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Abstract

This paper considers a set object, i.e., a shared object allowing users (processes) to add and remove
elements to the set, as well as taking consistent snapshots of its content. Specifically, we show
that there not exists a protocol implementing a set object using finite memory if the underlying
distributed system is eventually synchronous and affected by continuous arrivals and departures
of processes (phenomenon also known as churn). Then, we analyze the relationship between
system model assumptions and object specification in order to design protocols implementing the
set object using finite memory. Along one direction (strengthening the system model), we propose
a protocol implementing the set object in synchronous distributed systems and, along the other
direction (weakening the object specification), we introduce the notion of a k-bounded set object
proposing a protocol working on an eventually synchronous system.
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1. Introduction

Data structures (such as stacks, queues, files, etc.,) are fundamental notions of computing sci-
ence. As indicated by their names, they encapsulate data in a structured way and each of such
structures returns an appropriate answer to each client’s request according to the specification of
the data structure (i.e., consistency). In a concurrent or distributed context, such data structures
are called concurrent objects and the consistency issues become more complex to be tackled. An-
other important issue of these data structures is their availability, that is, the property of providing
a response in a finite time to requests coming from clients, despite possible failures. Addition-
ally, this response should be fast rather than slow. High availability and fast responses have been
classically achieved through data replication and in-memory processing [34]. In such case, a set
of servers cooperates (i.e., they executes a computation) in order to give the illusion to clients of
a single highly available data structure. If we consider such objects being implemented on the
top of modern large scale distributed infrastructures or on top of pervasive systems, we have that
the implementation has to cope with continuous arrivals and departures of processes (phenomenon
also know as churn) caused by, for example, failures, voluntary leaves etc. Therefore, the object
implementation should be able to tolerate continuous churn without compromising the consistency
of the object. The paper focuses on the study of the design of a specific data structure, namely the
set object, and its implementation in the presence of continuous churn.

A set object S is a shared object that stores a (possibly empty) finite set of elements. A process
can acquire the content of S through a get() operation while it can add (respectively remove) an
element to S through an add() (resp. remove()) operation. The set object has to satisfy a strong
consistency requirement that will be carefully specified later in the text. Informally, strong con-
sistency means that once an add() (resp. remove()) operation returns successfully to the client, all
subsequent get() operations see the effects of that add() (resp. remove()) operation. The paper an-
alyzes the problem of implementing a set object using finite memory in the presence of continuous
churn. In the setting considered in this paper, indeed, a straightforward implementation of the set
object done through a bounded number of registers is impossible [7], thus new approaches have to
be envisaged.
Contribution of the paper. The paper provides an in-deep investigation of a set object. Specifi-
cally, the paper provides the following contributions:

• A new consistency condition, well-suited for a set object, called per-element sequential con-
sistency is introduced. While it allows concurrent get() operations to return the same output
in the absence of concurrent add() and/or remove() operation, this condition is weaker than
linearizability [13]. This is because processes are required to see the same order only of con-
current add() and remove() operations that act on a same element. Concurrent operations
executed on distinct elements can be perceived in different order by distinct processes.

• An impossibility result for the implementation of a set object using finite memory. More
specifically, considering a distributed system affected by continuous churn and characterized
by the absence of “stable processes” (i.e., processes remaining forever in the distributed
system), it is shown that there not exists a message-passing protocol implementing a set
object using finite memory in an eventually synchronous system.
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• A study of the relationship between system model assumptions and object specification to
design distributed protocols implementing the set object with finite memory.

– We consider a synchronous distributed system affected by continuous churn and we
provide a protocol implementing a set object using a finite memory space and we prove
its correctness.

– We consider a weaker form of set object called k-bounded set object and provide an
implementation on top of an eventually synchronous distributed system prone to con-
tinuous churn along with its correctness proof. Informally, a k-bounded set object is a
set that has limited memory of the execution history. In particular, given a get() opera-
tion, a k-bounded set behaves as a set where the execution history is limited only to the
k most recent update operations.

Roadmap. The rest of the paper is structured as follows Section 2 discusses the related work,
Section 3 presents the system model, Section 4 presents the set object specification and the per-
element sequential consistency criterion. Section 5 presents an impossibility result for eventu-
ally synchronous systems. Then, Section 6 presents two protocols: one implementing a set in a
synchronous system and another one implementing a k-bounded set object in an eventually syn-
chronous system. Finally, Section 7 concludes the paper.

2. Related Work

Several works have been done recently in the general context of dynamic distributed systems.
Some modeling the concept of churn [14, 18], others address the implementation of concurrent
data structures, namely a register data structure, in message passing distributed systems [2, 4, 20].

Churn Models. The concept of churn has been initially formalized through infinite arrival models
introduced by Merritt et al. [23] and subsequently refined by Aguilera [1]. Such models are able to
capture the evolution of the network removing the constraint of having a predefined and constant
size n. However, such models do not give any indication on how the joins or the leaves happen
during time.

A different approach is to make implicit the notion of churn by abstracting it through the defi-
nition of a set of configurations [20, 2]. A configuration is represented by the current set of replicas
running the algorithm and a new configuration is created as soon as join or leave operations oc-
cur. In particular, Lynch et al., [20] manage configuration changes by using a consensus primitive
while Aguilera et al., [2] define a reconfiguration procedure where a new configuration is suggested
by the participants. As in the infinite arrival models, configurations have the main advantage of
considering a distributed system where the number of replicas involved can change along time.
However, they need a certain degree of knowledge about the participants to move from a configu-
ration to the new one and are particularly suited to model quiescent churn (i.e., to model dynamic
systems where arrivals and departures eventually end).

More recently, other models have been proposed to take into account the process behavior. This
is done by considering both probabilistic distribution [18], or deterministic distribution [14], on the
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join and leave of replicas (in both cases the system size remains constant). As a consequence, the
main advantage of such models is to allow an analytical evaluation of the churn and they can be
used to represent both continuous and quiescent churn.

Regular Registers in Dynamic Distributed Systems. Lynch et al., present in [20] the implemen-
tation of an atomic read/write object where the churn is abstracted by the notion of system recon-
figuration. A reconfiguration could happen every time that a process joins or leaves the system.
To be valid a reconfiguration requires processes to agree upon a unique sequence of configuration
changes. This agreement implies the need of consensus and thus cannot be implemented in a fully
asynchronous system. Starting from this result, Aguilera et al., [2] shown that it is possible to
realize an atomic read/write object without using consensus. In particular, the authors shown that
an atomic register can be implemented on a fully asynchronous distributed system provided that
the number of reconfiguration operations is finite and that there is a majority of correct replicas in
each reconfiguration. Thus, the churn is quiescent and confined in specific time intervals1. Finally
in [4], we proved that if the churn is not quiescent, it is not possible to implement a regular register
in a fully asynchronous system.

From Registers to Sets. Baldoni et al. [5] provided an implementation of a regular register in an
eventually synchronous distributed system with continuous churn, while in Section 5 we will show
that a set object is impossible to be realized in the same churn condition. The impossibility stems
from the non-quiescence of the set accesses. In a register implementation, in fact, such a dimension
does not play any role as a register does not need to store anything else than the last written value.
This is not true for a set, which must be able to reconstruct the update operation history. If the
update operations are continuous, this implies that a set implementation needs infinite memory.

Shapiro et al. [28] introduce the notion of strong eventual consistency and consider how this
consistency criterion can be supported by emulating generic data types in a distributed network
prone to process crashes and recoveries. The proposed solution is then applied to a set object
implementation where processes keep their memory intact after a recovery (e.g., by storing data
on a stable storage). Although the object considered is the same, the model and the consistency
condition considered in [28] are different from the ones addressed in this paper. In particular, this
paper assumes that replicas use only volatile memory, i.e., when a process fails (leaves), it looses
the content of the set, and if a process rejoins the computation, it has no knowledge about the state
of the set (i.e., no stable storage is used to preserve the set state). In addition, we consider a strong
consistency condition that requires replicas to agree on the state of the set at any time, while this
agreement is required only eventually in [28].

Wuu et al., considered the implementation of a distributed dictionary in a system prone to
crashes and recoveries [33]. A dictionary is an abstraction of a set data type, which differs form
the one considered in this paper due to the following limitations: (i) delete(v) operation can be
invoked only if the element v is already contained in the dictionary, and (ii) every element v can be
inserted in the dictionary at most once. The authors provide an implementation of the dictionary

1This assumption has been also employed in [31] and in [20].
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by using limited stable storage with logging operations.
A weaker notion of set, namely weak set, has been introduced in [7]. A weak set is an object

representing a restricted form of set that does not include remove operations. The authors show
how it is possible to implement a weak set in a system with no churn, by using a finite number of
atomic registers assuming either (i) the number of processes is finite and known or (ii) the domain
of the weak set is bounded and known by processes. Unless using an unbounded number of reg-
isters, these solutions do not work in the setting considered by this paper because the domain of a
set is finite but arbitrary and the continuous churn can change the set of processes participating in
the computation during the whole execution.

Other Shared Data Objects. Using shared data objects is a popular method to allow inter-process
communication and coordination tasks. A tuple space [9] is a shared memory object, mainly used
for coordination purpose, where generic homogeneous data structures, called tuples, are stored and
retrieved. A tuple space is defined by three operations: out(T ) which outputs the entry T in the
tuple space (i.e., write), in(t̄) which removes the tuple that matches with t̄ from the tuple space
(i.e., destructive read) and rd(t̄) that is similar to the previous one but without removing the tuple.
Tuples selection is done through an associative matching with templates: two tuples match if they
have the same length and every corresponding pair of elements has the same type or the same
value. Thus, templates can be seen as filters that select the desired tuples. Several tuple space
implementations exist, both centralized (e.g., [22]) and distributed (e.g., [24], [19]).
The set object, as specified in this paper, differs from a tuple space because it is independent from
the semantic of its domain elements. Even though add(v) and remove(v) can be seen as a particular
case of in(t̄) and out(t) (i.e., where the tuple is composed only from one element), the get() differs
from the rd(t̄) operation because it does not require to match any template but it just returns the
current content of the object. Thus, it is suitable for keeping information stored with heterogeneous
formats.

Other examples of shared objects are represented by the definition of abstract data types, emu-
lated on top of message passing systems, with specific consistency requirements (i.e., linearizabil-
ity, serializabitity, eventual consistency, etc.). Kosa [15] studied the impact of different consistency
models (i.e., sequential consistency, linearizability and hybrid consistency) on operation worst-case
response times for arbitrary abstract data types, providing lower bounds for a static failure-free dis-
tributed system. More recently, Roh et al. [25] considered replicated abstract data types supporting
eventual consistency as basic building blocks for highly responsive collaborative applications. A
set object, as presented in this paper, is a particular replicated data type with strong consistency
requirements, emulated on top of a message passing system. To the best of our knowledge, this
paper is the first one considering the emulation of a set object with strong consistency in dynamic
settings.

3. System Model

Dynamic Distributed System. In a dynamic distributed system, processes may join and leave
the system at their will. In order to model processes continuously arriving to and departing from
the system, we assume the infinite arrival model (as defined in [23]). The set of processes that
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can participate in the distributed system, i.e. the distributed system population, is composed by
an unknown (but finite) number of processes Π = {. . . pi, pj, pk . . . }, each one having a unique
identifier (i.e. its index). The distributed system is composed, at each time, by a subset of the
population. A process enters the distributed system by executing the connect() procedure. Such
operation aims at connecting the new process to the processes that already belong to the system. A
process leaves the system by means of a disconnect() operation. In the following we assume the
existence of a Connectivity and Communication Service (CCS), i.e. a protocol managing the arrival
and the departures of processes from the distributed system; such protocol is also responsible for
the connectivity maintenance among processes part of the distributed system. Some examples of
topologies and protocols keeping the system connected in a dynamic environment are [17], [16],
[29], [32].

The passage of time is measured by a fictional global clock, represented by integer values, not
accessible by processes. We will use the term time unit to denote the smallest measurable discrete
unit of time. In the following, we will denote with ti the i-th time unit from the start time of the
system and with t+ x the x-th time unit after t.

Processes belonging to the distributed system communicate by exchanging messages through
either point-to-point reliable channels or broadcast primitives. We assume that both the communi-
cation primitives do not create, drop or modifies messages. We will refine the specification of such
communication primitives later in Section 6.1 and Section 6.2 where we will consider different
timing assumptions.

Distributed Computation. Processes belonging to the distributed system may decide autonomously
to join a distributed computation running on top of the system (e.g. the set computation). Hence,
a distributed computation is composed, at each instant of time, by a subset of processes of the
distributed system. A process pi, belonging to the distributed system, that wants to join the dis-
tributed computation has to execute the join() operation. Such operation, invoked at some time
t, is not instantaneous and it takes time to be executed; how much this time is, depends from the
specific implementation provided for the join() operation. However, from time t, the process pi
can receive and process messages sent by any other process that participate in the computation.
When a process pj , participating in the distributed computation, wishes to leave, it executes the
leave() operation. Without loss of generality, we assume that if a process leaves the computa-
tion and later wishes to re-join, it executes again the join() operation. Figure 1 and Figure 2 show,
respectively, the system architecture and the distributed system and distributed computation layers.

It is important to notice that (i) there may exist processes belonging to the distributed system
that never join the distributed computation (i.e. they execute the connect() procedure but they never
invoke the join() operation) and (ii) there may exist processes that after leaving the distributed
computation remain inside the distributed system (i.e. they just stop to process messages related
to the computation). To this aim, it is important to identify the subset of processes that are actively
participating in the distributed computation.

Definition 1. A process is active in the distributed computation from the time it returns from the
join() operation until the time it starts executing the leave() operation. A(t) denotes the set of
processes that are active at time t, while A([t1, t2]) denotes the set of processes that are active
during the whole interval [t1, t2] (i.e. pi ∈ A([t1, t2]) iff pi ∈ A(t) for each t ∈ [t1, t2]).
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Figure 2: Distributed System vs Distributed Computation

Failure Model. Processes of the distributed system may fail by crashing (i.e., by stoping executing
any action) and a failure can happen at any time. Let us remark that both the disconnect() operation
and the leave() operation are implemented as passive leaves, thus they are equivalent to a crash
failure. Thus, in the following we do not distinguish among failures and voluntarily departures.

Churn Model. In this paper we are interested in how a distributed computation is affected by the
churn. We assume that (i) there always exist at least N processes in the distributed system and (ii)
the CCS ensure that the connectivity is always preserved at the distributed system layer i.e., we
assume that processes in the distributed computation are always able to communicate each other
and no partitions occur at the distributed system layer. Concerning the computation churn, we
consider at time t0 (when the distributed computation starts) n ≤ N processes participating in the
distributed computation and all of them are active (i.e., |A(t0)| = n). The computation churn is
continuous, i.e., at each time unit, c× n processes invoke the join() operation and c× n processes
leave the computation, where c ∈ [0, 1] is a fraction identifying the computation churn rate. As
a consequence, the computation population size remains always constant. However, since joining
processes are not active, the size of A(t) changes with time due to the differences among the time
intervals needed by different joining processes to complete their join() operation. Finally, the churn
model does not guarantee that a given process, once joined, will remain part of the computation
forever (absence of stable processes).

4. Set Object

A set object S is a replicated shared object used to store a collection of elements. It can be
accessed by each process participating in the distributed computation without any restriction about
the type of access i.e., each process is allowed to get elements from the object and to modify its
content. We assume that processes can access the set object continuously i.e., each process may
access the object infinitely often and the number of operations issued on the set is unbounded. S
contains only elements taken from a finite but unknown domain D (e.g., a subset of the natural
numbers) and it is initially empty. Informally, a set S can be accessed through three operations:

- The add operation, denoted add(v), takes an input parameter v representing an element of
D and returns an add return confirmation when the operation ends. It adds v to S. If v is
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already in the set, the add() operation has no effect.

- The remove operation, denoted remove(v), takes an input parameter v representing an ele-
ment of D and returns a remove return confirmation when the operation ends. If v belongs
to S, it suppresses it from S. Otherwise it has no effect.

- The get operation, denoted get(), takes no input parameter. It returns a set containing the
current content of S (i.e., all the elements added and not removed). It does not modify the
content of the object.

Generally, each of these operations is not instantaneous and takes time to be executed; how
much this time is depends on the specific implementation of each operation.

Protocol Model. A protocol Pset implementing a set object is a collection of distributed algo-
rithms, one for each operation (i.e., Pset= {AJ , AA, AR, AG} where AJ , AA, AR and AG are
respectively the distributed algorithm implementing the join(), the add(), the remove() and the
get() operations). Each algorithm is composed of a sequence of computation and communication
steps. A computation step is represented by the computation executed locally to each process while
a communication step is represented by the sending and the delivering events of a message.

