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ABSTRACT Introgressive hybridization between domestic dogs and wolves (Canis lupus) represents an em-
blematic case of anthropogenic hybridization and is increasingly threatening the genomic integrity of wolf
populations expanding into human‐modified landscapes. But studies formally estimating prevalence and
accounting for imperfect detectability and uncertainty in hybrid classification are lacking. Our goal was to
present an approach to formally estimate the proportion of admixture by using a capture‐recapture (CR)
framework applied to individual multilocus genotypes detected from non‐invasive samples collected from a
protected wolf population in Italy. We scored individual multilocus genotypes using a panel of 12 microsatellites
and assigned genotypes to reference wolf and dog populations through Bayesian clustering procedures. Based on
152 samples, our dataset comprised the capture histories of 39 individuals sampled in 7 wolf packs and was
organized in bi‐monthly sampling occasions (Aug 2015−May 2016). We fitted CR models using a multievent
formulation to explicitly handle uncertainty in individual classification, and accordingly examined 2 model
scenarios: one reflecting a traditional approach to classifying individuals (i.e., minimizing the misclassification of
wolves as hybrids; Type 1 error), and the other using a more stringent criterion aimed to balance Type 1 and
Type 2 error rates (i.e., the misclassification of hybrids as wolves). Compared to the sample proportion of
admixed individuals in the dataset (43.6%), formally estimated prevalence was 50% under the first and 70%
under the second scenario, with 71.4% and 85.7% of admixed packs, respectively. At the individual level, the
proportion of dog ancestry in the wolf population averaged 7.8% (95% CI=4.4−11%). Balancing between Type
1 and 2 error rates in assignment tests, our second scenario produced an estimate of prevalence 40% higher
compared to the alternative scenario, corresponding to a 65% decrease in Type 2 and no increase in Type 1 error
rates. Providing a formal and innovative estimation approach to assess prevalence in admixed wild populations,
our study confirms previous population modeling indicating that reproductive barriers between wolves and dogs,
or dilution of dog genes through backcrossing, should not be expected per se to prevent the spread of
introgression. As anthropogenic hybridization is increasingly affecting animal species globally, our approach is of
interest to a broader audience of wildlife conservationists and practitioners. © 2021 The Authors. The Journal of
Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.

KEY WORDS anthropogenic introgression, Bayesian assignment, Canis lupus, capture‐recapture, genetic swamping,
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Hybridization between domesticated forms and their wild
ancestors is considered an exemplary form of anthropogenic
hybridization (Randi 2007). Although this phenomenon has
repeatedly occurred since domestication (Frantz et al. 2016,
Pilot et al. 2018), there is concern that, especially in human‐
dominated landscapes, the widespread occurrence of domes-
ticated forms (Boivin et al. 2016) and their potential
interactions with their wild ancestors may lead to an increased
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risk of hybridization and gene flow (i.e., introgression;
Randi 2007, Salvatori et al. 2020). This can eventually lead
the rarer wild counterparts to massive introgression and
eventually genomic extinction through swamping (Allendorf
et al. 2001). Domesticated mammals in general exhibit a suite
of morphological, physiological, and behavioral traits (e.g.,
coat color, craniofacial morphology, dentition, ears and tail
shape and length, more frequent and non‐seasonal estrus cy-
cles, alterations in the adrenocorticotropic hormone, increased
tameness and sociality) that are not observed in their wild
counterparts (Wilkins et al. 2014). Although few examples of
positive selection of introgressed domesticated traits in wild
species have been hypothesized (Anderson et al. 2009,
Coulson et al. 2011, Grossen et al. 2014), consistent gene
flow between domesticated forms and their wild ancestors is
expected to have deleterious consequences for genomic in-
tegrity and viability of wild species (e.g., reduction in fitness
and adaptive potential, loss of unique combinations of genes
and genotypes that have unique evolutionary history;
Allendorf et al. 2001, Bohling 2016, Wayne and
Shaffer 2016). For these reasons hybridization between wild
and domesticated forms is considered a relevant threat to
biodiversity (Todesco et al. 2016).
Admixture can be measured in terms of the degree of in-

trogression (i.e., the proportion of alleles from a non‐parental
taxon averaged across individuals in the population; Miller
et al. 2003) or the proportion of admixed individuals in a
population (Allendorf et al. 2001); here, we refer to the latter
(i.e., proportion of admixture, or prevalence) because it is
fundamental to define appropriate management responses and
to assess the dynamics of hybridization in a given population
(Allendorf et al. 2001). In practical terms, assessing the pro-
portion of admixture can be used in wildlife management de-
cisions according to a 2‐step process: first, at the population
scale, where assessments are often conveniently based on the
genotyping of non‐invasive samples, it elucidates if and even-
tually where management measures are needed (Adams
et al. 2003); and second, if population‐wide surveys reveal ad-
mixture to an extent that necessitates reactive interventions (i.e.,
sterilization or removal; Gese and Terletzky 2015), more in‐
depth genetic analyses are needed to identify hybrids and ac-
cordingly target management actions (vonHoldt et al. 2013). In
turn, estimating the proportion of admixture at the population‐
wide scale requires reliably estimating the abundance of pa-
rental and admixed individuals in the population. These esti-
mates, to be reliable, should ideally account for 3 critical
aspects. First, they should be based on population samples that
reflect biologically meaningful temporal (i.e., generational) and
spatial scales. Second, they should derive from estimation
methods that formally account for imperfect detectability and
other potential sources of bias (Anderson 2001, Yoccoz
et al. 2001); in particular, because prevalence is essentially a
proportion measuring the relative abundance of admixed and
parental individuals, the estimation process should account for a
potentially different detectability of the 2 forms (i.e., admixed
vs. parental). Third, the inherent uncertainty that generally
afflicts the classification of individuals as parental or admixed,
especially if based on poor‐quality DNA samples, should be

