds, Byzantine agents are allowed to move from one
node to another. In the sequel we formalize and generalize
the MBF model. Our generalization is twofold: (i) we de-
couple the Byzantine agents movement from the structure of
the computation making it round-free and hence suitable for
any distributed application, and (ii) we model the infection
diffusion in relation with the detection/recovery capabilities
of servers.

Informally, in the MBF model, when a Byzantine agent is
hosted by a process, the adversary takes the entire control
of the process making it Byzantine faulty (i.e., it can cor-
rupt the process’s local variables, forces the process to send
arbitrary messages etc...). Then, the Byzantine agent moves
away and it leaves the process with a possible corrupted state
(i.e., in cured state). Such movement abstracts, for example,
a virus that has been detected and putted in quarantine or
a software update/patching of the machine.

As in the case of round-based MBF models [1, 3, 6, 7, 14],
we assume that any process previously infected by a mobile
Byzantine agent has access to a tamper-proof memory stor-
ing the correct protocol code. However, a healed (cured)
server may still have a corrupted internal state and cannot
be considered correct. As a consequence, the notions of cor-
rect and faulty process need to be redefined when dealing
with Mobile Byzantine Failures.

Definition 3 (Correct process at time t). Let us

denote by Ĥ = (H,→) an execution history and let P be

the protocol generating Ĥ. A process is said to be correct
at time t if (i) it is correctly executing its protocol P, and
(ii) its state is a valid state at time t. We denote as Co(t)
the set of correct processes at time t while, given a time
interval [t, t′]. We denote as Co([t, t′]) the set of all the pro-
cesses that are correct during the whole interval [t, t′] (i.e.,
Co([t, t′]) =

⋂
τ ∈ [t,t′] Co(τ)).

Definition 4 (Faulty process at time t). Let Ĥ =
(H,→) be an execution history and let P be the protocol gen-

erating Ĥ. A process is said to be faulty at time t if it is
controlled by a mobile Byzantine agent and it is not execut-
ing correctly its protocol P (i.e., it is behaving arbitrarily).

ΔS, CAM ΔS, CUM

ITB, CAM ITB, CUM

ITU, CAM ITU, CUM

Process Awareness (decreasing)

Ad
ve

rs
ar

y
Po

w
er

 (i
nc

re
as

in
g)

Figure 1: MBF model instances for round-free computations
and their relations.

We denote as B(t) the set of faulty processes at time t while,
given a time interval [t, t′]. We denote as B([t, t′]) the set
of all the processes that are faulty during the whole interval
[t, t′] (i.e., B([t, t′]) =

⋂
τ ∈ [t,t′]B(τ)).

Definition 5 (Cured process at time t). Let Ĥ =
(H,→) be an execution history and let P be the protocol

generating Ĥ. A process is said to be cured at time t if
(i) it is correctly executing its protocol P, and (ii) its state
is not a valid state at time t. We denote as Cu(t) the
set of cured processes at time t while, given a time inter-
val [t, t′]. We denote as Cu([t, t′]) the set of all the pro-
cesses that are cured during the whole interval [t, t′] (i.e.,
Cu([t, t′]) =

⋂
τ ∈ [t,t′] Cu(τ)).

3.2 Mobile Byzantine Models for round-free
computations

We now discuss further how the MBF model for round-free
computations introduced informally in the previous section
is able to abstract different attack scenarios mentioned in
Section 1. In addition, we classify its six possible instances
(see Figure 1) according to the adversary power (from the
weakest adversary model (∆S,CAM) to the strongest one
(ITU,CUM)) showing the relationships between them.

Our model takes into account two different attack dimen-
sions: (i) how the external adversary can coordinate the
movement of the Byzantine agents, and (ii) the process
awareness about their current failure state. The first point
abstracts the capability of the external adversary to propa-
gate the infection with respect to the detection and recovery
capability of processes while the second point distinguishes
between detection and proactive recovery capabilities. Thus,
any instance of our MBF model is characterized by a pair
(X,Y), where X represents the coordination aspect (i.e.,
one among ∆S, ITB and ITU) and Y represents the pro-
cess awareness (i.e., CAM vs. CUM).

