Using Extended Measurements and Scene Merging for
Efficient and Robust Point Cloud Registration

Jacopo Serafin®*, Giorgio Grisetti®

% Department of Computer, Control, and Management Engineering “Antonio Ruberti” at
Sapienza University of Rome. Via Ariosto 25, 100185 Rome, Italy.

Abstract

Point cloud registration is a fundamental building block of many robotic applica-
tions. In this paper we describe a system to solve the registration problem, that
builds on top of our previous work [1], and that represents an extension to the
well known Iterative Closest Point (ICP) algorithm. Our approach combines re-
cent achievements on optimization by using an extended point representation [2]
that captures the surface characteristics around the points. Thanks to an effec-
tive strategy to search for correspondences, our method can operate on-line and
cope with measurements gathered with an heterogeneous set of range and depth
sensors. By using an efficient map-merging procedure our approach can quickly
update the tracked scene and handle dynamic aspects. We also introduce an
approximated variant of our method that runs at twice the speed of our full
implementation. Experiments performed on a large publicly available bench-
marking dataset show that our approach performs better with respect to other
state-of-the art methods. In most of the tests considered, our algorithm has
been able to obtain a translational and rotational relative error of respectively
~1 cm and ~1 degree.

Keywords: Pose Tracking, Point Cloud Registration, Iterative Closest Point
(ICP)

1. Introduction

Autonomous mobile robots are used in a broad range of applications, includ-
ing logistics, mining, delivery tasks in health facilities, search and rescue and
many others. These applications rely on the integration of complex subsystems
that address specific tasks, such as localization, mapping, object recognition,

*Principal corresponding author
Email addresses: serafin@dis.uniromal.it (Jacopo Serafin),
grisetti@dis.uniromal.it (Giorgio Grisetti)
URL: http://www.dis.uniromal.it/~serafin (Jacopo Serafin),
http://www.dis.uniromal.it/ grisetti (Giorgio Grisetti)

Preprint submitted to Robotics and Autonomous Systems (RAS) August 31, 2017

path planning and so on. The 3D perception layers for a robot, in turn, lever-
age on multiple approaches to gather a consistent representation of the robot
surroundings. Registering point clouds is regarded as an essential enabling tech-
nology for these subsystems.

Aligning two point clouds means finding the rotation and the translation
that maximizes the consistent overlap between two clouds. To this end, the well
known Iterative Closest Point (ICP) principle proposed by Besl and McKay [3]
is among the most common techniques. ICP iteratively refines an initial guess
of a transformation by interleaving a search for correspondences, and the com-
putation of the transform that minimizes the distance between corresponding
points.

Since the introduction of ICP, many variants of increased robustness and
accuracy have been proposed [1][4][5][6][7]. A common intuition behind these
state of the art algorithms is the idea of registering surface, and not points. At
the base of their idea there is the observation that point clouds are sampled
representation of continuous surfaces, and when seeking for the transformation
one has to minimize the distance between corresponding surface elements rather
than between corresponding points. Notably, Chen and Medioni [8] were among
the first to introduce a point-to-plane metric that exploits the continuity of the
surface. Using a surface based error function leads to a more regular evolution of
the optimization. The clouds “slide” onto each other along the tangent direction
of the underlying surface, instead of being subject to constraints among samples
that are unlikely to represent the same point in the world.

In accordance with this intuition, we recently proposed Normal Iterative
Closest Point (NICP) [1], a variant of ICP that can run on-line on a multi-core
CPU. The main novelty of NICP is to use a 6D error metric that takes into
account the distance between corresponding points and corresponding surface
normals, and uses the surface curvature as additional cue for data association.
NICP leverages on our previous analysis on error functions based on surface
properties [2]. In that work we provided experimental evidence that considering
the geometric structure around the points enlarges the basin of convergence.
NICP is reported to compare favorably to other state-of-the-art methods on a
large publicly available benchmarking dataset.

A common application of point cloud registration methods is tracking the
position of a moving sensor while constructing local models of the environment.
Performing pairwise registration between consecutive measurements leads to an
unavoidable drift in the estimate due to error accumulation. To reduce this
effect, it is common to register the current frame against a reference model that
is augmented each time a successful registration is performed. Whereas this
reduces the drift, a naive implementation results in a linear growth of the number
of points in the model that renders the execution slower over time. Common
strategies to deal with the increasing number of points consist in aggregating the
measurements through dense or sparse voxel representations. These approaches,
however, do not easily cope with dynamic aspects since removing dynamic parts
of the scene requires expensive ray-casting operations.

In this paper, we give a more detailed description of NICP, including the

mathematical derivations that were omitted in our previous works. We aim at
providing enough information to the interested readers that want to develop
their own implementation of the method. Additionally, we discuss a set of al-
gorithmic enhancements to the original system that reduce the computation
time by 50% compared to the implementation in [1]. Being more efficient, this
system can be used with multiple sensors [9] or run on low-end computers. Fur-
thermore, we propose a projection-based cloud merging approach that allows to
limit the number of points in the scene as new clouds are added and naturally
deals with moderate dynamics in the scene. Our merging method is straight-
forward to implement and directly operates on unorganized point clouds. We
validated our approaches on a large standard benchmarking dataset and on
real world scenarios by performing both quantitative and qualitative experi-
ments. An implementation of our approach is publicly available on the web at
http://goo.gl/W3gXbE.

The remainder of this paper is organized as follows: in Sec. 2 we provide
an overview of the current state-of-the-art methods for point cloud registration;
in Sec. 3 we introduce the general ICP formulation; in Sec. 4 we describe the
original NICP algorithm in detail; Sec. 5 describes a speeded up variant of our
algorithm; Sec 6 shows comparative experiments on a wide real benchmarking
dataset; and, finally, Sec. 7 concludes the paper.

2. Related Work

The point-cloud registration problem is object of investigation since more
than 20 years, and a wide range of solutions have been proposed. The avail-
able methods can be categorized in two main groups: sparse approaches that
rely on few meaningful points in the scene, and dense methods that directly
operate on the entire set of points. Sparse approaches compute data association
based on the local structure of the points (features). It is possible to use these
methods also when no prior information about the relative pose between the
clouds is available, at the cost of a more complex system. On the other side,
dense approaches align two clouds by considering every point, and using simple
heuristics to perform the data association. Dense methods are usually faster
and easier to implement than sparse approaches and therefore, preferred for
tracking purposes. As a drawback, however, they are more sensitive to wrong
initial guesses. Our approach belongs to the class of dense algorithms.

The earliest point cloud registration methods were designed to operate with
3D laser range finders. These sensors provide highly accurate data, large field
of views and high range at a relatively low frame rate. Performances of a few
seconds in registering point clouds were more than acceptable since few scans
could cover large regions of the environment.

The Iterative Closest Point (ICP) algorithm [3] is one of the first and most
used techniques for registering point clouds. It is an iterative algorithm that
refines an initial estimate of the relative transformation. At each iteration,
starting from the current transform estimate, the algorithm tries to find pairs
of points that most likely represent the same patch of surface in the two clouds.

Once the correspondences are computed, a new and improved transformation
is calculated for example through the Horn [10] formula that minimizes the
Euclidean distance between corresponding points. Most heuristics rely on the
current estimate to perform data association, thus ICP and its variants require
multiple iterations to converge. Note that the optimization requires linear time
in the number of correspondences, this makes the data association heuristic one
the main bottleneck of the entire computation. After its introduction, ICP has
been improved in many ways.

As stated in the previous section, the main drawback of the original formu-
lation of ICP is the assumption that the points in the two surfaces are exactly
the same. This is not true since the point clouds are obtained by sampling a
set of points from the surface observed by the sensor. If the sensor view point
changes, the probability that two points in the clouds are the same is very low.
This is particularly evident at low sampling resolutions. To cope with this wrong
assumption, Chen et al. [8] replaced the Euclidean distance error metric used
by the original ICP with a more robust point-to-plane criterion. This models
the fact that the points measured by the sensors are sampled from a locally
continuous and smooth surface.

Similarly, Segal et al. [4] developed a probabilistic version of ICP called
Generalized-ICP (GICP). GICP takes in account the model of the sensor noise,
and utilizes the local continuity of the surface sampled through the cloud. This
algorithm is a plane-to-plane variant of ICP that exploits the surface normals to
weight each matching correspondence in the objective function. The core idea is
to consider the shape of the surface surrounding the point by approximating it
with a planar patch. In the optimization, two corresponding patches are aligned
onto each other by neglecting the error along their tangent, and penalizing the
normal direction. This can be easily implemented, during the minimization
step, by forcing the covariance matrix of a measurement to have the shape of a
disk aligned with the sampled surface.

Magnusson et al. [5] approximated the local structure with a set of Gaus-
sians capturing the statistics of the surface in the neighborhood of a point.
This representation is commonly known as the Normal Distribution Transform
(NDT). NDT can be seen as a registration algorithm operating between spatial
point distributions instead of individual points. Thanks to the more realistic
objective function, both NDT and GICP exhibit a substantially more stable
convergence behavior. The error metric minimized is still a weighted distance
between 3D points. In contrast to NDT and GICP, our method utilizes an
extended measurement vector composed by both the point coordinates and its
surface normal. This means that our error metric measures a distance in a
6D space. Our method uses an NDT-like representation of the scene, but the
statistics are computed directly on an image projection instead of a voxel-grid
or a KD-tree.