formally accounted for within the estimation framework
(Santostasi et al. 2019). Specifically, even though genetic
markers are considered at large more reliable than phenotypic
cues of hybridization (Allendorf et al. 2001), uncertainty in
detecting admixed individuals still remains and depends on 2
interacting factors: the number and type of genetic markers
used, and the statistical methods and options adopted to assign
sampled individuals to the parental or admixed reference pop-
ulations (Vähä and Primmer 2006, Bohling et al. 2013).
Because population‐wise assessments are more efficiently con-
ducted analyzing non‐invasive samples, especially for elusive
and threatened species, the relatively poor‐quality DNA ex-
tracted from such samples allows for the amplification of a low
number of diagnostic loci, therefore limiting the power to
discriminate between parental and admixed individuals and
their backcrosses (Vähä and Primmer 2006). One of the most
commonly used methods to assign sampled individuals to the
parental or the admixed category is the Bayesian clustering
procedure implemented in programs such as NewHybrids,
BAPS, and STRUCTURE (Pritchard et al. 2000, Anderson
and Thompson 2002, Falush et al. 2003, Corander et al. 2008).
Analysis using STRUCTURE probabilistically assigns in-
dividual genotypes to K populations (characterized by distinct
allele frequencies) that are assumed to contribute to their gene
pools. Specifically, each individual is assigned to a population
based on the estimated membership proportion (qi), which is
the fraction of its genome that is inherited from ancestors in 1
of the 2 populations (Pritchard et al. 2000). Admixed in-
dividuals are then inferred when their estimated qi value is
intermediate between 2 clusters (a first‐generation hybrid
should theoretically have a qi=0.5). The choice of the
threshold qi value that discriminates parental from admixed
individuals is traditionally fixed according to an arbitrarily de-
fined standard (e.g., qi=0.8 for canids; Verardi et al. 2006,
Wheeldon et al. 2010, Benson et al. 2012, Rutledge
et al. 2012), or by referring to qi values derived from simulated
genotypes of known genealogy (Godinho et al. 2011, van Wyk
et al. 2016, Caniglia et al. 2020). We argue that more formal
methods should be used to account for the uncertainty in de-
fining threshold qi values and therefore to assign sampled in-
dividuals to the parental or the admixed categories. Moreover,
in wolf (Canis lupus)×domestic dog hybridization studies, the
choice of the threshold qi value has been generally oriented at
avoiding Type 1 error (i.e., misclassifying parental wolves as
admixed individuals), with the consequence of underestimating
Type 2 error (i.e., misclassifying backcrosses as wolves).
Nevertheless, Type 2 error may bear relevant conservation
implications, especially in small and expanding wolf pop-
ulations (Donfrancesco et al. 2019). Especially if hybrids are
detected using a limited number of genetic markers, calibrating
threshold qi values to obtain small Type 1 error rates means
that a non‐trivial proportion of recent backcrosses (Caniglia
et al. 2020) could be erroneously classified as wolves.
Nonetheless, backcrosses are an indication of ongoing in-
trogression and they carry domesticated alleles that, even if in
smaller proportions compared to first‐generation hybrids, pose
a risk for the genomic integrity of the wolf parental population
(Allendorf et al. 2001).
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Hybridization between gray wolves and domestic dogs is
an emblematic case of wild‐domestic hybridization
(Butler 1994). Because of intense artificial selection, dogs
differ from wolves in several morphological, physiological,
and behavioral traits, and many of these differences are
genetically based (vonHoldt et al. 2017, Pendleton
et al. 2018). Nonetheless, wolves and dogs are interfertile
and first‐generation hybrids can backcross into the wolf
parental population, generating gene flow between the
2 forms (Vilà and Wayne 1999, Randi 2007). In Europe,
several wolf populations are currently re‐expanding their
range across human‐dominated landscapes (Chapron
et al. 2014) where dogs have become the most abundant
carnivore (Ritchie et al. 2014). Accordingly, recent in-
trogressive hybridization (i.e., up to 3 generations in the
past; Caniglia et al. 2020) has been recently detected in
several wolf populations in Eurasia (Galaverni et al. 2017,
Pacheco et al. 2017, Pilot et al. 2018, Salvatori et al. 2020).
Detection and monitoring of wolf‐dog hybridization within
wolf populations is therefore considered a conservation
priority at the European scale (Hindrikson et al. 2017,
Donfrancesco et al. 2019, Salvatori et al. 2020). But there is
no systematic and coordinated management of wolf‐dog
hybrids currently in place across Europe because of the in-
herent uncertainties in detecting hybrids and a lack of ad hoc
planned monitoring programs to formally assess hybrid-
ization at the population scale (Salvatori et al. 2020).
Previous assessments of wolf‐dog hybridization in Europe
(Dufresnes et al. 2019) estimated prevalence as the pro-
portion of admixed individuals in a sample drawn from the
population (i.e., naïve prevalence) and most of those esti-
mates were based on convenience or opportunistic samples
(e.g., incidentally found carcasses or opportunistically col-
lected biological samples) pooled at the country scale and
across time frames encompassing several wolf generations.
Although these samples may be indicative of broad patterns
of introgression, they overlook several sources of sampling
and estimation bias and are hardly useful to inform man-
agement responses at the appropriate spatial and temporal
resolution. More formal yet practical estimation approaches,
based on appropriate sampling designs, are needed to assess
and monitor wolf‐dog hybridization, especially in light of
the likely increasing phenomenon throughout Europe
(Salvatori et al. 2020).
We applied a multievent capture‐recapture (CR) model

developed by Santostasi et al. (2019) to estimate prevalence
of admixture in a wolf population in the northern
Apennines, Italy, accounting for imperfect detectability and
uncertainty in the probabilistic assignment of admixed in-
dividuals. Building on previous work aimed at optimizing
the genetic procedures to detect wolf‐dog hybrids (Caniglia
et al. 2020), our first objective was to estimate the pro-
portion of admixture accounting for the sampling and es-
timation problems that affect naïve estimates of prevalence;
in doing so, we explored 2 alternative rationales to classify
admixed individuals: the current practice to minimize Type
1 error versus a more precautionary approach to balance
between Type 1 and 2 error rates. Our second objective was

to investigate the reproductive status of admixed individuals
within the studied population. Based on previous, anecdotal
knowledge of admixture in this and adjacent wolf pop-
ulations, we predicted we would detect a non‐trivial extent
of admixture and that formal estimates would be higher
compared to naïve estimates, especially if false negatives
were controlled for in the procedure used to classify ad-
mixed individuals (i.e., reducing Type 2 error rates). We
also predicted that detection probability and survival would
not necessarily be the same between wolves and admixed
individuals.

STUDY AREA

Our 731‐km2 study area encompassed the Appennino
Tosco–Emiliano National Park (PNATE), in the northern
Apennines, Italy (Fig. 1) and the sudy period spanned
10 months (Aug 2015–May 2016). Elevation ranged from
400 to 2,100m above sea level and the landscape was typically
mountainous terrain at higher elevations, and rolling hills at
lower altitudes (<1,000m). The vegetation was mainly
composed of temperate and sub‐Mediterranean deciduous
forests, predominated by beech (Fagus sylvatica) at higher
elevations, alternated with prairies, meadows, pastures, and
cultivated fields. Average annual temperatures were 0.6°C in
winter, 10.6°C in spring, 16.2°C in summer and 4.2°C in
autumn. Precipitations peak was in October and snow cover
usually extended from December to March. Human presence
(25 inhabitants/km2) was limited throughout the year to
lower elevations (<1,000m), although it increased during
summer because of tourism and livestock grazing at higher
altitudes (Ciucci et al. 2003). In addition to wolves, large
mammals in the study area included roe (Capreolus capreolus)
and red (Cervus elaphus) deer and wild boar (Sus scrofa), which
were hunted outside protected areas from October to
December, and mouflon (Ovis gmelini).
Wolves naturally recolonized the area in the early 1980s

from the central Apennines (Fabbri et al. 2007), and they
are now locally established at high and stable density
(Caniglia et al. 2014), thriving on wild and occasionally
domestic ungulates (Ciucci et al. 1996). Specifically, the
area lays within the core of the wolf range in the northern
Apennines and comprises the territories of 7 wolf packs
that have been intensively surveyed using a combination of
field techniques (i.e., wolf‐howling during summer, snow‐
tracking in winter, global positioning system (GPS)‐
telemetry, non‐invasive genetic sampling, camera‐trapping;
Ciucci and Boitani 1999, Caniglia et al. 2014, Ciucci
et al. 2018). Although our study wolf population cannot be
considered closed, the tight territorial arrangement of the
local wolf packs, and a marked environmental and anthro-
pogenic gradient beyond the study area's borders, suggest
our defined study population comprises a demographically
and genetically cohesive wolf population. Stray dogs are
scarce in the area, but uncontrolled working or hunting dogs
may be occasionally present throughout the year, including
the hunting season, which overlaps with the wolves’
breeding period. A few admixed individuals have been
previously reported in the study area (Caniglia et al. 2014).
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METHODS

Sampling Methods
We applied non‐invasive genetic sampling by systemati-
cally collecting fresh wolf scats every 2 weeks along fixed
routes throughout each of 7 wolf pack territories. We used
complementary collection methods (i.e., at scent posts,
homesites, kill sites) to boost sample size and enhance
sampling coverage. To ensure a demographically mean-
ingful time frame over which to estimate prevalence of
admixed individuals, we restricted sampling to a single
breeding pulse (i.e., from pup rearing until the onset of the
next breeding season) by analyzing wolf scats collected
from August 2015 to May 2016, excluding those from
pups born in spring 2016. Upon collection, we individually
stored fecal samples at –20°C in 95% ethanol. We then
extracted DNA from the scats using the Qiagen DNeasy
Blood and Tissue Kit (Qiagen, Hilden, Germany) fol-
lowing the manufacturer's instructions and amplified fecal
DNA using standard laboratory protocols as described in
Caniglia et al. (2014) and Fabbri et al. (2018).

