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Abstract – We demonstrate the stabilization of two-dimensional nonlinear wave patterns by
means of a dissipative confinement potential. Our analytical and numerical analysis, based on
the generalized dissipative Gross-Pitaevskii equation, makes use of the close analogy between the
dynamics of a Bose-Einstein condensate and that of mode-locked fiber laser, operating in the
anomalous dispersion regime. In the last case, the formation of stable two-dimensional patterns
corresponds to spatiotemporal mode locking, using dissipation-enhanced mode cleaning. We ana-
lyze the main scenarios of pattern destabilization, varying from soliton dissolution to its splitting
and spatiotemporal turbulence, and their dependence on graded dissipation.

focus  article Copyright c© 2021 EPLA

Introduction. – Emerging phenomena comprising tur-
bulence, light, matter and quasi-particle Bose-Einstein
condensation, including the transition between coherent
and non-coherent collective states mediated by spatio-
temporal turbulence [1–8], bridge macro- and quan-
tum physics, and open the way to a “mesoscopic”
quantum world [9]. An impressive example of coherent
quantum mesoscopic state is provided by Bose-Einstein
condensation (BEC). BEC can be treated as a matter-
wave soliton, similar to the soliton solution of the non-
linear Schrödinger equation (NSE) in optics [10,11]. Such
analogy is based on the equivalence of the underlying one-
dimensional (1D) models, where time coordinate, kinetic
energy, and attractive interaction of bosons for a BEC
correspond to propagation distance, anomalous group-
dispersion (or diffraction for spatial solitons [12]), and self-
phase modulation (self-focusing) in optics, respectively.

On the one hand, it is well-known that 2D solitons un-
dergo a catastrophic collapse [12,13]. On the other hand,

(a)Contribution to the Focus Issue Turbulent Regimes in Bose-
Einstein Condensates edited by Alessandra Lanotte, Iacopo
Carusotto and Alberto Bramati.

it is also known that BEC solitons can be stabilized by
means of introducing a trapping potential [14–17], or by
tuning the effective inter-atom interaction potential from
repulsive to attractive through a Feshbach resonance [18].
In particular, this can be achieved with a periodic tempo-
ral modulation of nonlinearity [19–23], or by means of a
modulation of the trapping potential [23]. A whole zoo of
different well-localized spatial coherent and semi-coherent
states with non-zero topological charges was theoretically
demonstrated (see [15] for an overview).

A similar stabilization methodology for ultra-short
optical pulse propagation is essential in optical telecom-
munications, where the confinement potential can be in-
troduced by means of a graded refractive index (GRIN) in
optical fibers [17,24]. Moreover, the possibility of a period-
ical modulation of the group-velocity dispersion (GVD) in
optical fiber systems, and the use of different nonlinearity
mechanisms, may provide additional tools for spatiotem-
poral soliton stabilization [23,25,26]. The close analogy
between nonlinear phenomena in atomic and photonic sys-
tems makes the latter an ideal test-bed for exploring fun-
damental physics, ranging from plasma to BEC [27].
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An additional advantage of the analogy between BEC
and nonlinear optical systems concerns the scaling of the
boson amount, which is the BEC mass or the optical soli-
ton energy, respectively. This issue has two principal
aspects. The first one is the contribution of dissipative
effects to the properties of BEC [28–30] and optical soli-
tons [31]. Such a contribution can be crucial in the process
of coherent condensate (or soliton) self-emergence, and its
stability [26]. As was demonstrated, pulse manipulation
with the help of a graded dissipation in a fiber laser could
provide the means to achieve the self-emergence of sta-
ble dissipative solitons, by the so-called distributed Kerr
lens mode-locking technique [32]. Our first proposal is to
expand this method to BEC.

The second aspect concerns the scaling of the conden-
sate mass/energy, which can be provided by varying the
condensate size. In terms of fiber optics, this means using
GRIN multimode fibers (MMFs), where spatial instabili-
ties could destabilize pulse dynamics. It was found that
the effect of nonlinear spatial mode cleaning in MMFs
can suppress such instabilities, and provide a way to
achieve spatiotemporal mode locking, i.e., the formation
of localized stable coherent spatial and spatiotemporal
patterns [17,33,34].

In this letter, we consider a generalized dissipative
model based on the 2D Gross-Pitaevskii equation (GPE),
taking into account the presence of graded dissipation,
and mass/energy exchange with a non-coherent environ-
ment. The analytical soliton solution corresponding to
the ground soliton state (i.e., fundamental mode soliton
in photonics) is demonstrated. Furthermore, the stabi-
lization of 2D coherent structures by graded dissipation
(dissipative mode cleaning) is numerically analyzed.

