
  
Abstract—We propose a new semi-analytical model, 

describing the bandwidth evolution of pulses propagating 
in dispersion managed (DM) transmission systems using 
multimodal graded-index fibers (GRIN) with parabolic 
index. The model also applies to monomodal fiber DM 
systems, representing the limit case where beam self-
imaging vanishes. The model is successfully compared with 
the direct integration of the (1+1)D nonlinear Schrödinger 
equation for parabolic GRIN fibers, and to experimental 
results performed by using the transmission of 
femtosecond pulses over a 5 m span of GRIN fiber. 
At the high pulse powers that are possible in multimodal 
fibers, the pulse bandwidth variations produced by the 
interplay of cumulated dispersion and self-phase 
modulation can become the most detrimental effect, if not 
properly managed. The analytical model, numerical and 
experimental results all point to the existence of an optimal 
amount of chromatic dispersion, that must be provided to 
the input pulse, for obtaining a periodic evolution of its 
bandwidth. Results are promising for the generation of 
spatio-temporal DM solitons in parabolic GRIN fibers, 
where the stable, periodic time-bandwidth behaviour that 
was already observed in monomodal systems is added to 
the characteristic spatial beam self-imaging. 

 
Index Terms—Fiber nonlinear optics, optical solitons, optical 

fibers.  

I. INTRODUCTION 
ISPERSION managed (DM) fiber optic transmission 

systems have been widely investigated over the past 
twenty years, mainly because of the enhanced power and 
moderate time jitter properties of the transmitted signal. A 
dispersion managed system is composed by a repetition of two 
opposite dispersion fiber segments, composing a span of 
cumulative length 𝐿!"#$; dispersion and losses are 
 

Submitted on October 12, 2020. 
This work was supported by: the European Research Council (ERC) under 

the European Union’s Horizon 2020 research and innovation programme (No. 
874596, No. 740355). The Italian Ministry of University and Research 
(R18SPB8227). 

M. Zitelli, M. Ferraro, S. Wabnitz are with the Department of Information 
Engineering, Electronics and Telecommunications (DIET), Sapienza 
University of Rome, Via Eudossiana 18, 00184 Rome, Italy (e-mail: 
mario.zitelli@uniroma1.it). 

F. Mangini is with the Department of Information Engineering (DII), 
University of Brescia, Via Branze 38, 25123 Brescia, Italy. 

 
 

compensated at each span, according to different design 
geometries. The propagating pulse experiences periodical 
variations of pulse width, chirp and bandwidth, owing to the 
interplay of the fibers' dispersion and Kerr nonlinearity. If the 
alternating fibers in each span have chromatic dispersion 𝛽%_' 
and 𝛽%_% (ps2/km) and length 𝐿' and 𝐿%, the DM strength is 
defined as 𝑆 = %𝐿'&𝛽%_'& + 𝐿%&𝛽%_%&(/𝑇()*+% , with 𝑇()*+ the 
minimum pulse width. In order to have stable periodical 
behavior for the transmitted Gaussian pulse, the map strength 
must overcome a critical value, and the amount of cumulated 
dispersion at the end of each span must have a small 
anomalous or zero (negligible mean dispersion) value, 
respectively. An optical amplifier is inserted at the end of each 
compensated span, in order to recover the fiber losses.  

In [1], the authors investigated numerically, by means of the 
nonlinear Schrödinger equation (NLSE), the formation of 
monomodal stable soliton-like pulses in dispersion 
compensated maps composed by anomalous-normal-
anomalous dispersion monomodal fiber segments, with a 
resulting span length of 200 km. Simulations launched 20 ps 
FWHM Gaussian pulses with 650 µW peak power. It was 
observed that: (i) the path-averaged dispersion must be 
anomalous, of the order of -0.1 ps2/km; (ii) the period of 
dispersion compensation must be short with respect to the 
nonlinear length; (iii) the local dispersion must differ 
significantly from zero in order to avoid dispersive wave 
generation. 

