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1. Introduction

1.1. Definitions and state of the art

Let Ω be a bounded, open, connected domain with smooth boundary ∂Ω in a Rieman-
nian manifold (M, g) and let A be a smooth real one-form on Ω, (the potential one-form). 
Define a connection ∇A on the space of complex-valued functions C∞(Ω, C) as follows:

∇A
Xu = ∇Xu− iA(X)u,

for all vector fields X on Ω, where ∇ is the Levi-Civita connection of M . The magnetic 
Laplacian with potential A is the operator acting on C∞(Ω, C):

ΔA = (∇A)�∇A.

In Rn this gives explicitly, in the usual notation:

ΔA = (i∇ + A�)2,

where A� is the dual vector field of A, the vector potential. The two-form B = dA

is the magnetic field; in dimension 2, by duality, B is the scalar field B = curlA� =
∂x1A2 − ∂x2A1.

Scope of this paper is to discuss the spectrum of ΔA for planar domains. Hence in 
what follows we take Ω ⊂ R2.

The spectrum of the magnetic Laplacian has been studied extensively for Dirichlet 
boundary conditions (u = 0 on ∂Ω), and we denote by λD

1 (Ω, A) the first eigenvalue. 
First we remark that, thanks to the diamagnetic inequality, one always has:

λD
1 (Ω, A) ≥ λD

1 (Ω, 0),

and in particular λD
1 (Ω, A) > 0. For planar domains and constant magnetic field (that 

is, dA = B and |B| constant), a Faber-Krahn inequality holds, in the sense that the first 
eigenvalue of a planar domain is minimized by that of the disk of the same area (see [6]). 
Estimates for sums of eigenvalues can be found in [5] and [11].

However in this paper we deal with magnetic Neumann boundary conditions, that is 
we impose ∇A

Nu = 0, on the boundary, where N is the inner unit normal to ∂Ω. It is 
known that then ΔA admits a discrete spectrum

0 ≤ λN
1 (Ω, A) ≤ λN

2 (Ω, A) ≤ . . .

diverging to +∞. The first eigenvalue has the following variational characterization:

λN
1 (Ω, A) = min

1

∫
Ω|∇Au|2dx∫

2 , (1)

u∈HA(Ω)\{0} Ω |u| dx
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where H1
A(Ω) is the magnetic Sobolev space:

H1
A(Ω) = {u ∈ L2(Ω) : ∇Au ∈ L2(Ω)}.

When the potential is sufficiently regular, for example A ∈ L∞(Ω), the magnetic Sobolev 
space coincides with H1(Ω).

For computing lower bounds the diamagnetic inequality is of no use; in fact it gives:

λN
1 (Ω, A) ≥ λN

1 (Ω, 0) = 0,

because λN
1 (Ω, 0) is simply the first eigenvalue of the usual Neumann Laplacian, which 

is zero (the associated eigenspace being spanned by the constant functions). There are 
fewer estimates in this regard; let us first discuss the case of a constant magnetic field 
|B| = B0 > 0 on planar domains. The paper [4] gives a lower bound of λN

1 (Ω, A) in terms 
of the inradius of Ω, λN

1 (Ω, 0) and of course B0. Asymptotic expansions as |B| → ∞ are 
obtained in [8]. We also mention the paper [7] which investigates the validity of a reverse 
Faber-Krahn inequality for constant magnetic field B0, that is: is it true that λN

1 (Ω, A)
is always bounded above by that of a disk with equal volume? It is proved there that 
this inequality is true when B0 is either sufficiently small or sufficiently large, but the 
general case is still open in the simply connected case.

• In this paper we prove three lower bounds for the first eigenvalue of planar domains 
under Neumann conditions, when the magnetic field is identically zero. Since this will 
be the only boundary condition we consider, from now on we will simply write λ1(Ω, A)
instead of λN

1 (Ω, A).
Let us first clarify the circumstances under which the first eigenvalue might be positive 

even if the magnetic potential is a closed one-form on Ω. This is intimately related to 
a phenomenon in quantum mechanics predicted in 1959 and known as Aharonov-Bohm 
effect, which has also experimental evidence: a particle traveling a region in the plane 
might be affected by the magnetic field even if this is identically zero on its path. In fact 
what the particle “feels” is not the magnetic field but, rather, the magnetic potential A, 
provided that A is closed but not exact, and that the flux of A around the pole may 
assume non-integer values (see below for the precise condition).

Let us be more precise. From the definition we see that, if A = 0, the spectrum of ΔA

coincides with the spectrum of the usual Laplacian under Neumann boundary conditions. 
The same is true when A = df is an exact one-form, by the well-known gauge invariance
of the magnetic Laplacian. This fundamental property states that the spectrum of ΔA+df

is the same as the spectrum of ΔA, for any f ∈ C∞(Ω), which follows from the identity:

ΔAe
−if = e−ifΔA+df

showing that ΔA and ΔA+df are unitarily equivalent.
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On the other hand, if the magnetic field B = dA is non-zero, then λ1(Ω, A) is strictly 
positive. One could then ask if λ1(Ω, A) has to vanish whenever the magnetic field is 
zero, that is, whenever A is a closed one-form.

To that end, let c be a closed curve in Ω (a loop). The quantity:

ΦA
c = 1

2π

∮
c

A

is called the flux of A across c (we assume that c is traveled once, and we will not specify 
the orientation of the loop; this will not affect any of the statements, definitions or results 
which we will prove in this paper).

It turns out that
• λ1(Ω, A) = 0 if and only if A is closed and the cohomology class of A is an integer, 
that is, the flux of A around any loop is an integer.

This was first observed by Shigekawa [14] for closed manifolds, and then proved in [10]
for manifolds with boundary. This remarkable feature of the magnetic Laplacian shows 
its deep relation with the topology of the underlying manifold Ω. In this paper we will 
focus precisely on the situation where the potential one form is closed, and we will then 
give two lower bounds for the first eigenvalue λ1(Ω, A).

Let us then recall a few previous results when the magnetic field is assumed to vanish. 
A lower bound for a general Riemannian cylinder (i.e. the surface S1 × (0, L) endowed 
with a Riemannian metric) and zero magnetic field has been given in [3], and is somewhat 
the inspiration of this work: one of two main results here is in fact to improve such bound 
when Ω is a doubly connected planar domain.

Directly related to the Aharonov-Bohm effect, we mention the papers [1] and [12]
which investigate the behavior of the spectrum of a domain with a pole Ω \{a} when the 
pole a approaches the boundary, for Dirichlet boundary conditions. We remark here that 
the pole is a distinguished point a = (a1, a2) and the potential is the harmonic one-form:

Aa = 1
2

(
− x2 − a2

(x1 − a1)2 + (x2 − a2)2
dx1 + x1 − a1

(x1 − a1)2 + (x2 − a2)2
dx2

)

which has flux 12 across any closed curve enclosing a, giving rise to a magnetic field which 
is a Dirac distribution concentrated at the pole a (therefore, the magnetic field indeed 
vanishes on Ω \ {a}). The magnetic Laplacian ΔAa

acting on Ω \ {a} is often called 
an Aharonov-Bohm operator. One could think to a domain with a pole as a doubly 
connected domain for which the inner boundary curve shrinks to a point.

We will in fact give a lower bound for the first eigenvalue of Aharonov-Bohm operators 
with many poles, and Neumann boundary conditions (see Theorem 5).

The Aharonov-Bohm operators play an interesting role in the study of minimal par-
titions, see chapter 8 of [2].

For Neumann boundary conditions, we mention the paper [10], where the authors 
study the multiplicity and the nodal sets corresponding to the ground state for non-
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simply connected planar domains with harmonic potential. For doubly connected do-
mains, it is shown that λ1(Ω, A) is maximal precisely when ΦA is congruent to 12 modulo 
integers (this fact is no longer true when there are more than two holes). The proof relies 
on a delicate argument involving the nodal line of a first eigenfunction and the conclusion 
does not follow from a specific comparison argument, or from an explicit lower bound.

