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Abstract

Mixed hidden Markov models represent an interesting tool for the analy-
sis of longitudinal data. They allow to account for both time-constant and
time-varying sources of unobserved heterogeneity, which are frequent in this
kind of studies. Individual-specific latent features, which may be either con-
stant or varying over time, are included in the linear predictor and lead to
a general form of dependence between individual measurements. When a
parametric (continuous) distribution is associated to time-constant random
parameters, the estimation process requires the calculation of (multiple) in-
tegrals. These, generally, have not a closed form and should be numerically
approximated. Here, the aim is to compare the standard, the adaptive and
the pseudo-adaptive Gaussian quadrature approximations by means of a large
scale simulation study, where continuous and discrete responses with (condi-
tional) density in the exponential family are considered. Simulation results
show that the approximation error is often substantially reduced when the
adaptive quadrature rules are considered in place of the standard one. Such
an improvement comes at the cost of a higher computational complexity
when the fully adaptive scheme is applied. It is shown that, when a sufficient
number of repeated measurements per unit is available, the pseudo-adaptive
quadrature represents a convenient compromise between quality of results
and computational complexity.
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1. Introduction

Longitudinal studies entail repeated measurements from a number of
units taken over a known, usually finite, time window. In the regression
framework, the presence of unobserved individual characteristics, linked e.g.
to omitted covariates, leads to extra variability in the marginal distribution
of the response and to dependence between measurements from the same
individual. Such unobserved heterogeneity can be either time-varying or
time-constant, according to a form of true/spurious contagion (Heckman,
1981). Because of the former, data variability can be ascribed to the time
separation between subsequent measurements: current and future outcomes
are directly influenced by the past ones. Because of the latter, differences
in the response variable are related to the presence of heterogeneous popula-
tions with a different propensity to the event. To account for these sources of
extra-variability and dependence, time-constant and time-varying individual
random parameters may be added to the model specification. Parametric
continuous distributions can be used for both types of random parameters;
see Diggle et al. (2002), for references. In a more appealing fashion, the latter
can be instead approximated via a discrete latent (hidden) variable with a
Markovian structure; the resulting model is referred to as a mixed hidden
Markov model (mHMM). It is worth noticing that, when the number of hid-
den states increases, the discrete Markov process may be able to approximate
an AR(1)-type continuous distribution.
If parameter estimates are obtained via a maximum likelihood approach, as
it is frequent in the presence of latent variables, the EM algorithm can be
employed. Zucchini and MacDonald (2009) and Cappé et al. (2005) give
general references, while Bartolucci et al. (2012) discuss a comprehensive
overview of applications to longitudinal data. When considering a paramet-
ric (continuous) distribution for the time-constant random parameters, ML
estimation requires the computation of multiple integrals. Apart from the
case when a Gaussian distribution is used for both the response and the
random parameters (see e.g. Lagona et al. 2014), these integrals cannot be
solved analytically and numerical approximation techniques are a potential
solution.
Recently, some proposals have been introduced to deal with such an issue.
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Altman (2007) has discussed standard Gaussian quadrature (GQ) in a direct
ML perspective and a Monte Carlo EM (MCEM) algorithm; an original vari-
ant of the MCEM algorithm has been proposed by Chaubert-Pereira et al.
(2010). Maruotti and Rydén (2009) have suggested to leave the distribution
of time-constant random parameters unspecified (as in Aitkin, 1999) and to
approximate it through a discrete distribution estimated with a nonparamet-
ric maximum likelihood (NPML) approach (see Laird 1978; Böhning 1982;
Lindsay 1983a,b). For a general review of mixed hidden Markov models the
reader is referred to Maruotti (2011).
Although Altman (2007), Maruotti and Rydén (2009) and Lagona et al.
(2014) have discussed general random parameter mHMMs, only random
intercepts have been considered in empirical applications and simulation
studies. Therefore, a first question is whether this class of models can be
easily adapted to handle general random parameters. A further question
arises when we consider parametric specifications for the distribution of the
individual-specific random parameters with time-constant structure. In the
context of mixed parameter models, it is generally acknowledged that stan-
dard Gaussian quadrature may produce unsatisfactory approximations and
poor estimates. Adaptive (Liu and Pierce, 1994; Pinheiro and Bates, 1995)
and pseudo-adaptive schemes (Rizopoulos, 2012) have been introduced to
improve the quality of results. Within the adaptive quadrature approaches,
standard GQ locations, which are symmetric around zero, are centred and
scaled at each step (fully adaptive quadrature) or only at the beginning of the
optimization algorithm (pseudo-adaptive quadrature) to relocate the main
mass of the integrand at zero. This is shown to reduce the approximation
error supplied by the GQ technique. In the framework of multilevel models,
Rabe-Hesketh et al. (2002, 2005) have proved, via an extensive simulation
study, that the adaptive Gaussian quadrature rule outperforms the standard
approach, especially when the intraclass correlation is high. Cagnone and
Monari (2013) have compared the fully adaptive and the standard Gaussian
approximation in the framework of high-dimensional latent variable models;
as the dimension increases, the standard Gaussian quadrature turns out to
be less appropriate due to the difficulties in reaching convergence in a reason-
able number of iterations. In the context of joint models for longitudinal and
time to event data, Rizopoulos (2012) has shown that the pseudo-adaptive
scheme leads to accurate parameter estimates with a lower number of loca-
tions when compared to the standard scheme, thus consistently reducing the
computational load.

3



To our knowledge, this topic has not been adequately investigated in the
context of mHMMs; the aim of this paper is at comparing the standard
Gaussian quadrature approach discussed by Altman (2007) with the fully
adaptive and the pseudo-adaptive quadrature schemes. To assess the qual-
ity of these approximations, we have considered, in a large scale simulation
study, responses having conditional Gaussian, Poisson and Bernoulli distri-
bution, with varying sample sizes and number of repeated measurements per
unit. The plan of the paper follows. In section 2, we introduce the stan-
dard mHMM. Sections 3-4 entail the EM algorithm for parameter estimation
and the quadrature schemes. Section 5 describes the simulation study and
the corresponding results. The last Section contains concluding remarks and
outlines future research agenda.

2. Mixed hidden Markov models

As stressed before, these models combine features of hidden Markov and
mixed parameter models. In hidden Markov models (see e.g. Zucchini and
MacDonald, 2009), the distribution of the observed response is defined con-
ditional on the current hidden state, which represents the realization of a
latent process evolving over time according to a Markov structure. In mixed
parameter models, see Laird and Ware (1982), the response distribution is
specified conditional on individual-specific random parameters that capture
latent, time-constant, characteristics. Both models account for marginal de-
pendence between measurements from the same unit.
Before describing mHMMs, some basic notations need to be introduced. Let
Yit denote the longitudinal response recorded for unit i = 1, ..., n at occasion
t = 1, ..., Ti and let us consider a homogeneous hidden Markov chain {Sit}
taking values in the finite set S = {1, ...,m}. In the following, we will refer
to measurement occasions that are equally spaced and taken at pre-specified
times; for this reason, we will use the generic term time. We assume that
all individuals share the same initial probability vector δ = (δ1, ..., δm) and
the same transition probability matrix Q = {qkh} which is constant over the
time. Terms δh represent the probability of starting in the h-th state, while
qkh represents the probability of moving from the k-th state at time t− 1 to
the h-th one at time t, where h, k = 1, ...,m, t = 1, ..., Ti. Let bi represent a
vector of individual-specific random parameters; a typical choice is to con-
sider Gaussian random parameters bi ∼ MVN(0,D).
mHMMs are based on the following assumptions. The time-constant random
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parameters bi are independent of the hidden process {Sit}; the distribution
of the observed response at a given time is defined conditional on the hidden
state occupied at the same time and the individual-specific vector bi. Condi-
tional on sit and bi, observations from the same individual are independent
(local independence assumption). Based on these hypotheses, the following
expression holds

fy|sb
(
yit | yi1:t−1, si1:t,bi

)
= fy|sb

(
yit | sit,bi

)
,

where yi1:t−1 represents the history of responses for the i-th individual up
to time t − 1 and si1:t the sequence of states up to time t. Under the local
independence assumption, the joint conditional distribution for the i-th unit
longitudinal sequence is defined by

fy|sb(yi | si,bi) =

Ti∏
t=1

fy|sb
(
yit | sit,bi

)
.