In Ref. [2], an empirical scaling law was proposed for the 
optimal launch power of pulses in monomodal DM systems, 
including losses and periodical amplifiers. The law indicated 
the need for an enhanced power with respect to traditional 
soliton systems, with a dispersion equal to the average 
dispersion of the DM system. When the amplification and the 
dispersion period are comparable, it was necessary to modify 
the position at which a transform-limited pulse source should 
be located within the dispersion map. 

Several works used the NLSE, the Gaussian pulse ansatz, 
and the variational approach to find a set of differential 
equations describing the evolution of the pulse width and chirp 
of a propagating pulse in a monomodal DM system, without 
[3] and with lumped amplifiers and fiber losses [4][5].  

Other works brought to similar sets of differential equations 
describing the evolution of parameters such as γ, related with 
the spectral width, and the chirp C [6], or the root-mean square 
(rms) pulse width and the integral pulse chirp, through the rms 
momentum equations method [7]. It was shown that steady 
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pulse propagation is possible, whenever the average dispersion 
lies in the anomalous domain. 

The variational approach was also used in the case of single-
mode fiber links, in order to provide a physical description of 
the pulse bandwidth and chirp at the fibers' boundaries and 
mid-points; and to find a critical map strength 𝑆 for optimal 
transmission [8]. 

In [9], optimal dispersion management techniques were 
provided for the minimization of collision-induced frequency 
shifts in wavelength division multiplexed systems (WDM). 
Once again, differential equations describing the pulse width 
and chirp were derived from the NLSE, by using the 
Lagrangian density variation method; equations were then 
extended to the case of colliding pulses. 

In [10], the dynamical behavior of single-channel 
transmission in monomodal standard fibers with strong 
dispersion management and linear compensating devices was 
theoretically and numerically analyzed. Single-pulse 
propagation was compared with single-channel 40 Gbit/s 
transmissions, to highlight the relevant roles played by 
nonlinearity-induced spectrum distortion and intra-channel 
pulse interactions.  

In most fiber systems, the Kerr nonlinearity or self-phase 
modulation (SPM) produces chirp and bandwidth changes on 
isolated pulses affected by cumulated dispersion. Considering 
a single anomalous fiber span with dispersion 𝛽% (ps2/km), 
nonlinear coefficient 𝛾  (1/W/km), with propagating pulse 
width 𝑇, = 𝑇()*+ 1.763⁄ , the traditional local solitonic 
condition is reached when the dispersion length 𝐿- = 𝑇,% |𝛽%|⁄  
equals the nonlinear length 𝐿./ = 1 𝛾𝑃,⁄  , being 𝑃, the pulse 
peak power. 

In DM systems, the local dispersion length	𝐿- is 
considerably shorter than the local nonlinearity length 𝐿./; the 
DM solitonic regime is different from the NLSE or 
conventional soliton regime: it is reached when the temporal 
breathing pulse experiences SPM, that compensates for a 
moderate amount of anomalous residual dispersion, and 
mostly for large duty cycle signal formats. This regime shows 
optimum transmission for a anomalous mean dispersion of the 
dispersion map. The so-called pseudo-linear regime in DM 
systems is characterized by a local dispersion length which is 
much shorter than the nonlinearity length, but it also exhibits 
optimum transmission at zero net residual dispersion. This 
regime is mostly relevant for low duty-cycle signal formats. 
For moderate values of fiber dispersion (for example, for D≥4 
ps/nm/km), the solitonic regime exhibits reduced 
performances with respect to the pseudo-linear regime [11]. 

Besides SPM affecting single pulse transmission, channel 
performance is also affected by pulse-to-pulse nonlinear 
effects, specifically, intra-channel cross-phase modulation 
(IXPM) and intra-channel four-wave mixing (IFWM). 

IXPM arises from the interaction of adjacent pulses at same 
wavelength [12]; it generates a frequency shift on each pulse, 
that depends on the presence of neighbouring marks or spaces 
and, through dispersion, it leads to timing jitter generation 
[13]. 