Within ICP and its variants, the optimization and the correspondence search
steps can not be considered independent. In fact, if the optimization is robust
to outliers and exhibits a smooth behavior, the chances that it finds a better
solution at the subsequent step increases. This allows to obtain an improvement

at each iteration until a good solution is found. Despite NDT and GICP, the au-
thors are unaware of other methods that improve the objective function. Since
point clouds are the result of sub-sampling a surface, the local characteristics
of this surface play a fundamental role in the optimization. In other words, the
objective function has to express some distance between surface samples, and
the optimization algorithm has to determine the best alignment between these
two set of samples. A surface sample, however, is not fully described just by
3D points, but it should require additional cues like the curvature, the surface
normal and, potentially, the direction of the edge. Both NDT and GICP mini-
mize a distance between corresponding points, while they forget additional cues
that play an important role in determining the transformation and in rejecting
outliers.

Steinbruecker et al. [11] developed Dense Visual Odometry (DVO), this
method takes advantage of the additional light intensity channel available on
modern RGB-D sensors. The idea behind this approach is to compute an image
containing the neighborhood of the edges extracted from the corresponding RGB
image. Thanks to the depth channel, these edges also correspond to 3D points,
and thus they can be straightforwardly reprojected in the image plane. The
transformation is found by minimizing the photometric distance of the regions
around the edges on the image plane. The objective function clearly minimizes
a set of 2D distances, and this further reduces the observability of the transform
resulting in a narrow basin of convergence. Since DVO has to process a reduced
amount of data, it partly copes with this issue by running at very high frame
rates. In fact, the capability to process data at a frame rate of 30 Hz, or greater,
makes the assumption of a good initial guess true in most cases. Unfortunately,
DVO suffers from the noise and the blur affecting moving RGB cameras, and
it is sensitive to illumination conditions. Actually, this is more a limitation of
the sensor itself than of the algorithm, however these issues make the approach
inadequate to operate in scenarios characterized by poor illumination or robots
moving fast. The main advantage coming from the use of the RGB channel is
that, in case of poor structure in the 3D data (e.g. when looking at a flat wall),
the algorithm is still able to track the camera pose if some texture is present.

Newcomb et al. proposed Kinect Fusion (KinFu) [6], which is considered
one of the major breakthroughs in dense depth mapping. It is a more complex
system that combines both components of mapping and point cloud registration.
KinFu utilizes the brute force of the GPU to effectively update the environment
representation, thus it can run in real-time despite the computationally heavy
environment representation. The camera tracking is a point-to-plane variant
of ICP that uses image reprojection to determine the correspondences. This
camera tracker, however, easily fails if the sensor is moved too fast resulting
in ICP to get lost. As in the case of GICP, our approach shows an increased
robustness to these kind of situations.

Point cloud registration is a base building block for many robotic appli-
cations, in particular it is widely used in localization and mapping systems.
Simultaneous Localization and Mapping (SLAM) is the problem for which a
mobile robot can build a map of the surrounding environment, while at the

same time localize itself in that map. In SLAM, maps can be classified as land-
mark and dense maps. The choice of a particular map representation depends
on the type of sensors used, on the characteristics of the environment, and on
the estimation algorithm used. Landmark maps [12][13][14] are usually pre-
ferred in environments where locally distinguishable features can be identified,
and especially when RGB cameras are used. On the other hand, dense repre-
sentations [15][16][17][18] are commonly used in conjunction with range sensors
like lasers or depth cameras.

The acronym SLAM and its first definition was introduced by Durrant-
Whyte et al. in [19], however the first probabilistic SLAM problem born in
a series of papers by Cheeseman and Smith [12][20]. These works demonstrated
that landmark estimates are all correlated with each other by the common error
of the estimated pose of the vehicle [21].

SLAM algorithms can be classified accordingly to the estimation technique
used: filtering or smoothing. Filtering approaches rely on recursive Bayesian es-
timation, also known as Bayes filtering. Dynamic Bayesian Networks (DBN) are
a natural representation to describe filtering processes since they highlights the
underlying temporal structure of the problem. The big issue with the general
Bayes filter is that in most of the cases it is not computationally tractable. A so-
lution to this problem was given by the introduction of a family of recursive state
estimators called Gaussian filters. The most famous and used Gaussian filter
approaches developed to solve the SLAM problem are those based on Kalman
(KF) and Extended Kalman filters (EFK) [12][22], thin junction trees [23], In-
formation (IF) and Extended Information filters (EIF) [24][25], and particle
filters [13][14][16][17][26][27]-

Conversely from filtering methods, smoothing approaches estimate the full
trajectory of the robot from the full set of measurements [28][29][30]. These
approaches address the so called full SLAM problem, and they typically rely on
least-squares error minimization techniques. These methods use an alternative
representation to DBN known as pose graph. Such representation highlights
the underlying spatial structure. More specifically, in graph-based SLAM the
poses of the robot are represented by nodes (or vertices), and spatial constraints
between poses that result from the robot observations or from odometry mea-
surements are encoded as edges (or factors) between the nodes. Once the graph
is constructed the goal is to find the configuration of the robot poses that best
satisfies the constraints given by the edges. An important and challenging as-
pect of this representation is the computation of the data association, known
also as loop closure detection. The loop closure problem aims at finding past
robot poses (far in time) that are near to its current position (close in space).
Identifying when a robot has returned back to a previous location allows to
reduce drastically the error on the map, and it increases the robustness of the
entire algorithm. The main drawback of the data association is that, even only
one incorrect correspondence can lead the algorithm to terrible mapping results.
During a loop closure two kinds of errors could occur: false positive matching
and missed detected matching. The first one happens when the robot closes
a loop with a wrong match, the second occurs when a loop closure is missed

because of a failure in the alignment between the previous mapped area and the
current one.

The graph-based SLAM problem is usually decoupled in two different steps:
the composition of the graph from the raw measurements (graph generation),
and the computation of the most likely configuration of the poses given the
edges (graph optimization). These two steps are called respectively front-end
and back-end. The former is heavily sensor dependent, while the latter relies
on an abstract representation of the data which is sensor agnostic. Smoothing
methods represent the current state-of-the-art for solving SLAM problems, and
point cloud registration is commonly used as part of front-end systems

During the past years many approaches relying on network-based SLAM
have been proposed. The concept of graph SLAM born in the seminal paper
of Lu and Milios [28]. Gutmann and Konolige in [31] developed an efficient
method for constructing the graph and for detecting loop closures while run-
ning an incremental estimation algorithm. The ATLAS framework [32] creates
a two-level hierarchy of graphs and employs a KF to build the bottom level.
A global optimization approach is then used to align local maps at the second
level. Like ATLAS, Estrada et al. [33] proposed Hierarchical SLAM as a way for
using independent local maps. Olson [34] presented a front-end with outlier re-
jection based on spectral clustering. For performing data association, statistical
approaches such as the joint compatibility test [35], or the x? error test are often
applied. Niichter et al. in [36] construct an integrated SLAM system for 3D
mapping. The main goal is to improve the construction of the network, while for
the optimization they used a 3D variant of the approach of Lu and Milios [28].
Dellaert et al. [30] and Ranganathan et al. [37] developed an approach known as
Square root smoothing And Mapping (SAM). With respect to EKF methods, it
handles non-linearities better and it is faster to compute. Moreover, SAM gives
an exactly sparse factorization of the information matrix and it can be used to
incrementally acquire 2D and 3D maps. Successively, Kaess et al. [38] proposed
iSAM, an on-line mapping system. More recently other full graph-based SLAM
systems have been proposed like Kintinuous [39], DynamicFusion [40], RTAB-
SLAM [41] and ORB-SLAM [42]. Whelan et al. [43] presented ElasticFusion,
where they use surfels in the graph instead of modelling poses.

3. ICP and Point Representations

Registering two point clouds consists in finding an isometry that maximizes
the overlap between the two clouds. More formally, let P* = {p}.n.} and
P = {p§.y-} be the two set of points, we want to find the transformation T*
that minimizes the distance between corresponding points in the two scenes:

X?j
T = argl{ninz (Tep) - pf)T Qi (Top; —pf). (1)
c y

e;;(T)

In Eq. 1 the symbols have the following meaning:

T is the current estimate of the transformation that maps P* in the ref-
erence frame of P¢;

e ;; is an information matrix that takes into account the noise statistics
of sensor and/or surface;

o C = {(i,4)1.y}, s a set of correspondences between points in the two
clouds. If (i,j) € C, means that the point p; in the reference cloud P*

corresponds to the point p§ in the current cloud P¢;

e @ is the standard composition operator (Smith et al. [12]) that applies the
transformation T to the point p. If we use the homogeneous notation for
transformations and points, @ reduces to the matrix-vector product.

Clearly the exact correspondences are not known. However, assuming to have a
good approximation for the initial guess of the relative transform, it is common
to compute an approximation of these correspondences through some heuristic
(i.e. nearest neighbor). In its most general formulation, ICP iteratively refines
the current estimate T by interleaving the search for correspondences (data
association) and the solution of Eq. 1 (optimization). Appendix A contains the
mathematical derivation of the least-squares problem used to solve Eq. 1. At
each new iteration, the data association is recomputed after applying to the
cloud P* the most recent transformation T.