In the following, we will consider responses with conditional distribution in
the exponential family:[

Yit | Sit = sit,bi
]
∼ EF [θit(sit,bi)] . (1)

In the h-th state, the canonical parameter is defined by the following regres-
sion model

θit(Sit = h,bi) = z′it [φ+ bi] + x′itβh. (2)

Here, φ represents the marginal effect of covariates in the design vector zit;
the bi’s represent zero mean, time-constant, random departures from φ due
to the effect of omitted covariates. The time-varying effect of such unob-
served heterogeneity is captured instead by the state-specific βh’s and the
corresponding Markov structure. The reasons to adopt such a modelling
specification could be explained via a simple example; let us assume the
following model holds:

θit = z′itφ+ x′itβ + w′itν.

If all the potential sources of variation, [xit, zit,wit], were observed, the mea-
surements from the same individual would have been independent. However,
covariates wit have not been measured; the effects of such an omission on the
remaining model parameters could be either time-constant, summarized by
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bi, or time-varying, summarized by the state-specific parameters βh. A side
effect of unobserved heterogeneity is that it introduces extra-variability and
dependence in the marginal distribution of the observed response. As it is
clear from equation (2), the dependence structure postulated by a mHMM
is quite general. “Fixed” and “dynamic” random terms (the former, even-
tually, modulated by the time evolution of zit) allow to account for different
sources of unobserved heterogeneity. Obviously, neither of these effects can
be simply modelled by adding main effects and interactions with time in the
model specification; in fact, dynamics due to unobserved heterogeneity may
be strongly non-linear and may not be thought to influence the linear pre-
dictor only.
Due to the Markov property, the following expression holds for the density
of the individual sequence of states:

fs (si; δ,Q) = fs (si1; δ)

Ti∏
t=2

fs (sit | sit−1; Q) = δsi1

Ti∏
t=2

qsit−1sit .

If we denote by ψ the parameter vector for the longitudinal model, the joint
distribution for the individual sequence yi = (yi1, . . . , yiTi) is obtained as

fy(yi;ψ, δ,Q,D) =

∫ ∑
si

fy|sb (yi | si,bi;ψ) fs(si; δ,Q)fb(bi; D)dbi. (3)

The multiple integral in (3) does not have, at least generally, a closed form
solution; numerical approximation techniques could represent a valid tool.
Before detailing such techniques in Section 4, we turn our attention to the
algorithm for ML estimation.

3. Maximum likelihood estimation

As it is frequent with latent variable models, also in the case of mHMMs
the EM algorithm (see Dempster et al. 1977) may be employed for param-
eter estimation. Further alternatives are available: the direct maximization
of the likelihood function (Altman, 2007; Langrock et al., 2014), the MCEM
algorithm described, in a very simple development, by Altman (2007) and in
a quite more elaborated form by Chaubert-Pereira et al. (2010). However,
in our opinion, the EM algorithm represents a conventional choice, it is com-
putationally simple and widely adopted by non-statisticians also. For these
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reasons, we have decided to focus on it.
We denote by Φ = (ψ, δ,Q,D) the full set of model parameters; let uit(h) =
I [Sit = h] be the indicator variable for the i-th individual in the h-th state
at time t and uit(k, h) = I [Sit−1 = k, Sit = h] be equal to 1 if the i-th indi-
vidual moves from the k-th state at time t− 1 to the h-th one at time t. The
complete data log-likelihood follows:

`c(Φ) =
n∑
i=1

{
m∑
h=1

ui1(h) log (δh) +

Ti∑
t=2

m∑
h=1

m∑
k=1

uit(k, h) log (qkh)

+

Ti∑
t=1

m∑
h=1

uit(h) log
[
fy|sb(yit | Sit = h,bi;ψ)

]
+ log [fb(bi; D)]

}
. (4)

The expression within brackets represents the individual contribution to
the complete data log-likelihood; in the following, it will be denoted by
`
(i)
c , i = 1, ...n. For ease of notation, we will suppress the dependence of

density functions on model parameters.
To simplify the estimation procedure, we introduce the forward and the back-
ward variables (Baum et al., 1970); here, the basic definition should be modi-
fied to account for the presence of the individual-specific random parameters
bi. The forward variables represent, for a generic individual, the joint den-
sity of the longitudinal measurements up to time t and of ending in the h-th
state, conditional on the individual-specific vector bi:

ait(h,bi) = f (yi1:t, Sit = h | bi) . (5)

By modifying the arguments in Baum et al. (1970), forward variables ait(h,bi)
can be recursively computed as

ai1(h,bi) = δhfy|sb(yi1 | Si1 = h,bi),

ait(h,bi) =
m∑
k=1

ait−1(k,bi)qkhfy|sb(yit | Sit = h,bi).

The backward variables represent the probability of the longitudinal sequence
from time t+1 to the last observation, conditional on being in the h-th state
at time t and the random parameter vector bi:

bit(h,bi) = f(yit+1:Ti | Sit = h,bi). (6)
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Also backward variables can be derived recursively:

biTi(h,bi) = 1,

bit−1(k,bi) =
m∑
h=1

bit(h,bi)qkhfy|sb(yit | Sit = h,bi),

These recursions greatly simplify the structure of the estimation algorithm;
for further details, see the seminal paper by Baum et al. (1970), the refer-
ence monograph by Zucchini and MacDonald (2009) and the monograph by
Bartolucci et al. (2012) that gives a specific overview in the longitudinal data
context.

3.1. The E-step

The E-step involves calculating the expected value of the complete data
log-likelihood (4) given the observed data and the current parameter esti-
mates:

Q(Φ | Φ(r)) =
n∑
i=1

∫ ∑
si

`(i)c (Φ)fsb|y(si,bi | yi,Φ(r))dbi.

Following Rijmen et al. (2008), we may notice that the crucial quantities that
are needed in the M-step are the posterior densities of marginal and pair-
wise consecutive state probabilities. By adapting this result to the mHMM
framework, we get

Q(Φ | Φ(r)) =
n∑
i=1

{ m∑
h=1

ûi1(h)(r+1) log(δh) +

Ti∑
t=2

m∑
h,k=1

ûit(k, h)(r+1) log(qkh)+

+

Ti∑
t=1

m∑
h=1

∫ [
ûit(h)(r+1) log

[
fy|sb (yit | Sit = h,bi)

]
×

× fb|sy
(
bi | Sit = h,yi; Φ

(r)
)]

dbi +

∫
log [fb(bi)] fb|y

(
bi | yi; Φ(r)

)
dbi

}
,

(7)

where the terms ûit(h)(r+1) and ûit(k, h)(r+1) denote the posterior expecta-
tions of the indicator variables in equation (4), given the current parameter
estimates, Φ(r), and the observed data, yi. Suppressing the dependence on
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the iteration index and doing a little algebra, posterior probabilities can be
computed as

ûit(h) =

∫
ait(h,bi)bit(h,bi)fb(bi)dbi∫ ∑
h ait(h,bi)bit(h,bi)fb(bi)dbi

, (8)

and

ûit(k, h) =

∫
ait−1(k,bi)qkhfy|sb (yit | Sit = h,bi) bit(h,bi)fb(bi)dbi∫ ∑
hk ait−1(k,bi)qkhfy|sb (yit | Sit = h,bi) bit(h,bi)fb(bi)dbi

.

(9)

These quantities require the calculation of multiple integrals which, generally,
do not have a closed form solution and have to be numerically approximated.
The point is further discussed in Section 4.

3.2. The M-step

The M-step of the algorithm consists in maximizing the expected value
of the complete data log-likelihood in equation (7) with respect to Φ =
(ψ, δ,Q,D). Due to the local independence assumption and to the sepa-
rability of the parameter spaces, the maximization can be partitioned into
different sub-problems. The maximization can be performed sequentially
with respect to the Markov chain parameters, the longitudinal model param-
eters and the covariance matrix of the random parameters. At the generic
iteration of the algorithm, closed form solutions are available for the initial
and the transition probabilities:

δ̂h =

∑n
i=1 ûi1(h)

n
, q̂kh =

∑n
i=1

∑Ti
t=1 ûit(k, h)∑n

i=1

∑Ti
t=1

∑m
k=1 ûit(k, h)

. (10)

Estimation of the longitudinal model parameters reduces to finding the ze-
ros of the expected score function, calculated with respect to the posterior
distribution of the hidden states and the random parameters:

n∑
i=1

Ti∑
t=1

m∑
h=1

ûit(h)

∫
Sit (ψ | Sit = h,bi) fb|sy

(
bi | Sit = h,yi

)
dbi, (11)

where Sit (ψ | h,bi; yit) is the individual contribution to the complete data
score function for a generic unit being in the h-th state at time t.
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We have adopted a restricted maximum likelihood approach (Patterson and
Thompson, 1971) to estimate the covariance matrix D; REML allows to cor-
rect the bias of standard ML estimator and leads to the following expression:

D̂ =
1

n

n∑
i=1

E
[
bib

T
i | yi

]
. (12)

As it is clear, parameter estimation needs the integrals in equations (8)-(9)
and (11)-(12) to be numerically approximated.