 IFWM results from four-wave mixing between different 

spectral components of dispersed overlapping pulses; after full 
dispersion compensation, it causes the appearance of shadow 
pulses in correspondence of the spaces, and amplitude jitter 
for the marks. IFWM dominates with respect to IXPM for 
relatively high pulse powers. 

Both IXPM and IFWM are mitigated by the use of 
symmetric dispersion maps [14], characterized by a normal 
pre-compensation which is equal to half the cumulated 
dispersion of the anomalous fiber span, and opposite in sign.  

When the pulse power reaches high values, as in the case of 
DM systems using multimodal fibers or monomodal large 
modal area fibers, SPM is responsible for bandwidth changes 
which may extend up to a significant fraction of the pulse 
bandwidth itself. Whenever SPM causes a pulse bandwidth 
increase, performance impairments are observed after the 
optical filter at the receiver side; on the other hand, if SPM 
causes a bandwidth decrease, the pulse cannot recover the 
initial pulse width and interferes with the adjacent bit time 
slots, thus causing inter-symbol interference (ISI). In this 
regime, SPM may become the most detrimental nonlinear 
effect, unless it is managed by a proper choice of the pre-
compensation. 

All of the previous mentioned studies considered 
monomodal DM fiber systems. Few attempts have been made 
to extend the DM technique to two-dimensional spatio-
temporal breathers in planar waveguides [15][16]. On the 
other hand, multimodal graded-index fibers (GRIN) are 
interesting candidates for DM transmission systems, when 
considering the high pulse powers that can be injected in the 
fiber and, consequently, the improved optical signal-to-noise 
ratio and system capacity. Dispersion compensation after a 
GRIN fiber span may be achieved, for example, by using 
lumped devices, such as fiber Bragg gratings, followed by 
lumped amplifiers. 

 In the next section, we introduce a different, with respect to 
the variational method, semi-analytical approach which is 
capable of describing the bandwidth evolution of pulses in a 
DM system using multimodal GRIN fibers with parabolic 
index. Our method is based on analytically solving the NLSE 
over discrete fiber steps ∆𝑧, in order to find a semi-analytical 
expression that calculates the pulse bandwidth evolution when 
affected by cumulated dispersion, Kerr nonlinearity and 
periodical intensity oscillations due to beam spatial self-
imaging (SSI) in a parabolic GRIN fiber [17]. The method 
also applies to monomodal fiber DM systems, for the 
particular condition of negligible SSI.  

In section 3 the model will be compared with the direct 
numerical simulation of the (1+1)D NLSE for GRIN 
multimodal systems and for monomodal systems; in section 4, 
the bandwidth evolution of femtosecond pulses will be 
experimentally investigated on a 5 m span of GRIN parabolic 
fiber, and compared with model predictions, showing good 
agreement. 

II. THEORY 
A Gaussian optical pulse propagating in a DM system 

suffers dispersion-induced pulse width variations at each fiber 



span, as well as bandwidth variations induced by SPM; this 
behavior is observed for input pulse peak powers lower than 
the local solitonic threshold for anomalous dispersion fibers. 
At the system input, a pre-compensation 𝛽%"01 (𝑠%) is used in 
order to convert those variations into periodic oscillations. In 
other words, by properly choosing the value of 𝛽%"01, the 
output pulse will periodically recover its input bandwidth, thus 
preserving the transmission quality. As a matter of fact, the 
pseudo-linearity condition does not prevent the pulse from 
suffering important bandwidth changes in propagation regions 
where the minimum pulse width is recovered, thus imposing 
the use of optimal pre-compensation techniques. 

From the variational theory applied to the nonlinear term of 
the NLSE [18][19][20], optical transmission in a parabolic 
graded-index (GRIN) multimodal fiber, as well as in a 
monomodal step-index (SI) fiber, can be described by a single 
nonlinear Schrödinger equation (NLSE), which include the 
second order dispersion term 𝛽%, third order dispersion 
𝛽2 	(𝑠2 𝑚⁄ ), Kerr nonlinearity 𝛾 and linear loss 𝛼 
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with 𝐴(𝑧, 𝑡) the (1+1)D field complex amplitude. For a 
multimodal parabolic GRIN fiber with core radius 𝑟=, core 
index 𝑛=>, nonlinear index 𝑛%	(𝑚%/𝑊), and relative index 
difference ∆, the nonlinear coefficient 𝛾 (𝑚?'𝑊?')	is 
periodical in z with 
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with 𝑤(𝑧) the beam waist, that undergoes periodical self-
imaging with period 𝑧" = 𝜋𝑟=/√2∆; the ratio between 
minimum and maximum beam area is given by 
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For 𝐶 = 1, the beam waist is a constant, and Eq. 2.1 