The coordination dimension allows to characterize the in-
fection spreading from a time point of view. In particular:

• (∆S, ∗) allows to consider coordinated attacks where
the external adversary needs to control a subset of ma-
chines. In this case, compromising new machines takes
almost the same time as the time needed to detect the
attack or the time necessary to rejuvenate. This may
represent scenarios with low diversity where compro-
mising time depends only on the complexity of the

exploit and not on the target server. More formally,
the external adversary moves all the f mobile Byzan-
tine Agents at the same time t and movements happen
periodically (i.e., movements happen at time t0 + ∆,
t0 + 2∆, . . . , t0 + i∆, with i ∈ N).

• (ITB, ∗) slightly relaxes the assumption about the time
of the infection propagation. In particular, in this case
the Byzantine agents may affect different servers for
different periods of time. This abstracts in some way
the possible different complexities of various attack
steps (each mobile agent can do a set of exploits and
each exploit may take different time to succeed and
then to be detected). As a consequence, we are able
to capture possible differences in the detection and the
rejuvenation times that are now different from server
to server. More formally, each of the f Mobile Byzan-
tine Agent mai is forced to remain on a process for at
least a period ∆i. Given two mobile Byzantine Agents
mai and maj , their movement periods ∆i and ∆j may
be different.

• (ITU, ∗) further relaxes the coordination assumption
and allows to consider extremely fast infection and de-
tection/rejuvenation processes. More formally, each
Mobile Byzantine agent mai is free to move at any
time (i.e., it may occupy a process for one time unit,
corrupt its state and then leave). This case can be
seen as a particular case of ITB where ∆i = 1 for
each mobile agent mai.

Let us note that, obviously, (∆S, ∗) is the more restrictive
coordination case with respect to the adversary power while
(ITU, ∗) represents the maximum freedom (from the coor-
dination point of view) for the external adversary.

Example of (∆S, ∗) coordination, (ITB, ∗) coordination
and (ITU, ∗) coordination are shown respectively in Figure
2, Figure 3 and Figure 4 (where mai denotes the mobile
Byzantine agents).

s5

s4

s3

s2

s1

s0

ma1

ma2

t0 t0 + ∆ . . . t0 + i∆

Figure 2: Example of a (∆S, ∗) run with f = 2.

The awareness dimension allows to distinguish between
servers under continuous monitoring from the non-monitored

s5

s4

s3

s2

s1

s0

ma1

ma2

∆2 ∆1

|B(t0 + ∆1, t0 + 2∆1)| = f

Figure 3: Example of a (ITB, ∗) run with f = 2.

s5

s4

s3

s2

s1

s0

ma1

ma2

|B(t)| = f

t

Figure 4: Example of a (ITU, ∗) run with f = 2.

ones. Monitored systems are, in fact, characterized by de-
tection and reaction capabilities that enable them to detect
their failure state and to act accordingly. On the contrary,
non-monitored servers have no self-diagnosis capabilities but
they can try to prevent infections by adopting pessimistic
strategies that include proactive rejuvenation. In particu-
lar:

• (∗, CAM) is able to capture scenarios where servers
are aware of a past infection as they abstract environ-
ments characterized by the presence of monitors (e.g.,
antivirus, Intrusion Detection System etc...) that are
able to detect the infection and notify the server when
the threat is no more affecting the server.

• (∗, CUM) represents situations where the server is not
aware of a possible past infection. This scenario is typ-
ical of distributed systems subject to periodic main-
tenance and proactive rejuvenation. In this systems,

there is a schedule that reboots all the servers and
reloads correct versions of the code to prevent infec-
tions to be propagated in the whole network. How-
ever, this happens independently from the presence of
a real infection and implies that there could be periods
of time where the server execute the correct protocol
however its internal state is not aligned with non com-
promised servers.

It is easy to prove that CAM is a stronger awareness con-
dition with respect to CUM and thus represents a restriction
over the adversary power.

Combining together a type of movement and one of the
two awareness conditions, we obtain six different instances
of our MBF model for round-free computations, see Fig-
ure 1. The instance (∆S,CAM) is the strongest one as
it is the more restrictive for the external adversary and it
provides cured processes with the highest awareness while
the instance (ITU,CUM) represents the weakest model as
it considers the most powerful adversary and provides no
awareness to cured processes.