The focus of this paper is on lower bounds for multiply connected planar domains and 
zero magnetic field defined by the closed potential form A. By what we have just said, it 
is clear that estimating the first eigenvalue is a trivial problem if Ω is simply connected, 
because then any closed one-form is automatically exact, and therefore λ1(Ω, A) = 0 by 
gauge invariance. Therefore, we restrict our study to domains with n holes, with n ≥ 1.

In this paper we will prove: an improved lower bound for doubly connected domains; a 
general lower bound for multiply connected domains with an arbitrary number of convex 
holes; a lower bound for a general convex domain with an arbitrary number of punctures. 
Let us describe these results in detail.

1.2. A lower bound for doubly connected domains

Let us start from doubly connected domains (n = 1) hence domains of type:

Ω = F \ Ḡ,

where F and G are open and smooth. We assume F and G convex. Let ΦA be the flux 
of the closed potential A around the inner boundary curve ∂G: by Shigekawa result, the 
lower bound is simply zero when ΦA is an integer. Then, to hope for a positive lower 
bound, we need to measure how much ΦA is far from being an integer, and the natural 
invariant will then be:

d(ΦA,Z) = min{|ΦA − k| : k ∈ Z}.

The second important ingredient for our lower bounds is the ratio βB between the minimal 
width and the maximal width of Ω. To be more precise, let us say that the line segment 
σ ⊂ Ω is an orthogonal ray if it hits the inner boundary ∂G orthogonally. By definition, 
the minimal width β (resp. maximal width B) of Ω is the minimal (resp. maximal) length 
of an orthogonal ray contained in Ω, see Fig. 1.

Note that the ratio β
B is invariant under homotheties, and reaches its largest value 1

whenever the boundary components are parallel curves.
In Theorem 2 of [3] we prove the lower bound:

λ1(Ω, A) ≥ 4π2

|∂F |2
β(Ω)2

B(Ω)2 d(Φ
A,Z)2. (2)

We insist on the fact that if β
B is bounded below away from zero we get a positive, 

uniform lower bound even if β tends to zero. Think for example to a concentric annulus 



6 B. Colbois, A. Savo / Journal of Functional Analysis 281 (2021) 108999
Fig. 1. The minimal width β and the maximal width B of an annulus Ω = F \ Ḡ.

Fig. 2. The domain Ωε has minimal width ε and lowest eigenvalue going to zero proportionally with ε.

Ω of radii 1 and 1 + β; then β
B = 1. Consider the magnetic Laplacian with potential 

A = γ
x2
1+x2

2
(−x2, x1), for which ΦA = γ. From Proposition 8 of [3] we deduce that, as 

β → 0, the lower bound will approach d(ΦA, Z)2. Note that this number is also the first 

eigenvalue of the magnetic Laplacian (−i
d

dθ
+ A)2 on the unit circle (see Remark 2.1.4 

in [9]). In particular, (2) reduces to an equality as β → 1.
This means that (for fixed perimeter) in order to get λ1 small, the ratio β

B (and not 
just β) has to be small.

Sharpness in terms of βB . In [3] we showed that if βB is small then the first eigenvalue could 
indeed be small. We then looked for an example which could show that the dependence on 
β2

B2 is sharp, and we could not find it. Rather, in Examples 14 and 15 in [3], we constructed 
examples of domains such that B is bounded below, say by 1, |∂F | is bounded above, 
β goes to zero and λ1(Ω, A) goes to zero proportionally to β, for any non-integral flux. 
Therefore, if one could replace β

2

B2 by the linear factor βB in (2), one would obtain a sharp 
inequality (with respect to β

B ). See Fig. 2 for the example which shows sharpness.

This is in fact possible, and the theorem which follows should be regarded as the first 
main theorem of this paper.
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Theorem 1. Let Ω = F \ Ḡ be an annulus in the plane, with F and G convex with 
piecewise-smooth boundary. Let A be a closed one-form with flux ΦA around the inner 
hole G. Then:
a) One has the lower bound:

λ1(Ω, A) ≥ π2

8 · |F |2
|∂F |2D(F )4 · β(Ω)

B(Ω) · d(ΦA,Z)2, (3)

where β(Ω) and B(Ω) are, respectively, the minimal and maximal width of Ω, and D(F )
is the diameter of F .
b) If Rin(F ) denotes the inradius of F , then (3) takes the form:

λ1(Ω, A) ≥ π2

32 · Rin(F )2

D(F )4 · β(Ω)
B(Ω) · d(ΦA,Z)2. (4)

c) If the outer boundary ∂F is smooth, and if β(Ω) is less than the injectivity radius of 
the normal exponential map of ∂F , then we have the simpler lower bound:

λ1(Ω, A) ≥ π2

|∂F |2
β(Ω)
B(Ω)d(Φ

A,Z)2. (5)

• We remark that b) follows immediately from a) by using the inequality |F |
|∂F | ≥

Rin(F )
2 , 

which is valid for any convex domain in R2. Thus, the dependence on the geometry in 
the main lower bound (3) can be expressed solely in terms of the diameter, the inner 
radius and the minimal and maximal widths.
• Note that, modulo a factor of 4, (5) is formally identical to (2) with β/B replacing 

β2/B2.
We observe that there is no positive constant c such that

β(Ω)
B(Ω) ≥ c

|F |2
D(F )4

for all doubly convex annuli in the plane (otherwise, the lower bound would be inde-
pendent on the inner hole, and this is impossible). This means that Theorem 1 is not a 
trivial consequence of (2).

In fact, the proof of Theorem 1 uses a suitable partition of Ω into overlapping annuli 
for which β

B is, so to speak, as small as possible (see Section 2 below, and in particular 
Fig. 3 for an example). Recall the δ-interior ball condition:
given x ∈ ∂F , there is a ball of radius δ tangent to ∂F at x and entirely contained in F .

Here and for further applications, we say that the injectivity radius of ∂F is Inj(∂F )
if F satisfies the δ-interior ball condition for any δ ≤ Inj(∂F ). If ∂F is smooth, its 
injectivity radius is positive.
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Finally we refer to Fig. 2 for a picture of the family of domains Ωε which realize 
sharpness. Ωε is the difference between two rectangles with parallel sides, with boundaries 
being ε units apart. Hence β(Ωε) = ε and B(Ωε) is uniformly bounded above by 

√
5.

We show in Section 2.8 that

π2

360
√

5
d(ΦA,Z)2 ≤ λ1(Ωε, A)

ε
≤ 1

10 ,

so that λ1(Ω, A) goes to zero proportionally to ε ∼ β
B .

1.3. Sharpness in terms of d(ΦA, Z)

We now examine how precise is the estimate of Theorem 1 with respect to d(ΦA, Z), 
as d(ΦA, Z) → 0.

Let Ωa be a concentric annulus, centered at the origin, with radii a < 1 and 1. Let 
A = ν(− x2

x2
1+x2

2
dx1+ x1

x2
1+x2

2
dx1) be, as usual, the harmonic potential having flux ν around 

the origin. We assume 0 < ν ≤ 1
2 , so that ν = d(ΦA, Z).

We already remarked that estimate (2) is sharp as a → 1. We show that (5) is order 
sharp in ν = d(ΦA, Z) for all fixed a ∈ (0, 1), in the sense that ν2 is the correct rate of 
decay of λ1 as ν → 0.

Theorem 2. In the above notation we have, for all 0 < a < 1 and ν ∈ (0, 12 ):

1
4 ≤ λ1(Ωa, A)

ν2 ≤ c(a),

where c(a) = 6|log a|
1 − a2 .

• Note that c(a) → ∞ as a → 1: thus, c(a) is far from being sharp (we know that in 
fact λ1(Ωa, A) → ν2 as a → 1).