describes monomodal transmission, both for parabolic GRIN 
fibers and SI fibers.  

A semi-analytical formula to describe the pulse bandwidth 
evolution in pseudo-linear systems can be obtained by 
applying the split-step method to Eq. 2.1 over a distance ∆𝑧; 
the formula is much faster than the direct integration of eq. 
2.1, and can be used for both monomodal and parabolic GRIN 
fiber systems to calculate the pulse bandwidth evolution, and 
to quickly search for the optimal pre-compensation which 
causes periodic band behavior.	
We consider the transmission of a Gaussian pulse with input 
pulse width 𝑇()*+, and 𝑇, = 𝑇()*+	/%2(𝑙𝑛2)'/%(, and with 
amplitude 𝐴,. After a distance 𝑧, the pulse acquires a 
cumulated dispersion 𝛽%8>8(𝑧) (𝑠%), including pre-
compensation, fiber dispersion and any possible subsequent 
dispersion compensation: its complex amplitude can be 
written as [21] 
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Therefore, the pulse power reads as 
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with 𝐶SK!"(𝑧) = 𝛽%8>8(𝑧) 𝑇,%⁄  the cumulated dispersive chirp. 
At fiber distance z, SPM is responsible for pulse nonlinear 
phase shift 	ΔΦTU(z, t) over a distance interval ∆𝑧; by 
considering that the pulse peak power at distance z is affected 
by losses and dispersion-induced pulse broadening, the 
nonlinear distance 𝐿./ = 1 𝛾(𝑧)|𝐴|%⁄  is given by 
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The nonlinear phase shift over ∆𝑧 is ∆ϕTU(z, t) =
|𝐴(𝑧, 𝑡)|%Δ𝑧1XX/[𝐴,%𝐿./(𝑧)], with ∆𝑧1XX = (1 −
exp	(−𝛼∆𝑧))/𝛼, when accounting for losses. The 
corresponding pulse bandwidth variation is  
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with 𝑎 = 𝑇,%1 + 𝐶SK!"% (𝑧)('/%; the bandwidth change must be 
calculated at the instants of maximum and minimum spectral 
width, i.e., for	𝑡 = ±𝑎 √2⁄ , obtaining 
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In Eq. 2.9, the sign() operator is needed, in order to account 
for positive (negative) bandwidth changes whenever the 
overall cumulated dispersion is normal (anomalous). const is a 
scaling factor accounting for the ratio between the FWHM 
bandwidth 𝛥𝜔\#W and the bandwidth change at 𝑡 = ±𝑎 √2⁄ , 
to be calculated via the comparison with numerical 
simulations of Eq. 2.1; it was found 𝑐𝑜𝑛𝑠𝑡 ∙ 0.858 = 1.7. The 
nonlinear length accounts for fiber losses and, in the case of 
GRIN fibers, for beam self-imaging; the term 1 + 𝐶SK!"%  takes 
into account the dispersion-induced pulse broadening. Let us 
point out that cumulated dispersion includes pre-
compensation, fiber cumulated dispersion, and periodic 
dispersion compensation. After each compensated span, the 
pulse power must be recovered to its initial value by using 
optical amplifiers. 

Eq. 2.9 provides a measure of the interplay between SPM 
and cumulated dispersion, and it shows that pulse bandwidth 
changes may be experienced by both pre-compensated and 
non-precompensated pulses. In fact, these changes occur when 
SPM acts on the pulse while it is cumulating a net dispersion, 
and at the same time, it still possesses significant peak power. 