Over time ICP has been modified and extended to a large number of variants
of increased robustness and performance. These differ by the choice of the
information matrix £2;;, or by the heuristic chosen to find the correspondences.
Plain ICP uses a diagonal €2;; potentially scaled with a weight capturing the
likelihood that a correspondence is correct. In its most general formulation,
GICP models £2;; in order to incorporate the surface information from both
clouds

Qi; = (T} +RZRT) ! (2)

where

S 1 S 1
= b Ip= Y e =) Pk =) (3)
|Vn‘ PLEVn |Vn‘ PkEVn

with V,, being the set of points in the neighborhood of p,,. Such a formulation,
commonly known as plane-to-plane, increases the overall symmetry of the model.
The covariances 37 and X are forced to have a disk shape and to lie on the
surface from where p§ and pj were sampled (3¢ and 37 with a small eigenvalue
along the normal direction). When carrying on the minimization in Eq. 1, GICP
replaces the points with their means 47 and 5, and the information matrix €2;;
with the result obtained by applying Eq. 2.

Note that this formulation of GICP requires at each iteration of the algorithm
a double matrix multiplication, and a matrix inversion, for each correspondence.
This yield a significant increase in computation time, in particular when the
number of correspondences is in the order of tens of thousands, like in the case

of dense point clouds. As stated by Segal et al. in [4], when the information
matrix of the reference surface 37 is neglected, that means ;; = (ZH~L,
we obtain a limiting case of GICP known as point-to-plane. Albeit slightly
less accurate, this special case of GICP saves computation time since 2;; stays
fixed during the entire alignment. This makes the approach particularly suitable
when dealing with high frequency dense stereo sensors like the Asus Xtion, or
the Microsoft Kinect. Our method is a variant of a point-to-plane GICP, that
extends the measurements of the error function e;; with the surface normal
components.

In all cases here described the error vector T & p; — p§ is computed as
the difference between two 3D points, and lives in R3. Also, consider that two
matching points in two different clouds are unlikely to be exactly the same point
in space. This introduces an arbitrary error while minimizing the Euclidean
distance. In this paper we introduce a technique to reduce this error. This is
done by reformulating the correspondence between points as a partial overlap
between small surfaces centered in the points, and applying an error metric that
takes into account this new aspect.

3.1. ICP Probabilistic Formulation

Given the correspondences, we can model the point cloud registration as a
maximum-a-posteriori (MAP) estimation problem. In particular, the alignment
can be seen as the estimation of the position x of a robot given a set of measure-
ments of the surrounding points. In this scenario, one of the cloud is fixed and
it represents the global world, while the other it is our current measurement z.
More formally, we want to estimate the state x* that maximizes the probability

p(x[z):

X = angmax{plxls)) (4)
(Bayes Theorem) = argxmax{p(z|x)p(x)} (5)

N
(Measurement Independence) = argmax {p(x)Hp(zﬂx)} (6)

N
= arg)r(nin {— log (p(X) Hp(zz'IX)) } , (7)

where the last equality comes from the fact that maximizing the posterior is the
same as minimizing the negative log-posterior.

Let now h;(-) be a known function called observation or measurement model
that, given a state x, returns the prediction z; of the measurement as if the robot
is located in x. Assuming the measurement noise €; to be zero-mean Normally
distributed with information matrix €2;, we can rewrite in a more explicit form
the likelihood of the measurement:

plale) ox exp(— 3 (hi(x) —) i(i(x) —), ©

and the prior:

p(x) o exp(— 5 (B () — 70) oo (x) — 20)). Q

for some given function hg(-), prior mean zy and information matrix €2y. In our
case z, = h;(x) = T~ 1(x) @ z;

At this point, the maximum-a-posteriori probability encoded in Eq. 7 can
be manipulated as follows:

x* = argin {_10g <p<x> Hp<zi|x>)} (10)

%

N
argmin {Z(z; —2)7Q(2, — zi)} (11)

X .
2

N
= arg}r(nin {Z ei(x)TQiei(x)} . (12)

Note that the squared ls-norm cost function derived in Eq. 11 is correct only
if the measurement noise is Normally distributed. If such assumption changes,
and for example the noise follows a Laplace distribution, the cost function will
be the l;-norm. The reader might notice the similarity of the last equation with
the general definition of a least-squares problem described by Eq. 41. For a
detailed derivation of the solution of a least-squares problem see Appendix A.

4. Normal ICP

Our method is a variant of ICP that deviates from the general scheme pre-
sented in Section 3. Instead of considering only the Euclidean distance between
points, we exploit the local properties of the surface, characterized by the surface
normals and the local curvature, both in the search for correspondences, and in
the computation of the best alignment. In addition to that, to reduce the drift
occurring when performing pairwise alignment of consecutive measurements, we
construct a global model of the scene by integrating new point clouds.

Figure 1 illustrates the different stages of our system that are resumed below:

e our algorithm computes a Cartesian representation of the 3D point cloud
from the raw input data, shall it be a 3D scan, a depth image or a com-
bination of them. See Section 4.1;

e subsequently, our method adds to each point of the cloud the properties of
the surrounding surface, namely normal and curvature (see Section 4.2);

e as in a traditional ICP our approach iterates the following steps to refine
an initial transform T:

10

f 3D Euclidean Points .
~ Input Depth Point
‘ P P Characteristic

Image Reading Terton o

3D Euclidean Points
Surface Normals

Curvature
Data
ICP iteration: refine Association
the trasformation
computed by the aligner Set of
until convergence or Correspondences
a maximum of iterations
has been reached . .
Point Cloud Point Cloud
Alignment ‘ Merging

|
Final Alignment

Transformation

Figure 1: Data flow of our approach NICP.

— search for correspondences performed using a time efficient projection
criterion (ICP approaches using this kind of correspondence search
are also known as projective-ICP methods)(Section 4.3);

— computation of the transformation that minimizes the difference be-
tween the corresponding points and their normals (Section 4.4). This
differs from previous variants of ICP that minimize the distance be-
tween the euclidean positions of corresponding points. With respect
to common ICP implementation metrics, as demonstrated in our pre-
vious work [2], our least squares formulation enlarges the basin of
convergence;

e once convergence is reached, or the iterations terminate, our method
merges the current cloud into an existing model: the scene (see Sec-
tion 4.5). In this phase, elements belonging to dynamic objects or in-
consistencies are eliminated, and nearby points are merged to keep the
size of the cloud tractable.

4.1. Projecting a 3D Point Cloud onto a Range Image and Vice-Versa

Typically, 3D sensors provide an indirect measure of the cloud. As an ex-
ample, depth cameras generate images where the value of the pixel (u, v) has
the depth d of the object closest to the observer, and lying on a ray passing
through that pixel. These images are normally called depth or range images.
To extract a 3D point cloud, it is necessary to apply a function that depends on
the intrinsic camera parameters. Similarly, a 3D laser provides for each point an
azimuth 6, elevation ¢ and the range d measured at that elevation. Normally,
both the azimuth and the elevation angles are discretized, for this reason it is
possible to see a 3D scan as a range image where (6, ¢) are the coordinates of a

11

Figure 2: Example of the effect of applying the function 7—1 (right) to the input raw mea-
surement (left).

pixel on a spherical surface. The value d of the pixel is its depth. Thus, without
loss of generality, we can define a projection function s = 7(p) that maps a
point p from the Cartesian to polar coordinates. The point in measurement
space s can be either a (u, v, d) or (6, ¢, d) triplet depending on the type of
sensor used. Let then 771(s) be the inverse of a projection function that maps
a raw sensor measurement to a point in the Cartesian space.

The very first step of our method is to apply the function 7~! to the raw
measurements to compute a Cartesian representation of the point cloud. This
is done once each time a new measurement becomes available. Fig. 2 shows an
example result of this step. In case one uses multiple sensors this procedure
is performed individually for each of them, producing one Cartesian cloud for
each sensor.

4.2. Computing Local Surface Statistics and Normals

A point measurement obtained by a range sensor is a sample of a piece-wise
continuous surface. This is the core idea of the point-to-plane and plane-to-plane
metrics used by Chen et al. [8] and Segal et al. [4].

We locally characterize the surface around a point p; with its surface normal
n; and curvature o;. In order to compute the normal, we extract the covariance
matrix of the Gaussian distribution N?(u, 3%) of all the points that lie in a
sphere of radius R centered in the query point p;. In our evaluation, we found
experimentally that 10 cm is a good value for R in indoor environments. If the
surface is well defined, meaning that it is reasonably flat, it can be approximated
by a plane, and only one eigenvalue of the covariance will be substantially smaller
than the other two. The surface normal is selected as the eigenvector associated
to the smallest eigenvalue and, if necessary, reoriented towards the observer
point of view.