Detection and Classifications of Individuals
Based on a multiple‐tube protocol (Taberlet et al. 1996)
using procedures described in Fabbri et al. (2018), we
genotyped fecal DNA samples amplifying them at 12
unlinked autosomal microsatellites (short tandem repeats
[STRs]) selected for their polymorphism and reliable
scorability for wolves and dogs (Caniglia et al. 2014) and
routinely used for genotyping low‐content DNA samples
in non‐invasive genetic monitoring projects (Caniglia
et al. 2013, 2014; Fabbri et al. 2018), and a dominant
3‐base pair (bp) deletion (named KB or CBD103DG23) of

the b‐defensin CBD103 gene (the K‐locus; Anderson
et al. 2009), which represents a reliable indicator of dog
introgression in some Italian wolf subpopulations
(Caniglia et al. 2013). Additionally, we sexed samples by
polymerase chain reaction‐restriction fragment length
polymorphism (PCR‐RFLP) of the ZFX/ZFY (zinc‐finger
protein) sequences (Lucchini et al. 2002) and identified
paternal haplotypes typing 4 STRs located on the Y
chromosome (MS34A, MS34B, MS41A, and MS41B;
Sundqvist et al. 2001) and maternal haplotypes analyzing
250 bp of the hypervariable domain of the mtDNA CR1
(Caniglia et al. 2013). We used the software Gimlet ver-
sion 1.3.3 (Valière 2002) to reconstruct the consensus
genotype from the results of the 4–8 replicated amplifica-
tions per locus, to estimate PCR success (the number of
successful PCRs ÷ number of PCR runs across samples),
allelic drop‐out, and false allele rates and to match the
detected genotypes to each other and to the Italian
Institute for Environmental Protection and Research
(ISPRA) Canis database for the identification of possible
resamplings in the study area. We retained as reliable
consensus genotypes those showing a reliability score
R≥ 0.95 obtained by the software RELIOTYPE (Miller
et al. 2002).
We performed Bayesian clustering procedures on

the 12‐loci multilocus reliable genotypes obtained from the
4−8 replicated amplifications per locus per sample using the
R package parallel structure (Besnier and Glover 2013). Such
software can produce more stable assignment coefficients that
are not affected by sample sizes or samples with variable levels
of admixture (Caniglia et al. 2020) because the software
automatically subdivides a dataset of genotypes to be assigned

Figure 1. Location of the study area along the northern Apennines, Italy (inset is the Italian wolf population range) and sampling locations of the wolf scats
(dots and triangles) collected within each approximate wolf pack territory (circles) between August 2015 and May 2016. We classified sampled individuals
based on multilocus genotypes (12 short tandem repeats [STRs]) and Bayesian clustering analysis (Program STRUCTURE). Based on simulated genotypes,
individuals classified as uncertain had estimated membership proportion to the wolf cluster (qw) values intermediate between those of wolves and admixed
(wolf‐dog) individuals.
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to predefined reference populations into multiple single
projects (each project is composed of the reference pop-
ulations and 1 of the genotypes to be assigned), which are
independently run. For each individual genotype, we esti-
mated the individual proportions of membership (qi) and the
90% Bayesian credible intervals (BCI) to the 2 inferred
clusters (K); details about the Bayesian assignment test
models are reported in Caniglia et al. (2020). We used the
admixture and the independent allele frequencies models,
which are considered the most suitable approaches to trace
gene flow between taxa with allele frequencies clearly dif-
ferent and that evolved independently (Falush et al. 2003).
We performed 4 independent runs at K= 2 applying 500,000
Markov chain Monte Carlo iterations, discarding the first
50,000 as burn‐in. We averaged results across different runs
using the software CLUMPP 1.1.1 (Jakobsson and
Rosenberg 2007). We used as reference populations a panel
of 190 wolves and 89 dogs. We obtained wolf samples from
areas with no documented cases of admixture and the wolves
in this sample showed the typical wild coat color pattern and
no apparent signal of other morphological dog‐like traits
(e.g., black coats, white claws, spur on the hind legs), did not
share dog‐derived Y and mtDNA haplotypes, and had a
qw> 0.990, a value obtained in previous Bayesian assignment
procedures performed using 156,132 canine single‐nucleotide
polymorphisms (SNPs) and 39 canine STRs commonly used
in recent studies on wolf‐dog hybridization in Europe
(Galaverni et al. 2017, Fabbri et al. 2018, Caniglia
et al. 2020). Dog samples comprised 61 free‐ranging dogs
sampled in the same areas (Randi et al. 2014, Galaverni
et al. 2017), plus 1 male and 1 female randomly chosen from
14 wolf‐sized dog breeds available from the LUPA project
data set (Lequarre et al. 2011, Vaysse et al. 2011, Caniglia
et al. 2020). We used samples from the reference populations
also in HybridLab (Nielsen et al. 2006) to simulate 12‐STR
genotypes for 100 individuals per each of the following pa-
rental and admixed ancestry classes: wild (PW) and domestic
(PD) parentals, first (F1) and second (F2) generation hybrids,
and 4 backcross generations originated either from F1s
(BCW1–BCW4) or F2s (SBCW1–SBCW4) crossing with
wild parentals (Caniglia et al. 2020), for 1,200 genotypes.
We classified the sampled genotypes as wolves or ad-

mixed individuals by comparing their individual qi values
with those of the reference populations and of simulated
genotypes. In doing so, we examined 2 classification sce-
narios to gauge their effect on the final estimate of prev-
alence. The first classification (scenario A) reflected the
widely adopted procedures essentially meant to reduce
Type 1 error rates (Randi 2007, Godinho et al. 2011,
Pacheco et al. 2017, Dufresnes et al. 2019). We accord-
ingly used the threshold qw≤ 0.975, as suggested by
Caniglia et al. (2020) to identify recently admixed in-
dividuals in the Italian wolf population with a reduced
12‐STR marker panel. The second classification
(scenario B) reflected a more precautionary approach
meant to balance between Type 1 and 2 error rates, thus
reducing the number of simulated first‐ and second‐
generation backcrosses erroneously assigned to parental

wolves. To formally account for the uncertainty in classi-
fication due to the expectedly large overlap in qw values
between wolves and backcrosses using a relatively limited
number of loci (Vähä and Primmer 2006), we classified
individuals according to 3 categories: wolves, including
individuals whose qw was higher than the maximum qw of
simulated first‐generation backcrosses (BCW1) because
this prevented erroneously assigning first‐generation
backcrosses to the wolf category (i.e., Type 2 error); ad-
mixed individuals, including those whose qw was lower
than the minimum qw of reference wolves because this
prevented erroneously assigning wolves to the admixed
category (i.e., Type 1 error); and uncertains, including
individuals whose qw was between the minimum qw of
reference wolves and the maximum qw of simulated
BCW1 (Fig. 2; Table S1, available online in Supporting
Information). To this aim, we used the minimum qw of
reference instead of simulated wolves because the former
more realistically represents the expected genetic varia-
bility in the wolf population (Dufresnes et al. 2019).
Whereas the first 2 categories are by definition those
traditionally recognized in Bayesian‐based assignment
tests (i.e., scenario A), we considered the category un-
certains only in the classification scenario B (see below).
For each of the 2 scenarios, we obtained a CR dataset

containing the capture histories of the observed individuals
organized in bi‐monthly sampling occasions. We analyzed
both datasets using CR models to estimate the abundance
of wolves and admixed individuals.

Capture‐Recapture Modeling and Prevalence
Estimation
The multievent formulation of open population CR
models explicitly handles uncertainty in individual classi-
fication by modeling the observed capture histories as
2 time series: the state process (i.e., the population dy-
namics during the study) and the event process (i.e.,
what we can observe through sampling; Pradel 2005).
Following Pradel (2005) and Santostasi et al. (2019), we
modeled the state process as a Markov chain of 3 partially
hidden states: alive in the study area as wolf, alive in the
study area as admixed, and dead or permanently emi-
grated. The state process was described by the initial state
probability (πw= the probability that an individual was in
one or the other state when first encountered) and the
apparent survival probability (φ= the probability that an
individual survived and remained in the study area be-
tween sampling occasions). In our model, because in-
dividuals could not change their state between wolf and
admixed, the only possible transition was between in the
study area and permanently emigrated or dead; therefore,
their state changed over time according to a first‐order
Markov process determined by the apparent survival
probabilities only (Santostasi et al. 2019). We modeled
the event process as conditional on the underlying state
(to be observed, individuals had to be alive and in the
study area) and represented by 2 consecutive steps: de-
tection (p is the probability of finding and successfully
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scoring an individual genotype) and state assignment (i.e.,
individual classification, δ is the probability of classifying
an individual as wolf or admixed according to its qw
value). In classification scenario A, we did not consider
uncertainty in the state assignment, reflecting the tradi-
tional adoption of a fixed threshold qw value to discrim-
inate between wolves and admixed individuals, and
accordingly modeled the probability of assigning an in-
dividual to 1 of the 2 states (δ) as equal to 1, whereas the
complementary probability (1 – δ: the probability of not
classifying an individual) was equal to 0. Therefore, under
scenario A, our model considered only 3 possible events,
corresponding to individuals that could be 1) detected and
classified as wolf, recorded as 1 in the capture history; 2)
detected and classified as admixed, recorded as 2; and 3)
not detected, recorded as 0. This model formulation
corresponded to a multistate CR model, which assumed
that each individual could be classified without ambiguity
(Conn and Cooch 2009). In scenario B we accounted for
uncertainty in the assignment procedure considering 4
possible events corresponding to individuals that could be
1) detected and classified as wolf, recorded as 1 in the
capture history; 2) detected and classified as admixed,
recorded as 2; 3) detected but not classified (i.e., classified
as uncertain; recorded as 3); and 4) not detected, recorded
as 0. Under this classification scenario, we did not assume
δ was equal to 1, but it became a parameter to be esti-
mated, and we used the complementary probability (1 – δ)
to model the capture histories of the individuals classified
as uncertain (Santostasi et al. 2019). For example, to il-
lustrate the calculation of an encounter history of an

uncertain individual in a 3‐session CR experiment, 303
would denote an individual detected on the first occasion,
not detected on the second occasion, and detected again
on the third occasion. The state of this individual (i.e.,
wolf or admixed) is not assigned in this phase. Assuming
that the parameters do not change over time, the capture
history can be written as (Santostasi et al. 2019):

p p

p p

Pr 303 1 1 1

1 1 1 ,

h h h h h h h

w w w w w w w

( ) = π ( − δ )φ ( − )φ ( − δ )