By summing the bandwidth changes in Eq. 2.9 for Δ𝑧 
sufficiently small, and over a number of compensated fiber 
spans, it is possible to describe the pulse bandwidth evolution 
vs. distance at a given pre-compensation value. It is also 
possible to search for an optimal pre-compensation, that will 
produce a periodical variation of the pulse bandwidth along 
the distance z. In the case of monomodal fibers, Δ𝑧 can be as 
large as 1 m, while for parabolic GRIN fibers it must be 
reduced to 50 µm or less, in order to account for the short 
spatial scale of periodic beam self-imaging. 

For pulse powers up to 20% of the local solitonic threshold, 
the SPM-induced bandwidth changes may represent a 
considerable fraction of the initial bandwidth; if not properly 
managed, these bandwidth changes will produce significant 
impairments at the system output. 

If no pre-compensation is used, Eq. 2.9 predicts monotonic 
bandwidth changes at each fiber span. In the case of 
anomalous dispersion fibers, such as standard monomodal 
fibers at telecom wavelengths (SMF), the pulse bandwidth 
suffers repeated bandwidth reductions after each DM span, 
that prevent the initial pulse width from recovering. This is 
shown by the red curve in Fig.1, illustrating the bandwidth 
evolution of a 0.83 ps pulse in 5 spans, composed by 
anomalous dispersion fiber followed by a linear dispersion 
compensator and an amplifier. Whenever full pre-
compensation is used ( 𝛽%"01 = −𝛽%𝐿!"#$), the pulse 
bandwidth experiences repeated increases (see green curve in 
Fig.1), thus introducing channel cross-talk and filtering 
impairments. On the other, an optimal pre-compensation value 
leads to a periodical evolution of the bandwidth, and stable 
transmission (see the blue curve in Fig.1). 

 
 

Fig. 1.  Example of pulse bandwidth evolution in a pseudo-linear 
dispersion compensated system with anomalous dispersion fiber and: no 
pre-compensation, full pre-compensation, or optimal pre-compensation. 

 

III. NUMERICAL SIMULATIONS 
The theory of section 2 has been compared to direct 

numerical simulations of Eqs. 2.1 to 2.3, solved by means of 
the well-known split-step Fourier method [22]. The simulated 
system is a sequence of identical spans, composed by a 

transmission fiber and a linear dispersion compensator, 
followed by an optical amplifier that recovers entirely fiber 
losses. At the system input, the pulse is pre-chirped by an 
amount of pre-compensation, or input chirp 𝛽%"01, with 
opposite sign with respect to that of the transmission fiber. 
The two cases of SMF and parabolic GRIN fiber were 
considered, for pulse durations which are typical of high-speed 
communication systems. 

 

A. Parabolic GRIN fiber, multimodal dispersion-managed 
systems 

DM systems employing parabolic GRIN fibers need to 
overcome the impairments caused by modal dispersion; this is 
minimized at the 850 nm wavelength, therefore in the normal 
dispersion regime; dispersion compensation can be achieved, 
for example, by using lumped devices, such as fiber Bragg 
gratings. 

The model of Eqs. 2.7 to 2.9 needs to consider a periodically 
variable nonlinear coefficient 𝛾(𝑧), and the sum of bandwidth 
changes must be performed with a step size ∆𝑧 ≤ 50 µm, in 
order to properly describe the beam self-imaging process. 

Numerical simulations were also performed by using Eqs. 
2.1-2.3, with 𝑛% = 2.7 × 10?%, m2/W, modal waist 𝑤(0) =
15 µm at fiber input, dispersion 𝛽% = 36.2 ps2/km at 850 nm, 
loss 𝛼 = 2.21 dB/km, and neglecting third-order dispersion 
𝛽2; the core radius was 𝑟= = 25 µm, the core index 𝑛=> =
1.465, and the relative index difference ∆= 0.0103. 

After each span, the accumulated dispersion was 
compensated by an amount −𝛽%𝐿!"#$ by using ideal linear 
lumped dispersion compensators, and losses were recovered 
by means of ideal lumped amplifiers. 