As in the round-based models, we assume that the adver-
sary can control at most f Byzantine agents at any time
(i.e., Byzantine agents are not replicating themselves while
moving).

In our work, only servers can be affected by the mobile
Byzantine agents1. It follows that, at any time t |B(t)| ≤ f .
However, during the system life, all servers may be affected
by a Byzantine agent (i.e., none of the server is guaranteed
to be correct forever). In order to abstract the knowledge a
server has on its state (i.e. cured or correct), we assume
the existence of a cured state oracle. When invoked via
report cured state() function, the oracle returns, in the CAM
model, true to cured servers and false to others. Contrar-
ily, the cured state oracle returns always false in the CUM
model. The implementation of the oracle is out of scope
of this paper and the reader may refer to [12] for further
details.

4. REGISTERS IN MBF MODEL

4.1 Register Specification
A register is a shared variable accessed by a set of pro-

cesses (i.e., clients) through two operations, namely read()
and write(). Informally, the write() operation updates the
value stored in the shared variable while the read() obtains
the value contained in the variable (i.e., the last written
value). The register state is maintained by the set of servers
S. Every operation issued on a register is, generally, not
instantaneous and it can be characterized by two events oc-
curring at its boundaries: an invocation event and a reply
event. These events occur at two time instants (i.e., invo-
cation time and the reply time) according to the fictional
global time.
An operation op is complete if both the invocation event
and the reply event occurred (i.e., the client issuing the op-
eration does not crash between the invocation time and the

1It is trivial to prove that in our model when clients are
Byzantine it is impossible to implement deterministically
even a safe register. The Byzantine client always introduce
a corrupted value. A server cannot distinguish between a
correct client and a Byzantine one.

reply time). Then, an operation op is failed if it is invoked
by a process that crashes before the reply event occurs.

Given two operations op and op′, their invocation times
(tB(op) and tB(op′)) and reply times (tE(op) and tE(op′)),
we say that op precedes op′ (op ≺ op′) if and only if tE(op) <
tB(op′). If op does not precede op′ and op′ does not precede
op, then op and op′ are concurrent (noted op||op′). Given
a write(v) operation, the value v is said to be written when
the operation is complete.
In this paper, we consider a single-writer/multi-reader reg-
ular register (SWMR) [8] specified as follows:
— Termination: if a correct client invokes an operation, it
eventually returns from that operation (i.e., every operation
issued by a correct client eventually terminates).
— Validity: A read() operation returns the last value writ-
ten before its invocation (i.e. the value written by the latest
completed write() preceding it), or a value written by a con-
current write() operation.
Our impossibility results (reported in the next section) are
proven for the case of safe register (weaker than the regular
register in the Lamport’s hierarchy [8]). A read operation on
a safe register concurrent with a write operation may return
any value in the register domain.

We consider in the sequel only execution histories related
to the register computation. In particular, the set of rele-
vant computation events H are defined by the set of all the
operations issued on the register and the happened-before
relation is substituted by the precedence relation ≺ between
operations. Thus, we consider a register execution history
specified as ĤR = (H,≺).

From the specification above, we can define the notion of
valid value at time t as follow:

Definition 6 (Valid Value at time t). Let us denote

by ĤR = (H, ≺) a register execution history of a regular reg-
ister R. A valid value at time t is any value returned by a
fictional read() operation on the register R executed instan-
taneously at time t.

A protocol Preg is a collection of distributed algorithms
implementing basic register operations. In the sequel, we
consider Preg ⊆ {AR,AW }, where AR is the algorithm im-
plementing the read() operation and AW is the algorithm
implementing the write() operation. We say that Preg is
correct with respect to its specification if it implements a
register satisfying the specification.

4.2 Impossibility results
In this section we prove that, contrary to the static Byzan-

tine tolerant implementations of registers, in the case of
MBF tolerant implementations a new operation, namely
maintenance(), must be implemented to prevent servers from
losing the current register value. Then, we show that in an
asynchronous system and in the presence of single Mobile
Byzantine Agent, there is no protocol Preg implementing a
safe register and consequently a regular register. Due to the
lack of space, we report here only the statement of the main
Theorems. Complete proofs can be found in [5].