+ π ( − δ )φ ( − )φ ( − δ )

where the subscripts h and w indicate parameters for ad-
mixed individuals and wolves, respectively.
Assuming independence between observations, we ob-

tained the likelihood of the entire dataset as the product of
the probabilities of all individual encounter histories and we
obtained the parameter estimates by maximizing the like-
lihood function (Pradel 2005).
With scenario A, we estimated the population abundance

at a given occasion (N̂ ), given by the sum of the estimated

abundances of parental wolves (Nw
ˆ ) and of admixed in-

dividuals (Nĥ), with the Horvitz–Thompson estimator
(McDonald and Amstrup 2001) as:

N
n

p

n

p
N N ,w

w

h

h

w h
ˆ =

ˆ
+

ˆ
= ˆ + ˆ

where nw was the number of parental individuals and nh the
number of hybrids detected and p

ŵ
and p

ĥ
were the esti-

mated detectabilities of parental and admixed individuals,

Figure 2. The left panel presents a boxplot of the qw (estimated membership proportion to the wolf cluster) values obtained by Bayesian clustering analysis
of the genotypes simulated from reference wolves (n= 190) and dogs (n= 89) in the northern Apennines, Italy, 2015–2016, grouped per genealogical class
(n= 100 genotypes for each class). The grey horizontal lines define the area of uncertainty that is zoomed in the right panel. The right panel provides detail
of the area of uncertainty between the minimum qw of reference wolves (dashed line) and the maximum qw of simulated first‐generation backcrosses (solid
line). We classified as wolves those sampled genotypes whose qw was above the solid line, as admixed those whose qw was below the dashed line, and as
uncertains those in between. W=wolves; D= dogs; F1 and F2=first‐ and second‐generation hybrids, respectively; BCW1–4= first‐ to fourth‐generation
backcrosses of F1 with wolves; SBCW1–4= first‐ to fourth‐generation backcrosses of F2 with wolves.
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respectively. We then estimated prevalence as (Santostasi
et al. 2019):

Prevalence
N

N N
.h

w h

=
ˆ

ˆ + ˆ

With scenario B, the individuals classified as uncertain
needed to be assigned to 1 of the 2 states (wolf or admixed).
To solve the problem, we used the Viterbi algorithm, which,
given the observed encounter histories of the uncertain in-
dividuals and the parameters estimated by the multievent
model, reconstructed the most likely sequence of states that
has generated the observed data (Rouan et al. 2009, Zucchini
et al. 2016, Santostasi et al. 2019). We ran the Viterbi
algorithm and calculated the probability of the 4 (the
maximum possible with Program E–SURGE; Choquet
et al. 2009) most likely capture history reconstructions for
each uncertain individual. Then, once we reconstructed the
number of observed wolves and admixed individuals, we used
their respective abundance estimates to estimate prevalence.
We estimated standard deviation and confidence intervals of
the abundance and prevalence estimates via a non‐parametric
bootstrap (Davison and Hinkley 2002). We took a step fur-
ther compared to Santostasi et al. (2019) and evaluated the
extent to which the final prevalence estimate would be af-
fected by taking into account the alternative and less likely
Viterbi reconstructions. To do this, we calculated first the
relative probability (weight) of each Viterbi reconstruction,
and then a weighted estimate of prevalence (see Supporting
Information for additional details).
For both scenarios A and B, to test for sources of variation

in the probability of detection and apparent survival, we
built a set of candidate models incorporating the effect of
biologically relevant and time‐dependent variables. We
tested models with a state effect on detection and survival
probability to test for possible differences that could arise
from different behavior of parental and admixed individuals
as reported in other species (Derégnaucourt et al. 2004,
Battocchio et al. 2017), a time (capture occasion) effect on
detection probability to test for heterogeneity due to varia-
tion in sampling effort or environmental conditions, and a
pack effect on detection probability and survival to test for
heterogeneity due to uneven spatial distribution of the
sampling effort. We did not test for a time effect on appa-
rent survival because our sampling was extended over a
relatively short time frame. Based on several CR studies on
wolf populations (Marucco et al. 2009; Cubaynes
et al. 2010, 2014; Caniglia et al. 2014) that did not find a
significant sex effect on apparent survival, we decided not to
run models with sex‐dependent survival. Because we per-
formed the classification of genotypes only once for each
genotype, we constrained the assignment probability to be
estimated upon first capture only (Santostasi et al. 2019).
We fitted the CR models and ran the Viterbi algorithm
using Program E–SURGE (Choquet et al. 2009). We
compared the models based on Akaike's Information
Criterion corrected for small sample size (AICc). To ac-
count for uncertainty in model selection, we obtained

model‐averaged estimates considering models whose ΔAICc

was ≤2 from the best‐selected model (Burnham and
Anderson 2002). In the absence of a goodness‐of‐fit test for
multievent CR models (Pradel 2009), we used the R
package R2ucare (Gimenez et al. 2018) to evaluate the fit of
our data to the Cormack Jolly Seber model (Lebreton
et al. 1992) that had the same structure but did not allow
uncertainty in state assignment (Gimenez et al. 2012).

Ancestry Analysis and Genealogy
To reconstruct the ancestry of the sampled individual gen-
otypes and to estimate their individual posterior probability
of belonging to the assigned or other parental population, or
of having a recent ancestor in either (Hubisz et al. 2009), we
used the option population information to test for migrants
implemented in STRUCTURE 2.3.4 (Falush et al. 2003).
We a priori assigned individuals to the wolf or dog parental
populations (2 genetic clusters) using the independent allele
frequencies model and the POPFLAG= 1 to activate the
POPINFO option. In this way we assumed that all refer-
ence wolves and dogs and the collected genotypes were
a priori correctly identified and assigned to their own
cluster. Because of a limited number of loci, we restricted
the ancestry analysis to 2 generations backward
(GENBACK= 2). Even in this analysis, we performed 4
independent runs at K= 2 and averaged results using the
software CLUMPP 1.1.1 (Jakobsson and Rosenberg 2007).
In addition, we estimated the genealogies of the pack
members with a maximum likelihood approach im-
plemented in COLONY 2.0 (Wang and Santure 2009)
intending to investigate if admixed individuals produced
litters (see the Genealogy Analyses section in the
Supporting Information for further details).