At any time t, a set object is maintained by the set of processes belonging to the distributed
computation. No agreement abstraction is assumed to be available at each process (i.e., processes
are not able to use consensus or total order primitives to agree upon the current elements stored in
the set or to agree upon the set of processes participating in the distributed computation). Moreover,
we assume that each process has the same role in the distributed computation (i.e., there is no
special server acting as a coordinator)2.

We assume that every process executes operations sequentially (i.e., a process does not invoke
any operation before it got a response from the previous one). However, given two operations
executed by two different processes, they may overlap.

In the remain of the section, we will provide the specification of the set object. To this hand, we
will first provide in Section 4.1 some basic definitions that will help us in formalizing the set object
specification (Section 4.2). Finally, once we specified the expected outcome of a get() operation,
we will formalize our consistency criteria, namely Per-element Sequential Consistency, that relates
the outputs of any get() operation to the whole execution (Section 4.3).

4.1. Basic Definitions
Every operation op is characterized by an invocation event and a reply event occurring at times

tB(op) and tE(op) respectively. These events occur at two time instants (invocation time and reply
time) according to the fictional global time. An operation op is complete if both the invocation

2Quorum-based protocols (e,g., [21]) are captured by this model becausePset does not require that all the processes
execute each operation while Pset is not a state machine replication protocol (e.g., [27]) due to the lack of agreement
abstraction.
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Figure 3: Execution History Ĥ of a set object

event and the reply event occur (i.e. the process executing the operation does not crash between
the invocation and the reply). Contrary, an operation op is said to be failed if it is invoked by a
process that crashes before the reply event occurs. We use these time instants to model concurrency
among operations through a precedence relation ≺.

Definition 2. Given two operations op1 and op2, op1 precedes op2 (op1 ≺ op2) if and only if
tE(op1) < tB(op2). If op1 does not precede op2 and op2 does not precede op1 then they are
concurrent (op1||op2).

Given a add(v) (respectively remove(v)) operation, the element v is said to be added (respec-
tively removed) when the operation is complete. As a consequence, failed add(v) (respectively
remove(v)) operations are incomplete operations. As in the case of atomic register [11], we con-
sider that if a process crashes during a add(v) (respectively remove(v)) operation, such operation
is concurrent with all the successive operations and a fictional reply event is added at the end of
the computation for any failed add(v) and remove(v)operation.

Considering all the operations invoked on the set object and the precedence relation introduced
so far, it is possible to define the history of the computation as a partial order between the operations
induced by the precedence relation. More formally an execution history can be defined as follow:

Definition 3 (Execution History). Let H be the set of all the operations issued on the set object S.
An execution history Ĥ = (H,≺) is a partial order on H satisfying the relation ≺.

Let us remark that an execution history is a partial order. As a consequence, there may exist
different possible ways to define an operation sequence (also called serialization) containing op-
erations of the execution according to the partial order. To formalize this point, we introduce the
notions of consistent permutation and permutation set.

Definition 4 (Permutation π Consistent with Ĥ). Given an execution history Ĥ = (H,≺), a per-
mutation π of all the operations belonging to H is consistent with Ĥ if, for any pair of operations
op1, op2 in π such that op1 precedes op2 in Ĥ then op1 precedes op2 in π.

Considering the execution history Ĥ shown in Figure 3, a permutation consistent with Ĥ is
π = (add(1)i, get()k, add(2)j, remove(2)i, remove(1)k, get()j, add(3)i)3.

3Notation op()id represents the operation op issued by the process with identifier id
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Definition 5 (Permutation set). Let Ĥ = (H,≺) be the execution history of the set object. A
permutation set of an execution history Ĥ , denoted ΠĤ , is the set of all the permutations π that are
consistent with Ĥ .

Considering again the execution history Ĥ shown in Figure 3, the permutation set ΠĤ of the
execution history Ĥ is shown in Figure 4.

ΠĤ = { π1 = (add(1)i, get()k, add(2)j, remove(2)i, remove(1)k, get()j, add(3)i),
π2 = (add(1)i, get()k, add(2)j, remove(2)i, remove(1)k, add(3)i, get()j),
π3 = (add(1)i, get()k, add(2)j, remove(2)i, get()j, remove(1)k, add(3)i),
π4 = (add(1)i, get()k, add(2)j, remove(2)i, get()j, add(3)i, remove(1)k),
π5 = (add(1)i, get()k, add(2)j, remove(2)i, add(3)i, get()j, remove(1)k),
π6 = (add(1)i, get()k, add(2)j, remove(2)i, add(3)i, remove(1)k, get()j),
π7 = (add(1)i, get()k, remove(2)j, add(2)i, get()j, add(3)i, remove(1)k),
π8 = (add(1)i, get()k, remove(2)j, add(2)i, get()j, remove(1)k, add(3)i),
π9 = (add(1)i, get()k, remove(2)j, add(2)i, add(3)i, get()j, remove(1)k),
π10 = (add(1)i, get()k, remove(2)j, add(2)i, add(3)i, remove(1)k, get()j),
π11 = (add(1)i, get()k, remove(2)j, add(2)i, remove(1)k, add(3)i, get()j),
π12 = (add(1)i, get()k, remove(2)j, add(2)i, remove(1)k, get()j, add(3)i)

}.

Figure 4: Permutation Set of the Execution History Ĥ

In the following, the notation op →π op′ is used to represent the precedence relation in the
permutation π (i.e., the operation op precedes the operation op′ in the sequence given by the per-
mutation π). Let us remark that if op →πi op

′ for some πi ∈ ΠĤ , it does not imply that op ≺ op′

in Ĥ . On the contrary, if op→πi op
′ ∀ πi ∈ ΠĤ then op ≺ op′ in Ĥ .

4.2. Set Object Specification
Let us recall that a get() operation does not modify the content of the set. Therefore, in order

to define which are the elements that can be returned by each get() according with the operation
executed on the set, let us introduce the concept of sub-history induced by a get() operation.

Definition 6 (Sub-history induced by a get() operation). Let Ĥ = (H,≺) be the execution history
of all the add(v), remove(v), and get(), operations invoked on the shared object. The sub-history
of Ĥ induced by a get(), operation op, denoted ÛĤ,op = (U,≺), is defined as follows:

- U ⊆ H;

- U = {o ∈ H|(o = add(v) ∨ o =remove(v)) ∧ tB(o) < tE(op)} ∪ {op};

- for each pair of operations o, o′ such that o, o′ ∈ U , if o precedes o′ in Ĥ then o precedes o′

in ÛĤ,op
As an example, Figure 5 shows the sub-history induced by the get() operation op issued by pj

on the history of Figure 3. For simplicity whenever it is clear from the context, ÛĤ,op is referred to
as Û .
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Definition 7 (Set Generated by a Permutation). Let Ĥ = (H,≺) be an execution history, and op
be a get() operation of H . Given the sub-history ÛĤ,op = (U,≺) induced by op on Ĥ , let π be a

permutation consistent with ÛĤ,op, then the set of elements Vπ generated by π for op contains all
the elements v such that:

1. ∃ add(v) ∈ π : add(v) →π op and
2. @ remove(v) ∈ π : add(v) →π remove(v)→π op

As an example, consider the execution history Ĥ shown in Figure 3 and its sub-history Û
induced by the operation op =get()j (Figure 5). Given a permutation π1 = (add(1)i, add(2)j,
remove(2)i, remove(1)k, get()j) (with π1 ∈ ΠÛ consistent with Û ), the set of elements Vπ1 gener-
ated by π1 is Vπ1 = ∅.

We are now in the position to define when a set V is an admissible set for a given get() operation
op.

Definition 8 (Admissible set for a get() operation). Given an execution history Ĥ = (H,≺) of a
set object S, let op be a get() operation of H . Let ÛĤ,op be the sub-history induced by op on Ĥ .
An admissible set for op, denoted Vad(op), is any set generated by any permutation π belonging to
the permutation set of ΠÛ .

Let us note that, given a get() operation, if more than one consistent permutation exist (i.e.
if the permutation set contains more than one permutation), then the get() has more than one
admissible set. As an example, consider again the execution history Ĥ of Figure 3 and consider
the get() operation op issued by pj . Given the permutation set ΠÛ , all the possible admissible sets
for op are: Vπ1 = ∅, Vπ2 = Vπ6 = {3} Vπ3 = Vπ4 = {1} Vπ5 = {1, 3} Vπ7 = Vπ8 = {1, 2}
Vπ9 = {1, 2, 3} Vπ10 = Vπ11 = {2, 3} Vπ12 = {2}.

Definition 9 (Set Object Specification). A protocol Pset implements a set object in the system
model introduced in Section 3, if the following conditions holds:

• Termination: if a process pi invokes an operation op on the set object and does not leave the
computation , it eventually returns from op.

• Get Validity: any get() operation op invoked on the set object returns an admissible set for
op.
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Let us note that the set object specification specifies only when a set is admissible (or valid)
for a given execution history but it does not say anything about the result of two get() operations
computed on the same execution history. As an example, let us consider the following scenario:
there exists an add(v) concurrent with a remove(v) and two get() operations op1 and op2 executed
after the end of both the add(v) and remove(v). This simple execution generates the following
consistent permutations π1 = (add(v), remove(v)) and π2 = (remove(v), add(v)) generating re-
spectively the following admissible sets Vπ1 = ∅ and Vπ2 = {v}. According to the specification of
the set, we may have that op1 and op2 return respectively Vπ1 and Vπ2 providing two sets that are
admissible (as they are the result of a consistent permutation) but seem to be not consistent. In the
next Section we will specify which is the consistency condition for the set object that we require
to our protocol Pset.

4.3. Per-element Sequential Consistency Condition
A consistency condition defines which is the set among the admissible ones that a get() op-

eration is allowed to return given the execution history. In a shared memory context, a set of
formal consistency conditions has been defined [26] as constraints on the partial order of read()
and write() operations issued on the shared memory. In order to specify a condition for a set object,
we introduce the concepts of legal get and linear extension of an history.

Definition 10 (Legal get()). Let V be set returned by a get()operation op. This operation is legal
if V is an admissible set for op.

Definition 11 (Linear extension of an history). A linear extension Ŝ = (S,→s) of an execution
history Ĥ is a topological sort of its partial order where (i) S = H , (ii) op1 ≺ op2⇒ op1 →s op2
and (iii)→s is a total order.

Let us introduce now the notion of per-element sequential consistency for a set object. Infor-
mally, this consistency condition requires that any group of get() operations that do not overlap
with any other operation return the same admissible set. Moreover, due to the semantic of the set
when considering concurrent operations involving different elements (e.g., add(v) and add(v′)),
these operations can be perceived in different order by different processes. Formally,

Definition 12 (Per-element sequential consistency). A history Ĥ = (H,≺) is per-element sequen-
tially consistent iff for each process pi there exists a linear extension Ŝi = (S,→si) such that:

- every get() operation is legal and

- for any pair of concurrent operations op and op’, where op is an add(v), op’ is a remove(v′)
and v = v′, if op→si op

′ for some pi then op→sj op
′ for any other process pj .

As an example, consider the execution history Ĥ shown in Figure 3. Given the three pro-
cesses pi, pj and pk the linear extensions such that Ĥ is per-element sequentially consistent are the
following:

- Ŝi = add(1)i, add(2)j, remove(2)i, remove(1)k, add(3)i, get()j
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- Ŝj = add(1)i, add(2)j, remove(2)i, remove(1)k, add(3)i, get()j

- Ŝk = add(1)i, add(2)j, remove(2)i, add(3)i, remove(1)k, get()j.

Relations among consistency criteria. Per-element sequential consistency is weaker than lin-
earizability and sequential consistency but it is stronger than causal consistency.

Given an execution history, it is sequentially consistent if it admits a linear extension in which
all the get() operations return an admissible set. In particular, if the provided linear extension is
ordered according to the real time execution, the history is said linearizable. Thus, in order to
satisfy such criteria all the processes need to agree on a total order of operations. In contrast,
per-element sequential consistency still allows to have a partial order of the operations, with the
constraint that only operations occurring on the same element have to be totally ordered. An
example of linear extensions that are per-element sequential consistent but not sequential consistent
is the one discussed in the previous section as Ŝk follows a different order with respect to Ŝi and
Ŝj .

On the contrary, causal consistency [3] requires only that each get()operation returns an admis-
sible set with respect to some linear extension. As an example, considering the execution history
Ĥ shown in Figure 3, the following linear extensions are causally consistent but not per-element
sequential consistent.

- Ŝi = add(1)i, remove(2)i, add(2)j, remove(1)k, add(3)i, get()j

- Ŝj = add(1)i, add(2)j, remove(2)i, remove(1)k, add(3)i, get()j

- Ŝk = add(1)i, remove(2)i, add(2)j, remove(1)k, add(3)i, get()j.

Figure 6 shows the relationships among the four consistency criteria.

Note that, if the set domainD is composed of a single element (i.e., |D| = 1), then per-element
sequential consistency is equivalent to sequential consistency. In fact, in this case, any pair of
concurrent operations take as input parameter the same element and need to be ordered in the same
way by any process. In addition, by definition, also non-concurrent operations follow a total order.
The result is a unique total order on which all the processes agree.

Let now consider the following case: each process can add and/or remove only one specific
element (e.g., its identifier). In this case, per-element sequential consistency boils down to causal
consistency. Since each element is associated to one process and each process executes operations
sequentially, it follows that concurrent operations take as input different elements and each process
can perceive them in a different order, exactly as in causal consistency.

5. An Impossibility Result in Eventually Synchronous Dynamic System

In this Section, we will show that there not exists any protocol Pset implementing a set ob-
ject using finite memory in a non-synchronous distributed system prone to continuous churn. The
intuition behind the impossibility lies in the fact that eventual synchrony requires processes to co-
ordinate among them during each operation. As a consequence, all the protocols implementing the
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set object require to the process issuing the operation to wait for the reception of some messages. In
the meanwhile, due to the continuous churn, processes participating in the distributed computation
might changes. Therefore, to ensure the operations’ termination, processes need to store ongoing
operations locally and to transfer this information to newcomers in order that the latter can help the
operation termination (cfr. Lemma 4). The combined effect of both eventual synchrony and churn
makes impossible for a process to decide when it can discard stored information (Lemma 5). Thus,
considering that each process can invoke an operation and the number of processes is potentially
infinite, we get to the need of infinite memory at each process (Theorem 1).

Before going in to the details of the proof, let us introduce some preliminary definitions.

Definition 13 (Process state at time t). We define as process state of a process pi at time t the set
of all its local variables together with their values at time t.

Definition 14 (Configuration at time t). A Configuration at time t, denoted as C(t), is a set of pair
< pi, sti > where pi is a process participating in the computation at time t and sti is the state of
pi at time t.

As a first step, let us prove that eventual synchrony imposes some constraints on the message
patterns occurring in the protocol (cfr. Lemma 1 - Lemma 3):

Lemma 1. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. Any algo-
rithm AA (AR respectively) must involve at least one send− reply communication pattern (i.e.,
two communication steps).

Proof Let us consider the initial configuration C(t0) holding at time t0 when the set computation
starts. Let op = add(v) be the first update operation terminated at some time t > t0 and let C(t) be
the configuration holding at time t. Let as assume that the algorithmsAJ andAG are implemented
by two perfect instantaneous oracles that, when executed, returns the union of all the active process
states in the computation.

Let us assume by contradiction that one communication step is enough to provide a correct
implementation of the set object.
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Let us divide processes of the distributed computation in two groups: (i) the process pi that
issued the operation op and (ii) all the other processes. At time t0, all the processes (including pi)
start from the initial configuration where all the local states are equals and the set object is empty.

At time t an update operation is terminated and the set object contains the element v. Thus,
any following get() operation must return the set {v} (until a remove(v) is invoked).

If a get() operation must return the set {v} it means that at some point during the update
operation (i.e., between time t0 and t) the state of at least an active process must change storing
some information about the addition of v to the set. Let us note that updating the state of pi is not
sufficient as the system is dynamic and pi could leave just after the operation is terminated. As
a consequence, pi must necessarily send a message to notify that an update operation is running
and to trigger the state update in at least one other process i.e., the send communication step is
necessary.

Let us now show that the send communication step is not sufficient to provide a correct imple-
mentation of AA.

In oder to be correct, AA must ensure the termination property. As a consequence, pi must be
able to decide when it can trigger the add return event. In particular, this can be done when at least
one process4 updated its state.

Let us recall that (i) processes communicate only by exchanging messages, (ii) they do not
know the membership of the computation and (iii) the system is eventually synchronous. As a
consequence, the only way pi has to know that at least one other process pj updated its state is to
wait for an acknowledgement from pj . As a consequence, a second communication step, i.e., a
reply step, is necessary for a correct implementation of AA

The same arguments applies for a correct implementation of AR and the claim follows.
2Lemma 1

Lemma 2. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. Any algo-
rithm AG (AJ respectively) must involve at least one send− reply communication pattern (i.e.,
two communication steps).