Theorem 1. Let n be the number of servers emulating a
safe register and let f be the number of Mobile Byzantine
Agents affecting servers. Let AR and AW be respectively the
algorithms implementing the read() and the write() opera-
tion assuming no communication between servers. If f > 0

then there exists no protocol Preg = {AR,AW } implement-
ing a safe register in any of the MBF models for round-free
computations.

From Theorem 1 it follows that, in presence of Mobile
Byzantine Agents, a new operation must be defined to allow
cured servers to restore a valid state and avoid the loss of
the register value.

Definition 7 (maintenance and AM). Let us define a
maintenance() operation as an operation that, when executed
by a process pi, terminates at some time t leaving pi with a
valid state at time t (i.e., it guarantees that pi is correct at
time t). A maintenance algorithm AM is an algorithm that
implements the maintenance() operation.

As a consequence, any correct protocol Preg must include
one more algorithm implementing the maintenance() oper-
ation2. That is, if f > 0 then any correct protocol Preg
implementing a register in the round-free Mobile Byzantine
Failure model must include an algorithm AM (i.e., Preg =
{AR,AW ,AM}).

The next theorem proves that the safe register and conse-
quently the regular register cannot be implemented in asyn-
chronous settings in MBF model. The basic intuition is that,
even considering the weakest adversary (∆S,CAM) and a
single mobile Byzantine agent the maintenance() operation
is not implementable and the agent may be able to compro-
mise every server before the maintenance() completion.

Theorem 2. Let n be the number of servers emulating
the register and let f be the number of Byzantine agents in
the (∆S,CAM) Mobile Byzantine Failure model. If f > 0,
then there exists no protocol Preg = {AR,AW ,AM} imple-
menting a safe register in an asynchronous system.

4.3 Lower bounds
In the following we present lower bounds with respect to

the number of correct servers to implement a safe register
in the (∆S,CAM) model, the extension to the (∆S,CUM)
model is presented in [5]. In particular we consider different
cases depending on the relationship between ∆ and δ. Due
to lack of space, the corresponding theorems and proofs are
delegated to [5].

• If δ ≤ ∆ < 2δ and n ≤ 5f , then there exists no proto-
col Preg that implements the safe register abstraction
in the (∆S,CAM) model.

• If 2δ ≤ ∆ < 3δ and n ≤ 4f , then there exists no proto-
col Preg that implements the safe register abstraction
in the (∆S,CAM) model.

5. IMPLEMENTING AN OPTIMAL REGU-
LAR REGISTER

In this section, we present an optimal protocol Preg that
implements a SWMR Regular Register in a round-free syn-
chronous system for (∆S,CAM) instance of the proposed
MBF model. The same protocol with small modifications

2Let us note that such an operation can also be embedded
in the other algorithm. However, for the sake of clarity, we
consider here only protocols where valid state recovery is
managed by a specific operation.

implements a SWMR Regular Register in the (∆S,CUM)
model. This extension is proposed in [5]).

Our solution is based on the following three key points:
(1) we implement a maintenance() operation that is executed
periodically at each Ti = t0+i∆ time. In this way, the effect
of a Byzantine agent on a server disappears in a bounded
period of time; (2) we implement read() and write() oper-
ations following the classical quorum-based approach. The
size of the quorum needed to carry on the operations, and
consequently the total number of servers required by the
computation, is computed by taking into account the time
to terminate the maintenance() operation, δ and ∆; (3) we
define a forwarding mechanism to avoid that read() and
write() messages are “lost” by some server si due to a con-
current movement of the Byzantine agent during such oper-
ations. Note that even though communication channels are
reliable, we may have the following situation: a message is
sent by a client at time t and the Byzantine agents move
at some t′ < t + δ. As a consequence, some faulty servers
may receive the message in the interval [t, t′] and then agents
move leaving cured servers without any trace of the message.

Interestingly, we found that the number of replicas needed
to tolerate f Byzantine agents does not depend only on f
but also on the ∆ and δ relationship (see Table 1).

5.1 Preg Detailed Description
The protocol Preg for the (∆S,CAM) model is described

in Figures 5 - 7, which present the maintenance(), write(),
and read() operations, respectively.

