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Abstract Longitudinal data are characterized by the dependence between

observations from the same individual. In a regression perspective, such a de-

pendence can be usefully ascribed to unobserved features (covariates) specific

to each individual. On these grounds, random parameter models with time-

constant or time-varying structure are now well established in the generalized

linear model context. In the quantile regression framework, specifications based

on random parameters have only recently known a flowering interest. We start

from the recent proposal by Farcomeni (2012) on longitudinal quantile hidden

Markov models, and extend it to handle potentially informative missing data

mechanisms. In particular, we focus on monotone missingness which may lead

to selection bias and, therefore, to unreliable inferences on model parameters.

We detail the proposed approach by re-analyzing a well known dataset on

the dynamics of CD4 cell counts in HIV seroconverters and by means of a

simulation study.

Keywords Quantile regression · longitudinal data · hidden Markov models ·
latent drop-out classes

1 Introduction

Quantile regression has become a standard tool to model the distribution of

a continuous response variable as a function of a set of observed covariates.

When the interest lies not only on the center of the response distribution
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and/or when the observed data may include some outliers, quantile regres-

sion represents an interesting alternative to standard mean regression. During

the last few years, the basic homogeneous quantile regression model (Koenker

and Bassett, 1978) has been extended to deal with longitudinal responses. To

handle the dependence between measurements taken over time on the same

individual, unit-specific, time-constant, random parameters can be added to

the model specification (as in Geraci and Bottai, 2007; Liu and Bottai, 2009;

Geraci and Bottai, 2014). A potential alternative is to consider time-varying

random parameters. In this perspective, by extending standard hidden Markov

models (Wiggins, 1973), Farcomeni (2012) proposes a linear quantile model

with a random intercept that varies over time according to a first-order hid-

den Markov chain. For a general treatment of hidden Markov models (HMMs)

for longitudinal data see Bartolucci et al (2013). A review of quantile regres-

sion models for repeated observations is provided by Marino and Farcomeni

(2015).

A common feature of longitudinal studies is that individuals may leave

the study before its end. Thus, incomplete individual sequences represent a

further challenge, since not all individuals have the same weight in building

up the log-likelihood function. A major problem is the so-called informative

missingness: once conditioning on the observed covariates and responses, the

selection of units in the study may still depend on future, unmeasured, re-

sponses. When ignored, this missing data generating mechanism may severely

bias parameter estimates and lead to misleading conclusions. Following the

proposals by Roy (2003) and Roy and Daniels (2008), we consider a pattern

mixture representation (Little and Wang, 1993) and develop a linear quantile

hidden Markov model with latent drop-out classes. The idea behind such a

model is that, after conditioning on the observed covariates, differences be-

tween sample units arise due to unobserved heterogeneity. Time-varying ran-

dom parameters with Markovian structure capture differences related to the

dynamics of omitted covariates. A further source of unobserved heterogeneity

may be due to individuals having a different propensity to drop-out from the

study. These sub-populations are identified by adding in the model a latent

multinomial variable, whose ordered categories directly influence the Markov

transition matrix.

The paper is structured as follows: in section 2, the linear quantile hidden

Markov model is briefly reviewed. In section 3, we extend this proposal in a

pattern mixture perspective, by considering latent drop-out classes to capture

individual-specific propensities to leave the study. The modified EM algorithm
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for parameter estimation is discussed in section 4; the proposed method is ap-

plied in section 5 to a well-known benchmark multi-center longitudinal study

on the time progression of CD4 cell numbers in HIV seroconverters. Section

6 discusses the results of a simulation study. Last section contains concluding

remarks and outlines potential, future, research lines.

2 Linear quantile hidden Markov models

Let us suppose a longitudinal study collects repeated measures of a continuous

response variable Yit on a sample of i = 1, . . . , n subjects at time occasions

t = 1, . . . , T . To account for dependence between measurements on the same

statistical unit, a standard approach is to specify a conditional model for

the responses, which are assumed to be independent conditional on a set of

individual-specific latent variables. In the context of generalized linear models

for longitudinal responses, such latent effects may be either time-constant, as

in mixed effect models (Laird and Ware, 1982), or time-varying, as in hid-

den Markov models (Wiggins, 1973). For a combination of both, see Altman

(2007) and Maruotti (2011). While this class of models has quite a long his-

tory in the generalized linear model framework, only recently its scope has

been broadened to quantile regression, see Geraci and Bottai (2007, 2014)

and Liu and Bottai (2009). Models with time-varying parameters have been

introduced by Farcomeni (2012) to model the (conditional) quantiles of a lon-

gitudinal response. This proposal (in the following lqHMM) is based on the

existence of two related processes: a latent process with a Markov structure

and an observed measurement process, whose parameters are defined by the

current state of the hidden Markov chain. Conditional on the state occupied at

a given time occasion, the longitudinal observations from the same individual

are assumed to be independent (local independence assumption).