RESULTS

Out of 152 collected scats, 65% were reliably genotyped an
had an average number of positive amplifications per locus
of 0.77 (range= 0.39–0.92), and average error rates of al-
lelic drop‐out of 0.18± 0.11 (SD) and false allele rates of
0.05± 0.03. We grouped consensus genotypes and as-
signed them to 39 individuals (15 females, 21 males, 3 of
unknown sex; Table S2, available online in Supporting
Information), sampled on average in 1.6± 0.9 capture
occasions (Table S3, available online in Supporting
Information). We sampled from 2−12 individuals in each
of the 7 packs. All the 39 sampled individuals shared the
typical Italian wolf mtDNA and none had the Kb melan-
istic deletion; 4 individuals shared a dog‐derived Y hap-
lotype, all assigned to the wolf category under scenario A,
whereas under scenario B, 3 of them were classified as
admixed and 1 as a wolf (Table S2).
Based on scenario A, out of the 39 sampled individuals, 22

were classified as wolf (qw≥ 0.975) and 17 were classified as
admixed (qw< 0.975; Table S2), corresponding to a naïve
prevalence of 43.6% and an average proportion of admixture
of 7.8 (95% CI= 4.4−11%). Based on the simulated gen-
otypes, this qw threshold correctly identified 100% of si-
mulated parental wolves (n= 100), and 100% of the F1
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(n= 100), 100% of the F2 (n= 100), 86% of the
BCW1 (n= 86), 48% of the BCW2 (n= 48), 13% of the
BCW3 (n= 13), and 8% of the BCW4 (n= 8) individuals
(Table S4, available online in Supporting Information). The
most supported model revealed different apparent survival
between sampling occasions for wolves and admixed in-
dividuals and constant detection probability (Table 1).
Upon first capture, individuals had a 0.56 probability (95%
CI= 0.41−0.71) of being wolf (πw) and a 0.44 (95%
CI= 0.29−0.59) probability of being admixed. The proba-
bility of apparent survival between occasions was φW= 0.56

(95% CI= 0.31−0.79) for wolves and φh= 0.92 (95%
CI= 0.38−0.99) for admixed individuals. Overall survival
over the 10‐month period (the product of the 4 bi‐monthly
estimates of apparent survival) was 0.10 (95% CI=
0.009−0.39) for wolves and 0.72 (95% CI= 0.02–0.96) for
admixed individuals. We estimated a probability of detection
p= 0.48 (95% CI= 0.29−0.68) for wolves and admixed in-
dividuals. Within each capture occasion, total population
abundance ranged from 25 (95% CI= 10−44) to 31 (95%
CI= 17−50) individuals, including 10 (95% CI= 3−26) to
17 (95% CI= 7−30) wolves and 13 (95% CI= 3−21) to 19
(95% CI= 8−31) admixed individuals (Table 2). Estimated
prevalence under scenario A therefore ranged from 47% (95%
CI= 21−79%) to 60% (95% CI= 37−84%) by sampling
occasion and averaged 50% (95% CI= 22−80%) across the
10‐month sampling period (Fig. 3; Table 2). Under scenario
A, the proportion of admixed packs was 71.4%.

Table 1. Most supported capture‐recapture models and model‐averaged
estimates of prevalence of wolf‐dog admixed individuals in the northern
Apennines, Italy, 2015–2016, for scenario A and B (p= detectability,
π= initial state probability, φ= apparent survival probability,
δ= assignment probability). The term (.) indicates constant parameters, the
term (state) indicates state‐dependent (i.e., wolf vs. admixed) parameters,
the term (time) indicates occasion‐dependent parameters. For each model,
we provide the number of parameters (K), Akaike's Information Criterion
corrected for small sample sizes (AICc), and difference in AICc (ΔAICc).
We considered models that had a ΔAICc< 2 to be competitive and model
averaged if multiple models were competitive.

Model K Deviance AICc ΔAICc

Scenario A
π(.)p(.)φ(state) 4 152.37 161.03 0.00
π(.)p(state)φ(state) 5 152.34 163.35 2.32
π(.)p(state)φ(.) 4 155.10 163.76 2.73
π(.)p(time)φ(state) 7 148.41 164.38 3.35
π(.)p(.)φ(.) 3 158.03 164.43 3.40
π(.)p(time)φ(.) 6 154.15 167.60 6.57
π(.)p(.)φ(pack) 9 147.13 168.41 7.38
π(.)p(state)φ(pack) 10 146.57 170.65 9.62
π(.)p(pack)φ(state) 10 149.59 173.67 12.64
π(.)p(time)φ(pack) 12 144.11 174.11 13.08
π(.)p(pack)φ(.) 9 152.84 174.11 13.08
π(.)p(pack)φ(pack) 15 143.88 183.68 22.65

Scenario B
π(.)p(.)φ(.)δ(.) 4 176.49 185.17 0.00
π(.)p(.)φ(state)δ(.) 5 175.46 186.49 1.32
π(.)p(state)φ(.)δ(.) 5 175.62 186.65 1.48
π(.)p(state)φ(state)δ(.) 6 175.39 188.86 3.67
π(.)p(.)φ(pack)δ(.) 10 165.46 189.61 4.44
π(.)p(time)φ(pack)δ(.) 7 173.64 189.64 4.47
π(.)p(time)φ(state)δ(.) 8 172.62 191.23 6.06
π(.)p(state)φ(pack)δ(.) 11 165.46 192.54 7.36
π(.)p(pack)φ(.)δ(.) 10 171.45 195.60 10.42
π(.)p(time)φ(pack)δ(.) 13 163.32 196.60 11.43
π(.)p(pack)φ(state)δ(.) 11 171.41 198.48 13.31
π(.)p(pack)φ(pack)δ(.) 16 162.74 206.31 21.14

Table 2. Model‐averaged estimates of prevalence of admixture (wolf‐dog) in a protected wolf population in the northern Apennines, Italy, 2015–2016,
estimated with multistate and multievent capture‐recapture models. The 95% confidence intervals of the estimates are reported between parentheses.

Sampling occasion

Aug–Sep Oct−Nov Dec−Jan Feb–Mar Apr−May

Scenario A
Poulation abundance 25 (11–44) 25 (11–39) 31 (17–50) 31 (16–50) 23 (11–44)
Wolf abundance 13 (3–26) 13 (4–25) 17 (7–30) 13 (4–24) 10 (3–26)
Admixed abundance 13 (3–26) 13 (3–21) 15 (5–28) 19 (8–31) 13 (3–26)
Prevalence 0.50 (0.22–0.80) 0.50 (0.20–0.79) 0.47 (0.21–0.79) 0.60 (0.37–0.84) 0.55 (0.22–0.80)

Scenario B
Poulation abundance 26 (13–78) 28 (14–85) 35 (17–109) 35 (17–109) 26 (13–80)
Wolf abundance 7 (3–26) 10 (4–35) 7 (3–26) 7 (3–26) 6 (2–20)
Admixed abundance 17 (8–48) 17 (8–48) 26 (12–72) 26 (12–72) 19 (8–51)
Prevalence 0.70 (0.45–0.77) 0.64 (0.38–0.72) 0.78 (0.55–0.82) 0.78 (0.55–0.84) 0.77 (0.52–0.85)

Figure 3. Prevalence of admixed (wolf‐dog) individuals in a protected wolf
population in the northern Apennines, Italy, as assessed by non‐invasive
genetic sampling between August 2015−May 2016 and Bayesian clustering
analysis based on multilocus genotypes (12 short tandem repeats [STRs]).
Estimates of prevalence, obtained through an open population capture‐
recapture modeling approach, are shown for each 2‐month sampling
occasion. The 2 scenarios refer to 2 alternative rationales to cope with
uncertainty in the classification of admixed individuals (i.e., the traditional
practice of minimizing Type 1 error vs. a more precautionary approach
balancing between Type 1 and 2 error rate).
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Conversely, based on scenario B, out of the 39 sampled
individuals, 10 were classified as wolf (qw> 0.997), 23 were
classified as admixed (qw< 0.990), and 6 were classified as
uncertain (0.990≤ qw≤ 0.997; Table S2). Based on the si-
mulated genotypes, but excluding those classified as uncertain
(n= 186), all simulated wolves (n= 76), F1 (n= 100),
F2 (n= 100), and BCW1 (n= 94) individuals were correctly
classified. But 23% of BCW2 (n= 79) individuals were
erroneously classified as wolves, a Type 2 error rate that in-
creased to 43−83% for further generations of backcrosses
(Table S5, available online in Supporting Information). The
most supported models revealed constant detection and ap-
parent survival probabilities, state‐dependent survival, or
constant apparent survival and state‐dependent detection
probability (Table 1). Upon first capture, individuals had a
0.30 (95% CI= 0.17−0.48) probability of being wolf (πw)
and a 0.70 (95% CI= 0.32−0.93) probability of being ad-
mixed. The probability of apparent survival between occasions
was φw= 0.73 (95% CI= 0.40−0.91) and φh= 0.77 (95%
CI= 0.50−0.93) for wolves and admixed individuals, re-
spectively. Survival for the entire study period was 0.28 (95%
CI= 0.03−0.75) for wolves and 0.35 (95% CI= 0.06–0.75)
for admixed individuals. We estimated the probability of de-
tecting a wolf as pw= 0.43 (95% CI= 0.16−0.67) and the
probability of detecting an admixed individual as ph= 0.47
(95% CI= 0.26−0.69). Upon detection, the probability of
being assigned either to the wolf or admixed categories
was δ= 0.85 (95% CI= 0.70−0.93). Based on the Viterbi
algorithm, uncertain individuals had a higher probability of
assignment to the category admixed (range= 0.31−0.80) than
to the category wolf (0.09−0.31; Table S6, available online in
Supporting Information). Within each capture occasion, total
population abundance ranged from 26 (95% CI= 13−78) to
35 (95% CI= 17−109) individuals, including 6 (95%
CI= 2−20) to 10 (95% CI= 4−35) wolves and 17 (95%
CI= 8−48) to 26 (95% CI= 12−72) admixed individuals
(Table 2). Estimated prevalence under scenario B therefore
ranged from 64% (95% CI= 38−72%) to 78% (95%
CI= 55−84%) by sampling occasion and averaged 70% (95%
CI= 45−77%) across the 10‐month sampling period (Fig. 3;
Table 2). The second, third, and fourth most likely alternative
Viterbi reconstructions had considerably lower weight than
the most likely reconstruction (Table S7, available online in
Supporting Information) and only marginally affected the
estimated prevalence (range= 0.61–0.76 vs. 0.64–0.78; Table
S8, available online in Supporting Information). Under sce-
nario B, the proportion of admixed packs was 85.7%. The
goodness‐of‐fit test did not detect signs of lack of fit (i.e.,
transience or trap‐dependence) to the Cormack Jolly Seber
model (P> 0.05 for all the tests; Table S9, available online in
Supporting Information).