Proof The claim simply follows by observing that even in a static eventually synchronous system
“read” operations (i.e., operations that return the state of the shared object) cannot be executed
locally. 2Lemma 2

Lemma 3. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. Let QA,
QR, QJ and QG be the number of (reply) messages that an add(), a remove(), a join() and a
get() operation respectively must wait before terminating the corresponding algorithm execution.
Qx >

n
2

(with x ∈ {A,R, J,G}).

Proof From Lemma 1 and Lemma 2 it follows that any algorithm Ax (with x ∈ {A,R, J,G})
requires to the running process pi to wait some message from the others before terminating. As a

4The exact number of processes is given by the implementation of the AJ and AG algorithms. In any case, such
number does not affect the proof and it must be at least one.
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consequence |Qx| ≥ 1. Let us now observe that a process pi issuing a get() or a join() operation
has no knowledge about the set of process participating in the distributed computation and that
updated their states during a preceding update operation. As a consequence, in order to ensure
the Get Validity property, pi needs to be sure that in the set of replies it receives there is at least
one process with an updated state and this is obtained with the intersection of two majorities from
which the claim follows. 2Lemma 3

Corollary 1. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. Any algo-
rithm Ax (with x ∈ {A,R, J,G}) has a terminating condition including the following step:

wait until |Qx| <
n

2
.

Proof The corollary follows directly from Lemma 3. 2Corollary 1

Corollary 2. At any time t, |A(t)| ≥ Qx >
n
2

(with x ∈ {A,R, J,G}).

Proof The corollary follows from the observation that processes joining the computation (i.e.,
processes that are not yet active) have no knowledge about the computation and they have no state.
As a consequence they are not able to answer to any message before they become active and to
avoid them to block the computation they must be a minority. 2Corollary 2

Informally speaking, previous Lemmas and Corollaries show that the timing assumption (i.e.,
eventual synchrony) plays an important role in the definition of a distributed protocol implementing
a set object. In fact, the uncertainty about the time required from messages to reach their destination
and the absence of knowledge about the computation membership require any algorithm, part of
the set protocol, to follow a quorum-based approach relying on a majority of active processes.

Lemma 4. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. It is a nec-
essary condition for the termination of any algorithm AA (AR respectively) that any process pi
stores information about the current add() (remove() respectively) operation.

Proof Let us suppose by contradiction that there exists an algorithm AA (AR respectively) run-
ning at a process pi that terminates and that never stores information related to the current add()
(remove() respectively) operation.

Due to Corollary 1, if AA (AR respectively) terminates, it means that eventually the condition
wait until |Qx| < n

2
will become false. Let us recall that initially all the processes starts from

the initial state where all the local variables are initialized to the default values. Thus, initially the
variable counting the number of replies received Qx is set to 0.

Let us consider the scenario depicted in Figure 7 with a distributed computation composed of
5 processes. Without loss of generality, let us assume that the add() operation triggered by p1 is
the first operation issued on the set. Due to the presence of churn, processes start to join and the
leave the computation. As a consequence, the set of active processes may change along time.

LetA(t0) = {p1, p2, p3, p4, p5} be the set of active processes at the time t0 when p1 disseminates
information about the add(). At time t′ > t0, process p5 leaves the computation and a new process
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Figure 7: Non-terminating run for protocol Pset.

p6 join. Let us remark that, due to the assumptions on the communication primitives, (i) p6 is not
guaranteed to deliver messages related to the add() operation sent by p1 and (ii) messages sent
from p5 to p1 may be lost as p5 left from the computation.

Note that, this scenario where new processes substituting those in A(t0) may happen several
times as shown in Figure.

Thus, the only chance for the add() operation to terminate is that p1 receives answers from
processes that substituted those in A(t0). Note that a process pj /∈ A(t0) can become aware of the
add() operation if (i) p1 informs pj about the operation, or (ii) some other active process pk, that
updated its state for the effect of the add() operation, forwards information about current running
operations.

Let us consider the fist case. As shown in Figure, it may happen that a process pj /∈ A(t0)
leaves before being informed from p1 and thus it may be not able to answer to the message. Note
that, due to the eventual synchrony of the communication primitives, this scenario may happen for
any joining process. Considering that the churn is continuous, this may happen an infinite number
of times letting the operation not terminating. Therefore, we have a contradiction.

Let us now consider the second case. In order to forward such information to pj , a process
pk ∈ A(t0) needs to store such information locally. Considering that there is no special process in
the computation but all the processes execute the same protocol, we have that any active process
should store information related to update operations and we have a contradiction.

2Lemma 4

Informally, Lemma 4 shows that due to the effect of continuous churn, processes participating
in the computation might continuously changes. As a consequence, the set of active processes,
that can help the termination of the protocol, changes and the only way for a newcomer to become
aware of an operation starting before its arrival is to be informed by someone. To this end, the
protocol needs to keep track of the information related to each operation.

Lemma 5. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. Let pi be a pro-
cess running the AA algorithm (AR respectively) and storing information about the current add()
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(remove() respectively) operation. pi is not able to detect when it can safely delete information
about the add() operation.

Proof Due to Lemma 4, while running the algorithm AA (AR respectively), processes need to
store information about the running operation in order to forward them to joining processes and
allow the termination. As a consequence, a process pi can remove information about an add()
operation (remove() respectively) when it knows that the operation is completed. This information
is generated by the process pj issuing the operation as it is the only one that knows when the
operation terminates. Thus, pi may know that the operation is terminated if and only if pj advertises
the end of the operation and such a message is delivered by pi.

However, due to the churn, pj may disseminate such information and then leave the computa-
tion. As a consequence, considering that the communication primitives may loose messages sent
from processes leaving the computation, we have that pi may not receive any message and keep
forever the information stored in memory. 2Lemma 5

Informally, the previous Lemma shows that eventual synchrony does not make possible for a
process pi to understand when an operation is completed unless the issuing process pj advertises
this information. However, due to the churn effect, pj may leave just after the end of the operation
and its advertisement can be lost forcing pi to keep forever the information stored locally.

Theorem 1. Let Pset = {AJ ,AA,AR,AG} be a protocol implementing a set object. There not
exists a protocolPset implementing a per-element sequential consistent set object using finite mem-
ory.

Proof The claim follows from Lemma 5 by considering that there may exist an infinite number
of processes joining the computation, updating the object and then leaving. As a consequence, an
infinite number of operation may be stored locally and never deleted. 2Theorem 1

6. Implementing Set Objects with Finite Memory

As shown in the previous Section, the impossibility to design a distributed protocol Pset work-
ing with finite memory depends on the combined action of churn and eventual synchrony. To
overcome this impossibility, it is possible to follow three different approaches:

1. Stronger timing assumptions. Assuming a synchronous system where the communication
latency is bounded by a known constant δ allows us to simplify the structure of the protocol
and to compute upper bounds on the time each operation requires to terminate. As a conse-
quence, it is possible to define a procedure able to delete from the memory all the completed
operations keeping the memory size finite and bounded.

2. Weaker churn model. A weaker churn model is the one of quiescent churn i.e., the one
assuming the existence of a time t after which the churn stops long enough to ensure the
convergence of the protocol. Under this assumption, it is possible to build a distributed
protocol implementing the set object as Lemma 5 does not hold anymore. In fact, there will
exists a time after which processes stop to leave (and to join) and thus messages advertising
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the end of the operation will not be lost anymore. This makes possible to delete operations
from the memory and to use a finite amount of memory. However, this implementation
does not allows to bound the amount of memory required. In fact, the amount of memory
depends from the number of operations invoked before the stability period and cannot be
fixed a priori.

3. Weaker object specification. Weakening the specification allows to trade off what the object
is able to guarantee and the amount of memory required.

In this paper, we focus our attention on points 1 and 3 as they allow to design a protocol work-
ing with bounded memory while point 2 just allows to guarantee that the memory is finite.
In Section 6.1, we will consider a synchronous system and we show that a set object implementa-
tion, using finite memory space for local computation, is possible.
In Section 6.2, we will consider an eventually synchronous system and we weaken the specification
of the set object by introducing a k-bounded set object and we provide a protocol implementing
such an object using finite memory in presence of continuous churn.

6.1. Set Object in a Synchronous System
The distributed system is synchronous in the following sense: processing times of local com-

putations (except for the wait statement5) are negligible with respect to communication delays,
so they are assumed to be equal to 0. However, messages take time to travel to their destination
processes. In the following, we will detail the guarantees offered by the two communication prim-
itives introduced in Section 3 while used in a synchronous system.

Point-to-point communication. The network allows a process pi to send a message to another
process pj as soon as pi knows that pj entered the system. Let us recall that the network is reliable,
i.e., it does not loose, create or modify messages. Moreover, the synchrony assumption guarantees
that there exists a known upper bound δ′ on message transmission delays. More formally, if pi
invokes “send MSG() to pj” at time t, then pj receives that message by time t + δ′, if it has not
left the system by that time.

Broadcast. It is assumed that the CCS offers a broadcast communication primitive that provides
processes with two operations, denoted broadcast MSG() and deliver MSG(). The former allows a
process to send a message to all the processes in the system, while the latter allows a process to
deliver a message. Consequently, we say that such a message is “broadcasted” and “delivered”.
These operations satisfy the following property:

• Timely delivery: Let t be the time at which a process pi invokes broadcast MSG(). There is
a constant δ (δ ≥ δ′) (known by the processes) such that if pi does not leave the system by
time t + δ, then all the processes that are in the system at time t and do not leave by time
t+ δ, deliver the message by time t+ δ.

5A wait statement is a particular computation step that blocks the process and keeps it waiting for a certain amount
of time before going to the next step in the code. While waiting, a process can still deliver messages and process them
according to the protocol.
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Such a pair of broadcast operations has first been formalized in [12] in the context of systems
where process can commit crash failures. It has been extended to the context of dynamic systems in
[8]. Let us note that, similarly to the case of point-to-point communication primitive, the constant δ
represents an upper bound on the transmission delay of the broadcast. For the ease of presentation,
in the following we will use only the constant δ as it is an upper bound for both the point-to-point
transmission delay and the broadcast transmission delay.

6.1.1. Per-element Sequential Consistent Protocol
The basic idea behind the set object implementation is to replicate the set and other relevant

information (e.g., recent executed operations, pending joins, etc.) over all the processes participat-
ing in the set computation. In the following, we will use to term update operation to identify an
operation that modifies the content of the set object i.e., an update operation can be either an add()
or a remove() operation. Moreover, we will call state of the set at process pi the local copy of the
set stored by pi together with a sequence number counting how many update operations have been
seen by pi and the list of recent operations stored by pi.

When a process wants to update the content of the set, it just asks to all the other processes to
perform the operation on its local copy while when it invokes a get() operation it just returns the
local copy of the set.

In order to implement a set object (as specified in Section 4.2) satisfying per-element sequential
consistency in a distributed system with continuous churn we have to handle the following issues:

• update operations should be persistent despite churn: if an element v is added to the set then
v should be in set (and should be returned by any get() operation) until it is removed and
if an element v′ is removed it should not appear anymore in the set (i.e., it should not be
returned by any get() operation) until it is added again;

• concurrency among add() and remove() of the same element v must be handled in a consis-
tent way by all the processes;

• the memory used for local computation should be finite.

The first issue is mainly due to the fact that active processes (maintaining the set) leave and new
joining processes have no information about the current content of the set. Thus, if the protocol
does not properly master the churn, the set may disappear as the processes having an updated
state are not in the computation anymore. To solve this issue we designed a join() operation that
basically implements a state transfer (i.e. elements in the set and other relevant information) from
active processes to the joining one. In particular, when a process joins, it queries other processes in
the distributed computation to obtain their current state. Exploiting the synchrony of the system,
the joining process waits for a round trip delay and then updates its local state by processing the
information received with states of active processes and then becomes active. In the meanwhile, if
it receives requests by other joining processes or it receives messages requiring to update the set,
it buffers those messages and will process them as soon as it becomes active.

To enforce per-element sequential consistency, we assign a timestamp to each update operation.
In particular,
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update operations are implemented by sending an update message to disseminate the element to
be inserted/removed, together with the operation type, to all the replicas. When a process receives
such an update message, it updates its local copy of the set according to Thomas’ Last-Writer-Wins
rule [30]: updates are applied to the local copy of the set if and only if the corresponding timestamp
is greater than the local one (i.e. the sequence number). We have defined an update procedure
executed each time that an add() or a remove() is issued. Such procedure is executed atomically
and checks if the current operation is new or does not “conflict” with an already executed operation
i.e., it checks the type of the operation and updates the local copy of the set it if and only if the
timestamp of the current operation (composed by the pair sequence number and process identifier)
follows the one stored locally with respect to the total order imposed by the pair sequence number
and process identifier.

In order to ensure that the memory used is always finite, we exploit the synchrony of the
communication to estimate the maximum time that each operation must be stored at each replicas
before it can be garbage collected (cf. procedure garbageCollection()). In particular, an operation
can be garbage collected when it has been executed by any active process and there are no more
messages related to concurrent update operations traveling in the network (i.e., all the possible
conflicts arising by concurrent add(v) and remove(v) operations are resolved). This allows to
keep the buffer size limited and makes possible to provide an implementation working with finite
memory space.

In the following, we will provide additional details on the implementation of each operation.
We will first show the algorithms AA, AR and AG implementing respectively the the add(), the
remove() and the get() operations and then we will detail theAJ algorithm implementing the join()
operation.

Local variables at process pi. Each process pi has the following local variables.

• Two variables denoted seti and sni; seti contains the local copy of the set; sni is an integer
that represents the sequence number for the current update operation and it is used to generate
the timestamp of update operations.

• A FIFO set variable last opsi used to maintain an history of recent update operations exe-
cuted by pi. Such variable contains 4-tuples < type, val, sn, id > each one characterizing
an update operation of type type = {A or R} (respectively for add() and remove()) of the
element val, with a sequence number sn, issued by a process with identity id.

• A boolean activei, initialized to false, that is switched to true just after pi has joined the
computation.

• Three set variables, denoted repliesi, reply toi and pendingi, that are used in the period
during which pi joins the computation. repliesi contains the 3-tuples < set, sn, ops >
that pi has received from other processes during its join period, while reply toi contains
the identifier of processes that are joining the comptation concurrently with pi (as far as pi
knows). The set pendingi contains the 4-tuples< type, val, sn, id > each one characterizing
an update operation running concurrently with the join.

21



operation get(): % issued by any process pi %
(01) return seti.
————————————————————————————————–
operation add(v): % issued by any process pi%
(02) sni ← sni + 1;
(03) broadcast UPDATE(A, v, sni , i);
(04) seti ← seti ∪ {v};
(05) last opsi ← last opsi ∪ {< A, v, sni, i >};
(06) wait(δ);
(07) return add return.
————————————————————————————————–
operation remove(v): % issued by any process pi%
(08) sni ← sni + 1;
(09) broadcast UPDATE(R, v, sni , i);
(10) seti ← seti \ {v};
(11) last opsi ← last opsi ∪ {< R, v, sni, i >};
(12) wait(δ);
(13) return remove return.
————————————————————————————————–
(14) when UPDATE(type, val, snj , j) is delivered: % at any process pi %
(15) if (¬activei) then pendingi ← pendingi ∪ {< type, val, snj , j >};
(16) else execute update(type, val, snj , j);
(17) end if.

Figure 8: The get(), add() and remove() protocol for a synchronous system (code for pi)

The get() operation. The algorithms AG implementing the get() operation is shown in Figure 8.
The get is purely local (i.e., fast): it consists in returning the current content of the local variable
seti.

The add(v) and the remove(v) operations. The algorithmsAA andAR implementing the add(v)
and the remove(v) operations are shown in Figure 8. They have a quite similar structure. In
order to ensure per-element sequential consistency, update operations have to be executed at each
process following the same order provided by a deterministic rule. In the proposed algorithm, the
deterministic rule is defined as the total order among the pairs< sn, id > where sn is the sequence
number of the operation and id is the identifier of the process issuing the operation.

When pi wants to add/remove an element v to/from the set, it increments its sequence number
sni (line 02 and line 08 of Figure 8), it broadcasts an UPDATE(type, val, sn, id) message (line
03 and line 09 of Figure 8) where type is a flag that identify the type of the update (i.e., A for an
add() operation or R for a remove() operation), val is the element that has to be added or removed,
sn is the sequence number of the operation and id is the identifier of the process that issues the
operation. Then, pi executes the operation on its local copy of the set (line 04 and line 10 of Figure
8) and it stores in its last opsi variable the tuple< type, val, sn, id > that identifies such operation
(line 05 and line 11 of Figure 8).

Finally, pi waits for δ time units (line 06 and line 12 of Figure 8) to be sure that all the active
processes have received the UPDATE message before returning from the operation (line 07 and line
13 of Figure 8).

When a process pi receives an UPDATE(type, val, snj, j) message from a process pj , if it is not
active, it puts the current UPDATE message in its pendingi buffer and will process it as soon as it
will be active, otherwise it executes the UPDATE() procedure shown in Figure 9.