We simulated two cases, with Gaussian pulse durations of 
𝑇()*+ = 0.83	and 	3.33 ps, corresponding to systems with a 
baud rate of 400 and 100 GB/s, respectively. Pulses were 
launched at the 850 nm wavelength, with a peak power of 
17.98 and 1.12 W, respectively. Although in the normal 
dispersion region no solitonic effect is observed, the power 
levels were chosen for a fair comparison with the monomodal 
case which is considered in the next section. 

Figs. 2a and 2b illustrate the variation of the output-to-input 
bandwidth ratio as a function of pre-compensation, for 0.83 
and 3.33 ps pulse widths, respectively; solid lines are obtained 
from the semi-analytical theory of Eqs. 2.9, 2.2, and 2.3, while 
dots indicate the results of numerical simulations from Eqs. 
2.1 to 2.3. As can be seen, our theory shows good agreement 
with numerical simulations for multimodal fiber transmission, 
indicating that, for longer pulses, an optimal pre-compensation 
value is necessary for minimizing the SPM-induced 
impairments. For shorter pulses with intermediate levels of 
pre-compensation, the bandwidth evolution is faster, thus 
limiting the net bandwidth change. The required pre-
compensation is anomalous, before entering the normal 
dispersion fiber; as a consequence, the pulse bandwidth 
evolution with distance exhibits periodical spikes with an 
opposite sign with respect to the case shown in Fig. 1; this is 
better illustrated in Fig. 3, showing the bandwidth evolution of 
a 0.833 ps pulse at 18 W peak power in 5 × 500 m of GRIN 
fiber at the 850 nm wavelength, with the optimal pre-



compensation of -9 ps2. In Fig.3 we reported the bandwidth 
evolution described by the model of eq. 2.9, and compared it 
to the numerical simulation of Eq. 2.1. 

 

 
Fig. 2.  Ratio of output to input pulse bandwidth, in the cases of: (a) 0.83 ps 

and 5 x 500 m of GRIN fiber, (b) 3.33 ps and 5 x 5 km GRIN fiber spans. 

 
 
Fig. 3 – Bandwidth evolution for a 0.833 ps pulse, 18 W peak power, 850 

nm, pre-compensation of -9 ps2 in 5 × 500 m of GRIN fiber; comparison of 
model prediction and numerical simulation of Eq. 2.1. 

 

B. Monomodal dispersion managed systems 
DM systems employing monomodal fibers at wavelengths 

around 1550 nm are commonly used in high-speed 
telecommunications. These systems experience minimum 
transmission losses, and operate in the anomalous dispersion 
region: among them, the case of dispersion-compensated SMF 
fiber spans is widely used. We tested four cases with Gaussian 
pulse durations of 𝑇()*+ = 0.83, 3.33, 6.66, 13.33 ps, 
corresponding to systems operating at the baud rate of 400, 
100, 50, and 25 GB/s, respectively. Pulses were launched at 
the 1550 nm wavelength, with a peak power of 17.98, 1.12, 
0.28, and 0.07 W respectively, corresponding to 20% of the 
power for reaching the monomodal soliton regime in an SMF 
fiber, neglecting the losses. Even for lower powers, we 
obtained nearly constant optimal pre-compensation values, 
which shows that in the pseudo-linear regime the optimal 
𝛽%"01 has only a weak dependence on the launch power. 
Whereas for higher peak power values in the anomalous 
dispersion regime, the fundamental soliton behavior starts to 
be effective, giving rise to a different propagation regime. 

SMF spans are described by Eq. 2.1 with constant 𝛾, 𝑛% =
2.7 × 10?%, m2/W, modal waist 𝑤 = 5.04 µm, effective area 
𝐴1XX = 80 µm2, dispersion 𝛽% = −20 ps2/km, loss 𝛼 = 0.2 
dB/km; we neglected the third-order dispersion 𝛽2. After each 
fiber span of length 𝐿!"#$, a dispersion compensation amount 
of −𝛽%𝐿!"#$ was applied, and losses were fully recovered by 
means of ideal amplifiers. 