Let us consider a quantile τ ∈ (0, 1), and denote by Sit(τ) a quantile-

specific, homogeneous, first order, hidden Markov chain. The chain takes values

in the finite set S(τ) = {1, . . . ,m(τ)}; δ(τ) and Q(τ) are the initial probabil-

ity vector and the transition probability matrix of the chain, respectively. The

lqHMM can be specified as follows:

Yit | sit ∼ ALD(µit(sit, τ), σ(τ), τ)

µit (sit, τ) = α(sit, τ) + x′itβ(τ) (1)
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where µ, σ and τ are the location, the dispersion and the skewness parameters

for the asymmetric Laplace distribution. The location parameter is linear in

the time-varying intercept, α(sit, τ), and in the vector of fixed effects β(τ).

The assumption that the response variable has an asymmetric Laplace dis-

tribution, see Geraci and Bottai (2007), is made to recast standard quantile

loss optimization within a maximum likelihood framework. Moving from the

random intercept to a more general random coefficient model, we may write

µit (sit, τ) = x′itβ(τ) + z′itα(sit, τ)

where β(τ) summarizes the fixed effect of observed covariates on the τ -th (con-

ditional) quantile of the response distribution, while α(sit, τ) represents the

individual-specific effects associated to a subset of xit for an individual in state

sit at time occasion t. Based on such modelling assumptions, the individual

contribution to the observed data likelihood can be written as follows:

fY (yi) =
∑
si

fY |S(yi | si)fS(si) (2)

Obviously, this framework leads to quite a general structure of association

between longitudinal measurements. However, this model can not properly

handle incomplete sequences in the presence of an informative missing data

process (Little and Rubin, 2002). In the next section, we extend the current

model specification to account for individual differences in the propensity to

leave the study.

3 Handling informative missingness

Let us consider a measurement process affected by monotone missingness:

for each unit i = 1, . . . , n, the measurements are available at time points

t = 1, . . . , Ti only, with Ti ≤ T . Let us denote by Rit the missing data indi-

cator variable, which is equal to 1 if the i-th subject is not available at the

t-th occasion. Since we consider monotone missingness, Rit = 1 ⇒ Rit′ = 1,

t′ ≥ t = 1, . . . , T . When the drop-out is informative, the missing data process

needs to be properly modelled to reduce the risk of obtaining unreliable pa-

rameter estimates. The drop-out is defined to be informative when, conditional

on observed responses and covariates, the missing data process still depends

on the current, unobserved, values and/or when parameter distinctiveness be-

tween the distribution of Y and R does not hold; Little and Rubin (2002) give

a general treatment of this topic.
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In these cases, a more general model should be defined. In the quantile

regression framework, few attempts have been made to handle informative

missingness. Lipsitz et al (1997) and Yi and He (2009) suggest a GEE ap-

proach (Liang and Zeger, 1986), while Farcomeni and Viviani (2015) consider

a joint model (JM) representation, see Rizopoulos (2012). While this latter

approach is an elegant way to handle dependence between longitudinal re-

sponses and missingness, JMs require the distribution for the missing data

process to be completely specified and this often represents a delicate matter.

Here, we focus on PMMS (PMMs), see Little and Wang (1993). The ratio-

nale for this class of models is that each subject has his/her own propensity

to drop-out from the study. Individuals with similar propensities share some

common observed/unobserved features and the model for the longitudinal re-

sponse is given by a mixture over these patterns. PMMs do not need the

distribution of the missing data generating process to be specified, but, as a

drawback, they are often overparameterized. This issue may be (at least poten-

tially) solved by defining appropriate identifying restrictions. Latent drop-out

(LDO) models (Roy, 2003; Roy and Daniels, 2008) represent a potential step

in this direction. Here, a limited number of LDO classes is considered and

units belonging to the same class are assumed to share common unobserved

characteristics; these influence, either directly or indirectly, the response vari-

able distribution. To explain our proposal, let ζi(τ) = (ζi1(τ), ..., ζiG(τ)) be a