2D dissipative soliton. – Let us consider a partic-
ular case of BEC, formed by an axisymmetric harmonic
potential of cigar type with confinement along r-axis, and
unconfined along the z-axis. In photonics, this is a model
for ultrashort pulse dynamics in a GRIN fiber laser (the
z-coordinate corresponds to a local or “retarded” time co-
ordinate in that case). The last statement is akin to a spe-
cific space-time duality in optical signal processing [35,36].
Thus, anomalous GVD plays the role of the z-component
of the boson kinetic energy. The corresponding dimen-
sionless master equation is the generalized 2D GPE:
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Here, axial symmetry and zero vorticity are assumed
for the wave function ψ(T, r, z) (which is a local-time–
dependent field amplitude in photonics). The first
term defines the kinetic energy (diffraction/dispersion in

photonics) with a “kinetic cooling” (“evaporation”) along
the unconfined z-axis. The last results from the growth of
escaping rate with kinetic energy (that is, spectral dissi-
pation in photonics) and it is defined by the τ -parameter.
The second term describes the complex (i.e., dissipative)
parabolic confining potential, whose imaginary part κ
contributes because of the resonant interaction with the
light field, or the dissipative nature of the confining lat-
tice itself [30,37]. In photonics, this term characterizes a
GRIN fiber profile, with a graded dissipation tracing the
parabolic refractive index profile [32]. The parameters for
a real-world fiber laser system correspond to table 1 in [32]
and the caption to fig. 5 (see refs. [57,58] in [32]). The
case of dissipative BEC as discussed in [28] suggests the
dimensionless values of |Λs| ∼ 0.001–0.1, which coheres
with the fiber laser parameters that we considered in this
work. The third nonlinear term is related to the two-body-
scattering length. We consider an attractive interaction
in a condensate, which defines the sign before this term:
this corresponds to self-phase modulation (self-focusing)
in photonics. The last term describes nonlinear loss caused
by a weak dissipative condensate-basin interaction. Here,
Λ < 0 corresponds to a net linear gain (a “gain” means
an inflow from non-coherent “reservoir” to the conden-
sate) [30]. We impose a possible saturation of such gain
with the condensate mass growth, as defined by the σ-
parameter. This effect is an analog of the gain saturation
in a laser. It should be pointed out that, for the case of
BEC, introducing a nonzero σ-term is a quite unusual pro-
cedure, which can be associated with the “exhausting” of
an incoherent reservoir, interacting with the condensate.
Nevertheless, as we are going to see in the following, the
results presented in this work remain self-consistent also
in the σ → 0 limit.

The dissipative potential can be characterized by an ef-
fective width (or “aperture size”) parameter χ =

√|Λs|/κ,
where Λs ≡ Λ+σ

∫ |ψ|2dz < 0 is a net gain in eq. (1). This
parameter describes dissipation-enhanced mode cleaning:
for a fiber system, its physical meaning is associated with
the spatial domain’s size, outside of which loss effect be-
gins to prevail [32]. The relevant dimensionful parameters
are presented in the captions of figs. 5–7.

The approximate solution of eq. (1) corresponding to
the soliton-like ansatz

ψ (T, r, z) = ψ0(T ) sech
(

z

Z (T )

)

× exp

[
i
(
φ (T ) + ζ (T ) z2 + θ (z) r2

) − r2

2P(T )2

]
, (2)

where ψ0, P, Z, ζ, θ, and φ are the time-dependent ampli-
tude, spatial widths, chirp, and phase, respectively, which
can be obtained by using the variational approximation
and the Kantorowitch method [38,39].
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Fig. 1: Soliton temporal width evolution obtained by direct
numerical simulation in the framework of variational approxi-
mation (red point in fig. 2): τ = 0.1, Λ = −0.01, κ = 0.009,
σ = 0.002. The initial amplitude is of ψ0(z = 0) = 0.1,
θ(z = 0) = 0, ζ(z = 0) = 0, and the initial temporal and
spatial widths correspond to the non-dissipative case consid-
ered in [32].

The T -independent solutions for the soliton parame-
ters are

ζ =
8
√

15τ
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4
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)
.

The solution for Z and the final equation for P2 are too
cumbersome, and we do not explicitly show them here [39].
The equation for P2 contains radicals and has to be solved
numerically. Direct numerical simulations in the frame-
work of the variational approximation (figs. 1 and 2(b))
demonstrate that these solutions are stable within a broad
range of initial conditions, for a confined range of the dis-
sipative parameters Λ, τ , and κ. Exploring this range
should be closely connected with direct numerical simula-
tions of eq. (1), and it will be presented elsewhere.