Figures 4a to 4d illustrated the dependence on the amount of 
pre-compensation of the ratio of pulse output to input 
bandwidth, in the cases of: a): 0.83 ps and 5 spans of 5 km of 
SMF fiber; b): 3.33 ps and 5 × 20 km spans; c): 6.66 ps and 5 
× 50 km spans; d): 13.33 ps and 5 × 75 km spans. The fiber 
length was chosen as the minimum value, which is necessary 
to obtain a complete periodical evolution of the pulse 
bandwidth; for longer 𝐿!"#$ values, the bandwidth evolution 
does not change, and the same optimal pre-compensation 
values were found. Solid lines in Fig. 4 are obtained from the 
semi-analytical theory of Eq. 2.9, while dots represent 
numerical simulations from Eq. 2.1. 

As shown by Fig. 4a, for an ultra-short pulse with 𝑇()*+ =
0.83 ps, there is a large range of pre-compensation values 
where the output pulse bandwidth equals the input. It is also 
clear that the absence of pre-compensation, as well the full 
pre-compensation, provides bandwidth changes of the order of 
60% for the considered case of pulsewidth and power. 

Figs. 4b and 4c, obtained for 𝑇()*+ = 3.33 and 6.66 ps, 
respectively, show the existence of an optimal pre-
compensation value, which is consistent with both theory and 
numerical simulations. Let us recall that the optimal pre-
compensation values are still valid for larger values of 𝐿!"#$, 
because in pseudo-linear systems bandwidth changes are 
limited in the fiber portion of minimum pulsewidth, and are 
negligible in the remaining portions. 

Finally, Fig. 4d obtained for 𝑇()*+ = 13.33 ps, shows that 
larger differences appear between theory and simulations, as 
we move away from the pseudo-linear transmission 



conditions. 
As already observed, shorter pulses breathe in time more 

rapidly; the interplay between SPM and cumulated dispersion 
produces negligible effects at any value of used pre-
compensation, when the cumulated dispersion passes rapidly 
from anomalous to normal (or the opposite). Conversely, the 
same interplay causes larger net bandwidth changes when the 
cumulated dispersion does not change its sign (if pre-
compensation is null or it is total). On the contrary, longer 
pulses suffer considerable bandwidth net changes when a 
wrong pre-compensation is used, because the interaction 
between SPM and dispersion acts over longer distances.  

 

 

 

 
 
Fig. 4.  Ratio of the output to input pulse bandwidth vs. input pre-

compensation, in the cases of: a): 0.83 ps and 5 × 5 km of SMF, b): 3.33 ps 
and 5 × 20 km SMF, c): 6.66 ps and 5 × 50 km SMF, d): 13.33 ps and 5 × 75 
km SMF spans. 

 

IV. EXPERIMENTAL RESULTS WITH PARABOLIC GRIN FIBER 
The experimental setup used for the study of pulse 

bandwidth evolution as a function of pre-compensation in a 
parabolic GRIN fiber consisted of a femtosecond Yb-based 
laser (Light Conversion Pharos PH1-SP 10W), generating 
variable temporal duration pulses at 1030 nm, with 100 kHz 
repetition rate, and Gaussian beam shape (𝑀% = 1.3). The 
laser is equipped with internal pulse-stretched amplification; 
by properly tuning the internal compression factor, it was 
possible to generate pulse widths varying between 180 fs and 
8 ps, corresponding to a pre-compensation 𝛽%"01 between -0.3 
ps2 and 0.4 ps2; laser pulse width and shape were measured by 
using a FROG autocorrelator (APE pulseCheck). The beam 
was focused by a 50 mm lens into a 5 m span of parabolic 
GRIN fiber, with input 1 𝑒%⁄  diameter of approximately 20 
µm. Pulse energy was adjusted using an external attenuator.  

GRIN fiber has a core radius 𝑟= = 25 µm, cladding radius 
62.5µm, cladding index 𝑛=]#S = 1.45, relative index 



difference ∆= 0.0103, length 5 m, and dispersion 𝛽% = 18.9 
ps2/km at 1030 nm. 