Proof. The lower bound follows immediately from (5). To prove the upper bound we use 
Rayleigh’s min-max principle:

λ1
.= λ1(Ωa, A) = inf

{∫
Ω|∇Au|2∫

Ω u2 : u ∈ H1
A(Ω) \ {0}

}

applied to a real valued, radial function u = u(r), where r is the distance to the origin. 
As |A|2 = ν2

r2 we see:

|∇Au|2 = |∇u|2 + u2|A|2

= u′ 2 + ν2
u2
r2
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We now choose u(r) = rν . In polar coordinates (r, θ) we see that Ωa = (a, 1) × [0, 2π)
and upon integration we get easily:

∫
Ω

|∇Au|2 = 2πν(1 − a2ν), and
∫
Ω

u2 = 2π · 1 − a2ν+2

2ν + 2

so that, by the min-max principle:

λ1

ν2 ≤ 2ν + 2
ν

· 1 − a2ν

1 − a2ν+2 .

Now a2ν = e2ν log a ≥ 1 − 2ν|log a| so that 1 − a2ν ≤ 2ν|log a|; moreover a2ν+2 ≤ a2

(because a < 1), and ν ≤ 1
2 . We end-up with the inequality:

λ1

ν2 ≤ 6|log a|
1 − a2 = c(a),

as asserted. �
Remark 3. The situation changes when considering the punctured unit disk with a 
Aharonov-Bohm singularity at its center. Calculations show in fact that λ1(Ω, A) be-
haves asymptotically as 2d(ΦA, Z) as d(ΦA, Z) → 0.

1.4. A general lower bound for multiply connected domains

Now let Ω be an n-holed planar domain, which we write as follows:

Ω = F \ (Ḡ1 ∪ · · · ∪ Ḡn) (6)

where the inner holes G1, . . . , Gn are smooth, open and disjoint. We furthermore assume 
that F, G1, . . . , Gn are convex. Note that:

∂Ω = ∂F ∪ ∂G1 ∪ · · · ∪ ∂Gn.

We will call ∂G1 ∪ · · · ∪∂Gn the inner boundary of Ω. The minimal and maximal widths 
of Ω are defined as in the case n = 1, namely β is the minimal length of a line segment 
contained in Ω and hitting the inner boundary orthogonally, and the maximal length of 
such line segments is by definition the maximal width B.

It is clear that we could replace B(Ω) by the diameter of F , and β(Ω) by the invariant:

β̃(Ω) = min{d(∂Gj , ∂Gk), d(∂Gh, ∂F ) : j �= k, h = 1, . . . , n}.

In this section we give a lower bound of λ1(Ω, A) when Ω has an arbitrary number of 
convex holes.

Here is the estimate.
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Theorem 4. Let Ω = F \(Ḡ1∪· · ·∪Ḡn) be an n-holed planar domain, where F, G1, . . . , Gn

are smooth, open and convex. Let A be a closed potential having flux Φj around the j-th 
inner boundary curve ∂Gj, for j = 1, . . . , n, and let γ = minj=1,...,n d(Φj , Z). Then we 
have:

λ1(Ω, A) ≥ π2

2
(
|∂F | + 2πB(Ω)

)2
β(Ω)4

B(Ω)4 · γ2, (7)

where β(Ω) and B(Ω) are, respectively, the minimal and maximal width of Ω.

The proof uses a suitable decomposition of Ω into a finite union of annuli, and a lower 
bound proved in [3] for annuli whose outer boundary is star-shaped with respect to the 
inner boundary curve. A stronger estimate is proved when the inner holes are disks of 
the same radius (see Theorem 15).

1.5. A lower bound for Aharonov-Bohm operators with many poles

The power β4

B4 in the previous estimate is probably not sharp; it appears to be there 
for technical reasons. By shrinking the inner boundary curves to points we obtain an 
estimate in terms of β2

B2 , which has an interesting interpretation in terms of Aharonov-
Bohm operators with many poles.

Precisely, we fix a convex domain Ω and choose n points inside it, say P = {p1, . . . , pn}. 
Consider the punctured domain Ω \ P. Given a closed one-form A, we define:

λ1(Ω \ P, A) = lim inf
δ→0

λ1(Ω \ P(δ), A)

where P(δ) is the δ-neighborhood of P (it obviously consists of a finite set of disks 
of radius δ). It is not our scope in this paper to investigate the convergence in terms 
of δ; however, what we are looking at could be interpreted as the first eigenvalue of a 
Aharonov-Bohm operator with poles p1, . . . , pn and Neumann boundary conditions. The 
proof of the theorem in the previous section simplifies, to give a general lower bound in 
terms of the distance between the poles, and the distance of each pole to the boundary. 
To that end, define:

{
β(P) = min{d(pj , pk), d(pm, ∂Ω) : pj �= pk, pm ∈ P}
B(P) = max{d(pj , pk), d(pm, ∂Ω) : pj �= pk, pm ∈ P}

Of course B(P) could be conveniently bounded above by the diameter of Ω. Let A be as 
usual a closed one-form having flux Φj around the pole pj . Then we have:

Theorem 5. Let Ω be a convex domain and P = {p1, . . . , pn} a finite set of poles. For the 
punctured domain Ω \ P we have the bound:
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λ1(Ω \ P, A) ≥ 4π2

|∂Ω|2
β(P)2

B(P)2 γ
2,

where γ = minj=1,...,n d(Φj , Z), and Φj is the flux of the closed potential A around pj.

• In a forthcoming paper, we will give upper bounds for the Laplacian with zero 
magnetic field on multiply connected planar domains, which are closely related to the 
topology (number of holes) of the domain.

The rest of the paper is devoted to the proof of Theorems 1, 4 and 5.

2. Proof of Theorem 1

The proof depends on a suitable way to partition our domain Ω. We first remark the 
simple fact that the first eigenvalue of a domain is controlled from below by the smallest 
first eigenvalue of the subdomains of a partition of Ω (Proposition 6). Then, we need to 
extend inequality (2) to piecewise-smooth boundaries, see Section 2.2. In Section 2.3 we 
state our main geometric facts, Lemma 8 and Lemma 9, and then we prove Theorem 1
(see Section 2.4). Finally, in Section 2.5, we define the partition and we prove Lemma 8
and Lemma 9.

2.1. A simple lemma

We say that the family of open subdomains {Ω1, . . . , Ωn} is a partition of Ω, if Ω̄ = Ω̄1∪
· · ·∪ Ω̄n. Thus, the members of the partition might overlap and some of the intersections 
Ωj ∩Ωj could have positive measure. If furthermore Ωj ∩Ωk is empty for all j �= k then 
we say that the partition is disjoint. We observe the following standard fact whose proof 
is easy:

Proposition 6. Let {Ω1, . . . , Ωn} be a partition of the domain Ω. Let A be any closed 
potential. Then, there is an index k = 1, . . . , n such that

λ1(Ω, A) ≥ 1
n
λ1(Ωk, A). (8)

If the partition is disjoint, then:

λ1(Ω, A) ≥ min
j=1,...,n

λ1(Ωj , A). (9)

Proof. We start proving (8). Let u be an eigenfunction associated to λ1(Ω, A). We use 
it as test-function for λ1(Ωj , A) and obtain, for all j:

λ1(Ωj , A)
∫
|u|2 ≤

∫
|∇Au|2. (10)
Ωj Ωj
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Now

∫
Ω

|u|2 ≤
n∑

j=1

∫
Ωj

|u|2 ≤ n

∫
Ωk

|u|2

where the index k is chosen so that 
∫
Ωk

|u|2 is maximum among all j = 1, . . . , n. Then:

λ1(Ωk, A)
∫
Ω

|u|2 ≤ nλ1(Ωk, A)
∫
Ωk

|u|2

≤
∫
Ωk

|∇Au|2

≤ n

∫
Ω

|∇Au|2

= nλ1(Ω, A)
∫
Ω

|u|2

That is: λ1(Ωk, A) ≤ nλ1(Ω, A), which is the assertion.
For the proof of (9), let λmin = minj=1,...,n λ1(Ωj , A). From (10) we have, for all j:

∫
Ωj

|∇Au|2 ≥ λ1(Ωj , A)
∫
Ωj

|u|2 ≥ λmin

∫
Ωj

|u|2

We now sum over j = 1, . . . , n and obtain 
∫
Ω|∇Au|2 ≥ λmin

∫
Ω|u|2. As u is a first eigen-

function the left-hand side is precisely λ1(Ω, A) 
∫
Ω|u|2, and the inequality follows. �

2.2. Convex annuli with piecewise-smooth boundary

From now on Ω will be an annulus in the plane with boundary components Γint, Γext
which we assume convex and piecewise-smooth. We will write Ω = F \ Ḡ where F
and G are open, convex, with piecewise smooth boundary. In that case Γint = ∂G and 
Γext = ∂F .