The dependence of soliton parameters on the various
terms in eq. (1) is shown in figs. 2, 3. The specific values
of our dimensionless parameters are close to those consid-
ered in [30]. Figure 2 illustrates the dependence of the
soliton spatial size on graded dissipation (κ), kinetic cool-
ing (τ), and gain saturation (σ), respectively. Gain satu-
ration σ leads to a decrease of the effective potential width
χ, which results in a spatial compression (or squeezing) of
the soliton. This spatial squeezing is reduced as the graded
potential κ grows larger (see fig. 2). Correspondingly, the
soliton amplitude ψ2

0 decreases (see fig. 3). One can see
from these figures that a tenfold decrease of the kinetic
cooling parameter τ leads to a significant increase of the
soliton spatial squeezing, accompanied by a substantial
growth of its amplitude.

Necessary, but not sufficient, condition for 1D-
dissipative soliton stability is the positiveness of Λs (i.e.,
the negativity of net gain), which means suppressing the
background excitation. An additional nonlinear gain term
is required for supporting a soliton (e.g., see [28,29,40]).
In our case, we do not assume such a mechanism, and
a soliton with higher intensity |ψ0|2 is stabilized by its
better confinement inside the graded dissipative poten-
tial. Obviously, the necessary but not sufficient condi-
tion for supporting such a soliton is the negativity of Λs

(i.e., the positiveness of the net gain inside the graded
dissipative potential), which, nevertheless, does not guar-
antee against background excitation and multimode in-
stabilities. Figure 4 demonstrates the dependence of the
saturated gain on the graded dissipation parameter, for
different values of gain saturation. As one can see, a lower
gain saturation supports a soliton in the broader diapason
of κ (note that the soliton energy naturally decreases with
κ). It is essential that a “kinetic cooling” (i.e., τ -growth)
enhances soliton stability.

Thus, we should point out that results based on (2),
i.e., the ground-state or fundamental mode assumption,
provide important insights regarding soliton characteris-
tics, including its stability, but are not conclusive, be-
cause they ignore the contribution of higher-order states
(modes). Such a contribution can only be grasped by full
numerical simulations of the dissipative eq. (1).

Dissipative mode cleaning. – For a specific model in
optics that is analogous to BEC, we considered the mas-
ter equation associated with spatiotemporal pulse prop-
agation in a multimode fiber laser, based on active and
nonlinear GRIN silica fibers. The graded dissipation in
the fiber laser was characterized in terms of the previously
discussed effective aperture size χ. The presence of anoma-
lous GVD, corresponding to a z-kinetic component, can be
achieved by means of an appropriate waveguide compensa-
tion of the normal dispersion of silica when considering an
active fiber dopant with gain centered around the carrier
wavelength of 1.03μm (e.g., ytterbium). For example, this
can be obtained by the microstructuring of a fiber [41]. Al-
ternatively, the carrier wavelength can be shifted deeper
into the infrared region, e.g., using an erbium-doped fiber
at 1550 nm, in order to obtain anomalous material GVD.
Following the analogy between BEC and photonics mod-
els, the longitudinal coordinate of the former corresponds
to the local time coordinate t of the latter, whereas the
GVD value defines the normalization of the z-coordinate
for BEC. Let us recall that the time coordinate T for
BEC corresponds to the propagation distance along the
optical fiber. We used the finite-element methods for the
numerical simulations of eq. (1), under the condition of
saturated gain, i.e., with Λs � 1.

In the absence of dissipation, a beam in a GRIN fiber
which is spatially confined by the external potential (see
eq. (1)) exhibits a decay into a multitude of spatial pat-
terns with complex dynamics: this corresponds to the
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Fig. 2: (a) Transverse area of the soliton (P2), and (b) its temporal width Z as a function of the gain saturation parameter σ,
the graded dissipation parameter κ and the kinetic cooling parameter (spectral dissipation in photonics) τ , Λ = −0.01. The
red point corresponds to the numerical result of fig. 1.

Fig. 3: Squared soliton amplitude for (a) τ = 0.1, and (b) τ = 0.01 as a function of the graded dissipation parameter κ, and
the gain saturation parameter σ, Λ = −0.01.

Fig. 4: Dependence of saturated net gain Λs for the soliton
solution (3) on a graded dissipation parameter κ for different
values of gain saturation parameter σ, and spectral dissipation
(“kinetic cooling”) τ = 0.1 (solid lines), 0.01 (dashed lines).
Λ = −0.01.

presence of multimode beating, or self-imaging [34], (three
spot-shoots are demonstrated in fig. 5).