Likewise GICP, for each point p; we compute the mean 1 and the covariance
37 by using Eq. 3. To determine the set V; of points inside the sphere, a standard

12

implementation of the above algorithm would require expensive queries on a KD-
tree data structure where the cloud is stored. To speed up the calculation, we
adopt an approach based on integral images, described in [44], that allows us
to compute Eq. 3 in constant time. Once the parameters of the Gaussian are
evaluated, we get its eigenvalue decomposition as follows:

M 00
S=R|(0 X O0|R" (13)
0 0 X3

In the previous equation Ai.3 are the eigenvalues of 39 in ascending order, and
R is the matrix of eigenvectors that represent the axes of the ellipsoid that
approximates the point distribution. We use the curvature o; = A1 / (A1 + A2 +
Asz) € [0,1] to discriminate how well the surface is fitted by a plane (see [45] for
more details). The smaller it is o, the flatter is the surface around the point.

In the real case, due to the sensor noise, even surfaces that are perfectly pla-
nar will not have a perfect 0 curvature (or in other words the smallest eigenvalue
null). To reduce the effect of this noise, when needed, we modify the covariance
matrix X7 by forcing a “disc” shape. This can be achieved by modifying the
length of the axis of the ellipsoid in the following way:

e 0 0
S« R[(0 1 O|R” (14)
00 1

where € is a small coefficient, in our experiments € is equal to 0.001. If the
surface is not well approximated by a local plane (the curvature is high), we do
not modify 3%. This technique has been first introduced by GICP.

After this step, each point p; belonging to the cloud is augmented with its
own surface characteristics (u$, X%, 0;). Figure 3 (left image) shows an example
of its typical outcome.

In case one uses multiple sensors, our approach adds the surface normal and
the curvature of the points individually for each point cloud. This operation is
carried out in the reference frame of the sensor. Let Py, be these clouds. By
knowing the pose of each sensor K. with respect to the reference frame of the
robot (or more in general a common reference frame), our method computes a
global cloud P¢ in such frame as the union of the points in P7,;, after applying
the corresponding transform:

Pe= |J Kio Py (15)
K;eS

with S being the set of sensors used.

4.8. Projection Based Correspondence Finding

Similar to [6] and [11] we search for the correspondences by using a projection
criterion. In particular, we project the reference cloud on a depth image whose

13

Figure 3: Left: example of the effect of extracting the surface statistics. According to their
curvature o, green ellipsoids correspond to points lying on flat regions while red ones to
corners. Right: example of the output generated after evaluating the data association. Corre-
spondences are shown as violet lines connecting matching points in the blue and green clouds.

viewpoint is the current estimate of the transformation, and points that fall
in the same pixel coordinates that have compatible normals and curvature are
labeled as a correspondence. Note that this projection operation does not need
to be performed for the current cloud, since we have already the corresponding
depth image. While the approach by itself is straightforward, it is necessary to
design an efficient implementation due to the potentially large amount of data
the algorithm has to manipulate. We describe now a procedure that reduces
the memory movements and brings the clouds manipulation to the minimum.
The first assumption we make is that the point clouds are stored in arrays not
necessarily ordered in any way. To describe our procedure we first introduce the
concept of index image. Given a projection model 7(R3) — R3, an index image
7 is matrix where the element of coordinates (u, v) contains the index of the
point p; in the array such that 7(p;) — (u, v, d)T. If more than one point falls
in the same pixel, we store the index of the point closest to the observer and
having a normal oriented towards the center of projection (the point of view).

Now, Let Z(m, P) be an index image computed from the cloud P using the
projection function 7. At the beginning of the registration process we compute
the current index image by projecting all points of the current cloud P¢:

I° = I(m, P°). (16)

Since our optimization procedure keeps fixed the current cloud, Z¢ does not
move during the entire alignment, thus we do not need to recompute it at every
iteration.

Conversely, we need to calculate the index image Z* of the reference cloud
P* at each iteration. Note that, by taking approximately 30% of the entire

14

registration time, together with the correspondence search heuristic this step
represents an important bottleneck during the alignment. However, this is nec-
essary since, at each iteration, we have to re-map the reference cloud in the
frame of the current cloud using the most recent transform T

T" = I(r, T & P"). (17)

Here & applies the transformation T to the whole cloud Pr.

The reference cloud P" can be large, thus this reprojection is an expen-
sive step. An easy optimization we perform consists in clipping P* around the
current location once before starting the iterations.

Let Z, ., be the value of the pixel of coordinates (u,v) in the index image Z.
At this point, from Z* and Z¢ we generate a candidate correspondence for each
pixel coordinates (u,v) as (i,7),., = (Z¢ . T ,)- A candidate correspondence
(i,7) between the points p§ and p; is rejected if one of the following constraints
is verified:

e cither p{ or p}

% do not have a well defined normal;

e the distance between the point in the current cloud and the reprojected
point in the reference cloud is greater than a threshold:

IT @ p} — p§l > eq; (18)

e the magnitude of the log ratio of the curvatures of the points is larger than
a threshold:
|log of —log o] > €5; (19)

e the angle between the normal of the current point and the reprojected
normal of the reference point is greater than a threshold:

n; - (T ®nj) < ep. (20)

In our evaluation, we found experimentally that good values for €4, €, and €, are
respectively 0.5 m, 0.95 and 1.3. Figure 3 (right image) illustrates an example
of the output of the correspondence selection. By using index images, we avoid
copying points, normals and covariance matrices in temporary structures, thus
increasing the whole speed of the algorithm.

In case of multiple sensors this procedure is repeated independently for each
of them, producing two index images for each sensor Z; and Zj, by considering
the relative pose of the sensor on the mobile base. This leads to the following
formulation for Eq. 16 and Eq. 17:

c=I(mK,'eP) I,=I(r,ToK,'a&P). (21)

The remaining operations remain the same.

15

4.4. Computing the Relative Transform

Once we have evaluated a set of correspondence pairs C = (i, j);.,,, We com-
pute the relative transformation between the two frames by using an iterative
least squares formulation (see Appendix A for the mathematical derivation of
the least-squares problem). Recall that each i*" point in a cloud contains the
following information: the Cartesian coordinates p;, the surface curvature oy,
the surface normal n; and the covariance matrix 3.

Let p be a point with normal p = (pT nT)T and T a transformation
matrix parametrized by using a rotation matrix R and a translation vector t.
The @ operator on points with normals can be defined as:

~ - _ (Rp+t
p —T@p_(Rn

This means that, given a correspondence pair and the current transform T, the
error e;;(T) is a 6D dimensional vector

(22)

eij (T) =T ®pj — b5 (23)

Substituting Eq. 23 in Eq. 1 leads to the following objective function:

> e (T) Qe (T). (24)
C

Here flij is a 6 x 6 information matrix whose goal is to scale the different
components of the error. The ideal behavior we want to obtain from that matrix
is to rotate corresponding points so that their normals align, while at the same
time, the distance along the normal direction is penalized. In addition to this,
it also neglects the distance along the plane tangents. With this in mind, we
impose the translational and normal components to be independent between
each other, and we select ;; as follows:

~ Q0
Q= < OL on) . (25)

Here F = 37! is the surface information matrix around the current point
ps, and Q7 is the information matrix of the normal. If the curvature is small
enough we force 2} to have a disk shape as follows:

Q'+~ R

O Ol
o = O

0
0] RT, (26)
1

otherwise we impose €2}' to the identity. By generating such information matri-
ces, a correspondence pair is minimized by allowing the points to slide onto each
other along the tangential direction of the surface, and rotating them so that
their normals align. The reader might notice that setting 2} to zero makes our

16

objective function identical to point-to-plane GICP. We refer the reader to our
previous work [1] where we investigated the effects of the weight of the normals
in the registration.

To reduce the effect of outliers we further robustify the error function by
clamping the norm of the X?j of each point to a maximum value. This method
is known has “winsorization”. To this end we compute a scaling factor v;; for
cach information matrix flij as

1 ifx} <K

Vij = { % othérwise ’ (27)

where K is a thresholding value of the x?j error that discriminates when a pair
of corresponding points ¢ and j is considered an outlier or not.

Our method minimizes Eq. 24 by using a local parametrization of the pertur-
bation in the following form: AT = (At, At, At, Aq, Agq, Ag.)T.
It is composed by the translation vector At = (At,, At,, At.)T and the imag-
inary part of the normalized quaternion Aq = (Ag,, Agy, Ag:)T. In order to
smooth the convergence of the whole system we use a damped Gauss-Newton al-
gorithm. This prevents the solution to take too large steps that might be caused
by non-linearities or wrong correspondences. More formally, at each iteration
our approach solves the following linear system:

(H+ AI)AT = b. (28)

Here, H=)_ Jz;flij.]ij is the approximated Hessian and b =) Jiijlijeij (T) is
the vector of residuals (more details can be found in our previous works [1][2]).
Once we computed the perturbation AT from Eq. 28, we refine the current
transformation as:

T+ AToT. (29)
The Jacobian J;; is calculated by evaluating the derivative of Eq. 23 in

AT =0 I ol .
- (0 —Q{T@E‘gk) (30)

AT=0 J
where [v]x is the cross product matrix of the vector v (see Appendix B and
Appendix C for the mathematical derivation of the Jacobian J;;). Note that, it
is possible to construct efficiently the linear system in Eq. 28 by exploiting the

block structure of the Jacobian, and its substantial sparsity.