Local variables at client ci. Each client ci maintains a
set replyi that is used during the read() operation to collect
the three tuples 〈j, 〈v, sn〉〉 sent back from servers. Addi-
tionally, ci also maintains a local sequence number csn that
is incremented each time it invokes a write() operation and
is used to timestamp such operations.

Local variables at server si. Each server si maintains
the following local variables (we assume these variables are
initialized to zero, false or empty sets according their type):

• Vi: an ordered set containing tree tuples 〈v, sn〉, where
v is a value and sn the corresponding sequence num-
ber. Such tuples are ordered incrementally according
to their sn values. The function insert(Vi, 〈vk, snk〉)
places the new value in Vi according to the incremen-
tal order and, if there are more than three values, it
discards from Vi the value associated to the lowest sn.

• curedi: boolean flag updated by the cured state oracle.
In particular, while considering the CAM model, such
variable is set to true when si becomes aware of its
cured state and it is reset during the algorithm when
si becomes correct.

• echo valsi and echo readi: two sets used to collect in-
formation propagated trough echo messages. The first
one stores tuple 〈j, 〈v, sn〉〉 propagated by servers just
after the mobile Byzantine agents moved, while the
second stores the set of concurrently reading clients in
order to notify cured servers and expedite termination
of read().

• fw valsi: set variable storing a triple 〈j, 〈v, sn〉〉mean-
ing that server sj forwarded a write message with value

v and sequence number sn.

• pending readi: set variable used to collect identifiers
of the clients that are currently reading.

In order to simplify the code of the algorithm, let us define
the following functions:

• select three pairs max sn(echo valsi): this function ta-
kes as input the set echo valsi and returns, if they ex-
ist, three tuples 〈v, sn〉, such that there exist at least
2f +1 occurrences in echo valsi of such tuple. If more
than three of such tuple exist, the function returns
the tuples with the highest sequence numbers. Other-
wise if there are two tuples, the third tuple returned is
〈⊥, 0〉.

• select value(replyi): this function takes as input the
replyi set of replies collected by client ci and returns
the pair 〈v, sn〉 occurring at least #replyCAM times
(see Table 1). If there are more pairs satisfying such
condition, it returns the one with the highest sequence
number.

The maintenance() operation. Such operation is executed
by servers periodically at any time Ti = t0 + i∆.

If a server si is not in a cured state then it broadcasts an
echo message carrying the set Vi and the set pending readi
(it contains identifiers of clients that are currently running a
read() operation). Moreover if in Vi there are no 〈⊥, 0〉 values
then it empties the fw valsi and echo valsi sets, meaning
that it is not trying to retrieve a value lost because si was
affected by a Byzantine agent while such value has been
written.

Otherwise, if a server si is in a cured state it first cleans its
local variables and then, after δ time units, tries to update
its state by checking the number of occurrences of each pair
〈v, sn〉 received with echo messages. In particular, it up-
dates Vi invoking the select three pairs max sn(echo valsi)
function that populates Vi with three or at least two tuples
〈v, sn〉. If there are only two tuple 〈v, sn〉, it means that
there exists a concurrent write() operation that is updating
the register value concurrently with the maintenance() oper-
ation. Thus, si considers 〈⊥, 0〉 as the pair associated to the
value that is concurrently written. Finally, it assigns false
to curedi, meaning that it is now correct and starts replying
to clients that are currently reading.

The write() operation. When the writer wants to write a
value v, it increments its sequence number csn and propa-
gates v and csn to all servers. Then it waits for δ time units
(the maximum message transfer delay) before returning.

When a server si delivers a write, it updates its local
variables and forwards the message, trough a write fw(i,
〈v, csn〉), to others servers. This prevents the message loss
in case servers deliver such message while they are affected
by mobile Byzantine agents. In addition, it also sends a
reply() message to all clients that are currently reading
(clients in pending readi) to allow them to terminate their
read() operation.