Ancestry Analysis and Genealogy
Ancestry analysis revealed that none of the 17 admixed in-
dividuals detected by Bayesian clustering procedures ac-
cording to scenario A was a first‐ or second‐generation
hybrid; however, 41% (n= 7) of the admixed individuals
had non‐negligible posterior probabilities (0.120–0.999) of

having a grandparent in the dog population, hence of being
first‐generation backcrosses (Table 3). The remaining ad-
mixed individuals likely originated from backcrosses of
further generations backward (i.e.,≥BCW2). Despite a
relatively limited sample size, through the genealogy esti-
mation we were able to identify (posterior probability
>0.90) likely admixed breeding pairs in 2 of the 7 surveyed
packs. Specifically, according to scenario A, the 2 admixed
breeding pairs had 1 admixed breeder each, whereas, based
on scenario B, 1 of the 2 pairs had 2 and the other 1 ad-
mixed breeders (Fig. 4). All of the admixed breeders were
identified to be more than first‐generation backcrosses in
the ancestry analysis (Table 3). In 2015, these 2 admixed
breeding pairs produced a minimum of 3 and 5 offspring
each. Under scenario A, 7 of these offspring were classified
as wolf and 1 as admixed, whereas according to scenario B
only 1 of them was classified as wolf, 3 as admixed, and 4 as
uncertain; the latter, however, were successively classified as
admixed based on the Viterbi algorithm (Table S6).

DISCUSSION

In this study, we presented an innovative approach to formally
estimate population‐wide prevalence of admixture in wild
populations affected by anthropogenic hybridization. By rec-
ognizing that naïve estimates of the proportion of admixture
generally suffer from various sources of bias, we applied a CR‐
based estimation approach to a local wolf population, ac-
counting for imperfect detectability and uncertainty in hybrid
classification, both typically associated with the genotyping of
non‐invasive samples. Contrary to our approach, naïve esti-
mates of prevalence do not take into account detectability, and
previous simulations demonstrated they are biased when the
probability of detection of parental and admixed individuals is
heterogeneous (Santostasi et al. 2019). Heterogeneity in de-
tectability may arise because of expected differences in ecology
and behavior between parental and admixed individuals (e.g.,
social behavior, marking rate, spatial patterns, resource se-
lection), or because of sampling bias (e.g., spatially heteroge-
neous effort, edge effect; Crespin et al. 2008). Although we
did not find strong evidence of such heterogeneity in our ap-
plication, under scenario B high‐ranking models did consider
the effect of heterogeneous detectability, suggesting that ad-
mixed individuals may have a higher probability of detection.
A critical point, common to both naïve and formal ap-

proaches to estimate prevalence, concerns the reliability of
the individual classification based on Bayesian clustering
techniques. In fact, in addition to the number and type of
molecular markers, the classification is strongly affected by
the composition of the chosen reference samples and by the
threshold qi values chosen to discriminate admixed from
parental individuals (Vähä and Primmer 2006). To over-
come these problems, we relied on an improved procedure
(Caniglia et al. 2020), based on carefully screened reference
samples of pure Italian wolves, whose selection was aided by
genomic tools (Galaverni et al. 2017), and a back‐end ex-
ecutable of the software STRUCTURE (i.e., R package
parallel structure) that produces more stable assignment
coefficients that are not affected by samples with variable
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levels of admixture because these are analyzed one by one
(Besnier and Glover 2013). Previous studies comparing the
assignment and the detection power of admixed individuals
of several Bayesian software options showed that the results
obtained by STRUCTURE are comparable to those

obtained using other Bayesian approaches, such as those
implemented in NewHybrids (Caniglia et al. 2020) or
BAPS (Randi et al. 2014), and better than partially
Bayesian approaches like those implemented in GeneClass
(Piry et al. 2004, Sanz et al. 2009). We nevertheless used a

Table 3. Inferred ancestry of the 23 wolf‐dog admixed and 6 uncertain individuals (according to scenario B) observed in northern Apennines, Italy,
2015–2016, using the population information model implemented in STRUCTURE. We show estimates of posterior probabilities for each individual to
have ancestry in its a priori assigned population (q prior population), or in the other population in the present generation (dog or wolf), in the first past
generation (parent) or the second past generation (grandparent).

Individual Prior population q prior population Dog Dog parent Dog grandparent

HAC10 Wolf 0.995 0.000 0.000 0.005
HAC12 Wolf 0.951 0.000 0.000 0.049
HAC13 Wolf 0.983 0.000 0.000 0.017
HAC14 Wolf 0.993 0.000 0.000 0.007
HAC16 Wolf 0.663 0.000 0.000 0.337
HAC17 Wolf 0.801 0.000 0.000 0.199
HAC1 Wolf 0.819 0.000 0.000 0.181
HAC2 Wolf 0.858 0.000 0.000 0.142
HAC3 Wolf 0.936 0.000 0.000 0.064
HAC8 Wolf 0.985 0.000 0.000 0.015
HRE1 Wolf 0.429 0.000 0.008 0.563
W1967 Wolf 0.998 0.000 0.000 0.002
WAC10 Wolf 0.973 0.000 0.000 0.027
WAC17 Wolf 0.965 0.000 0.000 0.035
WAC18 Wolf 0.964 0.000 0.000 0.036
WAC19 Wolf 0.999 0.000 0.000 0.001
WAC22 Wolf 0.955 0.000 0.000 0.045
WAC23 Wolf 0.998 0.000 0.000 0.002
WAC25 Wolf 0.955 0.000 0.000 0.045
WAC27 Wolf 0.922 0.000 0.000 0.078
WAC29 Wolf 0.995 0.000 0.000 0.005
WAC2 Wolf 1.000 0.000 0.000 0.000
WAC30 Wolf 0.998 0.000 0.000 0.002
WAC33 Wolf 0.735 0.000 0.000 0.265
WAC3 Wolf 0.993 0.000 0.000 0.007
WAC42 Wolf 0.996 0.000 0.000 0.004
WAC44 Wolf 0.994 0.000 0.000 0.006
WAC46 Wolf 0.880 0.000 0.000 0.120
WAC4 Wolf 1.000 0.000 0.000 0.000