In case of multiple sensors, we carry on a single optimization step based on all
correspondences found in all sensor frames. The aim of this optimization step is
to compute the transform of the robot origin that minimizes all correspondences.
Since all points in the clouds are expressed in a common frame, we do not need to
take care of the sensor transformations K., that have been already embedded
in the points.

- 66,‘]‘ (AT (&) T)

Jii
J OAT

17

D’l(i,’l) - IDL,U > T D'Z,v - D'I(J:,,'U >T ||Dru,v - Di,v” <T
Replace Point Add Point Clusterize Point

Figure 4: Graphical example showing the three possible cases considered by our method
during the clustering step of the merging process. In the image, k. represents the origin of
the current point cloud.

4.5. Point Cloud Merging

To gather a map, or track the pose of a robot, it is common to perform several
pairwise alignments. Each registration introduces a small error and the map
can rapidly become inconsistent. To limit this drift, performing incremental
alignments on the same model has been reported to be very effective. After
registering each new measurement, a local map is augmented with the new
aligned data. This is at the base of KinFu, and many successful 2D mapping
approaches. The model generated in this way is typically locally consistent.

A naive implementation of this strategy would result in constant growth of
the points in the reference model, and since the performance of the algorithm
depends directly on the number of points, we might expect a linear increase
in per-frame computation as the time passes. Note that, many of these points
are samples of the surface very close in space. To keep the process tractable,
and enhance the quality of the model, it is common practice to apply some
decimation or aggregation technique. Furthermore, each point is a measurement
that comes with its own error that depends by the sensor. In case of depth
cameras typically this error grows with the distance measured. Based on the
above considerations, while doing this decimation, it is frequent to refine the
point statistics.

In our current implementation we keep for each point the coefficients of a 1D
normal distribution that describes the isotropic uncertainty of the measurements
in the space. In principle, one could represent the full 3D distribution of a point
noise, however, our experiments have shown that an isotropic noise provides the
best trade off between computation and accuracy.

The aim of a merging procedure is to fuse the points of two clouds to get
a unique consistent model, and at the same time to refine the statistics of the
points. The new model should have a regular density of measurements. A
merging procedure therefore consists of two components:

e clustering, where we partition the input clouds in sets of points that will
contribute to a single one in the output cloud;

18

e update, where all statistics of the new point are fused to a new one.

Optionally, if the scene is dynamic we might want also to remove points from
the model.

In this section we propose a projection based approach for clustering that
leverages on the index-image data structure presented before. This model allows
us to efficiently group the points into sets and it handles occlusion. We omit the
case of multiple sensor as it is a straightforward extension of the single sensor
case.

We assume to have two aligned clouds: P" and P¢, and to know the relative
transform T between them. We can then compute a view of the reference as if it
was observed from the origin of P°. This is done already during the computation
of the correspondences through Eq. 17. In addition to the index image Z%, we
also compute the range images D" and D¢ for both P and P°. This operation
naturally handles occlusions. Let D,, , be the value of the pixel of coordinates
(u,v) in the index image D. By selecting a distance threshold parameter 7, we
scan the two range images pixel by pixel and based on the depth comparison
we perform the following operations:

e if Dy, ,— D, , > T, the new ray crosses an existing element of the reference
surface. In absence of noise, this results in replacing the point Dy, , with
the point Dy, . In other words, if we see through a point in the reference
cloud we replace it with the corresponding transformed point in the current

cloud;

e if D}, , — D5, > 7, the new ray ends much before a point in the previous
cloud. This results in the new point to be added to the reference model
as it might be due to a new object entering in the scene;

o if | Dy, — D5 || <7, the two points are close, so they are likely to belong
to the same surface, and they end up in the same cluster.

Figure 4 illustrates these three cases.

Please note that, compared to traditional clustering approaches that rely on
voxelization, this method makes use of the free space and naturally handles the
removal of old points in the scene. In the worst of the cases we have a number
of clusters equal to the number of pixels in the image.

Once we are done with the clustering, we update the noise statistics of each
point and we adjust its estimate by using an information filter as follows:

N N
Qu,v = Z Q;n My = Q;ﬁ; Z Q?I *Pi (31)
=1 =1

where @ is the inverse of the covariance matrix of the ¢-th point p; falling in
the cluster (u,v). We replace then the estimate of each point in the reference
cloud with the mean of the cluster.

After updating the point positions, we need to recompute the normals by
applying the procedure described in Section 4.2. Note that only the normals

19

Figure 5: Example of merging. Note the difference in the thickness of the walls due to sensor
uncertainty before the merging (left), and after (right).

within the area of the cloud where points have been inserted or modified are
recomputed. Fig. 5 highlights how the merging helps to remove artifacts (thick
wall) generated by a naive accumulation of the point clouds.

5. Speeded Up NICP

Thanks to its parallel implementation, NICP is able to execute in real-time.
However, this can not be ensured when NICP is used in conjunction with low-
end computers or with multiple sensors.

In the remainder of this section we highlight the main bottlenecks of the
procedure described before, and how we addressed them to further enhance the
processing time performance.

5.1. Computation of the Normals and the Point Statistics

The computation of the surface statistics (Section 4.2), requires the solution
of a third degree polynomial for each pixel to calculate the eigenvalue decom-
position of the covariance.

A faster but less accurate alternative way, is to compute the normals directly
in the depth image, as the normalized cross product of points projecting onto
adjacent pixels (see Fig. 6). Namely, given the point p, , that projects in the
pixel (u,v), we compute its normal direction as follows:

I1/
/ U,v

Iluﬂ) - (pu+A,U - pqu,v) X (pu,erA - pu,va) Ny v = || 7 ||

u,v

(32)

Here, A is an offset on the image of a few pixels. This procedure is substantially
faster, however leads to poor quality normals, that improve as A increases.
Typical values of A range from 2 to 5 pixels. To further smooth the normal we
apply a block filtering to the normals.

20

Figure 6: Graphical example of cross product surface normal computation. The red square
on the top right is a magnification of a part of the range image shown on the left. We select
a square region on the depth image, around the query point pu,», whose neighbor points
Put+A,vs Pu—A,u, Pu,v+A and Py ,—A are used to compute the normal via cross product
(bottom right image vy X vy).

5.2. Computing the Relative Transform

During the alignment the reference cloud is “moved” at each iteration. Since
the number of points in the reference augment over time, the computation in-
creases accordingly. An alternative is to perform the optimization by computing
the transform T that maps the current cloud onto the reference as follows:

T = argminz (T p§ — p§)T Qi; (T @ p§ —pj) - (33)
T
c

This approach, combined with our projection based data association, has the
major drawback of “fixing” the reference projection. If the offset is large, the
current cloud might be dragged out of the field of view of the reference during
the optimization. To cope with this problem, we use a projection function in
the correspondence search that has a broader field of view with respect to the
original one. In this way, we capture in the reference projection a larger portion
of the scene, and during the optimization the current projection is more likely
to stay in the frustum used to render the reference. With this slightly different
objective function to be minimized, the Jacobian J;; becomes:

(o Dmer) e

Yo 0AT

AT=0

Additionally, our enhanced version performs a set of pyramidal alignments
at increasing resolutions rather than operating at a fixed one. This has the

21

benefit of enlarging the convergence basin for data association as the pixels
become bigger, and to speed up the computation. Accuracy is preserved when
performing the alignment at higher resolutions. The reader will notice that this
can be done by simply modifying the parameters of the projection function 7.

5.8. Point Cloud Merging

The update strategy used in the merging procedure requires to keep an
information filter per point, and then to recompute the statistics in the observed
regions.

To speed up the computation, for each point in a cloud we keep a mono
dimensional information w,, , representing the uncertainty of both normal and
point. The update of the point and its normal is carried out in an information-
like form as follows:

N N N
— E m p _ ,1 E LD n _ -1 E o
Wy, v = Qi Py = Wy Wi - Pi Py = Wy p Wi - 1 (35)
1=1

i=1 i=1

The normals are scaled to unit norm after computing the means.

5.4. Optimizing Memory Accesses

From a hardware point of view, the main bottleneck of the procedure lies
in the scattered memory accesses induced by the double indirection through
index images. We observed a 20% increase in performance when reordering the
points before each alignment. Our point clouds are represented as unordered
arrays. During all procedures, the access to the arrays is either linear or follows
the order of the pixels in the index image. An alignment operation is likely to
access the pixels in these two orders. To guarantee more “regular” accesses,
before each alignment we sort the points in the reference cloud so that the first
block of the array are the points in the index image used for computing the
correspondences, in the order set by the index image.

6. Experiments

In our previous work [2], we performed a convergence study of the error func-
tion of NICP. More recently, in [1], we also evaluated a non incremental version
of NICP, thus without merging, against some of the current state-of-the-art
methods. In this paper we aim at comparing a incremental implementation of
NICP that integrates the merging procedure described before. For the remain-
der of this work, we will refer to the speeded up variant of NICP introduced in
Sec. 5 with the name of SNICP. In addition to this, we also show some qual-
itative results of our tracking algorithm working both in a environment with
dynamic objects, and with multiple sensors.