Let p be a point of ∂G where ∂G is not smooth (p will then be called a vertex). The 
normal cone of G at p is the set

NG(p) = {x ∈ R2 : 〈x, y − p〉 ≤ 0, for all y ∈ G}.

Then NG(p) is the closed exterior wedge bounded by the normal lines to the two smooth 
curves concurring at p, its boundary is the broken line depicted in the figure below. Call 
αp its angle at p.
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Fig. 3. A vertex p of ∂G and its normal cone NG(p).

• We remark the obvious fact that 0 < αp < π.
We now define the minimum and maximum width in the piecewise-smooth case. These 

are defined in (11) and depicted in the Fig. 3.
For a unit vector v applied in p and pointing inside NG(p) we let γp,v(t) = p + tv

denote the ray exiting p in the direction v, and let Q(p, v) be the intersection of γp,v
with Γext = ∂F . We define:

⎧⎪⎨
⎪⎩
β(p) = inf

v∈NG(p)
d(p,Q(p, v))

B(p) = sup
v∈NG(p)

d(p,Q(p, v))
(11)

We notice that at a smooth point q the cone at q degenerates to the normal segment at 
q. Hence at a smooth point q one has

β(q) = B(q).

We now define
{
β(Ω) = inf{β(p) : p ∈ ∂G}
B(Ω) = sup{β(p) : p ∈ ∂G}

(12)

β(Ω) and B(Ω) will be called the minimum width and, respectively, the maximum 
width of Ω. We remark that when the two boundary components are smooth and parallel 
then β = B and the ratio β

B assumes its largest possible value, which is 1.
As a first step in the proof of Theorem 1, we extend the inequality (2) to the piecewise-

smooth case.

Theorem 7. Let Ω = F \ Ḡ be an annulus in the plane whose boundary components are 
convex and piecewise smooth. Let β = β(Ω) and B = B(Ω) be the invariants defined in 
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(12). Then for any closed potential having flux ΦA around the inner boundary curve one 
has the lower bound:

λ1(Ω, A) ≥ 4π2

|∂F |2
β(Ω)2

B(Ω)2 d(Φ
A,Z)2,

where |∂F | is the length of the outer boundary.

Proof. First, Ω admits an exhaustion by convex annuli with C1-boundary, say {Ωε : ε >
0}. By that we mean:

a) Ωε = Fε \ Ḡε where Fε and Gε are convex and have C1-smooth boundary;

b) Fε ⊆ F and Gε ⊇ G so that Ωε ⊆ Ω;

c) Ω = ∪ε>0Ωε and in particular limε→0|Ω \ Ωε| = 0.
To construct Fε we round off corners at distance ε to each of the vertices of ∂F ; to 

construct Gε we just take the convex domain bounded by the ε-neighborhood of G.
Let u be an eigenfunction associated to λ1(Ω, A); by restriction we obtain a test-

function for Ωε, hence by the min-max principle:
∫
Ωε
|∇Au|2∫
Ωε
|u|2 ≥ λ1(Ωε, A).

Let L(Ω) be the functional:

L(Ω) = 4π2

|∂F |2
β(Ω)2

B(Ω)2 d(Φ
A,Z)2

We can apply (2) and obtain λ1(Ωε) ≥ L(Ωε) because Ωε has smooth boundary; then, 
for all ε > 0: ∫

Ωε
|∇Au|2∫
Ωε
|u|2 ≥ L(Ωε).

We now pass to the limit as ε → 0 on both sides; as L(Ωε) → L(Ω) (as we can easily see 
from the definitions in (12)), we obtain the assertion: λ1(Ω) ≥ L(Ω). �
2.3. Preparatory results

In this section we state the two main technical lemmas; the partition of the annulus 
Ω will be defined in Section 2.5.

So let Ω = F \ Ḡ be an annulus as above and let β ∈ (0, β(Ω)]. We consider the 
distance functions:

ρ1, ρ2 : F → [0,∞),
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where ρ1(x) = d(x, G) and ρ2(x) = d(x, ∂F ). Fix a parameter β > 0. As G is convex, 
with piecewise-smooth boundary, it is well-known that the equidistants {ρ1 = β} are 
C1-smooth curves. We say that the parameter β is regular if the equidistant {ρ2 = β} is 
a piecewise-smooth curve. Following Appendix 2 in [13], we know that the set of regular 
parameters has full measure in (0, β(Ω)]; as a consequence, there exists a sequence of 
regular parameters {βj} → β(Ω) as j → ∞.
• By using an obvious limiting procedure, from now on we take

β = β(Ω)

and can assume that it is a regular parameter, so that ρ2 = β is a piecewise-smooth 
curve.

Lemma 8. Let Ω = F \Ḡ be an annulus in the plane with F and G convex with piecewise-
smooth boundary, and let β = β(Ω) (which, by assumption, is a regular parameter). Then 
Ω admits a partition {Ω1, . . . , Ωn} into (overlapping) subdomains Ωk with the following 
properties.
a) Ωk is an annulus bounded by two convex piecewise-smooth curves, that is, Ω = Fk \Ḡk

with Fk and Gk convex, and Gk contains G (see figure in Section 2.5 below).
b) The number n of annuli in the partition can be taken so that:

n ≤ 2B(Ω)
β

.

We estimate the ratio β
B of each piece as follows.

Lemma 9. Let {Ω1, . . . , Ωn} be the partition in the previous lemma. For all k = 1, . . . , n
one has the following facts.
a) |∂Fk| ≤ |∂F | and β(Ωk) = β.
b) The following estimate holds:

β(Ωk)
B(Ωk)

≥ 1
4

|F |
D(F )2 , (13)

where D(F ) is the diameter of F .
c) If β(Ω) is less than the injectivity radius of ∂F , then the following simpler lower bound 
holds for all k:

β(Ωk)
B(Ωk)

≥ 1√
2
.

The proof of Lemma 8 and Lemma 9 involves rather simple geometric constructions, 
but there are some delicate points to take care of, and will be done in Section 2.5. In 
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fact, these two lemmas make it possible to write Ω as a union of subset Ωk such that the 
ratio β(Ωk)

B(Ωk) is bounded below, which make the proof of Theorem 1 quite easy, as follows.

2.4. Proof of Theorem 1

We use the partition {Ω1, . . . , Ωn} of Lemma 8. Let A be a closed potential having 
flux ΦA around the inner boundary curve ∂G; then, A has the same flux around the 
inner component of Ωk, by Lemma 8a. By Proposition 6a there exists k ∈ {1, . . . , n}
such that

λ1(Ω, A) ≥ 1
n
λ1(Ωk, A). (14)

By Theorem 7 applied to Ω = Ωk we see:

λ1(Ωk, A) ≥ 4π2

|∂Fk|2
β(Ωk)2

B(Ωk)2
d(ΦA,Z)2.