This procedure is executed atomically by each process and is responsible of enforcing a total
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procedure update(type, val, snj , j) % at any process pi %
(01) if (snj > sni)
(02) then last opsi ← last opsi ∪ {< type, val, snj , j >};
(03) if (type = A) then seti ← seti ∪ {< val, snj >};
(04) else seti ← seti \ {< val,− >};
(05) end if;
(06) else
(07) temp← {X ∈ last opsi|X =< −, val,−,− >};
(08) if (temp = ∅)
(09) then last opsi ← last opsi ∪ {< type, val, snj , j >;
(10) if (type = A) then seti ← seti ∪ {< val, snj >};
(11) else seti ← seti \ {< val,− >};
(12) end if;
(13) else if ((type = A)∧ (@ < R,−, sn, id >∈ temp | (sn, id) > (snj , j)))
(14) then seti ← seti ∪ {< val, snj >};
(15) last opsi ← last opsi ∪ {< type, val, snj , j >};
(16) end if;
(17) if ((type = R)∧ (@ < A,−, sn, id >∈ temp | (sn, id) > (snj , j)))
(18) then seti ← seti \ {< val,− >};
(19) last opsi ← last opsi ∪ {< type, val, snj , j >};
(20) end if;
(21) end if;
(22) end if;
(23) sni ← max(sni, snj).

Figure 9: The update() procedure for a synchronous system (code for pi). The procedure is executed atomically.

order among operations needed to enforce per-element sequential consistency. As first action pi
checks if the sequence number snj , corresponding to the current operation, is greater than the one
stored locally and if it is so, pi executes the operation by adding/removing the element to the local
copy of the set (lines 02-05).

If not, pi checks if there exists some operation occurred on the same element val in the set of
the last executed operation last opsi; if there is not such an operation, pi executes the current one
(lines 06 - 13) otherwise, it checks, according to the type of the operation to be executed, if the two
operations are in the right order and if so, pi executes the operation (lines 14 - 22).

Finally pi updates it sequence number (line 23) by selecting the highest between its own and
the one associated to the operation.

The join() operation. The algorithm implementing the join() operation for a set object is shown in
Figure 10, and involves all the processes that are currently in the distributed computation (whether
active or not).

First pi initializes its local variables (line 01) and waits for a period of δ time units (line 02);
the motivations for such waiting period is explained later. After this waiting period, pi broadcasts
an INQUIRY() message to acquire states of other processes and remains waiting for 2δ time units,
i.e., the maximum round trip delay (lines 03-04).

When a process pj delivers an INQUIRY() message from pi and it is active, it answers by
sending back a REPLY() message containing its current state (composed by its local copy of the
set, the current sequence number and the list of recent operation) (line 20), otherwise it buffers the
request in the reply toj variable (line 21) and will answer as soon as it will be active (line 15).

When pi is unblocked by the wait statement, it processes all the received information to deter-
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operation join(i):
(01) sni ← 0; last opsi ← ∅; seti ← ∅; active i← false;

pending i← ∅; repliesi ← ∅; reply toi ← ∅;
(02) wait(δ);
(03) broadcast INQUIRY(i);
(04) wait(2δ);
(05) let < set, sn, ls >∈ repliesi such that (∀ < −, sn′,− >∈ repliesi : sn ≥ sn′);
(06) seti ← set; sni ← sn; last opsi ← ls;
(07) for each < type, val, sn, id >∈ pendingi do
(08) < type, val, sn, id >← first element(pendingi);
(09) if (< type, val, sn, id >/∈ last opsi)
(10) then execute update(< type, val, sn, id >)
(11) end if;
(12) end for;
(13) activei ← true;
(14) for each j ∈ reply toi do
(15) send REPLY (< seti, sni, last opsi >) to pj ;
(16) end for;
(17) activate garbageCollection();
(18) return join return.

—————————————————————————————————
(19) when INQUIRY(j) is delivered:
(20) if (activei) then send REPLY (< seti, sni, last opsi >) to pj
(21) else reply toi ← reply toi ∪ {j}
(22) end if.

(23) when REPLY(< set, sn, ops >) is received:
(24) repliesi ← repliesi ∪ {< set, sn, ops >}.

Figure 10: The AJ algorithm for the join() operation of a set object in a synchronous system (code for pi).

mine the current content of the set. In particular, it updates its local variables seti, sni and last opsi
to the most up-to-date set it has received from active processes (lines 05-06). Moreover, for each
UPDATE() message received during the join execution and stored in the pendingi variable, pi exe-
cutes the update() procedure (shown in Figure 9 and discussed later), as if the UPDATE() message
is just received (lines 09-11). Then, pi becomes active (line 13), which means that it can answer
the inquiries it has received from other processes, and does it if reply to 6= ∅ (line 14). Finally,
pi activates the garbageCollection() procedure (shown in Figure 12 and discussed later) to avoid
that the last opsi variable grows to infinite (line 17) and then returns (with the join return event)
to indicate the end of the join() operation (line 18).

Why the wait(δ) statement at line 02 of the join() operation? To motivate the wait(δ) statement
at line 02 of Figure 10, let us consider the execution depicted in Figure 11(a). The set is initially
empty and the processes pi, ph and pk are the three processes participating in the computation. At
time t, pi invokes an add() operation. Moreover, the process pj invokes the join() operation just
after t.

When pi invokes the add() operation, it broadcasts an UPDATE() message and waits δ time unit
before returning from the operation. Due to the timely delivery property of the broadcast primitive,
ph and pk deliver UPDATE() message containing the element to be added (i.e., 1) by t+δ. However,
since pj starts the join() operation just after time t, there is no such a guarantee that it will deliver
the message as when the message has been generated, pj was not participating in the computation.
Hence, if pj does not execute the wait(δ) statement at line 02, its execution of the lines 05-12
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Figure 11: Why wait(δ) is required

can provide it with the previous value of the set, namely ∅, as shown in Figure 11(a) as, in the
worst-case scenario, all the active processes may first answer to the INQUIRY() message and then
deliver the UPDATE() message. Thus, pj may become active storing a copy of the set that is not
up-to-date. In addition, if pj issues a get() operation just after the end of join(), it obtains again
∅, while it should obtain the new set {1} (because 1 is the element added by a completed add()
operation and there is no remove() concurrent with this get() issued by pj).

The execution depicted in Figure 11(b) shows that this incorrect scenario cannot occur if pj is
forced to wait for δ time units before inquiring to obtain the last value of the set.

Garbage Collection. Let us remark that the last opsi set variable collects the information related
to operations executed on the set. However, considering that messages are always delivered in
a bounded time interval, the protocol needs only the information related to recent operations to
checks the total order among timestamps and ensure per-element sequential consistency. To avoid
this problem it is possible to define a GARBAGECOLLECTION() procedure that periodically re-
moves from the last opsi variable the information related to “old” operation.
The thread managing the garbage collection is shown in Figure 12 and each iteration is executed
atomically. It is activated the first time at the end of the join() operation (line 17, Figure 10) and
then is always running. Every 2δ time units, it checks the operations not known in the previous
period (line 05) and discards the ones already executed (line 06).

6.1.2. Correctness Proofs
In this section, the termination of each operation is first proved (Theorem 2). Then we show

that every execution history generated by the protocol is per-element sequential consistent under
the assumption that the churn rate is below a certain bound (Theorem 3). We prove the latter the-
orem through two main steps: (i) if every active process maintains at any time an admissible set,
the execution history is always per-element sequential consistent (Lemma 10); (ii) if the churn is
below a certain bound, every get()operation returns an admissible set (Lemma 9). To get the latter
result, we need to prove preliminary lemmas stating that if the churn is below a certain bound,
a process that issued a join() operation becomes active storing an admissible set, i.e., the current
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procedure garbageCollection():
(01) tempi ← ∅; old opsi ← ∅;
(02) while(true) every 2δ
(03) tempi ← ∅;
(04) for each op =< type, val, sn, id >∈ last opsi do
(05) if (op /∈ (last opsi ∩ old opsi)) then tempi ← tempi ∪ op;
(06) else last opsi ← last opsi \ op;
(07) end if;
(08) old opsi ← tempi;
(09) end for;
(10) end while.

Figure 12: The garbageCollection() procedure for a set object in a synchronous system (code for pi). The procedure
is executed atomically.

state of the shared object is transferred from active processes already participating in the distributed
computation to newcomers. In particular, Lemma 7 proves that, starting from a set of processes
having an admissible set a time t0 and given that the churn rate is below a certain threshold, then
every process invoking a join() operation at time t1 becomes active returning from the operation
with an admissible set, while Lemma 8 generalizes this proof to any join() operation.

Theorem 2. If a process invokes join() operation and does not leave the system for at least 3δ time
units or invokes a get() operation or invokes an add() operation or a remove() operation and does
not leave the computation for at least δ time units, then it terminates the invoked operation.

Proof The get() operation trivially terminates. The termination of the join(), add() and remove()
operations follows from the fact that the wait() statements at line 02 and line 04 of Figure 10 and
at line 06 and line 12 of Figure8 terminates. 2Theorem 2

In the following Lemma we will prove that if the churn rate is smaller than 1
3δ

, then there always
exists at least one active process in the distributed computation.

Lemma 6. Let c be lesser than 1
3δ

. At any instant of time t we have

|A[t, t+ 3δ]| ≥ n(1− 3δc) > 0

Proof Let us recall that at time t0 (when the computation starts) all the processes are active (i.e.,
|A(t0)| = n). Due to assumption on the churn, at time t1 n × c processes leave the system and
n×c processes invoke the join() operation. Hence, |A[t0, t0+1]| ≥ n−(n×c). During the second
time unit, n× c new processes enter the system and replace the n× c processes that left the system
during that time unit. In the worst case, the n× c processes that left the system are processes that
were present at time t0 (i.e., they are not processes that entered the system at time t0 + 1). So,
|A[t0, t0 + 2]| ≥ n − 2(n × c). If we consider a period of 3δ time units, i.e., the longest period
needed to terminate a join() operation, it follows that |A[t0, t0+3δ]| ≥ n−3δ(n×c) = n(1−3δc).
Moreover, as c < 1

3δ
, then |A[t0, t0 + 3δ]| ≥ n(1 − 3δc) > 0. As a consequence, at time t0 + 3δ

the set of active processes is composed by at least one process (i.e., |A(t0 + 3δ)| ≥ 1). Let us note
that, in the worst case, all the n× c processes issuing a join() operation at time t1 are now going to
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become active Therefore, |A(t0 + 3δ+ 1)| ≥ 1 + (n× c)− (n× c) ≥ 1 (where the terms +(n× c)
represents processes terminating the join() issued at time t1 and −(n × c) represents processes
leaving at time t0 + 3δ + 1). It is easy to see that the previous reasoning depends only on (1) the
fact that there are n processes at each time t0, and (2) the definition of the churn rate c. Hence, the
previous reasoning can be extended at any time t concluding that ∀t : |A[t, t+ 3δ]| ≥ n(1− 3δc)
and the claim follows. 2Lemma 6

In order to prove that any get() operation returns an admissible set (Lemma 9), let us first show
that every join() operation terminates by storing an admissible set. To this aim, let us introduce the
notions of sub-history Ĥt of Ĥ at time t and admissible set of elements at time t.

Definition 15 (Sub-history Ĥt of Ĥ at time t). Given an execution history Ĥ = (H,≺) and a time
t, the sub-history Ĥt = (Ht,≺) of Ĥ at time t is the sub-set of Ĥ such that:

- Ht ⊆ H ,

- ∀op ∈ H such that tB(op) ≤ t, op ∈ Ht.

As an example, consider the history Ĥ depicted in Figure 13. The sub-history Ĥt at the time
t is the partial order of all the operations started before t (i.e., Ht contains add(4)i, get()i, get()j,
remove(4)j, add(1)j, add(3)k and remove(3)k).

Definition 16 (Admissible set of elements at time t). An admissible set of elements at time t for
S (denoted Vad(t)) is any possible admissible set Vad(op) for an instantaneous6 get()operation op
that would be executed at time t.

As an example, consider the execution of Figure 13. The possible admissible sets at time t are,
by definition, all the admissible sets for a ”virtual” get() operation op executed instantaneously at

6An operation op is instantaneous if and only if tB(op) = tE(op).
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time t (i.e., tB(op) = tE(op) = t)7. Given the sub-history Ĥt at time t (represented in Figure 13),
it is possible to define the update sub-history Û induced by op by removing the operations get()i
and get()j and the corresponding permutation set is shown in Figure 14.

Π
Û

= { π1 = (add(4)i, add(3)k, remove(4)j, op, add(1)j, remove(3)k)
π2 = (add(4)i, add(3)k, remove(4)j, op, remove(3)k, add(1)j),
π3 = (add(4)i, add(3)k, remove(4)j, add(1)j, op, remove(3)k),
π4 = (add(4)i, add(3)k, remove(4)j, add(1)j, remove(3)k, op),
π5 = (add(4)i, add(3)k, remove(4)j, remove(3)k, op, add(1)j),
π6 = (add(4)i, add(3)k, remove(4)j, remove(3)k, add(1)j, op),
π7 = (add(3)k, add(4)i, remove(4)j, op, add(1)j, remove(3)k),
π8 = (add(3)k, add(4)i, remove(4)j, op, remove(3)k, add(1)j),
π9 = (add(3)k, add(4)i, remove(4)j, add(1)j, op, remove(3)k),
π10 = (add(3)k, add(4)i, remove(4)j, add(1)j, remove(3)k, op, )
π11 = (add(3)k, add(4)i, remove(4)j, remove(3)k, op, add(1)j),
π12 = (add(3)k, add(4)i, remove(4)j, remove(3)k, add(1)j, op),

}.

Figure 14: Permutation Set induced by op on the Sub-history Û

Considering all the permutations πi consistent with Û shown above, the four possible admissi-
ble sets for op and then possible admissible sets at time t are:

(i) Vad(t) = ∅,
(ii) Vad(t) = {1},

(iii) Vad(t) = {3},
(iv) Vad(t) = {1, 3}.

In the following Lemma we will show that all the processes that invokes the join() operation
during the fist time unit (i.e., at time t1) will terminates the operation by storing locally an admis-
sible set. This means that the consistency of the set is preserved while transferring the state to
processes arriving during the first time unit. This results will be generalized in Lemma 8 to any
join() operation.

Lemma 7. Let t0 be the time at which the computation of a set object S starts, let Ĥ = (H,≺) be
an execution history of S, and Ĥt1+3δ = (Ht1+3δ,≺) be the sub-history of Ĥ at time t1 + 3δ. Let
pi be a process that invokes join() on S at time t1, if c < 1/(3δ) then at time t1 + 3δ the local copy
seti of S maintained by pi will be an admissible set at time t1 + 3δ.

Proof Let suppose by contradiction that the local copy seti of the set object S, maintained by pi,
is not an admissible set at time t1 + 3δ.

7Note that op is concurrent with add(1)j and remove(3)k while it follows add(4)i, get()i, get()j, remove(4)j and
add(3)k.

28



If seti is not an admissible set at time t1 + 3δ then it is not an admissible set for any operation
op = get() executed instantaneously at time t1 + 3δ. Considering the sub-history Û induced by op
on Ĥ and the permutation set ΠÛ , this means that there does not exist a permutation πi, belonging to
the permutation set ΠÛ induced by op, such that πi generates seti. One of the following conditions
holds:

1. There exists an element v, generated by every permutation πi of the permutation set ΠÛ ,
such that v does not belong to seti (i.e., ∃ v : ∀ πi ∈ ΠÛ (∃ add(v) ∈ πi : add(v)→πi op) ∧
(@ remove(v) ∈ πi : add(v)→πi remove(v)→πi op) ∧ (v /∈ seti));

2. There exists an element v belonging to seti such that it can not be generated by any permu-
tation πi of the permutation set ΠÛ (i.e., ∃ v ∈ seti : ∀πi ∈ ΠÛ (∃ add(v), remove(v)∈ πi:
add(v)→πi remove(v)→πi op)).

Case 1: There exists an element v /∈ seti generated by every permutation πi ∈ ΠÛ .
Due to Definition 4.5, if v is generated by every permutation πi, then in every permutation πi,

(i) ∃ add(v) : add(v)→πi op and (ii) @ remove(v): add(v)→πi remove(v)→πi op.
Since op is instantaneously executed at time t1 + 3δ (i.e., tB(op) = tE(op) = t1 + 3δ) then

tE(add(v)) < t1 + 3δ. With respect to the join() invocation time, the add(v) operation could be
started after or before; let consider separately the two cases:

1. If tB(add(v)) ≥ t1 then pi is already inside the system when the add(v) operation starts. Let
us note that, since tE(add(v)) < t1 + 3δ and the add() operation execution time is bounded
by δ, tB(add(v)) ≤ t1 + 2δ. Thus, due to the timely delivery property of the broadcast
primitive, pi will receive the update message sent by pj and will include such operation into
the buffer pendingi before time t1 + 3δ. As a consequence, when at time t1 + 3δ, pi will
execute lines 07 − 12 of Figure 10, it will execute the update() procedure for the buffered
add(v) operation, and thus pi will insert v in seti. Since there not exist any remove(v)
operation in πi between the add(v) and op, v ∈ seti and there is a contradiction.