Figure 4. Reconstructed genealogies for 2 of the 7 wolf packs non‐invasively sampled in the northern Apennines, Italy, 2015–2016, to estimate admixture
between wolves and dogs. For each pack, the 2 likely breeding individuals are on top of the diagram and are connected to their progeny through a vertical
branch. For each symbol, the first line reports the individual identification, the second line the individual qw (estimated membership proportion to the wolf
cluster), the third line their classification based on a classification rationale aimed at minimizing Type 1 error (scenario A), and the fourth line their
classification based on a classification rationale aimed at balancing between Type 1 and 2 error rates (scenario B). All individuals originally classified as
uncertains (U) based on qw were successively assigned to the admixed category (H) by a probabilistic, a posteriori procedure based on the Viterbi algorithm.
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relatively limited number of microsatellite loci, though this
reflects what is routinely done in population‐wide surveys
adopting non‐invasive genetic sampling (Caniglia
et al. 2014, Fabbri et al. 2018). This implies a relatively
reduced power to detect second‐ or further generation
backcrosses. In these circumstances, the traditional assign-
ment approach is to define a threshold qw value that
comprises all wolves of the reference population to reduce
Type 1 error rate in the assignment tests. According to this
approach, for example, Godinho et al. (2011) and Randi
(2007), using simulated genotypes, estimated that the pro-
portions of first‐generation backcrosses erroneously classi-
fied as wolves were 16% and 20%, respectively. Similar to
other conservation contexts (McGarvey 2007, Saltz 2011),
however, it is also relevant to consider Type 2 error rates:
specifically, an overlooked occurrence of admixed in-
dividuals, especially in small and expanding populations,
may increase the degree and spread of introgression com-
promising the genomic integrity of parental populations. To
our knowledge, however, no approach has been currently
developed to integrate the assessment of Type 2 errors
within Bayesian‐based clustering techniques and formal
estimation of the proportion of admixture. We tackled this
issue by adopting a multievent formulation in CR modeling
that formally accounts for the uncertainty in detecting hy-
brids while balancing Type 1 and 2 error rates, and com-
paring estimates of prevalence obtained with the traditional
approach to classify admixed individuals with those ob-
tained by our more precautionary approach (i.e., scenarios A
and B, respectively). Scenario A reflected assignment cri-
teria (i.e., definition of threshold qw values) indicated by
Caniglia et al. (2020) to ensure the best performance in
distinguishing between recent and older generations of ad-
mixture (Caniglia et al. 2020). According to this scenario
(qw≥ 0.975), prevalence in our wolf population was 50%
and no simulated wolf genotypes were erroneously assigned
to the admixed category. However, 14% and 52% of simu-
lated first‐ and second‐generation backcrosses, respectively,
were erroneously assigned to the wolf category, indicating
that such an approach may still overlook a non‐trivial pro-
portion of recently admixed individuals in the population,
therefore underestimating prevalence. Also Caniglia et al.
(2020) suggested a second qw threshold of 0.990 to identify
admixed individuals of older backcross generations; their
approach, however, had different aims than the formal es-
timation of prevalence because it was developed to provide a
convenient and practical screening of samples while stand-
ardizing assignment procedures across different genetic
laboratories. In our application, and in particular under
scenario B, we aimed at formally integrating the uncertainty
in hybrid classification into the estimation process. In par-
ticular, the Viterbi algorithm offered a reproducible proce-
dure to assign the individuals whose classification was
uncertain. In our study, 6 individuals were classified as
uncertain and, according to the algorithm, they all had a
higher probability of being admixed than wolves. In com-
parison to Santostasi et al. (2019), who used classification
thresholds derived from the literature to illustrate their

modeling procedure, here we used classification thresholds
based on genotype simulations specifically calibrated on our
study population (Caniglia et al. 2020).
Our estimation process is a 2‐step process: first, we esti-

mated parameters through a multievent model, and then we
assigned uncertain individuals to a state based on the results
of the Viterbi algorithm. In case there is substantial support
(i.e., weight or relative probability) for the most likely
Viterbi reconstruction (as in our case, Table S7), the un-
certainty in individual identification can be dealt with in the
first modeling step (i.e., parameter estimation). Should the
Viterbi reconstructions reveal higher uncertainty, this can be
accounted for also by weighting the prevalence estimate by
the probability of each reconstruction (as described in the
Supporting Information). Another caveat concerning the
assignment of uncertain individuals is that, because this
assignment is based on the estimates of the model param-
eters, it may be flawed if the estimates are themselves
biased. Santostasi et al. (2019) assessed the performance of
the multievent CR model in estimating parameters (π, φ, p,
δ) and prevalence under different sample sizes and con-
cluded that the model estimates are unbiased with the value
of detectability reported in our study. To further support the
Viterbi algorithm‐based assignment, 4 of the 6 individuals
originally classified as uncertain were confirmed to be the
progeny of 2 admixed individuals by the genealogical re-
construction. This leads us to suggest that, where a large
enough sampling coverage would allow, the Viterbi algo-
rithm and the genealogical reconstruction should be used as
independent methods to classify individuals that, based on
their qw value, are of uncertain assignment. Expectedly,
based on scenario B, the average prevalence of admixture in
the wolf population raised to 70%, no simulated wolf was
erroneously assigned to the admixed category, no simulated
first‐generation backcross were erroneously assigned to the
wolf cluster, and only 23% of simulated second‐generation
backcrosses were erroneously assigned to the wolf cluster.
Cumulatively, and limited to recent backcrosses, this cor-
responds to a 65.2% decrease in Type 2 error rate, and no
increase in Type 1 error rate, compared to scenario A.
The above estimates of prevalence, ranging from 43.6%

(naïve) to 50% (95% CI= 22−80%; scenario A) and 70%
(45−77%; scenario B) consistently reveal widespread admix-
ture at the level of nuclear markers of this wolf population,
even though the difference in absolute terms reveals that al-
ternative analytical approaches may strongly affect the esti-
mates. Based on theoretical grounds, we maintain that
scenario B corresponds to the most reliable estimate in our
context. Support is also provided by the genealogy re-
construction; out of the 8 pups produced by the 2 admixed
breeding pairs, 7 were identified as admixed under scenario B
but only 1 under scenario A. A 70% estimate of prevalence in
a protected wolf population may cause concern, especially if
this conclusion is based on a relatively small number of ge-
netic markers. Two considerations are in place here. First,
because this assessment is based on non‐invasive samples
genotyping, and hence a limited number of genetic markers,
our findings no not imply that 70% of the population has to
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be managed (e.g., captured or sterilized) to control the spread
of admixture. Ours is a population assessment and by defi-
nition (see Introduction) is not meant to provide practical
management indications at the individual level. Second, our
estimate of prevalence is based on the same genetic protocols
and markers currently used to detect hybrids using non‐
invasive samples (Caniglia et al. 2020). Compared to previous
work, it simply extends the estimation approach to correct for
imperfect detectability and advances a more formal way to
address the uncertainty in assignment of admixed individuals.
Our approach can be also applied to estimating the preva-
lence of admixture in wild canids where K= 3 (e.g., wolf‐
coyote [Canis latrans]‐dog in northeastern North America, or
wolf‐jackal [Canis aureus]‐dog in central Europe) provided
parental reference populations are well‐sampled, represented,
and reliably distinguished on the basis of diagnostic molec-
ular markers; synthetic genotypes can then be generated
through simulations to establish pairwise (e.g., wolf× coyote,
coyote× dog, wolf× dog) qi thresholds using the procedure
we illustrated. In the CR framework, the presence of 3 pa-
rental populations can be modeled by increasing the number
of possible states for parental and admixed individuals. This
would quickly increase the number of corresponding pa-
rameters leading to the risk of overparametrization (Gimenez
et al. 2003); therefore, attention should be paid to adequate
sample sizes (Santostasi et al. 2019) or possible ways of
simplifying the system (e.g., pooling admixed categories
together).
Compared to previous estimates of wolf‐dog hybridization