4. Integration via Gaussian quadrature

As we have pointed out before, the EM algorithm needs the calculation
of multiple integrals which, often, do not have a closed form solution. In
this context, techniques based on Gaussian quadrature approximations are
a main choice due to the long-standing use in the context of mixed parame-
ter models. The general idea is to rephrase the multivariate integral as the
product of several univariate integrals; each of them may be approximated
through a weighted sum over a pre-specified number of known quadrature
abscissas with known weights.
Let us focus on solving likelihood equations associated to the score in equa-
tion (11), since calculation of the integrals in equations (8), (9) and (12)
proceeds following similar arguments. To simplify the notation, we will con-
sider only the expression appearing within the integral. Let D = ΓΓ′ be the
Cholesky decomposition of the random parameter covariance matrix and let
q be the dimension of bi. Using a standard Gaussian quadrature (GQ) ap-
proximation, the following expression for the expected score function holds:∫

Sit(ψ | Sit = h,bi)fb|sy(bi | Sit = h,yi)dbi '

'
√

2q|Γ|
∑
g1...gq

Sit(ψ | Sit = h,b?g1...gq)fb|sy(b
?
g1...gq

| Sit = h,yi)e
‖bg1...gq‖

2

wg,

(13)

where bg1...gq =
(
bg1 , ..., bgq

)
represents a q-tuple defined by the Cartesian

product of standard quadrature points, for gl ∈ {1, . . . , G} , l ∈ {1, . . . , q},
and wg =

∏q
l=1wgl denotes the product of the corresponding weights. The

rescaled abscissas b?g1...gq =
√

2Γbg1...gq allow to rewrite the integral with re-
spect to orthogonal components.
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Even if the quality of the GQ approximation is known to increase with the
number of quadrature points, the corresponding locations are symmetric
around zero and it turns out to be satisfactory only if the integrand has
its own peak near zero. When this condition is not satisfied, GQ leads to
poor approximations, even for a large number of locations, see e.g. Rizopou-
los (2012).
To improve the quality of the estimates, we may consider an adaptive Gaus-
sian quadrature scheme (aGQ). It involves the calculation, at each step of
the algorithm, of the posterior modes and curvatures of the random parame-
ter distribution. These are used to shift and scale GQ locations, placing the
peak of the integrand function at zero. This gives a Gaussian density having
the same logarithmic derivatives up to second order (at the mode) as the
integrand function, see Liu and Pierce (1994). Posterior modes are found by
solving the problem

b̂i = arg max
bi

{
log
∑
si

f(yi, si,bi)

}
, (14)

while posterior curvatures are locally approximated by the inverse of the
negative Hessian matrix, evaluated at the mode:

Ĥi =

[
−
∂2 log

∑
si
f(yi, si,bi)

∂bi∂bT
i

]
bi=b̂i

. (15)

Denoting by Γi the Cholesky factorization of Ĥ
−1
i , we approximate the inte-

gral in equation (11) through the following weighted sum:∫
Sit(ψ | Sit = h,bi)fb|sy(bi | Sit = h,yi)dbi '

'
√

2q|Γi|
∑
g1...gq

Sit(ψ | Sit = h, b̂
?

g1...gq
)fb|sy(b̂

?

g1...gq
| Sit = h,yi)e

‖bg1...gq‖
2

wg,

(16)

where b̂
?

g1...gq
= b̂i +

√
2Γibg1...gq .

As noticed by Pinheiro and Bates (1995), ordinary quadrature is a determin-
istic version of Monte Carlo integration (MC), while adaptive quadrature
is a deterministic version of importance sampling (IS). Generally, IS turns
out to be computationally more efficient when compared to standard MC
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integration; similarly, when compared to the standard Gaussian quadrature
rule, aGQ usually needs a reduced number of locations, see e.g. Rizopoulos
(2012). Therefore, we may expect that, also in the mHMM context, adaptive
quadrature routines produce more precise parameter estimates with a lower
number of quadrature points and limited convergence issues. We should how-
ever bear in mind that, in the mHMM context, computation of the random
parameter posterior distribution may represent a challenging task. Such a
distribution is obtained by summing over all possible states of the hidden
Markov chain; while the sum can be efficiently solved by using an appro-
priate matrix product, the step still remains computationally demanding.
In fact, we may encounter flat regions in the likelihood surface that do not
help in deriving accurate estimates for the posterior modes and curvatures.
To skip the problem of working with the posterior distribution of bi, Alt-
man (2007) proposed to use a MCEM algorithm for parameter estimation.
However, as pointed out by Hartzel et al. (2001), an important issue with
standard Monte Carlo EM procedures concerns the number of points that
have to be sampled for the integral to be adequately approximated. Altman
(2007) found that a good value for the number of samples to be drawn is
B = 5000, while Chaubert-Pereira et al. (2010) used an adaptive approach
by sampling a progressively increasing number of points as a function of the
current iteration number. In both cases, clearly, the algorithm for parameter
estimation is quite demanding.
In the context of joint models for longitudinal and time to event data, Ri-
zopoulos (2012) introduces a pseudo-adaptive quadrature scheme to reduce
the computational load of the fully adaptive approach. When the number
of repeated measurements increases, it is not necessary to update posterior
modes and curvatures of the random parameters at each step of the algo-
rithm. These quantities are estimated only at the beginning of the optimiza-
tion routine and are used to centre and scale Gauss-Hermite locations which,
therefore, remain constant throughout the iterations.
In the present context, we may define a similar approach. Let us re-write the
posterior density of the random parameters (on the log scale) as

log
[
fb|y(bi | yi)

]
∝ log [fb(bi)] + log

{∑
si

[
fy|sb(yi | si,bi)fs(si)

]}
.

As Ti increases, log
∑

si

[
fy|sb(yi | si,bi)fs(si)

]
is the leading term. Following

these arguments, standard quadrature locations are centred and scaled only
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once via posterior modes and curvatures computed at the first step of the
algorithm by marginalizing the mHMM with respect to the hidden Markov
process. Our practical experience with an algorithm based on the multi-
ple summation

∑
si1
· · ·
∑

siTi
is that such a complex structure often leads

to issues of numerical instability. Therefore, a good strategy to derive ap-
proximate posterior modes and curvatures starts from fitting a (non linear)
mixed model based on fy|b(yi | bi) for which, in turn, we assume the same
parametric form as fy|sb(yi | si,bi).
As a result, Gauss-Hermite locations are centred and scaled only once, with
respect to the random parameter posterior modes, b̄i, and curvatures, H̄

−1
i ,

obtained by estimating either a mHMM (PaGQ1) or a mixed model (PaGQ2)
with canonical parameter defined by

θit = x′itβ + z′itbi.

Denoting by Γ̄i the Cholesky factor of the posterior curvature H̄
−1
i (evaluated

at the posterior mode), the following approximation holds:∫
Sit(ψ | Sit = h,bi)fb|sy(bi | Sit = h,yi)dbi '

'
√

2q|Γ̄i|
∑
g1...gq

Sit(ψ | Sit = h, b̄
?
g1...gq

)fb|sy(b̄
?
g1...gq

| Sit = h,yi)e
‖bg1...gq‖

2

wg,

(17)

where, b̄
?
g1...gq

= b̄i +
√

2Γ̄ibg1...gq , gl = 1, . . . , G, l = 1, . . . , q.
Gaussian quadrature approximations are based on a parametric specification
of the random parameter distribution which could be less efficient and less
appropriate to describe multimodal, strongly asymmetric, distributions. To
avoid potential bias due to misspecification of the random parameter dis-
tribution, Maruotti and Rydén (2009) estimate locations and masses of the
mixing distribution by using a NPML approach. However, when we move
from random intercept to random parameter models, the NPML approach is
known to face some difficulties in recovering the true covariance structure.
Neuhaus et al. (2013) noticed that, even when the random parameter distri-
bution is misspecified, the bias in the parameter estimates is often limited;
however, caution is needed since the findings heavily depend on the model
structure.
In the next section, results obtained from a large scale simulation study are
presented to evaluate the quality of the approximation obtained under the
different quadrature schemes we have discussed so far.
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5. Simulation study

To compare the performance of the proposed approximations, we have
conducted the following simulation study.