2. If tB(add(v)) < t1 (i.e., tB(add(v)) = t0), pi has no guarantee to receive the update message
sent by pj . However, due to the timely delivery property of the broadcast, every active
process between time t0 and t0 +δ will receive this message and it will execute the operation
by adding v to its setj variable. Considering that any update operation is bounded by δ,
the wait statement in line 02 assures that such update operation is completed by any active
process at time t0 + δ, i.e., before pi sends the INQUIRY message. Therefore, any active
process that replies to pi has in its local copy of the set the element v and, due to Lemma 6,
there exists at least one process inside the computation that replies to pi. Upon the reception
of such set, pi will execute line 24 of Figure 10 by including the setj received (containing
v) in its replyi buffer. Considering that (i) each received setk will contain v and (ii) there
not exists any remove(v) operation in πi between the add(v) and op, this implies v ∈ seti
contradicting the initial assumption of case 1.

Case 2: There exists an element v ∈ seti such that it can not be generated by any permutation
πi ∈ ΠÛ .
Due to Definition 4.5, if v can not be generated by any permutation πi, then one of the following
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cases can happen:

(2.1) for each πi, there exists an add(v)→πi remove(v)→πi op or,

(2.2) for each πi there not exists any add(v)→πi op.

Considering that the local variable seti is empty at the beginning of the join() operation (line
01, Figure 10), if v ∈ seti then either (i) v belongs to some setj received during the join() by pi
from an active process pj (lines 23 - 24, Figure 10) or (ii) v has been added by pi while processing
the buffer pendingi.

Note that, at the beginning of the computation, the value of setj at each process pj is an empty
set. Thus, if some process pj sends to pi a setj containing v, it follows that pj has executed either
line 03 or line 10 or line 14 of the update() procedure (Figure 9). Such procedure is activated
when an UPDATE(A, v,−,−) message is delivered, at a certain time t, to an active process (line
16, Figure 8). Considering that, such UPDATE message is sent by active processes when an add()
operation is triggered (line 03, Figure 8) case 2.2 cannot happen; it follows that there exists an
add(v) operation issued before time t such that its invocation time precedes op (i.e., tB(add(v)) <
t < t1 + 3δ and the add(v) either precedes or is concurrent with op).

As a consequence, there exists at least one permutation πi, consistent with Û , where add(v)
→πi op. Considering the case 2.1, if there exists an add(v) then there exists also a remove(v)
and, for each permutation πi in the permutation set, add(v)→πi remove(v)→πi op. It follows that
add(v) ≺ remove(v) in Ĥ .

If add(v) ≺ remove(v) in Ĥ then when a process pk issued the remove(v) operation, it has
already executed the add(v) and in particular it has executed line 23 of the update() procedure.
Hence, the sequence number attached to the remove(v) operation will be greater than the one
attached to the add(v). It follows that every active process will execute first the add(v) and then
the remove(v), and it will execute line 04 of the update() procedure by removing v from their local
copies of the set and incrementing its update sequence number. Due to Lemma 6, there exists at
least one process pj inside the computation from time t1 to time t1 + 3δ that replies to pi.

Hence, by construction, pi selects a copy of the set that does not include v because it cannot be
generated by any permutation satisfying case 2.1. The same reasoning applies to pi while process-
ing every element of pendingi buffer. Therefore in both sub-cases the assumption is contradicted.

In both cases we reached a contradiction to the initial assumptions and the claim follows.
2Lemma 7

Lemma 8. Let Ĥ = (H,≺) be the execution history of a set object S, and pi a process that invokes
a join() on the set S at time t. If c < 1/(3δ) then at time t+ 3δ the local copy seti of S maintained
by pi will be an admissible set at time t+ 3δ.

Proof Let suppose by contradiction that the local copy seti of the set object S, maintained by pi,
is not an admissible set at time t+ 3δ.
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If seti is not an admissible set at time t + 3δ then it is not an admissible set for any operation
op = get() executed instantaneously at time t + 3δ. Considering the sub-history Û induced by
op on Ĥ and the permutation set ΠÛ , this means that there is no permutation πi, belonging to the
permutation set ΠÛ , such that πi generates seti. One of the following conditions holds.

1. there exists an element v, generated by every permutation πi of the permutation set ΠÛ , such
that v does not belong to seti (i.e., ∃ v : ∀ πi ∈ ΠÛ (∃ add(v) ∈ πi : add(v)→πi op) ∧ (@
remove(v) ∈ πi : add(v)→πi remove(v)→πi op) ∧ (v /∈ seti));

2. there exists an element v belonging to seti such that it can not be generated by any permu-
tation πi of the permutation set ΠÛ (i.e., ∃ v ∈ seti : ∀πi ∈ ΠÛ (∃ add(v), remove(v)∈ πi:
add(v)→πi remove(v)→πi op)).

Case 1: there exists an element v /∈ seti generated by every permutation πi ∈ ΠÛ .
Due to Definition 4.5, if v is generated by every permutation πi, then in every permutation πi, (i) ∃
add(v) : add(v)→πi op and (ii) @ remove(v): add(v)→πi remove(v)→πi op.

If the add(v) precedes op in every πi, add(v) precedes op in the execution history Ĥ . Since op
is instantaneously executed at time t+3δ (i.e., tB(op) = tE(op) = t+3δ) then tE(add(v)) < t+3δ.
With respect to the join() invocation time, the add(v) operation could be started after or before; let
consider separately the two cases:

1. If tB(add(v)) ≥ t then pi was already inside the system when the update operation starts
and then, due to the timely delivery of the broadcast property, pi will receive the UPDATE

message sent by some process pj and will include such operation to the buffer pendingi.
At time t + 3δ, pi will execute lines 07 − 12 of Figure 10 and then will execute the add(v)
operation inserting v in seti. Since there not exist any remove(v) operation in πi between
the add(v) and op, v belongs to the set and there is a contradiction to the initial assumption
of case 1.

2. If tB(add(v)) < t, pi may not receive the UPDATE message from the process issuing the
update. If v is not contained in any received setj then each active process pj replying to pi
has not received the update for the add(v) or has received bot an add(v) and a remove(v).
Let consider a generic process pj replying to pi: it could be active or not at time tB(add(v)).

(a) If pj ∈ A(tB(add(v))) then pj have executed the update operation and has added v to its
local copy of the set. Considering that any update operation is bounded by δ, the wait
statement in line 02 assures that such update operation is done by every active process
before pi sends the INQUIRY message. Therefore, any active process that replies to
pi has in its local copy of the set the element v and, due to Lemma 6, there exists at
least one process inside the computation from time t to time t + 3δ that replies to pi.
Upon the reception of such set, pi will execute line 24 of Figure 10 by including the
setj received (containing v) in its replyi buffer. At time t + 3δ, pi will take from its
buffer the entry with the highest sequence number and will copy such set into its local
copy. Considering that (i) each received setk will contain v and (ii) there not exists any
remove(v) operation in πi between the add(v) and op, v belongs to the set and there is
a contradiction (i.e., v ∈ seti and add(v) ≺ op and there not exist any remove(v) in the
between).
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(b) If pj /∈ A(tB(add(v))) then pj has completed the join after the add(v) starts (i.e.,
tE(join(j) > tB(add(v))). Iterating the reasoning above and considering that, for
Lemma 6, there is always at least one active process that replies, we arrive to the
situation of Lemma 7: there exist a process pk such that pk has received the update
from the process issuing the add(v) operation inserting v in its local copy and then pk
propagates it.
As a consequence, v ∈ seti and it is generated by any permutation πi , thus, we have a
contradiction to the assumption of case 1.

Case 2: there exists an element v ∈ seti that can not be generated by any permutation
πi ∈ ΠÛ .
Considering that seti is empty at the beginning of the join() operation (line 01, Figure 10), if
v ∈ seti then either (i) v belongs to some setj received by some active process pj (lines 23 - 24,
Figure 10) or (ii) v has been added by processing the buffer pendingi.

At the beginning of the computation, each process pj has its variable setj set to empty. If
some process pj sends to pi a setj variable containing v, it follows that pj has executed either line
03 or line 10 or line 14 of the update() procedure (Figure 9). Such procedure is activated when
an UPDATE message is delivered to an active process (line 16, Figure 8); let t′ be the time when
pj delivers the UPDATE(< A, v,−,− >) message and triggers the update() procedure. Note that,
UPDATE messages are sent by active processes when an add()/remove() operation is triggered (line
03 and line 09, Figure 8).
It follows that there exists an add(v) operation issued before time t′ such that its invocation time
precedes op (i.e., tB(add(v)) < t′ < t + 3δ). Therefore the add(v) precedes or is concurrent with
op).
If the add(v) operation precedes or is concurrent with op then there exists at least one permutation
πi, consistent with Û induced by op, where add(v)→πi op.
By hypothesis, if there exists an add(v) then there exists also a remove(v) and, for each permutation
πi in the permutation set, add(v)→πi remove(v)→πi op. It follows that add(v) ≺ remove(v) in Ĥ .
If add(v)≺ remove(v) in Ĥ then when a process pk issued the remove(v) operation, it has executed
the add(v) and in particular it has executed line 23 of the update() procedure. Hence, the sequence
number attached to the remove(v) operation will be grater than the one attached to the add(v).
Therefore every active process will execute first the add(v) and then the remove(v), and it will
execute line 04 of the update() procedure by removing v from their local copies of the set.
Due to Lemma 6, there exists at least one process pj inside the computation from time t to time
t + 3δ that replies to pi and maintains a set not containing v and having the highest sequence
number.

Moreover, due to Lemma 7, pj maintains an admissible set (i.e., pj has executed both the
operations and has a set with the highest sequence number that does not contain v).

Hence, by construction, pi selects a copy of the set that does not include v because it cannot be
generated by any permutation. The same reasoning applies to pi while processing every element
of pendingi buffer. Therefore the assumption of Case 2 is contradicted.

In both cases we reached a contradiction, hence the claim follows. 2Lemma 8

32



The following Lemma proves that the algorithms presented in Section 6.1.1 implements a set
object.

Lemma 9. Let S be a set object and let op be a get() operation issued on S by some process pi. If
c < 1/(3δ), the set of elements V returned by op is always an admissible set (i.e., V = Vad(op)).

Proof Let us suppose by contradiction that there exists a process pi that issues a get() operation
op on the set object S that returns a set of element V not admissible for op. Considering the sub-
history Û induced by op on Ĥ and its the permutation set ΠÛ , if V is not an admissible set then
there not exists any permutation πi, belonging to the permutation set ΠÛ induced by op, such that
πi generates seti. One of the following cases can occur:

1. there exists an element v, generated by every permutation πi of the permutation set ΠÛ , such
that v does not belong to seti (i.e., ∃ v : ∀ πi ∈ ΠÛ (∃ add(v) ∈ πi : add(v)→πi op) ∧ (@
remove(v) ∈ πi : add(v)→πi remove(v)→πi op) ∧ (v /∈ seti));

2. there exists an element v belonging to seti such that it can not be generated by any permu-
tation πi of the permutation set ΠÛ (i.e., ∃ v ∈ seti : ∀πi ∈ ΠÛ (∃ add(v), remove(v)∈ πi:
add(v)→πi remove(v)→πi op)).

Case 1: there exists an element v /∈ seti generated by every permutation πi ∈ ΠÛ and the set
V is not admissible. Let pj be the process issuing the add(v) operation. Note that, if the add(v)

precedes op in every πi, it follows that add(v) precedes op in the execution history Ĥ . Since there
exists the add(v) operation then there exists also a process pj issuing such operation that executes
the algorithm of Figure 8.

1. If pi = pj , then pi has executed lines 04-05 of Figure 8 and has added v to its local copy
seti of the set object. Since there not exists any remove(v) operation between the add(v)
and op and since the get() operation returns the content of the local copy of the set without
modifying it (line 01 Figure 8) then v ∈ V and we have a contradiction.

2. If pi 6= pj , then pj has executed, at some time t, line 03 of Figure 8 by sending an UPDATE

(A, v, snj, j) message by using the broadcast primitive. Due to the timely delivery property
of the broadcast primitive, every process that is active at time t will receives the update up
to time t+ δ.

(a) If pi ∈ A(t), then pi has received pj’s update and has executed the update procedure.
If the sequence number attached to the message was greater than the one maintained
locally by pi, then it executes immediately the update by adding v to its local copy of
the set (lines 02-05 Figure 8); otherwise it checks if it has in its last opsi an operation
already executed that “collides” with the current one (i.e., if there is a remove(v) of the
same element issued by a process with a lower identifier). Since there not exist any
remove(v) operation between the add(v) and the get(), when process pi evaluate the
condition at line 08 it finds an empty set and the executes lines 10 - 11 by adding v to
its local copy of the set (i.e., v ∈ seti). Since the get() operation returns the content of
the local copy of the set without modifying it (line 01 Figure 8) then v ∈ V , V is an
admissible set and we have a contradiction.
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(b) pi /∈ A(t), it means that pi is executing or it will execute the join protocol. If pi is exe-
cuting the join protocol then it will buffer the update message of pj , into the pendingi
variable, and will execute the update just before becoming active (lines 07-12 Figure
10); pi will add v to its local copy of the set. Since there not exists any remove(v)
operation between the add(v) and op and since the get() operation returns the content
of the local copy of the set without modifying it (line 01 Figure 8) then v ∈ V and we
have a contradiction.

If pi is not joining the system at time t when it will join, pi asks the local copy of the set
to other active processes. Due to Theorem 8, at the end of the join, seti is admissible
and will include v. Even in this case, since there not exist any remove(v) operation
between the add(v) and op and since the get() operation returns the content of the local
copy of the set without modifying it (line 01 Figure 8) then v ∈ seti, V = seti and it is
an admissible set and we have a contradiction.

Case 2: there exists an element v ∈ seti that can not be generated by any permutation
πi ∈ ΠÛ and V is an admissible set.
Since at the beginning of the computation pi has in its local copy of the set an empty set and since
v ∈ V then pi has added v to the local copy seti (i) during the join operation or (ii) managing an
update message.

1. If pi has added v to seti as consequence of the join, it means that v is an element of an admis-
sible set at time t of the end of the join (cfr. Theorem 8). If v belongs to an admissible set at
time t, it means that v is generated by some permutation πi belonging to the permutation set
ΠÛ of the sub-history at time t. It follows that there exists an add() operation that terminates
or is running at time t. Note that, each permutation πi belonging to the permutation set ΠĤt

is a prefix for at least one permutation belonging to the permutation set ΠĤ . Since there not
exist any remove(v) operation between the add(v) and op, v is never removed and we have
a contradiction.

2. If pi has added v to seti as consequence of an UPDATE message it means that there exists
a process pj that has sent it. An UPDATE message is generated by a process pj when the
add() operation is issued; this means that there exist an add() operation that precedes or is
concurrent with op. Hence, there exists at least one permutation πi containing add(v). Since
there not exist any remove(v) operation between the add(v) and op in πi, v is never removed
and there is a contradiction.

2Lemma 9

Lemma 10. Let S be a set object and let Ĥ = (H,≺) be an execution history of S generated by
the algorithm in Figure 10 and Figure 8. If every active process pi maintains an admissible set, Ĥ
is always per-element sequential consistent.

Proof Let us assume by contradiction that there exists an history Ĥ = (H,≺) generated by the
algorithms in Figure 10 and Figure 8 such that Ĥ is not per-element sequentially consistent. If
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Ĥ is not per-element sequential consistent then there exist two processes pi and pj that admit two
linear extensions, respectively Ŝi and Ŝj , where at least two concurrent operations op = add(v)
and op′ = remove(v′) (with v = v′) appear in a different order. Without loss of generality, let us
suppose that op and op′ have no other concurrent operation, op is issued by a process ph, op′ is
issued by a process pk and tB(op) < tB(op′).
At time t < tB(op) all the processes have the same value for their sequence numbers8 and let us
suppose that snw = x for every pw. When process ph issues the add(v) operation, it increments
its sequence number sni = x + 1 by executing line 02 of Figure 8 and attaches such value to
the UPDATE(A, v, x + 1, h) message. We can have two cases: (i) process pk receives the UPDATE

message of ph before issuing the remove(v) operation (Figure 15(a)) or (ii) process pk receives the
UPDATE message of ph just after issuing the remove(v) operation (Figure 15(b)).

add(v)

remove(v')

pi

pj

pk

ph

tB(op) tB(op') tE(op) tE(op')

(a)

add(v)

remove(v')

pi

pj

pk

ph

tB(op) tB(op') tE(op) tE(op')

(b)

Figure 15: Concurrent execution of add(v) and remove(v).