The adjustment of graded dissipation provides mode
cleaning [34]: as shown by fig. 6, this is already effective
for relatively short propagation distances, and moderate

levels of |ψ|2. This corresponds to the formation of a
spatiotemporal soliton in the GRIN fiber [42]. As was
shown, energy concentration in the fundamental mode can
be interpreted in terms of two-dimensional hydrodynamic
turbulence, and it occurs even in the case of random
mode coupling [43,44]. Here, we note that mode cleaning
and stable spatiotemporal soliton formation can be essen-
tially enhanced by graded dissipation [33]. That directs
to the mechanism of stable 2D-BEC formation by means
of a manageable weak-dissipation. Nevertheless, dissipa-
tion provokes additional destabilizing effects. The first
one involves soliton decay associated with a χ-decrease
(see table 1). A more interesting effect is the observation
of stable spatiotemporal fragmentation, corresponding to
multiple pulse train generation in a fiber laser (fig. 7(a)).
This effect results from the decrease of graded dissipation
(i.e., the χ-parameter grows), so that the onset of dissi-
pative mode cleaning is hampered. As a result, there is a
decrease in the efficiency of field discrimination owing to
the intensity dependence of the effective aperture or self-
focusing, similar to the so-called Kerr lens mode-locking
regime in a bulk laser [45]. In other words, the effec-
tive aperture becomes more “penetrable” for low-intensity
fields.
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Fig. 5: Contour plots of |ψ|2 at three propagation distances
in the absence of dissipation (Λ = 0, κ = 0). The fol-
lowing parameters characterize an MMF: the central wave-
length is of 1.03μm, the group-delay dispersion coefficient is
of −0.022 fs2/cm, the fiber core diameter is of 50μm, and
the confinement potential defined by the core/cladding refrac-
tive index difference is of 0.0103 (the cladding refractive index
is of 1.457). The initial pulse with P = 7μm, correspond-
ing to 10μm beam radius at 1/e-level has a temporal width
Z = 150 fs. The input peak power is of 100 kW, and the non-
linear refractive index coefficient, defining the power normal-
ization, is of 2.7 ∗ 10−8 μm2/W. Local time and propagation
distance in photonics correspond to unconfined coordinate z
and time T for BEC in eq. (1). The dimensionless parameters
could be obtained from [32].

Fig. 6: Contour plots of |ψ|2 for Λs = −0.001, χ = 37μm.
τ is 1/100th of the GVD absolute value. Other parameters
correspond to fig. 5.

Table 1: Mode cleaning regimes for different dissipative pa-
rameters (a propagation length is mentioned, the maximum
propagation length is of 5 cm). τ is related to the anomalous
dispersion value, Λs = −0.001. Other parameters correspond
to fig. 5.

τ χ, μm Regime

0.01 50 Turbulence
0.01 40 Multipulsing
0.01 37 Regular at 5 cm (fig. 6)
0.01 35 Spatial instability after ≈2.5 cm
0.01 32 Decaying after ≈2.5 cm

0.05 50 Turbulence
0.05 40 Multipulsing
0.05 37 Regular at 5 cm
0.05 35 Spatial instability after ≈3.5 cm
0.05 32 Decaying after ≈2.3 cm

Fig. 7: Contour plots of |ψ|2 for: (a) χ = 40μm, and (b) χ =
50μm, τ = 1/50th of the GVD absolute value; Λs = −0.001.
Other parameters correspond to fig. 5.

Table 2: Mode cleaning regimes for different dissipative pa-
rameters (a propagation length is mentioned, the maximum
propagation length is of 5 cm). τ related to the anomalous
dispersion value is of 0.05, Λs = −0.01. Other parameters
correspond to fig. 5.

χ, μm Regime

20 Turbulence
10 Temporal comb till ≈1.2 cm
5 Temporal comb at 5 cm (fig. 8)
2 Temporal comb till ≈1 cm

As was previously found [26,32,46–49], the excitation
of higher-order spatial modes may enhance multipulsing.
In our case, the excitation of these modes results from
reducing multimode cleaning, due to the growth of the
effective aperture size. Thus, energy leaks into higher-
order spatial modes, which diminishes effectiveness of dis-
crimination between higher- and lower-intensity fields, and
leads to multipulsing (see above). As a result, the beam
tends to relax to a state which is characterized by multi-
pulse generation (fig. 7(a)). This is akin to dissipative
soliton multipulsing, which occurs as a result of the de-
crease of self-amplitude modulation (i.e., χ-increase in
our case) [7]. Such a transition to multipulsing can be
interpreted as an excitation of the dissipative solitons’
“internal modes” [50]. A further weakening of graded dis-
sipation results in spatiotemporal turbulence, i.e., the gen-
eration of chaotically evolving disordered spatiotemporal
structures, which occurs whenever the coherence between
the mode patterns is fully broken (fig. 7(b)).