5.1. Simulation design

We have randomly drawn B = 500 samples from a mHMM consider-
ing conditional Gaussian, Poisson and Bernoulli distributions. Four possi-
ble experimental scenarios have been considered, varying the sample size,
n = 250, 500, and the number of (equally spaced) times, T = 6, 10. Since
missingness is a common problem in longitudinal data, we have considered
a missing at random drop-out process. For each unit, the last measure-
ment time (Ti) has been drawn from a discrete distribution defined over the
support {1, ..., T}, with Pr(Ti = T ) = 0.8 and Pr(Ti = t) = 0.2/(T − 1),
∀t ∈ {1, . . . , T − 1}. In all cases, we have considered two hidden states
(m = 2) and the following regression model to describe the canonical param-
eter in the h-th state, h = 1, . . . ,m:

θit(Sit = h,bi) = [1, zit]
′φ+ x′itβh + z′itbi, t = 1, ..., Ti.

The covariates associated with the time-constant random parameters are
zit = [zit1, zit2], with zit1 ∼ Unif(−1, 0) and zit2 = zi2 ∼ N(0, 0.5); the covari-
ates associated with the state-specific effects, xit, have been drawn from a
bivariate Gaussian distribution, MVN (1, 0.5I2).
In the Gaussian case, a constant error variance, σ2

err = 1, has been consid-
ered; fixed parameters have been set to φ = (2, 1.4,−0.6), while state-specific
parameters have been fixed to β1 = (1.6, 1.4) and β2 = (0.9, 0.5).
In the Poisson case, the following set of model parameters has been consid-
ered: φ = (−0.8,−0.6, 0.4); β1 = (0.1, 0.2) and β2 = (0.5, 0.7). Finally, in
the Bernoulli case, we have set φ = (0.5,−0.7,−0.6), β1 = (1.5,−0.4) and
β2 = (0.5,−1.4). Both in the continuous and the discrete data scenarios,
random parameters have been drawn from a multivariate Gaussian distribu-
tion, with upper triangular covariance matrix equal to (1, 0.5, 2). Initial and
transition probabilities for the Markov chain have been fixed to

δ = (0.2, 0.8) and Q =

(
0.7 0.3
0.1 0.9

)
. (18)

Therefore, with time passing by, the second state of the chain is more and
more frequent, and the first one becomes almost empty. This choice has
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been done in order to study the precision of parameter estimates associated
to hidden states with low probability. For each of the quadrature schemes, we
have considered G = 7, 9, 11 quadrature points to approximate the integrals
but we did not find any relevant change. Therefore, we have chosen G =
7 to guarantee a good balance between quality of the approximation and
computational complexity. In the following subsections simulation results
are discussed.

5.2. Simulation results - the Gaussian case

Tables 1 and 2 report the bias and the standard deviation of parameter
estimates calculated over B = 500 samples. We must remind that, in this
case, mHMM reduces to a simple HMM with a more complex covariance
structure. In fact, we have

[Yi | si,bi] ∼ MVN(θi(si,bi), σ
2I)

[bi] ∼ MVN(0,D)

}
⇒ [Yi | si] ∼ MVN(θi(si), σ

2I+ZiDZ′i).

Therefore, all the approaches refer to the same (closed form) solution and
we do not expect relevant differences in the precision of parameter estimates
and in the computational times. We show the results obtained from the
standard (GQ), the fully adaptive (aGQ) and the pseudo-adaptive quadra-
ture approach starting from a mHMM (PaGQ1) with G = 7 locations.
As we may notice, in all the scenarios, the three approaches return quite
comparable results, both in terms of bias and standard deviation. A higher
variability can be observed for the variance components when compared to
the other parameter estimates, but this variability reduces with increasing T
and n. When a limited number of repeated measurements is available (i.e.
T = 6), PaGQ1 produces parameter estimates that generally have a reduced
bias than that of the standard GQ approach, but a higher variability. How-
ever, as the number of times increases (T = 10), we may observe that, even
in this toy scenario, PaGQ1 ensures a slight reduction of the approximation
error supplied by the standard Gaussian quadrature approach. Thus, the
results obtained through the proposed quadrature approaches are coherent
with the simulation design. Only slight, mainly numerical, differences, can
be appreciated when comparing the different methods. Therefore, we may
proceed to consider cases where the integrals defining the log-likelihood need
to be numerically evaluated, in order to understand the relative behaviour of
the analysed approaches.
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Table 1: Simulation study. Mean parameter estimates for the Gaussian mHMM with
n = 250,m = 2 and G = 7

T = 6
GQ aGQ PaGQ1

BIAS SD BIAS SD BIAS SD

δ1 0.2 0.024 0.095 0.023 0.090 0.012 0.095
δ2 0.8 -0.024 0.095 -0.023 0.090 -0.012 0.095
q11 0.7 -0.051 0.181 -0.043 0.158 -0.041 0.185
q12 0.3 0.051 0.181 0.043 0.158 0.041 0.185
q21 0.1 0.152 0.280 0.131 0.260 0.126 0.274
q22 0.9 -0.152 0.280 -0.131 0.260 -0.126 0.274
φ0 2 -0.003 0.122 0.000 0.123 -0.004 0.124
φ1 1.4 -0.003 0.137 -0.002 0.137 0.011 0.144
φ2 -0.6 0.000 0.184 -0.003 0.160 0.009 0.193
β11 1.6 -0.027 0.127 -0.019 0.121 -0.026 0.125
β21 1.4 -0.031 0.137 -0.022 0.133 -0.034 0.137
β12 0.9 0.127 0.272 0.108 0.263 0.093 0.282
β22 0.5 0.172 0.331 0.148 0.313 0.131 0.332
σ11 1 0.056 0.242 0.033 0.237 0.044 0.282
σ12 0.5 -0.025 0.237 -0.024 0.233 0.014 0.279
σ22 2 0.060 0.541 0.013 0.506 -0.126 0.735

T = 10
GQ aGQ PaGQ1

BIAS SD BIAS SD BIAS SD

δ1 0.2 0.027 0.087 0.022 0.081 0.019 0.087
δ2 0.8 -0.027 0.087 -0.022 0.081 -0.019 0.087
q11 0.7 -0.063 0.177 -0.043 0.139 -0.058 0.165
q12 0.3 0.063 0.177 0.043 0.139 0.058 0.165
q21 0.1 0.119 0.251 0.097 0.233 0.106 0.241
q22 0.9 -0.119 0.251 -0.097 0.233 -0.106 0.241
φ0 2 0.001 0.091 0.002 0.090 -0.002 0.090
φ1 1.4 -0.007 0.109 -0.009 0.110 0.003 0.113
φ2 -0.6 -0.003 0.183 -0.004 0.149 -0.002 0.176
β11 1.6 -0.030 0.103 -0.020 0.096 -0.028 0.100
β21 1.4 -0.034 0.120 -0.021 0.104 -0.031 0.110
β12 0.9 0.112 0.245 0.087 0.219 0.098 0.234
β22 0.5 0.144 0.309 0.105 0.271 0.117 0.288
σ11 1 0.041 0.192 0.015 0.184 0.016 0.190
σ12 0.5 -0.010 0.207 -0.007 0.201 0.009 0.214
σ22 2 0.075 0.459 0.018 0.427 0.021 0.452
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Table 2: Simulation study. Mean parameter estimates for the Gaussian mHMM with
n = 500,m = 2 and G = 7