By b) of Lemma 9 we see:

β(Ωk)2

B(Ωk)2
≥ 1

16
|F |2

D(F )4 . (15)

This, together with the inequality |∂Fk| ≤ |∂F |, gives:

λ1(Ωk, A) ≥ π2

4 · |F |2
|∂F |2D(F )4 · d(ΦA,Z)2.

We insert this inequality in (14) and use the inequality 1
n ≥ β

2B(Ω) (see Lemma 8b) to 
conclude that

λ1(Ω, A) ≥ β

2B(Ω)λ1(Ωk, A)

≥ π2

8 · |F |2
|∂F |2D(F )4 · β

B(Ω) · d(ΦA,Z)2.

This proves part a) of Theorem 1.
If β(Ω) is less than the injectivity radius of ∂F we proceed as before, using the lower 

bound β(Ωk)
B(Ωk) ≥ 1√

2 proved in Lemma 9c. We arrive easily at the inequality:

λ1(Ω, A) ≥ π2

|∂F |2
β(Ω)
B(Ω)d(Φ

A,Z)2,

which is Theorem 1b).
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Fig. 4. The pieces Ω1, Ω2, Ω3 and the last piece Ω6 = {ρ2 < β} when the initial domain is the triangle minus 
the small disk and β = β(Ω).

2.5. The partition of Ω and the proof of Lemma 8

We start by showing the partition on a particular example, see Fig. 4. The ini-
tial domain is a triangle F minus a disk G and β = β(Ω). We draw the first three 
pieces Ω1, Ω2, Ω3 and then the last one, which is Ω6 and which coincides with the β-
neighborhood of the exterior boundary ∂F (this is always the case). Note that the pieces 
overlap, hence the partition is not disjoint.

We now proceed to construct the partition in general. Let then Ω be convex annulus 
Ω = F \ Ḡ as above, and consider the distance functions:

ρ1, ρ2 : F → [0,∞),

where ρ1(x) = d(x, G) and ρ2(x) = d(x, ∂F ) = d(x, F c).
• At step 1, we let F1 = {ρ1 < β}, G1 = G and Ω1 = F1 \ Ḡ1. That is, Ω1 is simply 

the subset of F at distance less than β to G.
• At step 2, we let F2 = {ρ1 < 2β} and G2 = {ρ1 < β} ∩ {ρ2 > β} and define 

Ω2 = F2 \ Ḡ2.
• At the arbitrary step k, we let Fk = {ρ1 < kβ} and Gk = {ρ1 < (k−1)β} ∩{ρ2 > β}, 
and define:

Ωk = Fk \ Ḡk.

Observe that for any choice of positive numbers a, b the sets {ρ1 < a} and {ρ2 < b} are 
convex. Therefore, both Fk and Gk are convex; moreover Gk ⊂ Fk and then Ωk is an 
annulus. This proves part a) of Lemma 8.

For b) we first prove the following fact:

Fact. Let n 
.=
[B(Ω)

β

]
(the smallest integer greater than or equal to B(Ω)

β ). Then Fn = F

and Gn = {ρ2 > β}. In particular, Ωn = {ρ2 < β} and then, starting from n, the 
sequence Ωn stabilizes: Ωn = Ωn+1 = . . . .
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For the proof we first observe that, from the definition of B(Ω), we have F ⊆ {ρ1 <

B(Ω)}; then, if we fix n ≥ B(Ω)
β we have by definition F ⊆ Fn hence F = Fn. To show 

that Gn = {ρ2 > β} it is enough to show:

{ρ2 > β} ⊆ {ρ1 < (n− 1)β}. (16)

In fact, if not, there would be a point x ∈ F such that d(x, ∂F ) = ρ2(x) > β and 
ρ1(x) ≥ (n − 1)β. Let y ∈ ∂G be a point at minimum distance to x, and prolong 
the segment from y to x till it hits Γext = ∂F at the point z. It is clear that then 
d(y, z) = d(y, x) + d(x, z) > nβ. By definition of B(Ω) we then have:

B(Ω) ≥ d(y, z) > nβ,

which contradicts the definition of n. Hence (16) holds.
We now prove part b) of Lemma 8. Observe that Ω̄ = ∪n

k=1Ω̄k and (by the definition 
of n) B(Ω)

β ≥ n − 1. Since n − 1 ≥ n
2 for all n ≥ 2 we see that, for all n:

B(Ω)
β

≥ n

2 ,

which gives the assertion.

2.6. Proof of Lemma 9

We now study the typical piece Ωk = Fk \ Ḡk in the partition. Observe that

∂Fk = ∂1Fk ∪ ∂2Fk, ∂Gk = ∂1Gk ∪ ∂2Gk,

where
{
∂1Fk = {ρ1 = kβ} ∩ F̄

∂2Fk = {ρ1 ≤ kβ} ∩ ∂F

{
∂1Gk = {ρ1 = (k − 1)β} ∩ {ρ2 ≥ β}
∂2Gk = {ρ1 ≤ (k − 1)β} ∩ {ρ2 = β}

(some of these boundary pieces may be empty). As the equidistants {ρ1 = r} are 
C1−smooth, and the equidistant {ρ2 = β} is piecewise smooth, we see that ∂Fk and 
∂Gk are both piecewise smooth, hence
• ∂Ωk is piecewise smooth.

The inner boundary is ∂Gk, it is piecewise smooth with vertices in the set

S = {ρ1 = (k − 1)β} ∩ {ρ2 = β}.

Now we have to estimate the ratio β(Ωk)/B(Ωk) for a fixed k = 1, . . . , n. Recall the 
function
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Fig. 5. On the left: the piece Ω2 and its wedges. On the right: the last piece Ω6 = {ρ2 < β}; the ratio β
B is 

small at the upper wedge, because the angle of the wedge at its break point is near π.

β(x) : ∂Gk → R

defined in (11). First notice that the regular parts

∂1,regFk = {ρ1 = kβ} ∩ F and ∂1,regGk = {ρ1 = (k − 1)β} ∩ {ρ2 > β}

are parallel, at distance β to each other. Hence

β(x)
B(x) = 1 (17)

at all points x ∈ ∂1,regGk. Similarly, the regular sets

∂2,regFk = {ρ1 < kβ} ∩ ∂F and ∂2,regGk = {ρ1 < (k − 1)β} ∩ {ρ2 = β}

are parallel at distance β and β(x)
B(x) = 1 on ∂2,regGk.

Therefore, it only remains to control the ratio β(x)
B(x) at the vertices of ∂Gk, which are 

finite, say p1, . . . , pm.
Each break point pj gives rise to a corresponding wedge W (pj) 

.= NG(pj) ∩ Ω. In 
Fig. 5 we enlarge the domain Ω2 relative to the partition of Fig. 4 and we show its set of 
wedges. In other words, every annulus Ωk is made up of strips of constant width β and 
wedges, and we need to control β(x)

B(x) only at the wedges.
Typically, the ratio β

B is small when there are small angles; nevertheless, this ratio is 
controlled from below by the diameter and the volume of the outer domain, as we will 
see in the next section.

As Fk is a convex subset of F , we see that |∂Fk| ≤ |∂F |. Now it is clear from the con-
struction that β(x) ≥ β for all x ∈ ∂Fk; moreover, the inequality is attained. Therefore

β(Ωk) = β
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for all k. This proves part a) of Lemma 9.

2.7. End of proof of Lemma 9

The estimate β
B on the wedges of the generic piece Ωk will be a consequence of 

Lemma 10 below.
We recall that the cut-locus of ∂F is the closure of the set of all points which can be 

joined to ∂F by at least two minimizing segments; moreover, the injectivity radius of ∂F
is the minimum distance of ∂F to the cut-locus. If ∂F is smooth, its injectivity radius 
is positive. Finally the distance function d(·, ∂F ) is smooth outside the cut-locus.