22

6.1. Incremental Tracking

We compared NICP and SNICP with point-to-plane GICP, NDT and KinFu
using a large depth camera standard benchmarking dataset developed by Pomer-
leau at al. [46] (ETH Kinect). To allow for a fair comparison, we added to GICP
and NDT the same components that allows NICP to perform incremental regis-
trations, and we kept the merging parameters fixed to the same value for all of
them in all experiments. SNICP and KinFu come with their own merging sys-
tems. We used the KinFu implementation provided by the Point Cloud Library
(PCL) [47], while for NDT we considered the ROS [48] package suggested by
the authors, and available on the web. Since point-to-plane GICP is a special
case of our algorithm, where the error of the normals in the optimization stage
is neglected, and the correspondences are selected based only on point distance,
we used our own GICP implementation. Note that our implementation of GICP
benefits of all data structures and of surrounding algorithms that are used in
NICP, namely the extraction of the statistics and the calculation of the cor-
respondences. For NDT and KinFu we used the default parameters found in
their implementations. In the case of GICP, SNICP and NICP, instead, we used
the values indicated in the previous sections and we forced them to run all the
iterations independently by the x? value obtained. In particular, the number
of iterations has been set to 10 for both GICP and NICP, while SNICP was
configured to perform 3 iterations at three different levels of dimension of the
input depth images (1/4, 1/2 and full size). An aggregated list of parameters
used in the experiments for NICP can be found on the website linked before.

To measure the performance of an algorithm we used the benchmarking tools
of Sturm et al. [49], and we computed the Relative Pose Error (RPE). The RPE
measures the pairwise alignment error between successive poses, and it is one of
the most common metrics used for the evaluation of visual odometry or camera
tracking systems. More formally, given the groundtruth transform between two
consecutive point clouds Ty, and the transform T calculated by one of the
algorithms considered in the comparison, the RPE computes the translational
and rotational difference of the offset transform AT, = T;tlT. In particular,
the translational error t. is computed as the module of the translation vector t,
of AT,. The rotational error R., instead, is taken as the rotation angle of the
rotation matrix R, associated to AT,. In the ideal case when the transform
T is exactly equal to Ty, the transformation offset T, would be the identity
matrix, and thus both the translational and rotational errors equal to zero. All
tests have been performed on a i7-3630QM, over a single core, running at 2.4
GHz and with an nVidia GeForce GT 650M graphics card.

Table 1: Mean and standard deviation of the point cloud registration time for each algorithm
over all the sequences of the ETH Kinect dataset.
NDT GICP KinFu SNICP NICP

Mean 183 ms 37 ms 52 ms 18 ms 38 ms
Std. Dev. 17 ms 4 ms 4 ms 2 ms 6 ms

23

As shown in Table 1, in terms of processing time, NDT was the slowest
algorithm in computing a single registration. This is mainly due to the fact that
it does not scale very well when the number of points in the scene increases.
KinFu took about 50 ms to process each new point cloud, but this low frame
rate is probably caused by the low-end graphics card in our system. GICP and
NICP were able to execute close to real-time, while SNICP resulted to be the
fastest processing clouds at a rate of almost 60Hz. More precisely, SNICP is
more than ~50% faster than NICP.

The dataset is composed by several sequences of depth and RGB images
acquired with a RGB-D camera. For benchmarking purposes, the ground-truth
is available. It covers 3 different environments of increasing complexity (low,
high, medium), with 3 types of motions (rotational, translational, fly) at 3
different speeds (slow, medium, fast). Sequences recorded with high camera
motions allow to test the robustness of the algorithms to poor initial guesses.
In fact, a big camera velocity implies an increasing average distance between
two processed frames.

Table 2 reports the results obtained by processing all the sequences in the
dataset with NDT, GICP, KinFu, SNICP and NICP algorithms. For each ap-
proach and for each test, we processed all the images in sequence and we gen-
erated the estimated trajectories. Note that, since this dataset is recorded with
a high frame rate, the RPE is computed on poses with a difference in time of
0.25 seconds. Green cells in the table highlight the best mean result for each
specific test among all the compared algorithms. As the reader can see NICP,
or its time efficient variant SNICP, are in most of the cases more accurate with
respect to the other methods. The surface normals, in conjunction with a new
merging method to incrementally align point clouds, give a major contribute to
increase the overall accuracy and robustness of our approach, thus leading to
better camera tracking results. The reader might notice that in some tests, in
particular the fast ones, both the translational and rotational errors are quite
large. This is caused by the fact that, in the experiments, the algorithms lost
the tracking due to the large displacements between the clouds.

Table 2 also shows that SNICP, despite sacrificing a little of accuracy in
favor of computation time efficiency, obtains results comparable with those of
NICP. Nowadays, due to project or environmental constraints, many robotics
applications have to rely only on low-end hardware or they need to use multiple
sensors simultaneously. In these cases, it is impossible to use methods like
KinFu, or even NICP, since they require at least a mid-range laptop to reach
near real-time performance. Consider also that in the case of KinFu, a NVIDIA
graphics card is mandatory to run the algorithm, indeed it requires CUDA
parallel computing. These results highlight the fact that, by exploiting low
computational time methods, SNICP offers a very good alternative in this kind
of situations.

6.2. Tracking in Environments with Dynamic Objects

In this test case we run our tracking approach inside a office like environment.
While registering, both a chair and a person moved inside the field of view of

24

514

Table 2: Mean and standard deviation of the relative translational and rotational error for all the sequences of the ETH Kinect dataset. Green cells
in the table highlight the best mean result for each specific test among all the compared algorithms (NDT, GICP, KinFu, SNICP and NICP).

Mean / Standard Deviation Translational Error [m] Mean / Standard Deviation Rational Error [deg®]
Sequence NDT GICP KinFu SNICP KinFu
high-fast-f | 0.343/0.566 | 0.094/0.114 | 0.337/0.436 | 0.178/0.105 7.3/6.6
high-fast-r | 0.409/0.821 | 0.419/0.493 | 0.624/0.546 25.8/29.1 18.1/10.2
high-fast-t 0.083/0.159 0.052/0.045 0.092/0.124 0.091/0.070 5.0/5.1 4.3/3.1 4.2/2.2 4.2/2.1
high-med-f | 0.103/0.214 | 0.026/0.019 | 0.036/0.045 | 0.051/0.045 5.1/7.5 2.5/1.5
high-med-r | 0.106/0.344 | 0.058/0.006 | 0.182/0.281 0.051/0.080 | 6.5/16.3 15/42 | 3.7/24
high-med-t | 0.036/0.043 | 0.014/0.008 0.014/0.009 14/08 | 15/1.0
high-slow-f | 0.058/0.186 | 0.010/0.007 | 0.016/0.050
high-slow-r | 0.071/0.185 | 0.033/0.060 | 0.071/0.153 0.035/0.060 /15,
high-slow-t 0.017/0.031 0.007/0.004 . . 0.007/0.004 1.0/0.6
Tow-Tast-f | 0.354/0.494 0.143/0.094 | 0.138/0.183 | 12.1/23.1 | 6.5/6.0 3/9.
Tow-fast-r 0.340/0.750 0.122/0.174 | 20.1/25.4 | 15.2/11.5 14.4/7.8
low-fast-t 0.237/0.233 0.097/0.125 0.122/0.084 0.059/0.030 . . 5.3/2.7
Tow-medf | 0.181/0.372 | 0.025/0.022 | 0.107/0.178 | 0.042/0.040
low-med-r 0.092/0.159 0.030/0.043 0.140/0.218

low-med-t

low-slow-f

low-slow-r

0.068,/0.156 0.071/0.093 | 0.032/0.020 3.8/9.1
0.052/0.111 0.024/0.026 A4/8. 1.3/0.8 1.3/0.7 1.3/0.9
0.060/0.108 | 0.033/0.068 0.087/0.155 0.031,/0.064 1.5/1.4 1.6/2.5 1.6/1.9

Tow-slow-t | 0.020/0.022 0.021/0.066 | 0.015/0.013
med-fast-f | 0.309/0.380 | 0.180/0.245 | 0.438/0.453 | 0.189/0.103

med-fast-r | 0.248/0.620 | 0.318/0.478 | 0.430/0.457

med-fast-t | 0.075/0.134 | 0.042/0.022 | 0.078/0.139 | 0.069/0.053
med-med-f | 0.162/0.448 | 0.021/0.017 | 0.043/0.085 | 0.041/0.038
med-med-r | 0.060/0.083 | 0.053/0.086 | 0.145/0.249
med-med-t | 0.028/0.037

med-slow-f

0.053/0.171 0.012/0.008 0.014/0.038 0.015/0.014 2.2/5.9 1.4/1.1

med-slow-r

0.037/0.151 0.014/0.029 0.031/0.094 0.014/0.029 1.5/2.9 1.0/0.7 1.1/2.0 1.0/0.7

med-slow-t

0.031/0.118 0.027/0.080 | 0.009/0.005

Figure 7: Example of camera tracking in a office like environment with dynamic objects. From
left to right, and from top to bottom: a temporal sequence of snapshot acquired during the
tracking. Red points belong to the last depth image registered. Despite both a chair and a
person moved within the field of view of the camera, our algorithm is able to track the sensor
pose and remove the dynamic objects.

the camera. Despite these dynamic objects in the scene, our algorithm has been
able to track the pose of the sensor, and at the same time remove these elements
from the point cloud. Fig. 7 illustrates a temporal sequence of snapshot acquired
during the tracking. Red points belong to the last depth image registered.