T = 6
GQ aGQ PaGQ1

BIAS SD BIAS SD BIAS SD

δ1 0.2 0.021 0.088 0.018 0.079 0.005 0.082
δ2 0.8 -0.021 0.088 -0.018 0.079 -0.005 0.082
q11 0.7 -0.075 0.185 -0.052 0.147 -0.057 0.182
q12 0.3 0.075 0.185 0.052 0.147 0.057 0.182
q21 0.1 0.148 0.264 0.121 0.246 0.122 0.256
q22 0.9 -0.148 0.264 -0.121 0.246 -0.122 0.256
φ0 2 0.002 0.084 0.003 0.083 -0.001 0.084
φ1 1.4 -0.005 0.093 -0.007 0.093 0.006 0.101
φ2 -0.6 -0.005 0.130 -0.005 0.117 -0.003 0.144
β11 1.6 -0.031 0.094 -0.019 0.086 -0.031 0.089
β21 1.4 -0.043 0.111 -0.029 0.105 -0.040 0.105
β12 0.9 0.146 0.253 0.116 0.227 0.110 0.252
β22 0.5 0.178 0.313 0.142 0.285 0.132 0.304
σ11 1 0.040 0.186 0.014 0.178 0.025 0.217
σ12 0.5 -0.011 0.169 -0.011 0.163 0.025 0.208
σ22 2 0.118 0.398 0.064 0.376 -0.066 0.599

T = 10
GQ aGQ PaGQ1

BIAS SD BIAS SD BIAS SD

δ1 0.2 0.023 0.084 0.016 0.077 0.016 0.082
δ2 0.8 -0.023 0.084 -0.016 0.077 -0.016 0.082
q11 0.7 -0.063 0.181 -0.044 0.143 -0.062 0.178
q12 0.3 0.063 0.181 0.044 0.143 0.062 0.178
q21 0.1 0.126 0.256 0.111 0.246 0.117 0.251
q22 0.9 -0.126 0.256 -0.111 0.246 -0.117 0.251
φ0 2 0.006 0.065 0.008 0.065 0.004 0.065
φ1 1.4 -0.004 0.080 -0.006 0.080 0.007 0.086
φ2 -0.6 0.000 0.123 -0.003 0.101 0.011 0.127
β11 1.6 -0.028 0.086 -0.021 0.079 -0.028 0.082
β21 1.4 -0.044 0.104 -0.035 0.099 -0.043 0.098
β12 0.9 0.114 0.228 0.091 0.213 0.099 0.224
β22 0.5 0.158 0.293 0.127 0.268 0.141 0.290
σ11 1 0.047 0.141 0.021 0.137 0.022 0.140
σ12 0.5 -0.023 0.133 -0.017 0.133 0.003 0.148
σ22 2 0.057 0.341 0.009 0.323 0.009 0.345
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5.3. Simulation results - the Poisson case
Tables 3 and 4 report the results for the Poisson scenario. In this case, the

posterior distribution of the random parameters takes a further step away
from the standard Gaussian. Figure 1 reports the response variable distri-
bution of a generic simulation sample to give an idea of how far from the
Gaussianity we are.
By looking at simulation results, we may observe that all the considered
approximation methods turn out to be less accurate than in the previous
case. If we compare the standard and the adaptive Gaussian quadrature
approaches, we may observe a reduced bias (particularly for the variance
components) and a reduced variability of parameter estimates (in some cases
this variability is more than halved, e.g. for the estimates of fixed parameters
in the longitudinal data model) when the aGQ approach is employed. The
gap between the two methods seems to increase as n and T increase.
Focusing on the pseudo-adaptive approaches, as expected, the quality of re-
sults is a bit lower when compared to the aGQ approximation, even if the
distance seems to reduce with increasing sample size and number of measure-
ment occasions. On the other hand, if we consider GQ as the competitor,
both PaGQ1 and PaGQ2 turn out to be globally more efficient. As it has
been said before, posterior modes and curvatures for PaGQ1 come from a
mHMM while for PaGQ2 from the corresponding mixed parameter model.
In both cases, locations are centred and scaled only once, at the beginning
of the estimation algorithm. By looking at Tables 3 and 4, it is clear that
the former method provides results with a reduced variability than those
obtained from the standard approach but with some bias issues. Probably,
these are due to flat likelihood surfaces that do not allow to correctly iden-
tify the posterior modes and curvatures of the random parameters bi. On
the other hand, PaGQ2 seems to overcome such problems leading to better
results both in terms of bias and standard deviation. This can somehow
be explained by the simplified likelihood function that has to be optimized
in the internal sub-routine of the algorithm (i.e. the likelihood of a mixed
model in place of the likelihood of a mHMM). As a result, global maxima
are easier to be detected and standard abscissas may be more appropriately
centred and scaled. Based on these findings, we may conclude that PaGQ2

may be preferred with respect to PaGQ1. Clearly, the gap between GQ and
PaGQ2 (but also between GQ and PaGQ1) is bigger for parameters which
are directly related to the bi’s, that is to the longitudinal model parameter
(in particular φ1 and φ2) and the variance component estimates.
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Figure 1: Response variable distribution for the Poisson mHMM

0
10

0
20

0
30

0
40

0
50

0
60

0

y

F
re

qu
en

cy

0 2 4 6 8 10 13 17 20 25 28 39 54

5.4. Simulation results - the Bernoulli case

Tables 5 and 6 report simulation results for the Bernoulli case. In such
a scenario, the optimization routine required to derive parameter estimates
and the sub-routine required to compute the posterior modes and curvatures
of the random parameter distribution are quite demanding. We have done
only some empirical attempts to calculate estimates under the fully adaptive
approach that, however, is not feasible in this context due to the high com-
putational times: GQ and PaGQ seem the only viable ways to approximate
the intractable integrals that characterize mHMMs. Moreover, as regards the
pseudo-adaptive approximations, based on the findings of the Poisson data
scenario described in Section 5.3, we have decided to show results only for
the PaGQ2 approach.
As it can be easily noticed, the quality of results obtained under such a
scenario is lower than that observed for the Gaussian and the Poisson case.
This reflects the higher complexity of the likelihood function to be optimized
to derive parameter estimates. Comparing the standard and the pseudo-
adaptive approximation, it can be noticed that, when a reduced sample size
is available, the latter outperforms the standard approach in most of the
cases, especially in terms of standard deviation. As expected, differences
may be mainly observed for the longitudinal model parameters and for the
variance components, while no relevant differences can be found for the pa-
rameters of the hidden Markov chain. Some exceptions are, however, present,
mainly for the parameters in the longitudinal data model associated with the
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Table 3: Simulation study. Mean parameter estimates for the Poisson mHMM with n =
250,m = 2 and G = 7

T = 6
GQ aGQ PaGQ1 PaGQ2

BIAS SD BIAS SD BIAS SD BIAS SD

δ1 0.2 0.085 0.111 0.077 0.098 0.097 0.115 0.086 0.113
δ2 0.8 -0.085 0.111 -0.077 0.098 -0.097 0.115 -0.086 0.113
q11 0.7 -0.065 0.154 -0.049 0.142 -0.113 0.151 -0.082 0.140
q12 0.3 0.065 0.154 0.049 0.142 0.113 0.151 0.082 0.140
q21 0.1 0.093 0.119 0.080 0.119 0.129 0.128 0.103 0.121
q22 0.9 -0.093 0.119 -0.080 0.119 -0.129 0.128 -0.103 0.121
φ0 -0.8 -0.018 0.154 -0.017 0.121 -0.036 0.139 -0.040 0.128
φ1 -0.6 0.079 0.239 0.016 0.139 0.136 0.189 0.040 0.160
φ2 0.4 0.019 0.391 0.007 0.177 -0.008 0.205 0.005 0.176
β11 0.5 -0.093 0.245 -0.071 0.181 -0.142 0.230 -0.092 0.201
β21 0.7 -0.102 0.250 -0.079 0.211 -0.153 0.256 -0.119 0.241
β12 0.1 0.014 0.163 0.004 0.154 0.045 0.170 0.016 0.154
β22 0.2 0.017 0.179 0.000 0.144 0.041 0.166 0.023 0.160
σ11 1.0 0.177 0.344 0.014 0.216 0.184 0.280 0.040 0.234
σ12 0.5 0.006 0.268 -0.022 0.227 -0.028 0.250 -0.018 0.228
σ22 2.0 0.200 0.577 -0.096 0.448 0.092 0.566 0.046 0.470