When si delivers a write fw(j, 〈v, csn〉) message, it stores
such message in fw valsi set. Such set is constantly mon-
itored together with echo valsi set to find a couple 〈v, sn〉
occurring at least #replyCAM times. This continuous check
enables servers in a cured state to store the new value and

Table 1: Parameters for PRreg Protocol.

nCAM #replyCAM

k∆ ≥ 2δ, k ∈ {1, 2} ≥ (k + 3)f + 1 (k + 1)f + 1
k = 1 4f + 1 2f + 1
k = 2 5f + 1 3f + 1

operation maintenance() executed every Ti = t0 + ∆i :
(01) curedi ← report cured state();
(02) if (curedi) then
(03) Vi ← ∅; echo valsi ← ∅; echo readi ← ∅;
(04) wait(δ);
(05) insert(Vi, select three pairs max sn(echo valsi));
(06) curedi ← false;
(07) for each (j ∈ (pending readi ∪ echo readi)) do
(08) send reply (i, Vi) to cj ;
(09) endFor
(10) else
(11) broadcast echo(i, Vi, pending readi);
(12) if(@〈⊥, 0〉 ∈ Vi)then
(13) fw valsi ← ∅; echo valsi ← ∅;
(14) endif
(15) endif
——————————————————————————————————
when echo (j, Vj , pr) is received:
(16) echo valsi ← echo valsi ∪ Vj ;
(17) echo readi ← echo readi ∪ pr;

Figure 5: AM algorithm implementing the maintenance() operation (code for server si) in the (∆S,CAM) model.

reply to a reading client as soon as possible even in case
they delivered such value when affected by mobile Byzan-
tine agents.

The read() operation. When a client wants to read, it
broadcasts a read() request to all servers and waits 2δ time
(i.e., one round trip delay) to collect replies. When it is un-
blocked from the wait statement, it selects a value v invoking
the select value function on replyi set, sends an acknowledge-
ment message to servers to inform that its operation is now
terminated and returns v as result of the operation.

When a server si delivers a read(j) message from client cj
it first puts its identifier in the set pending readi to remem-
ber that cj is reading and needs to receive possible concur-
rent updates, then si checks if it is in a cured state and if not,
it sends a reply back to cj . Note that, the reply() message
carries the set Vi, which contains three tuples 〈value, ts〉 or
two tuples 〈value, ts〉 and one 〈⊥, 0〉.

The last case occurs if si was affected by a Byzantine
agent when the last write() operation occurred so that si is
still retrieving such value. As soon as si retrieve such value
through the fw valsi and echo valsi sets, such value is sent
back to cj .

In any case, si forwards a read fw message to inform
other servers about cj read request. This is useful in case
some server missed the read(j) message as it was affected
by mobile Byzantine agent when such message has been de-
livered.

When a read fw(j) message is delivered, cj identifier is
added to pending readi set, as when the read request is just
received from the client.

When a read ack(j) message is delivered, cj identifier is
removed from both pending readi and echo readi sets as it
does not need anymore to receive updates for the current
read() operation.

5.2 Correctness Proofs

We report here only the statement of the main Lemmas
and Theorems. Complete proofs can be found in [5].

Lemma 1. If a correct client ci invokes write(v) operation
at time t then this operation terminates at time t+ δ.

Lemma 2. If a correct client ci invokes read() operation
at time t then this operation terminates at time t+ 2δ.

Theorem 3 (Termination). If a correct client ci in-
vokes an operation, ci returns from that operation in finite
time.

Lemma 3. Let op be a write(v) operation invoked by a
correct client at time t. Any sj ∈ Co([t, t + δ]) has v in Vj
at time t+ δ.

Lemma 4. If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), and (ii)
nCAM ≥ (k+ 3)f + 1 , then at time T2 − 1 (where T2 − 1 =
t0 + 2∆− 1) there exists at least (k+ 1)f + 1 correct servers
storing locally a valid value v (i.e., v ∈ V V S(T2 − 1)).

Lemma 5. If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), and (ii)
nCAM ≥ (k + 3)f + 1 , then at time Ti − 1 (where Ti − 1 =
t0 + i∆− 1) there exists at least (k+ 1)f + 1 correct servers
storing locally a valid value v (i.e., v ∈ V V S(Ti − 1)).

Corollary 1. If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), and
(ii) nCAM ≥ (k + 3)f + 1 , then there always exist at least
(k + 1)f + 1 correct servers storing locally a valid value v
(i.e., v ∈ V V S(Ti − 1)).