Let us show what happen to pi and pj in both cases.
Case i. When pk receives the UPDATE(A, v, x+1, h), the received sequence number is greater than
the one maintained by pk then pk executes the update (lines 03-05) and sets its sequence number
to the one received by executing line 23 (i.e., snk = x + 1). Just after, pk issues a remove(v)
operation, it increments its sequence number snk = x + 2 by executing line 02 of Figure 8 and
attaches such value to the UPDATE(R, v, x + 2, k) message. Let us consider the scenario depicted
in Figure 15(a) where pi receives first the update message of the remove(v) sent by pk and then the
update message of the add(v) sent by ph while pj receives first the update message of the add(v)
sent by ph and then the update message of the remove(v) sent by pk.

- behavior of process pi. When pi receives the UPDATE(R, v, x+ 2, k) message, its sequence
number is smaller than the one received (i.e., sni = x) then it executes lines 03-05 removing
the element v (if it is already contained in the set) and storing the tuple < R, v, x+ 2, k > in
the last opsi set, and then it sets its sequence number to the one received by executing line
23 (i.e., sni = x + 2). Later, pi receives the UPDATE(A, v, x + 1, h) message and, since its

8Let us recall that the sequence number maintained at each process counts the number of update operations issued
on the local copy of the set.
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sequence number is now smaller that the received one, it executes lines 07-22. In particu-
lar, pi examines the last opsi buffer and founds an entry (i.e., < R, v, x + 2, k >) with the
value greater than to the one received (line 07) then, it checks if the received operation can
be executed or it is “overwritten” by the one already processes by applying the deterministic
ordering based on the pair< sn, id >. Since the condition at line 13 is false, then pi does not
execute the update. Note that, not executing the add(v) is equal to execute add(v) followed
by a remove(v) operation. Hence, in the linear extension Ŝi of pi we have that op→Si

op′.

- behavior of process pj . When pj receives the UPDATE(A, v, x+ 1, h) message, its sequence
number is smaller than the one received (i.e., snj = x) then it executes lines 03-05 adding
the element v and storing the tuple < A, v, x + 1, h > in the lastopsj set, and then it sets
its sequence number to the one received by executing line 23 (i.e., snj = x + 1). Later,
pj receives the UPDATE(R, v, x + 2, k) message and another time its sequence number is
smaller than the one received (i.e., snj = x+ 1); hence it executes lines 03-05 removing the
element v. Hence, in the linear extension Ŝj of pj we have again that op →Sj

op′. Thus,
the two operations appear in the same order both in Ŝi and Ŝj and this contradicts the initial
assumption

Case ii. When pk issues the remove(v) operation, it has not yet received the UPDATE messaged sent
by ph and the the two sequence number of both the operation are the same (i.e., snh = snk = x+1).
Let us consider the scenario depicted in Figure 15(b) where pi receives first the update message of
the remove(v) sent by pk and then the update message of the add(v) sent by ph while pj receives
first the update message of the add(v) sent by ph and then the update message of the remove(v)
sent by pk.

- behavior of process pi. When pi receives the UPDATE(R, v, x+ 1, k) message, its sequence
number is smaller than the one received (i.e., sni = x) then it executes lines 03-05 removing
the element v (if it is already contained in the set) and storing the tuple < R, v, x+ 1, k > in
the last opsi set, and then it sets its sequence number to the one received by executing line
23 (i.e., sni = x + 1). Later, pi receives the UPDATE(A, v, x + 1, h) message and, since its
sequence number is equal to the received one, it executes lines 07-22. In particular, pi exam-
ines the last opsi buffer and founds an entry (i.e., < R, v, x+ 1, k >) with the value equals
to the one received (line 07) then, it checks if the received operation can be executed or it
is “overwritten” by the one already processes by applying the deterministic ordering based
on the pair < sn, id >. Since the condition at line 13 is false, then pi does not execute the
update. Note that, even in this case not executing the add(v) is equal to execute the add(v)

followed by the remove(v) operation. Hence, in the linear extension Ŝi of pi we have that
op→Si

op′.

- behavior of process pj . When pj receives the UPDATE(A, v, x+ 1, h) message, its sequence
number is smaller than the one received (i.e., snj = x) then it executes lines 03-05 adding
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the element v and storing the tuple < A, v, x + 1, h > in the lastopsj set, and then it sets
its sequence number to the one received by executing line 23 (i.e., snj = x + 1). Later, pj
receives the UPDATE(R, v, x+ 1, k) message and, since its sequence number is now equal to
the received one, it executes lines 07-22. In particular, pj examines the lastopsj buffer and
founds an entry (i.e., < A, v, x+ 1, h >) with the value equals to the one received (07) then,
it checks if the received operation can be executed or it is “overwritten” by the one already
processes by applying the deterministic ordering based on the pair < sn, id >. Since the
condition at line 13 is true, then pj executes the update removing v. Hence, in the linear
extension Ŝj of pj we have again that op →Sj

op′. Since the two operations appear in the
same order both in Ŝi and Ŝj , we have a contradiction to the initial assumption.

In both cases we found a contradiction to the initial assumption, then the claim follows.
2Lemma 10

We are now in the position to state the following theorem whose proof is a straight application
of Lemma 9 and Lemma 10:

Theorem 3. Let S be a set object and let Ĥ = (H,≺) be an execution history of S generated
by the algorithm in Figure 10 and Figure 8. If c < 1/(3δ), Ĥ is always per-element sequential
consistent.

6.2. k-Bounded Set object in an Eventually Synchronous System
In this section, we are going to consider an eventually synchronous system, i.e., a distributed

system where synchrony assumptions hold only after an unknown time t. In order to overcome
the impossibility result proved in Section 5, we are going to weaken the specification of the set
object by defining a k-bounded set object that is able to work by using finite memory space for
local computation and supporting continuous operation invocations (i.e., processes never stop to
invoke operations on the object) tolerating continuous churn.

Informally, a k-bounded set object is a set that has limited memory of the execution history
and it is able to consider only to the k most recent update operations. In particular, given a get()
operation, a k-bounded set behaves as a set having an execution history made by a subset of update
operations containing only the k most recent ones. All the other operations are forgotten by the
object. Hence, each get() operation defines a “window” on the execution history and operations
out of the window are hidden to the k-bounded set as if they are never invoked.

As an example, let us consider the execution history shown in Figure 16(a) for a k-bounded
set object where k = 3. For each of the two get() operations, the execution history is restricted
to the last 3 update operations. If we consider the get() invoked by pk then the set returned by
the operation is {1, 2, 3} (as the one that would be returned by the same get() invoked on a set).
Considering the second get() invoked by pj , the set returned will be ∅, instead of {3} that would be
returned by the same get() invoked on a set; this is actually due to the add(1) and add(3) operations
that are out of the window for such a get() and then they appear as if they are never invoked. The
parameter k, that defines the width of the window, is directly related to the available memory:
higher is the available space, higher is the value of k that can be used.
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Figure 16: 3-bounded set shared object

Let us note that assuming the existence of an upper bound k on number of operations issued
on the object, the k-bounded set object falls down in to a set. Thus, any implementation of a k-
bounded set object is also an implementation for a set assuming the number of updated operation
bounded.

In the following we will first provide the specification of the k-bounded set object and then will
show an algorithm implementing such object.

6.2.1. Preliminary Definitions
Due to the concurrency, the meaning of “most recent update operations” may be not well

defined. As an example, consider the execution shown in Figure 16(b). Given the get() operation
issued by pj , should the add(4) issued by pi and the remove(1) issued by pk be considered as
recent operations? Depending on which operations are considered or not, different sets of recent
operations are considered (i.e., the three different dotted rectangles in the Figure). To solve this
ambiguity, let us introduce the notions of k-cut permutation induced by an operation opi, and k-cut
permutation set.

Informally, a k-cut permutation induced by an operation opi is a subset of a permutation (in-
duced by opi) consistent with the execution history. This subset contains k operations preceding opi
in the permutation. The k-cut permutation set, is the set of permutations induced by opi obtained
by the permutation set ΠĤ of the execution by considering for each permutation its k-cut.

Definition 17 (k-cut permutation induced by opi). Given an execution history Ĥ = (H,≺) let π =

(op1, op2, . . . , opn) a permutation consistent with Ĥ . Given an operation opi of π and an integer
k, the k-cut permutation induced by opi on π, denoted πk(opi), is the sub-set of π ending with opi
and including the k operations that precede opi in π (i.e., πk(opi) = (opi−k, . . . , opi−1, opi)).

As an example, consider the execution history Ĥ shown in Figure 3 and consider the permuta-
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Π3,Ĥ(op) = { π1 = (add(2)j, remove(2)i, remove(1)k, get()j),
π2 = (remove(2)i, remove(1)k, add(3)i, get()j),
π3 = (get()k, add(2)j, remove(2)i, get()j),
π4 = (add(2)j, remove(2)i, add(3)i, get()j),
π5 = (remove(2)i, add(3)i, remove(1)k, get()j),
π6 = (get()k, remove(2)j, add(2)i, get()j),
π7 = (remove(2)j, add(2)i, add(3)i, get()j),
π8 = (add(2)i, add(3)i, remove(1)k, get()j),
π9 = (add(2)i, remove(1)k, add(3)i, get()j),
π10 = (remove(2)j, add(2)i, remove(1)k, get()j)

}

Figure 17: 3-cut Permutation Set induced by a get()operation

tion π1 = (add(1)i, get()k, add(2)j, remove(2)i, remove(1)k, get()j, add(3)i) consistent with Ĥ .
If op = get()j and k = 3, the 3-cut permutation induced by op on π1 is π13(op)=(add(2)j,
remove(2)i, remove(1)k, get()j).

Definition 18 (k-cut permutation set induced by opi). Given an execution history Ĥ = (H,≺) let
ΠĤ its permutation set. Given an operation op of H and an integer k, the k-cut permutation set
induced by op on ΠĤ , denoted Πk,Ĥ(op), is the set of all the k-cut permutations induced by op on
each permutation π of ΠĤ .

As an example, consider the execution history Ĥ depicted in Figure 3 and consider the per-
mutation set ΠĤ of the execution history Ĥ shown above. If op=get()j and k = 3, the 3-cut
permutation set induced by op is shown in Figure 17.

Definition 19 (Admissible set for a get() operation). Given an execution history Ĥ = (H,≺) of a
k-bounded set object, let op = get() be an operation of H . Let ÛĤ,op be the sub-history induced by

op on Ĥ and let k be an integer. An admissible set for op, denoted Vad(op), is any set generated by
any permutation π belonging to the k-cut permutation set Πk,Û

Ĥ,op

As an example, consider the execution history Ĥ shown in Figure 3 and its sub-history Û
induced by the operation op =get()j. Given its 3-cut permutation set Π3,Û , all the possible admis-
sible sets for op are:

• Vad 1 = ∅,

• Vad 2 = Vad 4 = Vad 5 = {3},

• Vad 3 = {1},

• Vad 6 = {1, 2},

• Vad 7 = Vad 8 = Vad 9 = {2, 3},

• Vad 10 = {2}.
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6.2.2. Eventually Synchronous Distributed System
We consider the eventually synchronous distributed system as presented in Section 5.2. In such

system the the two communication primitives (point-to-point channels and broadcast) can be for-
malized as follows.

Point-to- Point communication: the network allows a process pi to send a message to another
process pj as soon as pi knows that pj is connected to the system. Moreover, there exist a time t
and an upper bound δ′ such that any message sent at time t′ ≥ t from pi, is received up to time
t′ + δ′ by pj , if it has not left the system.

Broadcast. As in the synchronous case, it is assumed that the CCS offers a broadcast communi-
cation primitive that provides processes with two operations, denoted broadcast MSG() and deliver
MSG(). The former allows a process to send a message to all the processes in the system, while
the latter allows a process to deliver a message. Consequently, we say that such a message is
“broadcasted” and “delivered”. These operations satisfy the following property:

• Broadcast Eventual Timely Delivery: There is a time t and a bound δ > δ′ such that any
message broadcast at time t′ ≥ t, is delivered by time t′ + δ to the processes that are in the
system during the interval [t′, t′ + δ].

Let us note that, similarly to the case of point-to-point communication primitive, the constant
δ represents an upper bound on the transmission delay of the broadcast when the synchrony period
arrives. For the ease of presentation, in the following we will use only the constant δ as it is an
upper bound for both the point-to-point transmission delay and the broadcast transmission delay.

Finally, let us remark that the time t after which the system becomes synchronous and the upper
bound δ message delivery times are not known by processes.

6.2.3. The Protocol
The protocol implementing a k-bounded set object is based on the following assumptions:

1. there always exists a majority of active processes participating in the distributed computation
(i.e., the churn rate is such that ∀t, |A(t)| > n

2
);

2. each process remains in the distributed computation for at least 3δ time units i.e., a process
pi invoking the join() operation at time t cannot leave the distributed computation before
time t+ 3δ.

The first assumption guarantees the termination of the algorithms while the second one guar-
antees that a process remains in the computation long enough to ensure (when the synchrony
assumptions hold) a successful state transfer to joining processes.

The basic idea of the protocol is to follow the quorum-based approach. The execution of each
operation involves at least dn

2
e + 1 active processes (i.e., a quorum) that will be witnesses for the

operation and each operation is associated with a timestamp (i.e., a sequence number together with
the process identifier). Each process pi keeps locally the same variables used for the synchronous
case and, in addition, it stores a partial history containing only k update operations.
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More in details, when a process pi wants to update the content of the k-bounded set (either by
adding or removing an element), it asks to other processes to update the object by sending the ele-
ment, the type of the update (add or remove) and other relevant information needed to preserve the
consistency (and discussed in the following). Receiving such update request, any active process pj
will take care of it by (i) updating the partial history in case the request is new and (ii) re-computing
the content of the object; in any case, pj will answer by sending back an acknowledgement for the
update. Once pi received a majority of acknowledgement the operation terminates.

Let us note that, due the temporary asynchrony of the system, the get() operation cannot be
executed locally as an update request may arrive to a certain process after that the update operation
is complete. Therefore, also the get() operation is executed by involving the participation of a
quorum. In particular, when a process pi wants to obtain the current content of the object, it asks to
all the other processes that will answer by sending back the partial history of update operations (if
active). When a majority of histories are received, pi computes the union of such histories, order
the update operations in the union according to their timestamps and then computes the content of
the object by executing the operations in order and returning the results.

Finally, the join() operation is implemented as a particular type of get() where processes buffer
the operation requests received during the execution (i.e., while they are not yet active) and post-
pone their execution at the end of operation.

Informally, the existence of quorums for each update operation and the dissemination of the
partial history of update operations guarantee that there will always exist a witness for each update
operation able to transfer this information to joining processes (i.e., for each update operation op
in the partial history, the intersection between the quorum of processes acknowledging op and the
quorum of processes answering to a join() is non empty). As in the previous case, the consistency
of the object is preserved by the total order on the update operations imposed by the timestamps.

Local variables at process pi. Each process maintains locally the following variables:

• A set variable denoted seti containing the local copy of the k-bounded set.

• two integers update sni and get sni that represent the sequence numbers used by pi to
distinguish its successive update (add() and remove()) and get() operations respectively.
Such integers, together with the id of the process represent the timestamp of the request.

• a variable runningi that stores the tuple corresponding to the update operation (add() or
remove()) currently executed by pi. It is initialized to a default value < null,⊥, 0, i >.

• A set variable last opsi, that contain at most k entries, used to maintain an history of recent
update operations executed by pi. Such variable contains 4-tuples < type, val, sn, id > each
one identifying an update operation of type type = {A or R} of the element val, with a
sequence number sn, issued by a process with identity id.

• A boolean activei, initialized to false, that is switched to true just after pi has joined the
computation.
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operation join(i):
(01) seti ← ∅; update sni ← 0; get sni ← 0; runningi ← < null,⊥, 0, i >; last opsi ← ∅;

pending i← ∅; repliesi ← ∅; update acki ← ∅; reply toi ← ∅;
dl previ ← ∅; active i← false; gettingi ← false; updatingi ← false;

(02) broadcast INQUIRY(i, get sni);
(03) wait until(|repliesi| > n

2
);

(04) for each < −, ls >∈ repliesi do
(05) historyi ← historyi ∪ ls;
(06) endfor;
(07) historyi ← historyi ∪ pendingi;
(08) sort(historyi);
(09) for each < type, val, sn, id >∈ historyi do
(10) execute update(type, val, sn, id);
(11) end for;
(12) activei ← true;
(13) for each < j, snj >∈ (reply toi ∪ dl previ) do
(14) send REPLY (< update sni, last opsi >, snj) to pj ;
(15) end for;
(16) return join return.