Then, we fix a piece Ωk and recall that β(Ωk) = β. For simplicity we write B(Ωk) = B

and recall that, by definition, we have B ≥ β.
Let {p1, . . . , pn} be the vertices of ∂Gk. For p in this set, write p = γ1 ∩ γ2, where 

γ1, γ2 are the arcs concurring at p. Note that either γj is an equidistant to ∂G, that is, 
is a subset of ρ1 = (k − 1)β, and in that case we say that γj is parallel to ∂G, or γj is 
an equidistant to ∂F , that is, is a subset of ρ2 = β, and in that case we say that γj is 
parallel to ∂F . There are two possibilities:

Type 1. The vertex p = γ1 ∩ γ2 where γ1 is parallel to ∂G and γ2 is parallel to ∂F ;

Type 2. γ1 and γ2 are both parallel to ∂F .

Note that the second type corresponds to the situation where the vertex p is a point 
of the cut-locus of ∂F . The situation where γ1 and γ2 are both parallel to ∂G does not 
occur, because then p would belong to the cut locus of ∂G; however the cut-locus of a 
convex domain is always contained in the interior of the domain; as p is outside G this 
is impossible.
• For the partition in the example and its piece Ω2 (see Fig. 5), the vertices p1 and p3

are of type 1, while the vertex p2 is of type 2.

Lemma 10. a) If p is of type 1 then the interior angle of Gk at p is larger than or equal 

to π2 , hence the angle of the wedge W (p) at p is at most π2 . Consequently,

β

B(p) ≥ 1√
2
.

b) If p is of type 2, then p is in the cut-locus of ∂F and one has:

β

B(p) ≥ 1
4

|F |
D(F )2 .

c) If β = β(Ω) is less than the injectivity radius of ∂F then the estimate in a) will hold 
at all vertices of the decomposition.
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Fig. 6. Proof of Lemma 10a.

Since the lower bound in b) is always weaker than that in a), we have b) at all vertices 
of ∂Gk. It is clear that Lemma 10 completes the proof of Lemma 9.
Proof of Lemma 10a). If p is of type 1 then p is not on the cut-locus of ∂F , hence ∇ρ2
exists and is a well-defined unit vector in a neighborhood of p. Note that ∇ρ2(p) points 
in the direction where the distance to ∂F increases (obviously an analogous observation 
holds for ∇ρ1). Now observe that the angle of the wedge W (p) is the angle between the 
vectors ∇ρ1 and −∇ρ2 (see Fig. 6).

Hence, it is enough to show that the quantity

〈∇ρ1(p),∇ρ2(p)〉 = c(p)

is non-positive. Assume on the contrary that c(p) > 0. We let α(t) denote the segment 
which minimizes distance from p to ∂G (parametrized by arc-length); hence α′(t) =
−∇ρ1(α(t)). We let f(t) be the function which measures distance from α(t) to ∂F , so 
that:

f(t) = ρ2(α(t)).

Now f ′(t) = 〈∇ρ2(α(t)), α′(t)〉 = −〈∇ρ2(α(t)), ∇ρ1(α(t)〉. In particular,

f ′(0) = −c(p) < 0.

As f(0) = β, this means that for small t one has ρ2(α(t)) < β, but this impossible 
because α(t) ∈ Gk, and all points of Gk are, by definition, at distance at least β to ∂F .

Hence cp ≤ 0 and the angle of the wedge at p is at most π2 . Now, the wedge W (p) is 
contained in the polygon with vertices p, q, s, r as in the picture, hence B(p) ≤ d(p, s) ≤√

2β because the angle at p is at most π
2 , the angles at r and s are π

2 , and d(p, r) =
d(p, q) = β.
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Fig. 7. Estimate of β/B on a typical wedge.

Proof of b). Let p be a vertex of type 2: then, the two arcs concurring at p are parallel 
to ∂F , and p belongs to the cut locus of ∂F . The boundary of the wedge W (p) is made 
of two distinct segments of the same length β minimizing distance to ∂F . Then, W (p)
is contained in a wedge of the last member of the partition, that is, {ρ2 < β}. As 
B(p) depends only on W (p), we could as well estimate the ratio β

B(p) by estimating the 

corresponding ratio for the wedges of {ρ2 < β}, which will allow to express β
B(p) in terms 

of the geometry of {ρ2 < β}, hence, in terms of the geometry of F .
The relevant picture is Fig. 7, in which we evidence such an edge W (dark shadowed 

in the picture): it has its vertex in the point p of ρ2 = β; we let q ∈ W be a point such 
that d(p, q) = B. We omit to draw the inner boundary as it will play no role in the proof.

Let T be the triangle with dotted boundary, with a vertex in q and such that F \W ⊆
T . As φ + γ is the exterior angle at a vertex of the piecewise-smooth curve ρ2 = β, we 
see that φ + γ ≤ π.
Each of the angles ψ and α is less than π2 . Consider the circle with center p and radius β. 
If q is inside this circle then B < β which is impossible. Then q is outside the circle; α and 
ψ are, each, less than the corresponding angles at the vertex q′ obtained by projecting q
on the circle. It is clear that each of these two angles is less than π/2.

Let w be the angle at the vertex s. Then

β

sinψ
= B

sinw
≥ B, (18)

and similarly β
sinα ≥ B. If ψ ≥ π

4 or α ≥ π
4 then β

B ≥ 1√
2 and we are finished because 

1√
2 > |F |

4D(F )2 .
• Hence we can assume from now on α ≤ ψ ≤ π

4 .



B. Colbois, A. Savo / Journal of Functional Analysis 281 (2021) 108999 23
Fig. 8. The polygons P1 and P2.

Lemma 11. In the above notation we have |T | ≥
√

2
4 |F |.

Proof. We first remark that π4 ≤ φ ≤ 3π
4 . In fact, we have ψ ≤ π

4 and w ≤ π
2 so that 

φ ≥ π
4 . On the other hand, the same argument applies to γ, that is, γ ≥ π

4 . Therefore, 
as φ + γ ≤ π we conclude φ ≤ 3π

4 . The same bounds are satisfied by γ.
As W is contained in the union of two parallelograms with sides β and B we see:

|W | ≤ 2Bβ. (19)

We set X1 = F \ W ; we also let P2 be the convex polygon with vertices p, q, r, s and 
P1 = T \ P2 (see Fig. 8).

We have disjoint unions:

{
F = X1 ∪W

T = P1 ∪ P2

We will show that

⎧⎪⎪⎨
⎪⎪⎩
|P1| ≥ |X1| ≥

√
2

4 |X1|

|P2| ≥
√

2
4 |W |

and the assertion will follow by summing up the two inequalities. Now the first inequality 
is obvious, because X1 ⊆ P1. By the bounds for φ and γ we see that sinφ and sin γ are 
both, at least, 1√ . Then:
2
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|P2| = 1
2Bβ sinφ + 1

2Bβ sin γ

≥
√

2
2 Bβ

Combining the two estimates we see that |P2| ≥
√

2
4 |W | as asserted. �

End of proof of Lemma 9. Refer to Fig. 8. We can assume that α ≤ ψ ≤ π
4 . We let 

δ be the length of the segment joining q and u (which meets the side opposite to q
orthogonally, by definition), so that:

|T | = 1
2δ

2(tanα + tanψ) ≤ δ2 tanψ.

The assumptions give tanψ ≤
√

2 sinψ, so that |T | ≤
√

2δ2 sinψ. Using the lower bound 

for |T | ≥
√

2
4 |F | proved before, we have sinψ ≥ |F |

4δ2 and then, from (18):

β

B
≥ sinψ ≥ |F |

4δ2 ≥ |F |
4D(F )2 ,

the last inequality holding because evidently δ ≤ D(F ). This proves Lemma 10b and, 
with it, Lemma 9 is completely proved.