6.3. Multiple Sensor Tracking

In this experiment we tested our tracking method on a dataset acquired in
the Catacombs of Priscilla in Rome during the ROVINA project, and available
at the link http://www.rovina-project.eu/research/datasets.

The robot was equipped with 2 Asus Xtions mounted on the front. More
specifically, assume the x axis of the robot reference frame pointing forward,
and the z axis going upward. The left and the right Xtions were mounted at
a distance of 30 cm between each other, and with a pan angle of respectively
/6 rad and —7/6 rad. These kind of catacombs are composed by an under-
ground network of very narrow corridors. While exploring the tunnels, multiple
sensors are fundamental to help the robot to avoid the possibility of blindness
on turns. Fig. 8 shows the result of the tracking on a part of the dataset, the

26

Figure 8: Multiple sensor tracking in the catacombs of Priscilla in Rome. In this specific case
2 Asus Xtions have been used.

magnifications highlight the high quality of the point clouds generated. No sur-
face reconstruction has been applied. To give an idea of the size of the map,
consider that the whole dataset has a dimension of ~100x50 meters, and the
figure depicts a portion of ~35x10 meters.

6.4. Complexity Analysis

In this section we provide an analysis of the computational complexity of
the algorithms treated in this paper.

The surface normal computation approach plays an important role during
an alignment. Indeed, methods using Singular Value Decomposition (SVD) on
the neighborhood of the points have O(k-d?) complexity, where k is the number
of neighboring points, and d is the dimension of the matrix on which the SVD is
computed. In addition to this, it must also be taken into account the complexity
associated to the computation of the covariance matrix of each neighborhood.
When using KD-trees, this means an additional O(p - k - log(p)), where p is
the number of points in the cloud, plus the KD-tree generation time. Using
integral images, instead, adds a O(n - m) complexity related to the integral
image construction, with (n, m) being the dimension of the integral image
itself. Once generated, the covariance matrix can be computed in constant time
O(1). NICP uses integral image based normal computation through SVD. Using
a cross product based method, as done in SNICP, leads to a complexity O(k),
thus to a relevant computation time reduction at the cost of less accurate surface
normals.

Another part that must be analyzed is the correspondence search method.
By using a projective criteria the complexity is O(n - m), where (n, m) is
the dimension of the image where the points are projected. Using KD-trees,

27

instead, leads to a complexity of O(q - log(p)), with ¢ and p being respectively
the number of queries in the KD-tree, and the number of points in the cloud.
Additionally, as in the case of the surface normal computation, we need to add
also the KD-tree construction time. Correspondences estimated using KD-trees
are usually slower to compute, but in general more accurate. In our approach
we use projective correspondence search.

Finally, the last part to be analyzed is the approach used for computing the
relative transformation between the two clouds. The algorithms that solve this
problem can be divided in two main classes: direct and iterative approaches.
Direct methods like the Horn formula computes the relative translation and
rotation between two cloud in one step. Unfortunately, such solutions can be
applied only under the assumption that the correspondences are known. Since
this is not the general case, we must use iterative methods. All iterative methods
have linear complexity in the number of measurements.

7. Conclusions

In this paper we presented in detail a novel variant of the Iterative Closest
Point (ICP) algorithm to incrementally register point clouds. Our method ex-
tends the measurement vector with surface normals information and it uses a
projective criterion to find correspondences. We discussed all the relevant steps
needed for the implementation of this system, and we also provided the mathe-
matical derivations in the appendices of this paper. Additionally, we introduced
a method for point cloud merging that allows to decimate the points on a cloud,
while taking into account the sensor intrinsic error of the points. Also, we ex-
tended the method to handle dynamic objects and we provided a variant that
can process data with a rate of ~60Hz, on a single CPU core. Experiments on
a large standard benchmarking dataset show that our algorithm offers better
results, and higher robustness, with respect to other state-of-the-art methods.

Acknowledgments

The research leading to these results has been partly funded from the Euro-
pean Commission under FP7-600890-ROVINA.

Appendix A. Least-Squares Problem

The least-squares method is a standard technique used to compute approx-
imated solutions of over determined systems (i.e. sets of equations where there
are more equations than unknowns variables). In particular, the term “Least
square” means that the final solution minimizes the sum of the squares of each
error term. With this in mind, it is possible to define the error e; as the differ-
ence between the current measurement coming from the sensor, and a predicted
one:

e;(x) =z, —z; = h;(x) — z (36)

28

where h; is the function that maps the state vector x to the predicted mea-
surement z,. Note that, in general, h;(x) is a non-linear function of the state.
However, it is possible to approximate it in the neighborhood of a linearization
point X using its Taylor expansion:

h.
h;(x + Ax) ~ h;(%) + 0 5()() - Ax (37)
X X=X
where we call Jacobian matriz J;:
~ Ohy(x)
J; = x|, (38)

Now, assuming the error to be zero mean and normally distributed with an
information matriz ;, the squared error of a measurement depends only on
the state and it is a scalar value:

€; (X) = ei(x)TQiei(x). (39)

Given a set of N measurements, the objective is to find the state x* that mini-
mizes the error of all measurements:

N
x* = arg)rcnin{z ei(x)TQe:(x)} (40)

Let be N N
F(x) = Zei(x)TQiei(x) = Z ei(x), (41)

9

and assuming that an acceptable initial guess X of the optimum solution is
known, it is possible to rewrite one of the summands in the previous equation
by using the Taylor approximation in Eq. 37:
—— —
€; €;

= (JZAX + ei)TQi (JZAX + ei)

= AXTJZTQiJiAX +2¢;Q,J; Ax + eiTQiei

= AxTH;Ax + 2b;Ax + efQiei, (42)
where Hz = J;TQZJZ and bl = eZTQZJZ
Substituting Eq. 42 in Eq. 41 we obtain:

N
F(x+ Ax) ~ Z AxTH,;Ax + 2b;Ax + eZTQieZ-
i=1
N N N
Z Hi Z bz Z G?Qiei]
i=1 i=1 i=1

= AxTHAx + 2bAx + ¢, (43)

= AxT Ax + 2 Ax +

29

with ¢ = Zi\; el Qje;.

The last equation is the expression of the objective function F(x) under a
linear approximation of h;(x), in the neighborhood of the initial guess x. In
other words, if the initial estimate is fixed, the value of the function can be
approximated by a quadratic form with respect to the increments Ax. At this
point, it is possible to minimize this quadratic equation and therefore compute
the optimal increment Ax* that applied to the current estimate leads to an
improved solution x*:

x* =%+ Ax". (44)

The optimal increment Ax* is computed by imposing the derivative of the
function F(X+Ax) (Eq. 43) to be equal to zero, and then solve the corresponding
equation:

I(AxTHAX + 2bAx + ¢)
0Ax

This leads to find the solution of the following linear system:

— 2HAx + 2b = 0. (45)

HAx* = —b, (46)

where the matrix H is commonly known as Hessian matriz.

If the model function would be linear, the solution would be found in just
one step. Since, as said before, this is not the general case, it is necessary to
iterate the procedure until an acceptable solution is found. Several methods
that solve this problem exist, among these we recall the Gauss-Newton and the
Levenberg-Marquardt minimization algorithms.

Appendix B. Quaternion Based Rotation Matrix Derivative

Consider a 3D rotation defined through a quaternion q = (¢, ¢y, ¢, qw)T,
then we can also define the associated rotation matrix R(q) as a function of the
quaternion’s parameters:

1-2q7 —2¢% 2009y — 24w 2424 + 2y qu
R(q) = [2000y + 20200 1262 —2¢2 2¢y¢: — 2q2qw (47)
2000z — 2qyQw 24y4= + 202w 1 — 243 — 2q;

Now, assuming that q is normalized, that means |q| = 1, we can rewrite the
previous matrix as follow:

1-2¢0 =202 200Gy — 202Gw 2¢2q= + 20yGu

R(q) = [2000y +2¢:G0 1—-2¢2 —2¢2 2¢yq: — 2q2Guw (48)
200> — 2qyGw 20yq: + 22Gw 1 — 2¢2 — 243,

where G, = /1 —q3 — g} — ¢2.

30

The partial derivatives of the rotation matrix R(q) (Eq. 48), evaluated in
q=(0,0,0,1)T = 0, have the following form:

00 0
OR(q) = (o 0o —2|=s, (49)
9% |q—0 02 0

0 0 2
OR(q) = [0 o0 0]=s, (50)
94y lq=0 2.0 0

0 -2 0
OR(q) = |2 0 of=s.. (51)
04: |g—o 0 0 0

Finally, the derivative of the rotation of a vector v = (v, vy,vz)T, inq=
(0,0,0,1)T = 0, can be written as:

0 2u, 2y
S(v) =(Sz-v[Sy-V[S.-v)= [—2u, 0 2, | =—=2[v]«. (52)
20, —2u, 0

Appendix C. Jacobian Derivation

Defining a generic point with normal as a 6D vector p = (c¢’,n™)T =
(Czy Cyy Coy My My,)T composed by its Cartesian coordinates ¢ = (cg, ¢y, ¢,)7
and the associated surface normal components n = (ng, ny, n.)T, and recalling
the definition of the @ operator described in Eq. 22, the perturbation of the
error between two corresponding points p and p’ is:

_ _ (R(Aq)-&+ At c
e(x® Ax) =e(t® At,R®R(Aq)) = (R(Aq) - & “ (53)
with p = T(x) & p.
The 6x6 Jacobian matriz J is computed deriving the previous equation
with respect to At = (At,, At,, At,)T and Aq = (Ags, Agy, Ag.)T, and then
evaluating the derivative in (At =0, Aq = 0):

(8e(t + At,R + R(Aq)) ‘ Oe(t + At,R + R(Aq)))
J =
0At 0Aq At=0,Aq=0
OR(Aq) A OR(Aq) . OR(Aq) a4
_ < I3xs da(gq:l)) ' 88(2%(1)) ¢ aa(iqzq)) "¢)
= dR(Aq) » OR(AqQ) ~ OR(Aq) =
O3x3 aAqf ‘n 6Aqu n aquq n At=0,Aq=0
Isxs —2[€]x
« 54
(03x3 —2[f]« (54)

where [v]« represents the cross product matrix as defined in Eq. 52.