T = 10
GQ aGQ PaGQ1 PaGQ2

BIAS SD BIAS SD BIAS SD BIAS SD
δ1 0.2 0.080 0.102 0.043 0.080 0.066 0.088 0.047 0.080
δ2 0.8 -0.080 0.102 -0.043 0.080 -0.066 0.088 -0.047 0.080
q11 0.7 -0.014 0.091 -0.014 0.086 -0.057 0.091 -0.042 0.085
q12 0.3 0.014 0.091 0.014 0.086 0.057 0.091 0.042 0.085
q21 0.1 0.062 0.085 0.033 0.066 0.069 0.070 0.048 0.066
q22 0.9 -0.062 0.085 -0.033 0.066 -0.069 0.070 -0.048 0.066
φ0 -0.8 -0.026 0.137 -0.011 0.095 -0.032 0.103 -0.037 0.094
φ1 -0.6 0.104 0.254 0.016 0.114 0.170 0.191 0.038 0.136
φ2 0.4 0.034 0.372 0.008 0.162 -0.014 0.206 0.008 0.165
β11 0.5 -0.064 0.178 -0.028 0.114 -0.052 0.122 -0.044 0.131
β21 0.7 -0.068 0.188 -0.032 0.140 -0.073 0.162 -0.044 0.127
β12 0.1 -0.001 0.132 -0.003 0.091 0.003 0.094 0.001 0.087
β22 0.2 -0.008 0.139 -0.011 0.089 0.004 0.098 -0.004 0.080
σ11 1.0 0.174 0.291 0.011 0.180 0.204 0.284 0.031 0.194
σ12 0.5 0.021 0.231 -0.010 0.178 -0.020 0.202 -0.007 0.180
σ22 2.0 0.235 0.540 -0.156 0.374 0.002 0.456 -0.049 0.378
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Table 4: Simulation study. Mean parameter estimates for the Poisson mHMM with n =
500,m = 2 and G = 7

T = 6
GQ aGQ PaGQ1 PaGQ2

BIAS SD BIAS SD BIAS SD BIAS SD

δ1 0.2 0.086 0.099 0.081 0.082 0.104 0.098 0.083 0.086
δ2 0.8 -0.086 0.099 -0.081 0.082 -0.104 0.098 -0.083 0.086
q11 0.7 -0.044 0.114 -0.020 0.091 -0.070 0.103 -0.054 0.089
q12 0.3 0.044 0.114 0.020 0.091 0.070 0.103 0.054 0.089
q21 0.1 0.079 0.090 0.064 0.075 0.105 0.084 0.078 0.063
q22 0.9 -0.079 0.090 -0.064 0.075 -0.105 0.084 -0.078 0.063
φ0 -0.8 -0.013 0.118 -0.005 0.084 -0.023 0.090 -0.027 0.084
φ1 -0.6 0.061 0.184 0.022 0.098 0.114 0.136 0.036 0.108
φ2 0.4 0.021 0.310 0.004 0.126 -0.010 0.151 0.003 0.137
β11 0.5 -0.087 0.217 -0.063 0.155 -0.106 0.179 -0.074 0.132
β21 0.7 -0.100 0.223 -0.067 0.136 -0.120 0.168 -0.096 0.149
β12 0.1 0.004 0.133 -0.008 0.100 0.013 0.109 0.001 0.088
β22 0.2 0.007 0.135 -0.021 0.096 0.009 0.115 -0.003 0.095
σ11 1 0.150 0.207 0.024 0.147 0.152 0.208 0.037 0.151
σ12 0.5 0.004 0.174 -0.021 0.147 -0.037 0.181 -0.018 0.148
σ22 2 0.195 0.430 -0.127 0.327 0.032 0.412 0.017 0.319

T = 10
GQ aGQ PaGQ1 PaGQ2

BIAS SD BIAS SD BIAS SD BIAS SD
δ1 0.2 0.068 0.084 0.041 0.057 0.066 0.072 0.047 0.060
δ2 0.8 -0.068 0.084 -0.041 0.057 -0.066 0.072 -0.047 0.060
q11 0.7 -0.012 0.069 -0.004 0.055 -0.049 0.061 -0.038 0.060
q12 0.3 0.012 0.069 0.004 0.055 0.049 0.061 0.038 0.060
q21 0.1 0.051 0.071 0.024 0.034 0.063 0.044 0.042 0.035
q22 0.9 -0.051 0.071 -0.024 0.034 -0.063 0.044 -0.042 0.035
φ0 -0.8 -0.020 0.105 -0.001 0.061 -0.027 0.080 -0.038 0.067
φ1 -0.6 0.082 0.220 0.022 0.084 0.180 0.161 0.034 0.093
φ2 0.4 0.023 0.333 0.009 0.116 -0.024 0.169 0.000 0.123
β11 0.5 -0.044 0.134 -0.023 0.062 -0.056 0.088 -0.043 0.090
β21 0.7 -0.050 0.134 -0.026 0.067 -0.061 0.085 -0.041 0.064
β12 0.1 -0.004 0.108 -0.005 0.048 0.008 0.062 0.003 0.057
β22 0.2 -0.014 0.104 -0.016 0.048 -0.004 0.065 -0.006 0.047
σ11 1.0 0.143 0.240 0.001 0.121 0.195 0.202 0.021 0.123
σ12 0.5 0.005 0.166 -0.022 0.129 -0.048 0.155 -0.025 0.126
σ22 2.0 0.247 0.453 -0.152 0.265 0.016 0.345 -0.029 0.264
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first hidden state (that progressively becomes less referenced), the covariance
between the random parameters bi1 and bi2 and the variance of bi2. In these
cases, estimates obtained through PaGQ2 are more biased but less variable
than those obtained through the standard GQ approach. All in all, RMSE
is still lower for the former method, but this points out that the adaptive
scheme needs more “signal” to work satisfactorily. As regards the variance
components estimates (σ12, σ22), with increasing T , the pseudo-adaptive es-
timates fill almost completely the gap with those obtained through GQ en-
suring lower standard deviation across samples. As it will be discussed in
Section 5.5, under the GQ approach, relevant (non) convergence issues have
been encountered, leading to a reduced number of valid samples. For this
reason, to ensure the comparability of results obtained under the two ap-
proximation methods, we have decided to enlarge the number of simulated
samples generated under the GQ approach in order to get B = 500. This
can somehow influence the simulation results presented in Table 5: the bias
and the standard deviation of parameters under the GQ approach have been
calculated for the “lucky samples” only, while, for the PaGQ2 approach, we
have taken into account also the “unlucky” ones.
When focusing on the simulation scenarios with n = 500, the PaGQ2 method
seems to outperform the GQ one, especially with increasing T . More in de-
tail, a reduced bias may be observed for the parameters in the longitudinal
data model and, more substantially, for the variance components. As far
as the standard deviation of parameter estimates is concerned, simulation
results highlight the presence of more concentrated estimates when applying
PaGQ2 in place of GQ for almost all the parameter estimates and all the
considered simulation scenarios. As before, estimated initial and transition
probabilities seem not to be influenced by the method used for the inte-
gral approximations; as a result, no significant differences may be observed
between GQ and PaGQ2.