At the fiber output, a micro-lens followed by a second lens 
focused the beam to an optical spectrum analyzer (OSA, 
Yokogawa AQ6370D) and a power meter (Gentec XLP12-3S-
VP-INT-D0). The output near field was also projected on a 
1550 nm camera (Gentech Beamage 4M-IR) in order to check 
the correct coupling and modal distribution. 

In order to stress the model predictions for high pulse 
powers, the pulse energy was adjusted to either 0.096 nJ or 
0.96 nJ at the fiber input; this corresponded to pulses with 
either 500 W or 5 kW peak power, when transform-limited to 
a 180 fs pulsewidth. Pulse energy was kept constant while 
broadening the input pulse, by adding pre-compensation. 

Figure 5 shows the measured pulse bandwidth (dots) vs. 
input pulse pre-compensation, for the two input pulse energy 
levels. Solid curves are the predictions from the semi-
analytical theory of Eq. 2.9; for anomalous input pre-
compensation 𝛽%"01 = −𝛽%𝐿!"#$=-0.095 ps2, our model 
predicts a maximum reduction of the output pulse bandwidth, 
while in the absence of pre-compensation (for 𝛽%"01 = 0 ps2) a 
maximum increase is expected. For intermediate pre-
compensation values, the pulse bandwidth suffers opposite 
sign variations along with the fiber, obtaining an output rms 
bandwidth closer to the input value of 1.04 THz.  

The model curve at 5 kW maximum peak power fits well the 
experimental data for normal pre-compensation values. 
However, for anomalous dispersion values, the model of Eq. 
2.9 fails in predicting band reductions up to zero or even 
negative, which is obviously an unphysical result, and differs 
from the moderate band reduction which is observed 
experimentally. The model at 500 W peak power fits well to 
experimental data for normal pre-compensation, and provides 
a better approximation, with respect to the 5 kW case, for 
anomalous pre-compensation values. The differences between 
theory and experiments for anomalous values of pre-
compensation may be attributed to pulse distortions at low 
bandwidth values, which are not accounted by our theoretical 
model. 

 
Fig. 5.  Pulse output bandwidth vs. input pre-compensation in 5 m of 

parabolic GRIN fiber. Dots: experiment; solid curves: model of eq. 2.9. Input 
peak power is 500W or 5 kW for a minimum pulsewidth of 180 fs at 1030 nm. 

 

V. CONCLUSIONS 
The use of parabolic GRIN fibers in DM systems offers 

interesting options to increase the signal pulse power well 
beyond the limits of monomodal systems, therefore increasing 
the signal-to-noise ratio and channel capacity. Here we 
demonstrate by means of a new semi-analytical formula, the 
direct integration of the (1+1)D NLSE, and by experimental 
results, that parabolic GRIN fibers are able to support the 
techniques of bandwidth and dispersion management which 
have already been developed for monomodal transmission 
systems. Parabolic GRIN fibers are potentially able to support 
spatio-temporal DM solitons, which constitute a new 
transmission regime with properties of stability and time-
bandwidth periodicity similar to what already seen in the 
monomodal case, but with the further property of stable beam 
self-imaging acting on a very short spatial period, of the order 
of 0.5 mm. Furthermore, spatio-temporal solitons offer the 
unique property to temporally trap in them the several spatial 
modes that may carry a beam in GRIN fibers [19][10]. 

The proposed semi-analytical model, describing the 
bandwidth evolution of propagating pulses, was derived by 
analytically integrating the NLSE with a periodically varying 
nonlinear coefficient 𝛾(𝑧), and it was compared to both the 
direct integration of the (1+1)D nonlinear Schrödinger 
equation for parabolic GRIN fibers, and to experimental 
results performed at the 1030 nm wavelength with 
femtosecond pulses, propagating in a 5 m span of GRIN fiber. 
It was shown that an optimal pre-compensation dispersion is 
needed, in order to obtain a periodical behavior of the pulse 
bandwidth, which provides the first basic step, which is 
necessary for a stable propagation of spatio-temporal DM 
solitons. 
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