Corollary 2. If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), and (ii)
nCAM ≥ (k + 3)f + 1 , then each server that became cured
at Ti, at Ti + δ has at least one valid value.

Lemma 6. Let op be a read() operation issued at time t

and terminating at time t+ 2δ. Let MaxB̃(t, t+ 2δ) be the

operation write(v):
(01) csn← csn+ 1;
(02) broadcast write(v, csn);
(03) wait (δ);
(04) return write confirmation;

(a) Client code (code for client ci).

when write(v, csn) is received:
(01) insert(Vi, 〈v, csn〉);
(02) for each j ∈ (pending readi ∪ echo readi) do
(03) send reply (i, {〈v, csn〉});
(04) endFor
(05) broadcast write fw(i, 〈v, csn〉);
—————————————————————————————————————
when write fw(j, 〈v, csn〉) is received:
(06) fw valsi ← fw valsi ∪ {〈j, 〈v, csn〉〉};
—————————————————————————————————————
when ∃〈j, 〈v, sn〉〉 ∈ (fw valsi ∪ echo valsi) occurring at least #replyCAM times:
(07) insert(Vi, 〈v, sn〉);
(08) ∀j : fw valsi ← fw valsi \ {〈j, 〈v, ts〉〉};
(09) ∀j : echo valsi ← echo valsi \ {〈j, 〈v, ts〉〉};
(10) for each (j ∈ (pending readi ∪ echo readi)) do
(11) send reply (i, {〈v, sn〉}) to cj ;
(12) endFor

(b) Server code (code for server si).

Figure 6: AW algorithm implementing the write(v) operation in the (∆S,CAM) model.

operation read():
(01) replyi ← ∅;
(02) broadcast read(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast read ack(i);
(06) return v;
———————————————————————–
when reply (j, Vj) is received:
(07) for each (〈v, sn〉 ∈ Vj) do
(08) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(09) endFor

(a) Client code (code for client ci).

when read (j) is received:
(01) pending readi ← pending readi ∪ {j};
(02) if (¬curedi)
(03) then send reply (i, Vi);
(04) endif
(05) broadcast read fw(j);
———————————————————————–
when read fw (j) is received:
(06) pending readi ← pending readi ∪ {j};
———————————————————————–
when read ack (j) is received:
(07) pending readi ← pending readi \ {j};
(08) echo readi ← echo readi \ {j};

(b) Server code (code for server si).

Figure 7: AR algorithm implementing the read() operation
in the (∆S,CAM) model.

maximum number of servers that can be faulty for at least
one time unit in the interval [t, t+ 2δ]. If (i) k∆ ≥ 2δ (with
k ∈ {1, 2}), and (ii) nCAM ≥ (k+3)f+1, then |Co(t+δ)| >
MaxB̄(t, t+ 2δ).

Corollary 3. Let op be a read() operation issued at time
t and terminating at time t + 2δ. The number of replies
carrying valid values at some time τ ∈ [t, t + 2δ] is always
greater than the number of replies carrying non valid values.

Theorem 4 (Validity). If (i) k∆ ≥ 2δ (where k ∈
{1, 2}), and (ii) nCAM ≥ (k + 3)f + 1, then any read()
operation returns the last value written before its invocation,
or a value written by a write() operation concurrent with it.

Theorem 5. Let n be the number of servers emulating
the register and let f be the number of Byzantine agents in
the (∆S,CAM) round-free Mobile Byzantine Failure model.
Let δ be the upper bound on the communication latencies in
the synchronous system. If (i) k∆ ≥ 2δ (with k ∈ 1, 2), and
(ii) n ≥ (k+ 3)f + 1, then Preg implements a SWMR Regu-
lar Register in the (∆S,CAM) round-free Mobile Byzantine
Failure model.