5.5. Simulation results - computational complexity and convergence

Figures 2-4 show the distribution of the CPU time required for conver-
gence in the most computationally intensive scenario (n = 500, T = 10), for
the Gaussian, the Poisson and the Bernoulli case, respectively. We did not
fix the maximum number of iterations but rather check for convergence by
looking at the relative increment of the log-likelihood between consecutive
iterations. The convergence threshold was set at ε = 1e− 6. All CPU times
refer to an Intel I5 architecture (3.3 Ghz).
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Table 5: Simulation study. Mean parameter estimates for the Bernoulli mHMM with
n = 250,m = 2 and G = 7

T = 6
GQ PaGQ2

BIAS SD BIAS SD

δ1 0.2 0.160 0.204 0.150 0.207
δ2 0.8 -0.160 0.204 -0.150 0.207
q11 0.7 -0.012 0.171 -0.020 0.183
q12 0.3 0.012 0.171 0.020 0.183
q21 0.1 0.146 0.188 0.161 0.200
q22 0.9 -0.146 0.188 -0.161 0.200
φ0 0.5 -0.011 0.223 0.004 0.203
φ1 -0.7 -0.090 0.358 -0.005 0.333
φ2 -0.6 -0.032 0.210 0.010 0.179
β11 0.5 0.176 0.361 0.190 0.332
β21 1.5 0.531 1.224 0.195 0.707
β12 -1.4 0.096 0.853 0.239 0.708
β22 -0.4 -0.146 1.387 -0.098 0.755
σ11 1 0.665 1.064 0.239 0.997
σ12 0.5 -0.028 0.623 -0.114 0.490
σ22 2 0.137 0.903 -0.256 0.765

T = 10
GQ PaGQ2

BIAS SD BIAS SD

δ1 0.2 0.096 0.165 0.099 0.190
δ2 0.8 -0.096 0.165 -0.099 0.190
q11 0.7 0.000 0.126 0.006 0.136
q12 0.3 0.000 0.126 -0.006 0.136
q21 0.1 0.067 0.123 0.066 0.129
q22 0.9 -0.067 0.123 -0.066 0.129
φ0 0.5 0.003 0.177 0.012 0.170
φ1 -0.7 -0.027 0.287 0.019 0.281
φ2 -0.6 -0.006 0.180 0.009 0.159
β11 0.5 0.088 0.265 0.089 0.263
β21 1.5 0.258 0.556 0.129 0.357
β12 -1.4 0.004 0.634 0.084 0.612
β22 -0.4 0.015 0.310 -0.010 0.320
σ11 1 0.248 0.647 0.056 0.683
σ12 0.5 -0.004 0.442 -0.071 0.372
σ22 2 0.104 0.659 -0.129 0.628
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Table 6: Simulation study. Mean parameter estimates for the Bernoulli mHMM with
n = 500,m = 2 and G = 7

T = 10
GQ PaGQ2

BIAS SD BIAS SD

δ1 0.2 0.118 0.149 0.114 0.155
δ2 0.8 -0.118 0.149 -0.114 0.155
q11 0.7 -0.012 0.130 -0.012 0.131
q12 0.3 0.012 0.130 0.012 0.131
q21 0.1 0.099 0.141 0.109 0.157
q22 0.9 -0.099 0.141 -0.109 0.157
φ0 0.5 -0.004 0.156 -0.004 0.152
φ1 -0.7 -0.028 0.236 0.006 0.231
φ2 -0.6 -0.008 0.140 0.014 0.129
β11 0.5 0.140 0.248 0.142 0.260
β21 1.5 0.260 0.499 0.133 0.426
β12 -1.4 0.102 0.549 0.194 0.524
β22 -0.4 0.032 0.309 0.011 0.264
σ11 1 0.296 0.688 0.111 0.684
σ12 0.5 -0.042 0.399 -0.107 0.352
σ22 2 0.107 0.604 -0.144 0.596

T = 10
GQ PaGQ2

BIAS SD BIAS SD

δ1 0.2 0.085 0.120 0.076 0.122
δ2 0.8 -0.085 0.120 -0.076 0.122
q11 0.7 0.011 0.089 0.016 0.087
q12 0.3 -0.011 0.089 -0.016 0.087
q21 0.1 0.047 0.073 0.039 0.070
q22 0.9 -0.047 0.073 -0.039 0.070
φ0 0.5 0.006 0.123 0.006 0.120
φ1 -0.7 -0.022 0.181 -0.008 0.178
φ2 -0.6 -0.006 0.122 0.005 0.109
β11 0.5 0.089 0.179 0.079 0.176
β21 1.5 0.173 0.248 0.111 0.208
β12 -1.4 0.074 0.380 0.102 0.342
β22 -0.4 0.033 0.309 0.025 0.258
σ11 1 0.141 0.461 0.013 0.456
σ12 0.5 -0.017 0.301 -0.052 0.276
σ22 2 0.065 0.425 -0.073 0.365
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Figure 2: Computational time (in minutes) for the Gaussian mHMM, with n = 500 and
T = 10
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As it can be observed, in Gaussian and Poisson data scenarios, the fully
adaptive quadrature scheme leads to a substantial increase in computational
times. In the former case, 12.84, 33.71 and 13.64 minutes (on average) are
required to reach the convergence by the standard, the adaptive and the
pseudo-adaptive quadrature rule (PaGQ1), respectively. When fitting the
model for conditional Poisson responses, the algorithms reach the conver-
gence in 25.85, 48.86, 23.89 and 18.74 minutes (on average) when GQ, aGQ,
PaGQ1 and PaGQ2 are applied, respectively. In this simulation scenario, the
non linear nature of the longitudinal score function consistently increases
times to convergence. While in the Gaussian case the standard and the fully
adaptive GQ routines did not pose any problem, in the Poisson case we faced
some convergence issues represented by the long right tail of the correspond-
ing distributions of computational times.
In this latter scenario, as far as the pseudo-adaptive routines are concerned,
see Figure 3, several comments are possible. The median CPU time required
to converge is, somehow, comparable to those of the standard GQ approach.
However, it is worth noticing that, in such a framework, PaGQ approaches
do not have the long right tails that, instead, can be observed both for the
standard and the fully adaptive scheme. The reasons behind such results are
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Figure 3: Computational time (in minutes) for the Poisson mHMM, with n = 500 and
T = 10
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twofold. On one hand, the GQ approach faces some difficulties in providing
reliable estimates for the random parameter covariance matrix and, thus, an
increase in the time to convergence occurs. It is interesting to highlight that,
because of these difficulties, some of the simulated samples have been dis-
carded from the analysis since the GQ algorithm did not reach convergence,
even if this happened in a very limited number (2.4%) of cases. On the other
hand, PaGQ schemes avoid the internal optimization routine invoked at each
step of the EM algorithm when the aGQ approximation is used. This opti-
mization can be quite complex due to the shape of the likelihood function
surface. In particular, under the aGQ approach, we have observed a ques-
tionable performance for D̂ at the initial iterations of the EM algorithm. For
this reason, a higher number of iterations is required to move the estimates in
the right direction. As regards the comparison between PaGQ1 and PaGQ2,
it is interesting to notice that using posterior modes and curvatures from
a mixed model clearly allows to better initialize the algorithm. This seems
to converge in a reduced number of iterations as it is clear from the more
concentrated distribution in the fourth panel of Figure 3, when compared to
the first and the third ones.
As far as the Bernoulli data scenario is concerned, see Figure 4, it can be
noticed that the two routines we have compared (GQ and PaGQ2) do not
present relevant differences in terms of computational load. In both cases, the
time to convergence is consistently higher than those observed for the Pois-
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Figure 4: Computational time (in minutes) for the Bernoulli mHMM, with n = 500 and
T = 10
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Table 7: Proportion of samples discarded from the analysis due to convergence issues

GQ PaGQ2

n = 250, T = 6 28.4 4.86
n = 250, T = 10 16.92 3.29
n = 500, T = 6 14.80 1.20
n = 500, T = 10 6.80 0.20

son and the Gaussian data scenarios. In fact, on average, 87.77 and 88.22
minutes are required to compute parameter estimates when applying GQ
and PaGQ2, respectively: as we move far from (conditional) Gaussianity, the
parameter estimation for mHMMs progressively becomes quite a demanding
task. Besides these considerations, the pseudo-adaptive approach still turns
out to be more convenient. In Table 7, we show the proportion of samples
that have been discarded from the analysis due to lack of convergence or
to numerical errors caused by improper values of the variance components.
As it is clear, the pseudo-adaptive approach is significantly more under con-
trol than the GQ one; this latter approach experiments relevant convergence
issues, especially when small sample sizes are considered. Similar to the
Poisson case, these are often due to variance component values that go to-
wards zero. This finding can somehow justify the similarities between GQ
and PaGQ2 in terms of computational load in this simulation scenario. This
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is in contrast with what we have found for the Poisson data case. Indeed, for
the Bernoulli case, only the “lucky” samples have been taken into considera-
tion for the GQ approximation; therefore, the algorithm seems to reach the
convergence in a reduced time when this latter approximation is employed.
On the other hand, results observed for PaGQ2 may be influenced by the
“unlucky” samples that, instead, require more iterations to converge.