To summarize, there is a restricted range of parame-
ters which provides effective mode cleaning by means of
graded dissipation over extremely short propagation dis-
tances (tables 1, 2). In particular, a larger saturated gain
|Λs| may result in the generation of a temporal comb of
solitons (fig. 8).
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Fig. 8: Contour plot of |ψ|2 for χ = 5μm, τ = 1/20th of the
GVD absolute value, Λs = −0.01. The propagation distance is
of 5 cm, other parameters correspond to fig. 5.

Conclusion. – In this work, we analyzed the sta-
bilization of 2D patterns (solitons) in a weakly dissi-
pative BEC with a cigar-shaped confinement potential.
The metaphorical modeling was based on the close analogy
between nonlinear processes in 2D BEC and spatiotem-
poral soliton dynamics in a GRIN MMF. The under-
lying mathematical master equation is the generalized
dissipative 2D+1 GPE, which was solved by the analytical
but approximate variational approach, and by numerical
methods. It was found that dissipative factors, such as
2D-graded dissipation, saturable gain, and kinetic cool-
ing (spectral dissipation), play a crucial role in stabiliz-
ing spatiotemporal solitons. In photonics, one can treat
such a stabilization as a manifestation of mode cleaning
in an MMF, which is enhanced by dissipation and can be
realized on extremely short propagation distances. That
could provide a spatiotemporal mode-locking mechanism
in a fiber laser, akin to the regime of distributed Kerr lens
mode locking in solid-state lasers.

We identified the main scenarios leading to the destabi-
lization of coherent spatiotemporal nonlinear wave struc-
tures. The prevailing of graded dissipation, i.e., a too
narrow effective aperture, causes 2D soliton dissolution.
The growth of the aperture size results in the forma-
tion of stable 2D soliton. A further aperture widening
causes a soliton splitting initially, i.e., the formation of
2D patterns, or spatiotemporal multipulse generation in
photonics. When the contribution of graded dissipation
becomes too weak, the condensate loses its coherence, and
spatiotemporal turbulence develops. The main practical
significance of the obtained results lies in the possibil-
ity of mass/energy scaling of coherent 2D matter wave
structures, and the demonstration of stable spatiotempo-
ral mode locking in MMF lasers.
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[38] Chávez Cerda S., Cavalcanti S. and Hickmann J.,
Eur. Phys. J. D, 1 (1998) 313.

[39] Kalashnikov V. L., Variational approach to a fiber-
laser spatial-temporal dissipative soliton: impact of
gain saturation, Wolfram Mathematica notebook, DOI:
10.13140/RG.2.2.14399.33446.

[40] Harooni M. (Editor), High Power Laser Systems (Inte-
chOpen) 2018, 212, p. 173.

[41] Zolla F., Renversez G., Nicolet A., Kuhlmey B.,

Guenneau S. and Felbacq D., Foundations of Pho-
tonic Crystal Fibres (World Scientific Publishing) 2005,
376.

[42] Renninger W. H. and Wise F. W., Nat. Commun., 4
(2013) 719.

[43] Podivilov E. V., Kharenko D. S., Gonta V. A.,

Krupa K., Sidelnikov O. S., Turitsyn S., Fedoruk

M. P., Babin S. A. and Wabnitz, Phys. Rev. Lett., 122
(2019) 103902.

[44] Fusaro A., Garnier J., Krupa K., Millot G. and
Picozzi A., Phys. Rev. Lett., 122 (2019) 123902.

[45] Harooni M. (Editor), High Power Laser Systems (Inte-
chOpen) 2018, 212, p. 181.

[46] Wright L. G., Sidorenko P., Pourbeyram H.,

Ziegler Z. M., Isichenko A., Malomed B. A.,

Menyuk C. R., Christodoulides D. N. and Wise

F. W., Nat. Phys., 16 (2020) 565.
[47] Wright L. G., Renninger W. H., Christodoulides

D. N. and Wise F. W., Opt. Express, 23 (2015)
3492.

[48] Ding E., Lefrancois S., Kutz J. N. and Wise F. W.,
IEEE J. Quantum Electron., QE-47 (2011) 597.

[49] Longhi S. and Janner D., J. Opt. B: Quantum Semi-
class. Opt., 6 (2004) S303.

[50] Kalashnikov V. L. and Chernykh A., Phys. Rev. A,
75 (2007) 033820.

34002-p7