6. CONCLUSION
This paper addressed the problem of emulating multi-

reader regular registers under the MBF adversarial model for
round-free computations. We first formalized MBF adver-
sarial model in order to capture dynamic failures in generic
(round-free) distributed computations and then we studied
solvability issues raised by this powerful adversary. In par-
ticular, we proved that in the presence of mobile Byzantine
agents a new operation, namely maintenance() must be de-
fined. Then, we proved that in asynchronous distributed
systems it is not possible to emulate a safe or regular register
even in the presence of one Byzantine agent governed by the
weakest (∆S,CAM) adversary. We then considered the case
of round-free synchronous systems and we proved that an
emulation of an optimal regular register is possible against
(∆S,CAM) adversary provided that, nCAM ≥ 4f + 1 if
2δ ≤ ∆ < 3δ and nCAM ≥ 5f + 1 if δ ≤ ∆ < 2δ. The exten-
sion of the current reported results to the (∆S,CUM) model
is provided in [5]. We currently are investigating the solv-
ability of other distributed building blocks under the pro-
posed models.

Acknowledgements
The authors would like to thank Francois Bonnet and Marc
Shapiro for their comments and suggestions on a previous
version of this paper. For Italian authors, this work is
partially supported by the Ateneo 2015 project (grant n.
C26A157FBX) and by the EURASIA project.

7. REFERENCES
[1] N. Banu, S. Souissi, T. Izumi, and K. Wada. An

improved byzantine agreement algorithm for
synchronous systems with mobile faults. International
Journal of Computer Applications, 43(22):1–7, April
2012.

[2] Rida A. Bazzi. Synchronous byzantine quorum
systems. Distributed Computing, 13(1):45–52, January
2000.

[3] François Bonnet, Xavier Défago, Thanh Dang Nguyen,
and Maria Potop-Butucaru. Tight bound on mobile
byzantine agreement. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX,
USA, October 12-15, 2014. Proceedings, pages 76–90,
2014.

[4] Silvia Bonomi, Antonella Del Pozzo, and Maria
Potop-Butucaru. Tight self-stabilizing mobile
byzantine-tolerant atomic register. In Proceedings of
the 17th International Conference on Distributed
Computing and Networking, ICDCN ’16, pages
6:1–6:10, Singapore, January 2016. ACM.

[5] Silvia Bonomi, Antonella Del Pozzo, Maria
Potop-Butucaru, and Sébastien Tixeuil. Optimal
mobile byzantine fault tolerant distributed storage.
(Available on line on arXiv), 2016.

[6] H. Buhrman, J. A. Garay, and J.-H. Hoepman.
Optimal resiliency against mobile faults. In
Proceedings of the 25th International Symposium on
Fault-Tolerant Computing (FTCS’95), pages 83–88,
1995.

[7] J. A. Garay. Reaching (and maintaining) agreement in
the presence of mobile faults. In Proceedings of the 8th
International Workshop on Distributed Algorithms,
volume 857, pages 253–264, 1994.

[8] Leslie Lamport. On interprocess communication. part
i: Basic formalism. Distributed Computing, 1(2):77–85,
1986.

[9] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. Distributed Computing, 11(4):203–213,
October 1998.

[10] Jean-Philippe Martin, Lorenzo Alvisi, and Michael
Dahlin. Minimal byzantine storage. In Proceedings of
the 16th International Conference on Distributed
Computing, DISC ’02, pages 311–325, London, UK,
UK, 2002. Springer-Verlag.

[11] Jean-Philippe Martin, Lorenzo Alvisi, and Michael
Dahlin. Small byzantine quorum systems. In
Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on, pages
374–383. IEEE, 2002.

[12] R. Ostrovsky and M. Yung. How to withstand mobile
virus attacks (extended abstract). In Proceedings of
the 10th Annual ACM Symposium on Principles of
Distributed Computing (PODC’91), pages 51–59, 1991.

[13] R. Reischuk. A new solution for the byzantine generals
problem. Information and Control, 64(1-3):23–42,
January-March 1985.

[14] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita.
Mobile byzantine agreement on arbitrary network. In
Proceedings of the 17th International Conference on
Principles of Distributed Systems (OPODIS’13), pages
236–250, December 2013.

[15] Fred B. Schneider. Implementing fault-tolerant
services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, December
1990.

[16] Paulo Sousa, Alysson Neves Bessani, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo. Highly
available intrusion-tolerant services with
proactive-reactive recovery. IEEE Transactions on
Parallel & Distributed Systems, (4):452–465, 2009.