6. Concluding remarks

In this paper, approximations based on different Gaussian quadrature
schemes have been compared for ML estimation in mHMMs. The basic
assumption underlying these models is that unobserved heterogeneity may
lead to dependence between measures recorded on the same individual. This
dependence may be represented through zero-mean Gaussian random pa-
rameters, as in mixed models, or may be represented through a time-varying
latent variable with a Markov-type structure, as in HMMs. When both are
present, mHMMs arise. In such a framework, parameter estimation requires
the calculation of multiple integrals which, generally, have to be numerically
evaluated.
In the present work, standard Gaussian quadrature has been compared with
adaptive and pseudo-adaptive quadrature schemes. The latter approaches
aim at improving the quality of the approximation by centring and scaling
standard locations via posterior modes and curvatures of the random param-
eter distribution. In the adaptive scheme, this transformation is performed
at each step of the algorithm, while in the pseudo-adaptive one, it is per-
formed only once, at the first iteration. To our knowledge, this is the first
effort to use adaptive schemes in mHMMs and to compare the quadrature
schemes in a large scale simulation study.
Based on the simulation results, we can conclude that the adaptive Gaus-
sian quadrature scheme consistently reduces the approximation error of the
standard Gaussian quadrature approximation. This improvement is more
evident as we move far from (conditionally) Gaussian responses; in these
cases, Gauss-Hermite locations do not allow to properly identify where the
main mass of the integrand is located. On the other hand, the computational
load required to derive parameter estimates consistently grows, making such
an approach quite demanding. Simulation results show that the pseudo-
adaptive schemes represent an interesting alternative to both the standard
and the fully adaptive approximation when a sufficient number of repeated
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measurements per unit is available (here T ≥ 6). In this case, the quality of
the parameter estimates obtained by centring and scaling standard quadra-
ture locations only at the first iteration of the EM algorithm results in a clear
improvement over GQ while having a similar computational effort.
In our development, we have taken into consideration the presence of vary-
ing number of time measurements for each sample unit. A common problem
to deal with is the presence of a potentially informative drop-out, i.e. of a
missing data generation process that may be influenced by both observed
and unobserved longitudinal responses. In such a situation, the missing data
mechanism has to be taken into account to obtain consistent estimates. A ref-
erence is the shared parameter model proposed by Bartolucci and Farcomeni
(2015) where a mHMM based on time-constant and time-varying intercepts is
applied to multivariate responses in the presence of (discrete time) drop-out.
A further proposal in the HMM literature has been introduced by Maruotti
(2015) within the class of pattern mixture models.

Appendix A. Calculation of posterior modes and curvatures

As it has been pointed out in the previous sections, estimation of model
parameters requires the calculation of multiple integrals which, often, have
not a closed form and require the use of numerical approximations to be
evaluated. Gaussian quadrature represents a possible solution. Standard
Gauss-Hermite rule approximates integrals through a weighted sum over a
pre-specified set of abscissas. However, as emphasised before, when the inte-
grand function is not centred at zero, the approximation may fail, even for
a large number of quadrature points (see e.g. Rizopoulos 2012). To solve
the problem, an adaptive quadrature scheme can be used instead: a linear
transformation of the standard abscissas is applied to improve the quality
of the approximation. More precisely, the mode and the curvature of the
(individual-specific) log integrand are calculated at each step of the EM al-
gorithm and used to scale and shift standard Gauss-Hermite abscissas placing
the peak of the integrand function around zero.
In this section, we examine in detail the computation of these quantities. To
simplify the notation, all the subscripts in the probability density functions
are suppressed. Starting from the observed data likelihood∫ ∑

si

f(yi, si,bi)dbi,
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we may notice that the integrand function is proportional to the posterior
distribution of the random vector bi; therefore, we may approximate the
integrand with a quantity having the same (log) derivatives up to second
order. To this purpose, posterior modes and curvatures of bi have to be
computed. In the following, the first order derivative of the integrand, on
the logarithmic scale, is derived.

∂ log
[∑

si
f(yi, si,bi)

]
∂bi

=
1∑

si
f(yi, si,bi)

∑
si

∂f(yi, si,bi)

∂bi

=
∑
si

f(yi, si,bi)∑
si
f(yi, si,bi)

∂ log f(yi, si,bi)

∂bi

=
∑
si

f(si | yi,bi)
∂ log f(yi, si,bi)

∂bi
. (A.1)

From expression (A.1), it is clear that the mode of the random coefficient
vector is obtained by finding the zeros of a weighted mean: the complete score
function of each unit is weighted by the distribution of the latent markovian
variables, given the observed data and the random coefficients.
Based on the modelling assumptions introduced in section 2, the complete
data score is given by

∂ log f(yi, si,bi)

∂bi

=
∂

∂bi
log

[
Ti∏
t=1

f(yit | sit,bi)q(sit | sit−1)f(bi)

]

where, for the sake of simplicity, we assume q(si1 | si0) = δ(si1). Omitting all
the components that do not depend on the random vector bi and indicating
with µsit and vsit the response mean value and the variance function for a

30



generic subject i being, at time t, in state sit, we get:

∂ log f(yi, si,bi)

∂bi

=

Ti∑
t=1

∂

∂bi
log f(yit | sit,bi) +

∂

∂bi
log f(bi)

=

Ti∑
t=1

zit

[
∂µsit
∂ηsit

]
v−1sit [yit − µsit ]−D−1bi, (A.2)

Inserting the above results in (A.1) and indicating with esit the model resid-
uals [yit − µsit ], the following expression holds

∂ log
[∑

si
f(yi, si,bi)

]
∂bi

=
∑
si

f(si | yi,bi)

{
Ti∑
t=1

zit

[
∂µsit
∂ηsit

]
v−1sit esit −D−1bi

}
. (A.3)

If a canonical link is employed, the previous equation simplifies to:

∑
si

f(si, | yi,bi)

{
Ti∑
t=1

zitesit −D−1bi

}
(A.4)

since, in this case, we have
∂µsit
∂ηsit

=
∂µsit
∂θsit

= vsit .

Considering (A.4) as the score function, we may derive the negative Hessian
as follows:

Hi = −
∂ log

[∑
si
f(yi, si,bi)

]
∂bib

T
i

= −
∑
si

[
Ti∑
t=1

zitesit −D−1bi

] [
∂f(si | yi,bi)

∂bT
i

]
+

−
∑
si

f(si | yi,bi)
∂
{∑Ti

t=1 zitesit −D−1bi

}
∂bT

i

,

which, as it can be easily observed, resembles the i-th unit contribution to the
observed information matrix in the Louis (1982) formula. By straightforward
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calculation, we obtain:

Hi = −
∑
si

f(si | yi,bi)

×

[
Ti∑
t=1

zitesit −D−1bi

] [
∂ log [f(si | yi,bi)]

∂bT
i

]

+
∑
si

f(si | yi,bi)

[
Ti∑
t=1

zitvsitz
T
it + D−1

]
, (A.5)

where the second term is the posterior mean (with respect to f(si | yi,bi))
of the complete-data information on bi. By doing a little algebra, the first
term in expression (A.5) can be computed as follows:

Ai = −
∑
si

f(si | yi,bi)

×

[
Ti∑
t=1

zitesit −D−1bi

][
∂ log [f(si | yi,bi)]

∂bT
i

]

= −

{∑
si

f(si | yi,bi)

[
Ti∑
t=1

zitesit −D−1bi

]

×

[
Ti∑
t=1

zitesit −D−1bi

]T+

{∑
si

f(si | yi,bi)

×

[
Ti∑
t=1

zitesit −D−1bi

][
∂ log

∑
si
f(yi, si,bi)

∂bT
i

]}
.

The last term corresponds to expressions (A.3) and (A.4), i.e. the first deriva-
tive of the log joint distribution of bi and yi. When calculated at b̂i, this
term is null and the individual-specific negative Hessian matrix Hi is given
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by the following expression:

Hi = −
∑
si

f(si | yi,bi)

{[
Ti∑
t=1

zitesit −D−1bi

]

×

[
Ti∑
t=1

zitesit −D−1bi

]T
+
∑
si

f(si | yi,bi)

[
Ti∑
t=1

zitvsitz
T
it + D−1

]
. (A.6)

In the adaptive quadrature approach, posterior modes and curvatures derived
in this appendix are used to modify standard Gaussian quadrature points,
at each step of the EM algorithm. As outlined in section 4, when a pseudo-
adaptive rule is preferred, a linear transformation of standard abscissas is
applied by shifting and scaling the standard locations by using posterior
modes and curvatures computed only at the beginning of the optimization
routine, according to the expressions given in this appendix.
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