—————————————————————————————————
(17) when INQUIRY(j, snj) is delivered:
(18) if (activei) then send REPLY (< update sni, last opsi >, snj) to pj ;
(19) if (gettingi) then send DL PREV (j, snj) end if;
(20) if (updatingi) then send UPDATE(runningi) end if;
(21) else reply toi ← reply toi ∪ {j, snj};
(22) send DL PREV (j, get sn);
(23) end if.

(24) when REPLY(< usn, ops >, sn) is received:
(25) if (get sni = sn) then repliesi ← repliesi ∪ {< usn, ops >, sn} end if.

(26) when DL PREV(j, snj) is received:
(27) dl previ ← dl previ ∪ {< j, snj >}.

Figure 18: The join() protocol for a k-bounded set object in an eventually synchronous system (code for pi)

• Two boolean variables gettingi and updatingi whose value is true when pi is executing
respectively a get() operation or an add() or remove() operation.

• Four set variables, denoted repliesi, reply toi, pendingi and dl previ that are used in the
period during which pi joins the computation. The local variable repliesi contains the pairs
< sn, ops > that pi has received from other processes during its join period, while reply toi
contains the processes that are joining the computation concurrently with pi (as far as pi
knows). The set pendingi contains the 4-tuples < type, val, sn, id > each one characterizes
an update operation executed concurrently with the join. The set dl previ is a variable where
pi stores the processes that have acknowledged its inquiry message while they were still
joining or while they were accessing the set by issuing the get(). Once pi becomes active
(i.e., it terminates the join), it has to send a reply to all the processes in the dl previ set to
prevent them to be blocked forever.

• The update acki set is used to collect processes that have acknowledged add or remove
operations issued by pi.

The join() operation. The code for the join() operation in shown in Figure 18.
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After initializing its local variables, pi broadcasts an INQUIRY(i, get sni) message to inform
other processes that it enters the computation and wants to obtain the history of most recent oper-
ations (line 02).

When a process pj receives an INQUIRY(i, sni) message if it is active, it answers to pi by
sending back a REPLY(< update snj, last opsj >, sni) message containing its local variables
(line 18-20). In addition, pj checks its state: in case it is accessing the object by means of a get()
operation, it sends also a DL PREV() message while, in case it is accessing the set by means of
either an add() or remove() operation, pj sends also an UPDATE() message to avoid that pi misses
its update request. If pi is not active, it postpones its answer until it becomes active (line 21 and
line 14) and sends a DL PREV() message (line 22).

When pi receives a message REPLY(< sn, ops >, sn) from a process pj , if the reply message is
an answer to its INQUIRY(j, snj) it adds the corresponding pair to its set repliesi (line 25). While,
receiving a DL PREV(j, snj) message, pi adds its content to the set dl previ (line 27), in order to
remember that it has to send a reply to pj when it will become active (lines 13-15).

When pi has received a majority of replies (line 03), it creates the “global” history of operations
by doing the union of all the partial history received so far (lines 04-06). Then, pi adds operations
received during the waiting period to this history (line 07) and orders the obtained list by using
the sort() function (line 08): this function simply orders the variable historyi according to the
lexicographic order of the pairs (sn, id).

Now, for each operation in the historyi set, pi executes the UPDATE() procedure (lines 09-11
and discussed later). The aim of such procedure is to (i) keep limited the size of the last opsi
variable to k elements by storing the k most recent update operations known by pi, (ii) keep the
seti variable consistent with the list of operations stored in last opsi and (iii) keep the sequence
number updated (further details later in the section).

At the end of the execution of the update() procedure, pi becomes active (line 12). As a con-
sequence pi can answer the inquiries it has received during the join() operation and pi does it if
reply to 6= ∅. In addition, pi sends a reply message also to the processes in its set dl previ (that
are supposed to be processes accessing the object to get its content) to prevents them from waiting
forever (line 13-15). Finally, pi returns join return event to indicate the end of the join() operation
(line 16).

The update() procedure. The protocol of the update() procedure is shown in Figure 19. Such
procedure is triggered by every operation and its aim is to keep updated the local variables of a
process pi according to the most recent k operations. It is executed atomically.

When a process pi executes the update(< type, val, snj, j >) procedure, it first sends an
ACK(snj, i) message to prevent that process pi remains blocked forever while executing an update
operation (line 01) and then it checks if the current operation is one of the most recent ones (lines
02-08). In particular, pi selects from the recent operations stored in its last opsi variable, the one
with the smaller pair (sn, id) (line 02) and then, if it stores less than k operations, it puts the current
one in the last opsi variable (line 03). Contrarily, pi substitutes (if possible) the one with smallest
pair (sn, id) with the current one (lines 04-07). Once pi has the correct set of recent operations,
it empties the variable seti corresponding to the local copy of the object (line 09), sorts the set of
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procedure update(< type, val, snj , j >) % at any process pi %
(01) send ACK (snj , i) to pj ;
(02) let < −,−, sn, id >∈ last opsi

such that (∀ < −,−, sn′, id′ >∈ last opsi : (sn, id) ≤ (sn′, id′));
(03) if (|last opsi| < k) then last opsi ← last opsi ∪ {< type, val, snj , j >};
(04) else if ((snj , j) > (sn, id))
(05) then last opsi ← last opsi \ {< −,−, sn, id >};
(06) last opsi ← last opsi ∪ {< type, val, snj , j >}
(07) end if
(08) end if
(09) seti ← ∅;
(10) sort (last opsi);
(11) for each < type, val, sn, id >∈ last opsi
(12) if (type = A) then seti ← seti ∪ {val};
(13) else seti ← seti \ {val}
(14) end if
(15) endfor
(16) update sni ← max(update sni, snj).

Figure 19: The UPDATE() protocol for an eventually synchronous system (code for pi)

recent operations according the lexicographic order of pairs (sn, id) (line 10) and then executes the
operations contained in the last opsi set according to this order (lines 11-15). Finally pi updates
its sequence number to the maximum between its own and the one received with the update (line
16).

The get() operation. The pseudo-code of the get() operation is described in Figure 20. A get()
operation is actually a simplified version of the join() operation described so far.

Each get invocation is identified by a pair (id, sn) where id is the process index and sn is the
sequence number of the get (line 04)9. So, pi first empties the sets used to store information during
the operation (lines 01-03), sets its status gettingi to true (line 03) and then it broadcasts a get
request GET(i, get sni).

When a process pj receives a message GET(i, sni), if it is active, pj replies to pi by sending
back a REPLY(< update snj, last opsj >, sni) message containing its local variables (line 18). If
pj is not active, it postpones the reply until it becomes active (line 19).

When pi receives a majority of replies, it recomputes the “global” history by making the union
of all the partial history received so far and the operations received during the waiting period
(lines 06-10). Then pi orders the history obtained by invoking the SORT function (line 11) and
it executes all the operations by invoking the update() procedure (lines 12-14). Finally, pi sets
getting to false (line 15) and then returns the set (line 16).

The add(v) and remove(v) operations. The code for the add(v) and remove(v) operation is
similar and it is shown in Figure 21.

When a process pi wants to update (i.e., by adding or removing an element to the k-bounded
set), it first performs a get()operation to obtain the most updated sequence number (line 01, line
09), it increments the update sni (line 02, line 10), it empties its update acki set to store the

9The invocation corresponding to the pair (i, 0) is the join() operation issued by pi.

44



operation get(): % issued by any process pi %
(01) get sni ← get sn1 + 1;
(02) repliesi ← ∅; pendingi ← ∅;
(03) gettingi ← true;
(04) broadcast GET(i, get sni);
(05) wait until(|repliesi| < n

2
);

(06) historyi ← ∅;
(07) for each < −, ls >∈ repliesi
(08) historyi ← historyi ∪ ls;
(09) endfor
(10) historyi ← historyi ∪ pendingi;
(11) sort (historyi);
(12) for each < type, val, sn, id >∈ historyi do
(13) execute update(< type, val, sn, id >);
(14) end for;
(15) gettingi ← false;
(16) return seti.
————————————————————————————————–
(17) when GET(j, snj) is delivered: % at any process pi %
(18) if (activei) then send REPLY (< update sni, last opsi >, snj) to pj
(19) else reply toi ← reply toi ∪ {j, snj}
(20) end if.

Figure 20: The get() protocol for a k-bounded set object in an eventually synchronous system (code for pi)

acknowledgements to the current update operation (line 03, line 11), sets its state to updating
and stores the 4-tuple corresponding to the current operation (line 04, line 12); then pi sends an
UPDATE() message to perform the current update (line 05, line 13).

When the UPDATE(< type, val, sni, i >) message sent from pi is delivered to some process
pj , it checks if it is active or not. If pj is not active, it puts the 4-tuple corresponding to the current
operation into its pendingj set (line 18) to process the operation at the end of the join() operation
when it will be active (line 07, Figure 18). Contrarily, pj executes the update() procedure for the
current operation (line 19) where an ACK() message is sent.

When an ACK(sn, j) message is delivered to pi from some process pj , if the sequence number
sn attached to the message is the same as the current operation then pi adds j to the set of processes
that have acknowledged its operation (line 22).

When pi receives a majority of acknowledgement (line 06, line 14), it resets its state by setting
its variable updatei to false and its runningi variable to a default value (line 07, line 15) and finally
it returns from the operation (line 08, line 16).

6.2.4. Correctness Proofs
In the following we are going to prove that the algorithms shown in Figures 18 - 21 implements

a k-bounded set object with per-element sequential consistency.
In particular, Lemmas 11 - 13 and the following Theorem 4 prove that all the algorithms imple-
menting each operation eventually terminate. Theorem 5 proves that each get() operation returns
an admissible set of the object by exploiting the following intermediate results: (i) the timestamps
associated to update operations made by the pair < sn, id > (where sn is a sequence number
and id is the process identifier) induce a total order among update operations (Lemma 14), (ii) at
the end of every join() operation, the variable last opsi stores a k-cut permutation induced by the
operation itself (Lemma 15), and (iii) at the end of every get() operation, the variable last opsi
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operation add(v): % issued by any process pi%
(01) get();
(02) update sni ← update sni + 1;
(03) update acki ← ∅;
(04) updatingi ← true; runningi ← < A, v, update sni, i >;
(05) broadcast UPDATE(< A, v, update sni , i >);
(06) wait until(|update acki| > n

2
);

(07) updatingi ← false; runningi ←< null,⊥, 0, i >;
(08) return add return.
————————————————————————————————–
operation remove(v): % issued by any process pi%
(09) get();
(10) update sni ← update sni + 1;
(11) update acki ← ∅;
(12) updatingi ← true; runningi ←< R, v, update sni, i >;
(13) broadcast UPDATE(< R, v, update sni , i >);
(14) wait until(|update acki| > n

2
);

(15) updatingi ← false; runningi ←< null,⊥, 0, i >;
(16) return remove return.
————————————————————————————————–
(17) when UPDATE(< type, val, snj , j >) is delivered: % at any process pi %
(18) if (¬activei) then pendingi ← pendingi ∪ {< type, val, snj , j >};
(19) else execute update(< type, val, snj , j >);
(20) end if.

(21) when ACK(sn, j) is delivered: % at any process pi %
(22) if (sn = update sni) then update acki ← update acki ∪ {j};
(23) end if.

Figure 21: The add() and remove() protocol for a k-bounded set object in an eventually synchronous system (code
for pi)

stores a k-cut permutation induced by the operation itself (Lemma 16). Finally, Theorem 6 proves
the per-element based sequential consistency.

Lemma 11. Let n be the number of processes belonging to the computation at time t0 and let pi
be a process invoking a join() operation. If pi does not leave the system for at least 3δ time units
and at any time t, |A(t)| > dn

2
e, then pi eventually returns from the join() operation.

Proof Let us first observe that, in order to terminate its join() operation, a process pi has to wait
until its set repliesi contains, at least, dn

2
e elements (line 03, Figure 18). This set is filled in by pi

when it receives the REPLY() messages for the current operation (line 25, Figure 18). A process
pj sends a REPLY() message to pi if (i) it is active and has received an INQUIRY message from pi,
(line 18, Figure 18), or (ii) it terminates its join() operation and < i,− > ∈ reply toj ∪ dl prevj
(lines 13-15, Figure 18).

Let us suppose by contradiction that |repliesi| remains smaller than dn
2
e. This means that pi

does not receive enough REPLY() carrying the appropriate sequence number. Let t be the time at
which the system becomes synchronous and let us consider a time t′ > t at which a new process
pj invokes the join operation. At time t′, pj broadcasts an INQUIRY message (line 02, Figure 18).
As the system is synchronous from time t, every process present in the system during [t′, t′ + δ]
receives such INQUIRY message by time t′ + δ.

As pi is not active when it receives pj’s INQUIRY message, pi executes line 22 of Figure 18
and sends back a DL PREV message to pj . Due to the assumption that every process joining the
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computation remains inside the computation for at least 3δ time units, pj receives pi’s DL PREV

and executes consequently line 27 of Figure 18 by adding < i,− > to dl prevj . Due to the
assumption that there are always at least dn

2
e active processes in the system, we have that at time

t′ + δ at least dn
2
e processes receive the INQUIRY message of pj , and each of them will execute

line 18 of Figure 18 and will send a REPLY message to pj . Due to the synchrony of the system, pj
receives these messages by time t′+ 2δ and then stops waiting and becomes active (line 12, Figure
18). Consequently (lines 13-15) pj sends a REPLY to pi as i ∈ reply toj ∪ dl prevj . By δ time
units, pi receives that REPLY message and executes line 25, Figure 18. Due to churn rate, there are
an infinity of processes invoking the join after time t and pi will receive a reply from any of them
so pi will fill in its set repliesi and terminate its join() operation. 2Lemma 11

Lemma 12. Let n be the number of processes belonging to the computation at time t0. If (i) at
any time t, |A(t)| > dn

2
e and (ii) each process that invokes a join() operation does not leave the

system for at least 3δ time units, then a process pi invoking a get() operation and not leaving the
computation eventually returns from such operation.

Proof Since the get() is a simplified case of a join(), the proof is the same of Lemma 11.
2Lemma 12

Lemma 13. Let n be the number of processes belonging to the computation at time t0. If (i) at any
time t, |A(t)| > dn

2
e and (ii) each process that invokes a join() operation does not leave the system

for at least 3δ time units then a process pi that invokes an add() operation or a remove() operation
and does not leave the system eventually returns from such operation.

Proof Let us first assume that the get() operation invoked at line 01 and line 09 terminates (this
is proved in Lemma 12). Before terminating the add() (or remove()) of an element v with an
update sequence number usn a process pi has to wait until its set update acki contains at least dn

2
e

elements (line 06 and line 14, Figure 21).
Empty at the beginning of the add(v) operation (line 03, Figure 21) and at the beginning of the

remove(v) operation (line 11, Figure 21), this set is filled in when the ACK(usn,−) messages are
delivered to pi (line 22, Figure 21).

Such an ack message is sent by every process pj when the update() procedure is activated due
to (i) the receipt of an UPDATE message from a process pi (line 19, Figure 21) or (ii) the termination
of a join() operation and < −,−, usn, i > ∈ historyj ∪ pendingj (lines 09 - 11, Figure 18).

Suppose by contradiction that pi never fills in update acki. This means that pi misses ACK()
messages carrying the sequence number usn. Let us consider the time t at which the system
becomes synchronous, i.e., every message sent by any process pj at time t′ > t is delivered by
time t′ + δ. Due to the assumption that the process issuing the update does not leave before
the termination of its operation, it follows that pi will receive all the INQUIRY messages sent by
processes joining after time t.

When it receives an INQUIRY() message from some joining process pj , pi executes lines 18- 21
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of Figure 1810 and sends a REPLY message to pj as reply to its request and forwards an UPDATE

message with the sequence number usn.
Since, after t, the system is synchronous, pj receives both the REPLY message and the UPDATE

message in at most δ time units. When pj receives the UPDATE message, since it is not yet active,
it puts the current update < −,−, usn, i > in the pendingj set (line 18, Figure 21). Due to Lemma
11, pj will terminate the join executing lines 07-11 of Figure 18 by processing the pending updates
(including the one of pi) and sending the ACK(ubn,−) message to pi (line 01, Figure 19).

As (1) by assumption a process that joins the system does not leave for at least 3δ time units
and (2) the system is now synchronous, such an ACK(usn,−) message is received by pi in at most
δ time units and consequently pi executes line 22, Figure 21 and adds pj to the set update acki.

Due to the dynamicity of the system, processes continuously join the system. Due to the chain
of messages INQUIRY(), UPDATE(), ACK(), the reception of each message triggers the sending of
the next one. It follows that pi eventually receives dn

2
e ACK(usn,−) messages and terminates its

update operation.
2Lemma 13

Theorem 4. Let n be the number of processes belonging to the computation at time t0. If (i) at
any time t, |A(t)| > dn

2
e and (ii) each process that invokes a join() operation does not leave the

system for at least 3δ time units, then a process pi that invokes a join(), get(), add() or remove()
operation and does not leave the system eventually returns from its operation.