2.8. Example showing sharpness

This example is taken from [3], we repeat it below for the sake of clarity. Its scope is 
to show that the inequality of Theorem 1 is sharp in β

B .
We take F to be the rectangle [−4, 4] × [0, 4], Gε = [−3, 3] × [ε, 2] and consider the 

doubly connected domain:

Ωε = F \ Ḡε.

We refer to the picture in the Introduction. We let A be any closed 1-form. As a direct 
consequence of the gauge invariance of the magnetic Laplacian, it is proved in [3] that, 
for any planar domain Ω one has:

λ1(Ω, A) ≤ ν1(D), (20)

where D is any closed, simply connected subdomain of Ω̄, and where ν1(D) denotes the 
first eigenvalue of the usual Laplacian with Neumann boundary conditions on ∂D ∩ ∂Ω
and with Dirichlet boundary conditions on ∂D ∩ Ω.

Given our choice of Ωε, we remove from it the rectangle (−1, 1) × (0, ε) to get the 
simply connected subdomain called Dε. We estimate ν1(Dε) by taking the test-function 
as follows:
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φ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 on the complement of [−2,−1] × [0, ε] ∪ [1, 2] × [0, ε]

x− 1 on [1, 2] × [0, ε]

1 − x on [−2,−1] × [0, ε]

It is readily seen that 
∫
Dε

|∇φ|2 = 2ε, while 
∫
Dε

φ2 ≥ C > 0 (note that C > 20). 
Therefore:

ν1(Dε) ≤
ε

10 .

Given (20) we conclude that:

λ1(Ωε, A) ≤ β(Ωε)
10 = ε

10 (21)

Applying our lower bound in Theorem 1 to this case, we have

β = ε; B =
√

5; |F | = 32; |∂F | = 24; D(F ) = 4
√

5,

and we obtain

λ1(Ωε, A) ≥ π2

360
√

5
d(ΦA,Z)2 ε. (22)

We now observe that the minimum width β(Ωε) = ε, by construction, and that B(Ωε) is 
bounded above by 4. Taking into account (21) and (22) we see that λ1(Ωε) goes to zero 
proportionally to ε ∼ β(Ωε)

B(Ωε) .

3. Proof of Theorem 4

Let Ω be an n-holed domain, which we write: Ω = F\(Ḡ1∪· · ·∪Ḡn), with F, G1, . . . , Gn

smooth, open and convex.
From now on we denote Γj = ∂Gj . The idea is to use a suitable partition of Ω by 

annuli Ωj whose boundary is either a piece of ∂F or is an equidistant curve from two 
interior boundary curves; each Ωj is an annulus Ωj = Fj \ Gj with piecewise-smooth 
exterior boundary ∂Fj which is star-shaped with respect to Γj = ∂Gj . We can then 
apply a theorem in [3] and obtain the uniform bound, valid for all j:

λ1(Ωj , A) ≥ 2π2

9
(
|∂F | + 2πB(Ω)

)2
β(Ω)4

B(Ω)4 · γ2. (23)

As the bound holds for all subdomains of a disjoint partition it holds a fortiori for Ω, 
thanks to Proposition 6.
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Fig. 9. The partition {Ω1,Ω2,Ω3} of a domain Ω with three holes. The curves Γjk are equidistant sets.

3.1. The partition of Ω

We start by giving in Fig. 9 the picture of the partition {Ω1, Ω2, Ω3} when Ω has three 
holes. The inner boundary of each piece Ωj is made of equidistant sets from two suitable 
holes.

Here is the construction. For each j = 1, . . . , n we consider the non-empty open set:

Fj = {x ∈ F : d(x,Gj) < d(x,Gk) for all k �= j}.

If we set:

Hjk = {x ∈ R2 : d(x,Gj) < d(x,Gk)} (24)

we see that we can write

Fj = ∩k �=j(Hjk ∩ F ).

It is clear that F̄ = ∪n
j=1F̄j . We remark that ∂Hjk is the equidistant set from Gj and 

Gk:

∂Hjk = {x ∈ R2 : d(x,Gj) = d(x,Gk)}. (25)

We have the following general fact.

Lemma 12. Let G1 and G2 be disjoint smooth convex domains. Then the equidistant set 
∂H12 as above is a smooth curve.

Proof. Let A = R2 \ (G1 ∪G2) and let ρj be the distance function to Gj, j = 1, 2. The 
convexity of Gj implies that ρj is smooth on the complement of Gj , so that ρj is smooth 
on A. Let f = ρ1 − ρ2, so that ∂H12 is the zero set of f . One has ∇f = ∇ρ1 − ∇ρ2
and it is enough to show that ∇f has no critical points on {f = 0}. Let p be a point in 
∂H12 = ∂H21 and let γ1 be the line segment which minimizes the distance from p to G1. 
One has: γ1(t) = p −t∇ρ1(p). The corresponding minimizing segment from p to G2 is then 
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γ2(t) = p − t∇ρ2(p). If ∇ρ1(p) = ∇ρ2(p) then γ1(t) = γ2(t) and, as d(p, G1) = d(p, G2), 
the two minimizing segments would have the same foot q, which would then belong to 
both G1 and G2: but this impossible because G1 and G2 are disjoint.

Hence, on {f = 0} one has ∇f �= 0 which proves smoothness. �
As G1, . . . , Gk are disjoint we see that Gj ⊂ Fj and then we can introduce the annulus

Ωj
.= Fj \ Ḡj ,

that is:

Ωj = {x ∈ Ω : d(x,Gj) < d(x,Gk) for all k �= j}.

The family {Ω1, . . . , Ωn} gives rise to a disjoint partition of Ω, as the next lemma shows.

Lemma 13. The following properties hold:
a) Ω̄ = ∪n

j=1Ω̄j.
b) For j �= k one has that Ωj∩Ωk = ∅ and Ω̄j∩Ω̄k is a smooth curve (eventually empty).
c) Ωj is an annulus with smooth inner boundary Gj and piecewise smooth outer boundary 
∂Fj. Moreover:

∂Fj =
(
∪k �=j Γjk

)
∪ (∂F ∩ F̄j),

where Γjk = F̄j ∩ F̄k = Ω̄j ∩ Ω̄k is contained in the equidistant curve ∂Hjk from Gj and 
Gk.

Note that actually Ω̄j ∩ Ω̄k = F̄j ∩ F̄k. The proof of the lemma is clear from the 
definitions.

3.2. Estimate of λ1(Ωj , A)

As the partition of Lemma 13 is disjoint, from Proposition 6 we have:

λ1(Ω, A) = min
j=1,...,n

λ1(Ωj , A).

Therefore, in this section, we estimate the first eigenvalue of the generic member of the 
partition. To that end, recall a relevant theorem from [3]. Let Ω1 = F1\G1 be an annulus 
with inner boundary curve Γ1 = ∂G1, where G1 is smooth and convex. For x ∈ Γ1 and 
t ≥ 0, consider the segment γ(t) = x + tN(x) where N(x) is the unit normal to Γ1
oriented outside G1. Let Q(x) be the first intersection of γx(t) with the outer boundary 
curve ∂F1, and let θx be the angle between γ′

x and the outer normal ν to F1 at Q(x). 
We set:
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m(Ω1)
.= min

x∈Γ1
cos θx.

We recall that Ω1 is said to be starlike with respect to Γ1 if, for any y ∈ F1, the segment 
minimizing distance from y to Γ1 is entirely contained in Ω1.