The reader might notice that the left block of the Jacobian matrix has a
3x3 matrix of zeros in the bottom, this is because the normal, unlike the point
coordinates, is not translated.

31

References

1]

J. Serafin, G. Grisetti, Nicp: Dense normal based point cloud registration,
in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Hamburg, Germany, 2015, pp. 742-749.

J. Serafin, G. Grisetti, Using augmented measurements to improve the
convergence of ICP, in: Simulation, Modeling, and Programming for Au-
tonomous Robots (SIMPAR), Springer, 2014.

P. J. Besl, N. D. McKay, A method for registration of 3-D shapes, IEEE
Transactions on Pattern Analysis and Machine Intelligence.

A. V. Segal, D. Haehnel, S. Thrun, Generalized-ICP, in: Proc. of Robotics:
Science and Systems (RSS), 2009.

M. Magnusson, T. Duckett, A. J. Lilienthal, Scan registration for au-
tonomous mining vehicles using 3D-NDT, Journal on Field Robotics.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davi-
son, , P. Kohli, J. Shotton, S. Hodges, A. Fitzgibbon, KinectFusion: Real-
time dense surface mapping and tracking, in: Proc. of the Int. Symposium
on Mixed and Augmented Reality (ISMAR), 2011.

F. Pomerleau, F. Colas, R. Siegwart, S. Magnenat, Comparing ICP variants
on real-world data sets.

J. Chen, G. Medioni, Object modeling by registration of multiple range im-
ages, in: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
1991.

G. Blais, M. D. Levine, Registering multiview range data to create 3D
computer objects, Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 17 (8) (1995) 820-824.

B. K. Horn, H. M. Hilden, S. Negahdaripour, Closed-form solution of abso-
lute orientation using orthonormal matrices, Journal of the Optical Society
of America.

F. Steinbriicker, J. Sturm, D. Cremers, Real-time visual odometry from
dense rgb-d images, in: Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on, IEEE, 2011, pp. 719-722.

R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial relationships
in robotics, Autonomous Robot Vehicles.

M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, Fastslam: A factored
solution to the simultaneous localization and mapping problem, in: In Pro-
ceedings of the AAAT National Conference on Artificial Intelligence, 2002.

32

[14]

[15]

[16]

[24]

[25]

M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, Fastslam 2.0: An im-
proved particle filtering algorithm for simultaneous localization and map-
ping that provably converges, in: In Proc. of the Int. Conf. on Artificial
Intelligence (IJCAI, 2003.

R. Triebel, P. Pfaff, W. Burgard, Multi-level surface maps for outdoor ter-
rain mapping and loop closing, in: 2006 IEEE/RSJ international conference
on intelligent robots and systems, IEEE, 2006, pp. 2276-2282.

D. Hahnel, W. Burgard, D. Fox, S. Thrun, An efficient fastslam algorithm
for generating maps of large-scale cyclic environments from raw laser range
measurements, in: Intelligent Robots and Systems, 2003.(IROS 2003). Pro-
ceedings. 2003 IEEE/RSJ International Conference on, 2003.

G. Grisetti, C. Stachniss, W. Burgard, Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,
in: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, 2005.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard, Oc-
tomap: An efficient probabilistic 3d mapping framework based on octrees,
Autonomous Robots 34 (3) (2013) 189-206.

H. Durrant-Whyte, D. Rye, E. Nebot, Localization of autonomous guided
vehicles, in: Robotics Research, 1996.

R. C. Smith, P. Cheeseman, On the representation and estimation of spatial
uncertainty, The international journal of Robotics Research.

J. J. Leonard, H. F. Durrant-Whyte, Simultaneous map building and lo-
calization for an autonomous mobile robot, in: Intelligent Robots and
Systems’ 91.'Intelligence for Mechanical Systems, Proceedings TROS’91.
IEEE/RSJ International Workshop on, 1991.

J. A. Castellanos, J. Montiel, J. Neira, J. D. Tardds, The spmap: A prob-
abilistic framework for simultaneous localization and map building, IEEE
Transactions on Robotics and Automation 15 (5) (1999) 948-952.

M. A. Paskin, Thin junction tree filters for simultaneous localization and
mapping, in: Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI-03), 2003.

S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, H. Durrant-Whyte,
Simultaneous localization and mapping with sparse extended information
filters, The International Journal of Robotics Research.

R. M. Eustice, H. Singh, J. J. Leonard, Exactly sparse delayed-state filters,
in: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, 2005.

33

[26]

[27]

28]

[29]

[30]

[31]

32]

K. P. Murphy, et al., Bayesian map learning in dynamic environments., in:
NIPS, 1999.

G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid map-
ping with rao-blackwellized particle filters, IEEE transactions on Robotics
23 (1) (2007) 34-46.

F. Lu, E. Milios, Globally consistent range scan alignment for environment
mapping, Autonomous robots.

E. Olson, J. Leonard, S. Teller, Fast iterative alignment of pose graphs
with poor initial estimates, in: Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, 2006.

F. Dellaert, M. Kaess, Square root sam: Simultaneous localization and
mapping via square root information smoothing, Int. J. Rob. Res.

J.-S. Gutmann, K. Konolige, Incremental mapping of large cyclic environ-
ments, in: Computational Intelligence in Robotics and Automation, 1999.
CIRA’99. Proceedings. 1999 IEEE International Symposium on, 1999.

M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, S. Teller, An
atlas framework for scalable mapping, in: Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, 2003.

C. Estrada, J. Neira, J. D. Tardds, Hierarchical slam: real-time accurate
mapping of large environments, Robotics, IEEE Transactions on.

E. B. Olson, Robust and efficient robotic mapping.

J. Neira, J. D. Tardds, Data association in stochastic mapping using the
joint compatibility test, IEEE Transactions on robotics and automation
17 (6) (2001) 890-897.

A. Niichter, K. Lingemann, J. Hertzberg, H. Surmann, 6d slam with ap-
proximate data association, in: Advanced Robotics, 2005. ICAR’05. Pro-
ceedings., 12th International Conference on, 2005.

A. Ranganathan, M. Kaess, F. Dellaert, Loopy SAM, in: Proc. of the Int.
Conf. on Artificial Intellignece (IJCAI), 2007.

M. Kaess, A. Ranganathan, F. Dellaert, isam: Fast incremental smoothing
and mapping with efficient data association, in: Robotics and Automation,
2007 IEEE International Conference on, 2007.

T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, J. McDonald,
Kintinuous: Spatially extended KinectFusion, in: RSS Workshop on RGB-
D: Advanced Reasoning with Depth Cameras, Sydney, Australia, 2012.

34

[40]

[45]

[46]

[49]

R. A. Newcombe, D. Fox, S. M. Seitz, Dynamicfusion: Reconstruction
and tracking of non-rigid scenes in real-time, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 343-352.

M. Labbé, F. Michaud, Online global loop closure detection for large-scale
multi-session graph-based slam, in: 2014 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IEEE, 2014, pp. 2661-2666.

R. Mur-Artal, J. Montiel, J. D. Tardés, Orb-slam: a versatile and accu-
rate monocular slam system, IEEE Transactions on Robotics 31 (5) (2015)
1147-1163.

T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, A. J. Davison,
Elasticfusion: Dense slam without a pose graph, Proc. Robotics: Science
and Systems, Rome, Italy.

S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, N. Navab, Adaptive neigh-
borhood selection for real-time surface normal estimation from organized
point cloud data using integral images, in: Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on, IEEE, 2012,
pPp. 2684-2689.

M. Pauly, M. Gross, L. P. Kobbelt, Efficient simplification of point-sampled
surfaces, in: Proceedings of the conference on Visualization’02, IEEE Com-
puter Society, 2002, pp. 163-170.

F. Pomerleau, S. Magnenat, F. Colas, M. Liu, R. Siegwart, Tracking a
depth camera: Parameter exploration for fast ICP, in: Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on, IEEE,
2011, pp. 3824-3829.

R. B. Rusu, S. Cousins, 3d is here: Point cloud library (pcl), in: Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, Ros: an open-source robot operating system, in:
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA) Work-
shop on Open Source Software, 2009.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, A bench-
mark for the evaluation of rgb-d slam systems, in: Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2012.

35