Proof It follows from Lemma 11, Lemma 12 and Lemma 13. 2Theorem 4

Lemma 14. Let Ĥ = (H,≺) an execution history of a k-bounded set object S. Given the algo-
rithms shown in Figures 18-19, there exists a total order of the pairs (sn, id) that identify each
add(v) and remove(v) operation such that the total order is consistent with the partial order given
by the execution history Ĥ .

Proof Let op and op′ two update operations and let sn(op) and sn(op′) the corresponding sequence
numbers associated to the operations by the algorithm.

Case 1: op ≺ op′ ⇒ sn(op) < sn(op′). Let us suppose by contradiction that the two sequence
numbers are the same. Without loss of generality, let pi be the process that issues op, pj be the pro-
cess issuing op′ and let x be the sequence number associated by pi to its operation. The following
may happen:

• @ op′′ : op ≺ op′′ ≺ op′: when pi starts an update operation (both add(v) or remove(v)),
it sends an UPDATE(< −,−, x, i >) message and waits until it receives at least (n

2
+ 1)

ACK messages carrying the sequence number x (line 06 and line14, Figure 21). This means
that in the system there exist at least (n

2
+ 1) processes that execute line 16, Figure 19 and

10The process pi that issues an update operation always executes lines 18-20 of Figure 18 because it is always in
the active mode.
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update their update snk to a value that is greater equal to x. When pj starts its operation,
it first issues a get() to retrieve the most up-to-date sequence number (line 01 and line 09,
Figure 21). During the get()operation, processes sent to pj their local copies of the list
last opsk and to terminate the get(), pj executes the update() procedure by updating its
update snj variable. Since, at any time t, |A(t)| < dn

2
e there exists at least one process that

acknowledged the operation of pi and that sent a sequence number that is at least x. Doing
the update, pj always selects the maximum sequence number and at the end of the get() it
has in its update snj variable a value grater equal than x. Since before sending the UPDATE

message pj increments its sequence number (line 02 and line 10, Figure 21) the operation of
pj will have a sequence number grater that pi and there is a contradiction.

• ∃op′′, . . . , opi : op ≺ op′′ ≺ · · · ≺ opi ≺ op′: in this case, the statement simply follows by
the point above observing that the operator “<” is transitive (i.e., if sn(op) < sn(op′′) and
sn(op′′) < sn(op′) then sn(op) < sn(op′)).

Case 2: op||op′. In this case, the two sequence numbers assigned by the algorithm to the oper-
ation, depend by the delivery order of the broadcast messages sent during the operation. In case
of concurrency of the broadcasts, sequence numbers can be the same. However, in the update()
procedure, the operations are ordered and executed according to the pairs (sn, id) and since the
process identifiers are unique in the system, there exists a total order also among concurrent oper-
ations.

2Lemma 14

Lemma 15. Let Ĥ = (H,≺) an execution history of a k-bounded set object S and let pi be a
process that invokes a join() operation at time t. Let op be an instantaneous get() operation issued
at time tE(join) and Û be the sub-history of Ĥ induced by op. Given an integer k, if, at any time t,
|A(t)| > dn

2
e, then at the end of the join() operation, pi maintains in its last opsi variable a k-cut

permutation induced by op consistent with Û .

Proof In order to terminate the join(), a process pi has to wait until it receives at least (dn
2
e + 1)

replies from other processes (line 03, Figure 18). Each reply received by pi from a process pj
contains the list of the most recent operations saw by pj .

Step 1. Let pi be the first process that terminates the join() operation. LetO be the set of operations
started before the end of the join() of pi.

• |O|≤ k. Since pi is the first process that concludes the the join() operation, the set of active
processes at the end of the join() is a subset of the processes that were active at time t0
(i.e., A(tE(join)) ⊂ A(t0)). Therefore, for each update operation op belonging to O, there
exists at least one process pk that has sent an ACK() message for op (line 01, Figure 19), that
has inserted a tuple < −,−, sn, id > in its last opsk variable (line 03, Figure 19) and that
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has sent a REPLY() message to pi11. When pi executes lines 04-06 of Figure 18, it obtains
an historyi variable containing all the operations terminated before the join() invocation,
and possibly some of the concurrent ones. Executing line 08 of Figure 18, pi will obtain
an history totally ordered by the pairs (sn, id) and due to Lemma 14 this total order is
consistent with the partial order of the execution history Û . Since the update() procedure is
executed following such total order and considering that all the operations will be stored in
the last opsi variable, it is possible to conclude that at the end of the join() operation, the
last opsi variable contains a k-cut permutation consistent with Û .

• |O|> k. Let consider the worse case where there exists a process pj that replies to all the
|O| operations. Note that, for the first k UPDATE messages received by pj , it always executes
line 03 of Figure 19 because it has empty slots in its last opsj variable. When pj receives
the (k + 1)-th UPDATE message, it executes line 04, Figure 19 and checks if the current
update is “new” with respect to the ones contained in its last opsj variable, and if it is so, it
substitutes the one with the smaller pair (sn, id) with the new one (line 05-06, Figure 19).
Note that substituting the update operation identified by the smaller pairs (sn, id), the total
order is preserved. Since pi is the first process that concludes the the join() operation, the
set of active processes at the end of the join() is a subset of the processes that were active
at time t0 (i.e., A(tE(join)) ⊂ A(t0)). Therefore, for each update operation op belonging to
O, there exists at least one process pk that has sent an ACK() message for op (line 01, Figure
19), that has inserted a tuple < −,−, sn, id > in its last opsk variable (line 03, Figure 19).
Considering that an operation op is deleted by the last opsk variable from some process pk
iff there exist k operations that follows op in the total order, and that all the operations have
been acknowledged by at least one process that replies to pi, follows that even in this case at
the end of the join() operation, the last opsi variable contains a k-cut permutation consistent
with Û .

Step i. Let pi be the i-th process that terminates the join() operation. Let P be the set of processes
that send a REPLY message to pi. The set P can be partitioned in the set of processes that were
active at time t0 and the set of processes that became active at some t > t0. Note that all the
processes that were active at time t0 will send to pi a copy of their last opsk variable where,
for each new update, they substitute the “older” operation and then, their list represents k-cut
permutation consistent with Û . Each process that became active after t0 has received a list from
some other processes. Iterating the reasoning we come back to the situation of step 1 and the
Lemma follows.

2Lemma 15

Lemma 16. Let Ĥ = (H,≺) an execution history of a k-bounded set object S and let pi be a
process that invokes a get()operation op. Let Û be the sub-history of Ĥ induced by op. Given an

11Note that, since the total number of operations is smaller than k, processing the UPDATE message, each process
always executes line 03, Figure 19.
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integer k, if at any time t, |A(t)| > dn
2
e, then at the end of the get() operation, pi maintains in its

last opsi variable a k-cut permutation induced by op consistent with Û .

Proof In order to terminate the get(), a process pi has to wait until it receives at least (n
2

+ 1)
replies from other processes (line 05, Figure 20). Each reply received by pi from a process pj
contains the list of the most recent operations saw by pj . Let P be the set of processes that send a
REPLY message to pi. The set P can be partitioned in the set of processes that were active at time
t0 and the set of processes that became active at some t > t0.
All the processes that were active at time t0 will send to pi a copy of their last opsk variable
where, for each new update, they substitute the “older” operation (i.e., the operation identified
by the smallest pair (sn, id)) and then, their list represents k-cut permutation induced by the
get()consistent with Û .
Each process pj that became active after t0, due to Lemma 15, terminates its join() operation main-
taing in its local variable last opsj a k-cut permutation consistent with Û at time tE(join) and then
for each new update, it substitutes the “older” operation. Hence, also for such processes the list
sent to pi represents a k-cut permutation consistent with Û and the Lemma follows. 2Lemma 16

Theorem 5. Let S be a k-bounded set object and let op be a get() operation issued on S by some
process pi. If, at any time t, |A(t)| > dn

2
e, then the set V returned by op is an admissible set (i.e.,

V = Vad(op)).

Proof Let us suppose by contradiction that the set V returned by a get()operation op is not an
admissible set. The set V is calculated in lines 09-15, Figure 19. Due to Lemma 16, such operations
represents a k-cut permutation induced by op on Û and let’s call πi such permutation.
If V is not an admissible set for op, it means that it is not generated by any πi ∈ Πk,Û(op) and then,
one of the following conditions holds:

1. there exists an element v, generated by every permutation πi of the permutation set ΠÛ , such
that v does not belong to seti (i.e., ∃ v : ∀ πi ∈ Πk,Û(op) (∃ add(v) ∈ πi : add(v)→πi op) ∧
(@ remove(v) ∈ πi : add(v)→πi remove(v)→πi op) ∧ (v /∈ seti));

2. there exists an element v belonging to seti such that it can not be generated by any permuta-
tion πi of the permutation set ΠÛ (i.e., ∃ v ∈ seti : ∀πi ∈ Πk,Û(op) (∃ add(v), remove(v)∈ πi:
add(v)→πi remove(v)→πi op)).

Case 1. If there exists an add(v) in the permutation πi it means that in the last opsi variable there
exists a tuple < A, v,−,− > and then pi will execute line 12 of Figure 19. Since the last opsi
variable is ordered according to the partial order of the execution and since there not exists any
tuple < R, v,−,− > in the last opsi ordered variable after < A, v,−,− > it follows that after
executing line 12 of Figure 19, pi will not execute 13 of Figure 19 in the following and then v will
be in the seti variable returned having a contradiction.

Case 2. At line 09 of Figure 19, the variable seti that will be returned is emptied. If v ∈ V (i.e.,
v ∈ seti), it means that pi has executed line 12 of Figure 19 and after it has not executed line 13
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of Figure 19. If pi has executed line 12 and after it has not executed line 13 it means that in the
last opsi variable there exists a tuple < A, v,−,− > and there is not any tuple < R, v,−,− >
coming after. Due to Lemma 16 all the operations in the last opsi variable represent a k-cut
permutation consistent with Û and then it follows that there exists an add(v) ∈ πi and there is not
any remove(v) ∈ πi : add(v)→πi remove(v) and we have a contradiction.

2Theorem 5

Theorem 6. Let S be a k-bounded set object and let Ĥ = (H,≺) be an execution history of S
generated by the algorithms in Figures 18 - 19. If every active process pi maintains an admissible
k-bounded set, Ĥ is always per-element sequential consistent.

Proof The proof follows immediately by Lemma 14. Since update operations are ordered accord-
ing to the pair (sn, id), each process executing line 11 of Figure 20 will order all the operations in
the same way. 2Theorem 6

6.2.5. Programming with k-bounded set objects: Eventual Participant Detector
A k-bounded set can be easily used to implement an oracle that returns the list of processes

currently part of a group. Such an oracle is called participant detector. The notion of participant
detector is close to the concept of failure detector and it has been considered in [6, 10] to discover
processes currently in the network and to solve the consensus with unknown participants problem.

Specification and Protocol. Due to the eventual synchrony of our model, in this paper we consider
an oracle, called eventual participant detector that can make mistakes during asynchrony periods.
Given a group computation, an eventual participant detector can be characterized by two properties:

• Eventual Completeness: Eventually, every process that leaves permanently the group is no
more returned by the oracle.

• Eventual Accuracy: Eventually, each process that remains forever in the group is always
returned by the oracle.

The basic idea is to use the k-bounded set as repository for the identifiers of processes that
decide to participate to the group. When a process decides to join the group, it simply joins the
k-bounded set computation and as soon as it returns from the join, it puts its identifier id in the
repository by invoking the add(id) operation on the k-bounded set and repeats periodically such
operation. Repeating periodically the add(id) operation is actually needed because a k-bounded
set object keeps memory only of recent update operations.

When a process leaves the group, it invokes the remove(id) operation and stops to add its iden-
tifier in the repository.
When a process wants to have the current membership of the group it executes the get()operation.
The pseudo-code of this simple procedure is shown in Figure 22.
Note that, the value k depends both on the size of the group and on the latency of the operations
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operation joinGroup(i)

(01) groupi ← ∅;
(02) participatei ← true;
(03) join();
(04) execute persistance();
(05) return(ok).

procedure persistence()

(01) while (participatei) every ∆ time
(02) add(i);
(03) end while.

operation getGroup()

(01) groupi ← get();
(02) return(active seti).

operation leaveGroup(i)

(01) participatei ← false;
(02) return(ok).

Figure 22: The Eventual Participant Detector Implementation

invoked on the k-bounded set; the higher the value of these parameters are, the higher k must be-
fore the implementation to be correct.

Correctness Proofs. In the following, we will show how the algorithm shown in Figure 22 is
able to implement an eventual participant detector in an eventually synchronous system where the
value of k is appropriately selected. The hard part of the problem is to satisfy the eventual accuracy
property. In fact, during asynchrony periods it is not possible to define deterministic bounds on
the operations execution times. As a consequence, a fast process pi could fill in all the k slots of
the object with its add(i) operations, while a slow process pj could be infinitely often overwritten
by the fast one. Therefore, it is possible that pj is never returned by the oracle. However, when
the synchrony period arrives, it is possible to compute an upper bound ∆top on the execution time
of each k-bounded set operation. Thus, starting from the number of processes N and from the
various ∆top, it is possible to compute the minimum value of k that verifies eventual accuracy. Let
us remark that if k is not appropriately configured, some process pj could never be returned by the
oracle due to random overwriting of the k-bounded set structure.

Lemma 17. Eventual Completeness. Eventually, every process that leaves permanently the
group is no more returned by the oracle.

Proof The proof trivially follows by considering that a process pi leaving the group, stops to add
its identifier in the k-bounded set. Due to the continuous churn, every joining process will add its
identifier and considering that k is finite, eventually the last add(i) operation executed from pi will
disappear from the object. 2Lemma 17

Lemma 18. Eventual Accuracy. Let ∆tA, ∆tR, ∆tG and ∆tJ be the upper bounds on the execu-
tion time taken respectively by an add(v) remove(v), get() and join() operations. Let NPD be the

53



maximum size of the group and let cPD be the churn rate. If k > NPD +
(
(∆ + 2∆tA)× 2cNPD

)
,

then eventually, each process that remains forever in the group is always returned by the oracle.

Proof At the beginning of the computation, at most NPD processes belongs to the group (i.e.,
k ≥ NPD). As soon as the churn starts, processes start to join the eventually participant detector
executing the joinGroup() operation. In particular, a joinGroup() operation, invoked by a process
pi, triggers first a join() on the k-bounded set and then it activates a periodic invocation of add(i)
operations. Let us suppose by contradiction that there exists a process pi remaining forever in the
computation and its identifier is not returned by a get()operation. Let us consider the time t when
the system becomes synchronous. After time t, the execution time for each operation executed on
the k-bounded set is finite and bounded. Let us consider the time interval I between the beginning
of an add(i) and the termination of the next add(i) (i.e., I = [t, t+∆+2∆tA]). If pi does not belong
to the set returned by a get()operation, it means that between two following add(i) operation, there
exist too many operations and i disappear from the k-bounded set. Due to the churn rate, given
the interval I , there exist at most

(
(∆ + 2∆tA)× 2cNPD

)
operations (add()/remove()) that can be

issued. Considering that k > NPD +
(
(∆ + 2∆tA)× 2cNPD

)
, and considering that between two

following add(i) operations at most
(
(∆ + 2∆tA) × 2cNPD

)
operations can take place, it means

that pi does not disappear from the k-bounded set and we have a contradiction. 2Lemma 18

7. Conclusion

Shared objects provide programmers with a powerful tools to design distributed applications
on top of complex distributed systems. This paper has investigated under which assumptions a set
object can be implemented using finite (and bounded) memory on top of a dynamic distributed
system prone to continuous churn.

The paper has presented a consistency condition suited to a set object which is weaker than
sequential consistency by exploiting the semantic of the set object and allowing, at the same time,
concurrent readings to return the same set in absence of other operations. The paper has also shown
the impossibility of defining a protocol implementing a set object using a finite memory on top of a
non-synchronous distributed system prone to continuous churn. To overcome the impossibility we
worked along two orthogonal directions: strengthening the system model and weakening the object
specification. Thus, we firstly presented a protocol working in a synchronous system prone to
continuous churn along with its correctness proof. Secondly, along the line of weakening the object
specification, we introduced a weaker form of set, namely k-bounded set, that “approximates” a
set as k tends to infinity (i.e., it behaves as a set when k =∞). We presented a distributed protocol
implementing a k-bounded set that requires a majority of active processes to be up at the same
time.

We strongly believe that this paper makes a first step towards the definition of generic abstract
data types (e.g., maps, list, queues etc.) for dynamic distributed systems as (i) set object can be used
itself as basic building blocks and (ii) it highlighted some constraints on the design of distributed
protocols in message passing model, following by the combination of eventual synchrony and
continuous churn that are common to any abstract data type implementation.
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