We also set:
{
β(Ω1)

.= min{d(x,Q(x) : x ∈ Γ1}
B(Ω1)

.= max{d(x,Q(x) : x ∈ Γ1}

which are called, respectively, the minimum and maximum width of Ω1.
The estimate in Theorem 2 of [3] says that:

λ1(Ω1, A) ≥ 4π2

|∂F1|2
β(Ω1)m(Ω1)

B(Ω1)
d(ΦA,Z)2. (26)

We will apply (26) to each annulus Ωj in the above partition of Ω. We start from:

Lemma 14. Let Ω = F \ (G1 ∪ · · · ∪Gn) and let Ωj = Fj \Gj be a piece in the partition 
defined above. Then:
a) Ωj is an annulus which is starlike with respect to ∂Gj, and moreover:

m(Ωj) ≥
β(Ωj)

2B(Ωj)

b) One has the estimate:

|∂Fj | ≤
2B(Ωj)
β(Ωj)

(
|∂Gj | + 2πB(Ωj)

)

Lemma 14 allows to prove Theorem 4 as follows. We apply (26) to Ωj and get:

λ1(Ωj , A) ≥ π2

2
(
|∂Gj | + 2πB(Ω)

)2
β(Ωj)4

B(Ωj)4
· γ2.

To make the lower bound independent on j, it is enough to observe that β(Ωj) ≥
β(Ω), B(Ωj) ≤ B(Ω) and |∂Gj | ≤ |∂F |. Then we get:

λ1(Ωj , A) ≥ π2

2
(
|∂F | + 2πB(Ω)

)2
β(Ω)4

B(Ω)4 · γ2,

which is the final step of the proof.
Then, it remains to prove Lemma 14.
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Fig. 10. The curve is the equidistant Γ12 from Γ1 and Γ2. The tangent to Γ12 at p = Q(x) is the line through 
p orthogonal to ν. It cuts the angle between ∇ρ1 and ∇ρ2 in half.

3.3. Proof of Lemma 14a

It is enough to prove it for j = 1. We first prove that Ω1 = F1 \ Ḡ1 is star shaped with 
respect to Γ1 = ∂G1. Let y ∈ ∂F1 and let σ be the segment starting at y and minimizing 
distance to Γ1: let x ∈ Γ1 be the foot of σ.
• Note that, as y ∈ ∂F1, we must have d(y, Γ1) ≤ d(y, Γk) for all k �= 1.

We prove that σ is entirely contained in Ω1. Assume by contradiction that there is 
z ∈ σ such that z /∈ Ω1. Then z ∈ Ωh for some h �= 1, and there exists q ∈ Γh with 
d(z, q) < d(z, x). But then:

d(y, x) = d(y, z) + d(z, x)

> d(y, z) + d(z, q)

≥ d(y, q)

that is, d(y, x) > d(y, q) and this means that d(y, Γ1) > d(y, Γh), which contradicts the 
assumption. Hence Ω1 is star shaped.

We now estimate cos θx, and for convenience we refer to Fig. 10.
Let x ∈ Γ1 and draw the segment γx(t) = x + tNx where Nx is the unit normal vector 

to Γ1 pointing outside G1. It hits ∂F1 at the point p = Q(x). If p ∈ ∂F we proceed as in 
[3] (because ∂F is convex) and get

cos θx ≥ β(Ω1)
.

B(Ω1)
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If p /∈ ∂F (as in the picture) then p ∈ Γ1k for some k �= 1; we can assume that k = 2. 
Let w be the point in Γ2 such that d(p, x) = d(p, w) = d; observe that cos θx = 〈∇ρ1, ν〉
where ν is the normal to Γ12 at p pointing away from Γ1. Observe that ν is the unit 
vector in the direction of ∇ρ1 −∇ρ2, and that ∇ρ1 + ∇ρ2 is tangent to Γ12 at p. If 2φ
is the angle between ∇ρ1 and ∇ρ2 then we see that 2φ + 2θx = π, that is

θx = π

2 − φ.

Consider the triangle with vertices x, w, p; it is isosceles on the basis xw, (whose length 
is denoted 2a); its height is part of the tangent line to the equidistant at p. One sees 
that

d cos θx = d sinφ = a

hence

cos θx = a

d
.

Now 2a = d(x, w) ≥ β(Ω1) by definition of β(Ω1); as the segment joining x and p is 
entirely contained in Ω1 we see that d ≤ B(Ω1). Hence

cos θx ≥ β(Ω1)
2B(Ω1)

as asserted.

3.4. Proof of Lemma 14b

Recall that the typical piece of the decomposition is Ωj = Fj \ Gj . We need to 
estimate |∂Fj |; this is a bit more difficult now because Fj is no longer convex (there are 
circumstances under which each Fj is actually convex - for example, when all holes are 
disks of the same radius - and we will discuss this case in the next section, to obtain a 
simpler final estimate).

Set j = 1 for concreteness. We apply Green formula to the function ρ1(x) = d(x, ∂G1). 
Note that Δρ1(x) is the curvature at x of the equidistant to ∂G1 through x; as ∂G1 is 
convex one has Δρ1 ≤ 0 on the complement of G1. By Green formula:

∫
Ω1

Δρ1 =
∫

∂Ω1

〈∇ρ1, N〉,

where N is the inner unit normal. We let D(G1, B) denote the B-neighborhood of G1, 
so that F1 ⊆ D(G1, B) by the definition of B. Since Δρ1 ≤ 0:
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∫
Ω1

Δρ1 ≥
∫

D(G1,B)

Δρ1.

By co-area formula:

∫
D(G1,B)

Δρ1 =
B∫

0

∫
ρ1=r

Δρ1 dr = −2πB

because 
∫
ρ1=r

Δρ1 = −2π for all r (we are integrating the opposite of the curvature of a 
closed curve, and we always obtain −2π). Therefore:

∫
Ω1

Δρ1 ≥ −2πB. (27)

On the other hand ∂Ω1 = ∂G1 ∪ ∂F1. Hence:
∫

∂Ω1

〈∇ρ1, N〉 =
∫

∂G1

〈∇ρ1, N〉 +
∫

∂F1

〈∇ρ1, N〉.

The first piece is |∂G1|. On the outer boundary ∂F1 we see that:

〈∇ρ1, N〉 = − cos θx ≤ − β

2B ,

where θx is as in the proof of part a), and the inequality then follows from part a). Then:
∫
Ω1

〈∇ρ1, N〉 ≤ |∂G1| −
β

2B |∂F1|,

and given (27) we obtain −2πB ≤ |∂G1| − β
2B |∂F1|, that is:

|∂F1| ≤
2B
β

(|∂G1| + 2πB),

which gives the assertion.

4. Proof of Theorem 5

About the partition {Ω1, . . . , Ωn} of the previous section for domains with n holes, 
we remark that if the inner holes G1, . . . , Gn are disks of the same radius r, then the 
equidistant set between any pair of them is simply a straight line, and therefore each 
Γjk = Ω̄j ∩ Ω̄k is a line segment; moreover the subdomains F1, . . . , Fn are all convex: see 
Fig. 11 which illustrates the partition when all holes shrink to a point.
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Fig. 11. The partition {Ω1,Ω2,Ω3} for a domain Ω punctured at the points p1, p2, p3.

We can directly apply (2) to each Ωj and obtain:

λ1(Ωj , A) ≥ 4π2

|∂Fj |2
β(Ωj)2

B(Ωj)2
· d(Φj ,Z)2

As Fj is convex, we have |∂Fj | ⊆ |∂F | and therefore we arrive at the following estimate.

Theorem 15. Let Ω = F \ (G1 ∪ · · · ∪Gn) with F convex and G1, . . . , Gn being disjoint 
disks of center, respectively, p1, . . . , pn and common radius r > 0. Then:

λ1(Ω, A) ≥ 4π2

|∂F |2
β(Ω)2

B(Ω)2 · γ2

with γ = minj=1,...,n d(Φj , Z).

We remark that if we let r → 0 in Theorem 15 we get the lower bound for the 
punctured domain Ω \ {p1, . . . , pn} as in Theorem 5.
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