(Randi and Lucchini 2002, Lorenzini et al. 2014, Kusak
et al. 2018, Dufresnes et al. 2019), our estimate is based on a
biologically more meaningful sample because it was limited
to a local wolf population and temporally restricted to 1
breeding period. Hybridization is a highly dynamic phe-
nomenon because facilitating factors, such as lack of con-
specifics, availability of heterospecific mates, anthropogenic
disturbance (Bohling and Waits 2015), and movements of
admixed individuals, may vary considerably across time and
space. Multi‐generation samples pooled across large areas
and time frames may impair a clear understanding of ad-
mixture dynamics in space and time. On the other hand, our
estimate has local significance and cannot be used to ex-
trapolate general conclusions about wolf‐dog introgression
at wider scales. This underlines the importance of upscaling
our sampling and estimation approach over larger areas and
multiple timeframes; obtaining a reliable assessment of the
number of admixed populations and their prevalence over
time will inform the most adequate management strategies
(Allendorf et al. 2001).
Regardless of the adopted scenario, the proportion of

admixture we estimated is, to our knowledge, the highest so
far reported for a wolf population (summarized in Table 1 in
Dufresnes et al. [2019]) and indicates that unmanaged wolf‐
dog hybridization may lead to widespread introgression at
the local scale. Based on relatively low, naïve quantifications
of prevalence from previous hybridization studies (Verardi
et al. 2006, Pacheco et al. 2017, Kusak et al. 2018), several
authors concurred on 2 main hypotheses. First, wolf‐dog

hybridization is rare, and where it occurs it most likely takes
place in the peripheral portion of the wolf distribution
(Lorenzini et al. 2014) and during early phases of range
expansion (Galaverni et al. 2017, Kusak et al. 2018).
Second, introgression of dog alleles into wolf populations is
expected to be buffered by behavioral and selective con-
straints (e.g., the unsuccessful integration of pregnant ad-
mixed females in the natal packs, the reduced survival of
F1 litters due to limited paternal care, the lower success of
admixed individuals in territorial or predatory interactions;
Vilà and Wayne 1999), or by dilution of dog genes through
backcrossing into the parental wolf populations (Verardi
et al. 2006). The high proportion of admixture we reported,
however, contradicts both predictions and contrasts with
theoretical expectations on the functionality of reproductive
barriers between wolves and dogs. Despite the high extent
of admixture we reported, the absence of dog mtDNA
haplotypes and the low occurrence of dog Y‐haplotypes in
our sample should be of no surprise. In fact, wolf‐dog hy-
bridization is highly unidirectional being most often in-
duced by the initial crossing between a female wolf and a
male dog, as confirmed by several studies that never re-
ported private dog mtDNA haplotypes within admixed wolf
populations, except in a few cases (Hindrikson et al. 2017).
Although we did not detect any F1 hybrids, we estimated a
high prevalence of backcrosses of several generations back-
ward, 30% of which had non‐negligible probabilities of
being first‐ or second‐generation backcrosses, indicating a
time of original admixture dating as recently as 2006−2009
(i.e., 6−9 years before our sampling assuming a 3‐yr wolf
generation time; Skoglund et al. 2011). Reports of F1 hy-
brids are rare both in the northern Apennines (Caniglia
et al. 2014) and elsewhere where wolf‐dog hybridization has
been detected (Godinho et al. 2011, Randi et al. 2014, Pilot
et al. 2018, Salvatori et al. 2019). Absence of detection,
however, cannot be considered true absence when detect-
ability is not taken into account (MacKenzie 2005).
Moreover, even if wolf× dog hybridization events are rare,
the production of admixed individuals by backcrossing may
increase exponentially when reproductive barriers are weak
(1 fertile F1 female can produce several backcrossed litters;
Fredrickson and Hedrick 2006, Santostasi et al. 2020). In
2006 a male F1 hybrid, featuring a Y‐haplotype typical of
Czechoslovakian wolfdogs, was sampled in one of our study
packs. This hybrid successively sired 2 admixed litters with a
female wolf, as revealed by genealogical reconstruction of 7
pups non‐invasively sampled in 2010 and 2011 (R. Caniglia,
ISPRA, unpublished data). Therefore, cross‐mating be-
tween wolves and dogs in the northern Apennines was not
limited to the wolf recolonization phase (i.e., the late 1990s;
Galaverni et al. 2017), and our findings reveal that factors
facilitating hybridization are currently operating in a long‐
established wolf population well after the recolonization
phase.
Anthropogenic disturbances may facilitate the disruption

of pre‐mating (e.g., agonistic behavior) and post‐mating
(e.g., reduced fitness of F1) reproductive barriers in social
canids (Rutledge et al. 2012, Bohling and Waits 2015).

12 The Journal of Wildlife Management



In particular, human‐caused wolf mortality may disrupt
breeding pairs, thereby increasing the chances of pack
dissolution (Brainerd et al. 2008). Especially during the
breeding season, pack dissolution may release the social
inhibition to mate of subordinate wolves of both sexes,
stimulating individuals to find mates and establish in
vacant territories (Bohling and Waits 2015). In human‐
dominated countries where free‐ranging dogs are wide-
spread (Ritchie et al. 2014), or admixed individuals could
be available as mates, the above mechanism may contribute
to greatly increasing the chances of hybridization and
backcrossing (Bohling and Waits 2015). In the same re-
gion of our study area, Caniglia et al. (2014) reported a
high pack turnover, possibly linked to the high mortality of
wolf territory holders. The territories of the packs we
surveyed extend well beyond the boundaries of the
PNATE, where hunting is allowed throughout the year
for wild boar population control, and instances of illegal
wolf killings during hunts with dogs are routinely reported
among residents (L. Molinari, Appennino Tosco‐
Emiliano National Park, personal observation). This is in
line with our estimates of apparent survival that are con-
siderably lower compared to other studies (Marucco
et al. 2009, Cubaynes et al. 2010, Caniglia et al. 2012).
According to both scenarios A and B, apparent survival
seems to be lower for wolves than for admixed individuals,
even though the large variability we obtained about these
estimates does not support firm conclusions in our case.
Nevertheless, should this difference be confirmed, it would
be key in promoting the spread of introgression (Rutledge
et al. 2012, Bohling and Waits 2015). We acknowledge
that estimates of apparent survival can be also negatively
biased by transience generated by dispersing yearlings and
subordinate adults (Jimenez et al. 2017), but high dis-
appearance rather than transience rates characterized the
wolf population in this region at a wider scale (Caniglia
et al. 2014). We are therefore inclined to believe that
human‐caused mortality is likely among the ultimate
causes of the high introgression rates we detected.
Anthropogenic food sources (i.e., large livestock carcasses,
butchery offals) are largely available in some portions of
our study area (L. Molinari, personal observation), and
these may promote affiliative interactions between solitary
female wolves and dogs (Newsome et al. 2017) and also
facilitate the survival of solitary pregnant females and their
admixed litters. The occurrence of ≥2 admixed breeding
pairs is further evidence of the reproductive success of
admixed individuals. In these conditions, hybrid‐hybrid
pairs can maintain dog genes at high frequency in the
population (Bassi et al. 2017, Salvatori et al. 2019), as
also projected by simulation of hybridization dynamics in
social canids (Fredrickson and Hedrick 2006, Santostasi
et al. 2020).
We cannot exclude that high admixture in our study

area may have also originated through dispersal of
admixed individuals from other areas. Wolves, and ex-
pectedly so introgressed individuals, can travel long dis-
persal distances from their natal territories also across

human‐dominated countries (Ciucci et al. 2009). In an
area located at the periphery of the wolf range in central
Italy, 1 admixed breeding pair produced 2−6 pups
each year from 2005−2008, and some of the offspring
were later sampled at about 40 km from their natal
territory (Caniglia et al. 2013). Given that the northern
Apennines play an important role as a functional corridor
for wolves dispersing to the Alps (Fabbri et al. 2007), a
high proportion of admixture in local wolf populations
in the northern Apennines may increase the risk of
introgression of dog ancestry spreading into the Alpine
wolf population, where detection of introgression has
been so far been limited (Dufresnes et al. 2019). Notably,
1 of the admixed pups sampled in our study area during
our survey was retrieved dead 2 years later in the Italian
Prealps, at a linear distance of 237 km along the
main dispersal route to the Western Alps (L. Molinari,
unpublished data).

MANAGEMENT IMPLICATIONS

In line with other wild‐domesticated hybridization cases,
our findings indicate that reproductive isolation between
wild and domestic forms and dilution by backcrossing may
not be sufficient per se to prevent widespread introgression
of domestic genes. Depending on the extent of admixture,
effective management of anthropogenic hybridization could
be achieved through preventive (e.g., education, in-
formation, communication), proactive (e.g., effective control
of hybridization facilitating factors such as free‐ranging
dogs, poaching, anthropogenic food provisioning), and re-
active measures. In our case, proactive interventions should
be aimed to enhance the survival of wolf breeders and
preserve the social cohesiveness of wolf packs. In presence of
widespread admixture, however, reactive interventions
should also be considered, aiming at reducing the re-
productive contribution of the admixed individuals. In this
perspective, population‐based assessments such as ours
should be supported by a more in‐depth assessment of in-
trogression at the individual level. Monitoring the genetic
status of populations threatened by anthropogenic hybrid-
ization should be conducted more frequently with the aim
to detect demes where admixture is originating before it
spreads further and jeopardizes the genomic integrity of
wild parental populations beyond the reach of practicable
management interventions.
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