(quantile-specific) multinomial random variable with component ζig(τ) = 1 if

subject i belongs to the g-th LDO class and zero otherwise. These categories

represent ordered propensities to drop-out; that is, we assume that, for g > g′,

units with ζig(τ) = 1 have a lower propensity to leave the study than units

with ζig′(τ) = 1. For a generic quantile τ ∈ (0, 1), the ordering is specified

through the following model:

Pr

(
g∑
l=1

ζil(τ) = 1 | Ti

)
=

exp{λ0g(τ) + λ1(τ)Ti}
1 + exp{λ0g(τ) + λ1(τ)Ti}

. (3)

under the constraint λ0g(τ) ≤ λ0g′(τ) if g < g′. The probability of belonging

to one of the first g classes is, thus, modelled as a monotone function of the

time to drop-out; the probability of a specific class is obtained as the differ-

ence between two adjacent cumulative logits (Agresti, 2010). We prefer the

proportional-odds specification used in Roy and Daniels (2008) over the non-

proportional-odds discussed by Roy (2003) since the common slope and the

constraints above imply that the distribution of ζi(τ) at different values of Ti is

stochastically ordered. We assume that the latent drop-out class variable sum-
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marizes all the dependence between the longitudinal response and the missing

data mechanism. That is, conditional on the LDO class, the two processes are

independent. As it is obvious, LDO classes may influence the response vari-

able distribution in several ways: for example, they may produce class-specific

changes to the fixed effect parameter vector, as in Marino et al (2015). Al-

ternatively, they may produce changes in the locations of the hidden Markov

chain, thus giving rise to a LDO-specific support for the time-varying random

parameters. Here, we discuss a further alternative; we assume that each LDO

class corresponds to a different matrix of transition probabilities. That is, we

consider a (quantile-specific) homogeneous, first order, hidden Markov chain,

Sit(τ), taking values in the finite set S(τ) = {1, . . . ,m(τ)}. The corresponding

initial probability vector is assumed to be constant among LDO classes and

is denoted by δ(τ), while the transition probability matrix Q(g; τ) is specific

to each LDO class, g = 1, . . . , G. This approach shares some features with

the proposal by Maruotti and Rocci (2012), where latent class-specific transi-

tions are considered in the framework of standard HMMs. As it is clear, the

proposed specification covers a range of situations which is more general than

a simple change in the location parameters of the hidden Markov chain. By

allowing Q(·) depend on g, we may define states that are “visited” only by

individuals in a given LDO class, leading to latent class-specific parameter val-

ues. The proposed model is in line with Bartolucci and Farcomeni (2015) and

Maruotti (2015), where standard HMMs are extended to deal with informative

drop-outs. More in detail, Bartolucci and Farcomeni (2015) discuss a shared

parameter model with time-constant and time-varying (discrete) random in-

tercepts shared by the longitudinal and the missing data process. Maruotti

(2015) describes a pattern mixture approach with the Markov transition ma-

trix being a function of the time to drop-out. When compared with the former,

our proposal does not need the distribution of the missing data process to be

specified, thus avoiding unverifiable parametric assumptions. When compared

with the latter, our approach seems to be more general and offer greater flex-

ibility. Finally, it is worth noticing that the model we propose reduces to the

lqHMM specification when a single LDO class (G = 1) is considered.

Let Ψ(τ) = (θ(τ), σ(τ), δ(τ),Q(τ),λ(τ)), where θ(τ) = (β(τ),α1(τ), . . . ,

αm(τ)(τ)) denotes the vector of longitudinal model parameters, and let Φ(τ)

be the vector of parameters indexing the distribution of the time to drop-

out, fT (Ti | Φ; τ). Based on the previous modelling assumptions, the observed

individual likelihood for a generic unit is obtained by marginalizing the joint

distribution of observed and latent variables over the hidden Markov chain and
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the LDO class indicator. Suppressing the dependence on model parameters to

simplify the notation, the following expression holds:

fY T (yi, Ti; τ) =
∑
si ζi

fY |Sζ(yi | si, ζi; τ)fS(si | ζi; τ)fζ|T (ζi | Ti; τ)fT (Ti; τ).

(4)

From the equation above, it is clear that the marginal distribution of the time

to drop-out can be left unspecified and ignored when maximizing the likelihood

with respect to Ψ(τ); inference may be based on the conditional distribution

fY |T (yi | Ti; τ) only.

4 Parameter estimation

The general structure of the EM algorithm (Dempster et al, 1977) we use for

parameter estimation can be sketched as follows. To keep the notation simple,

we will omit the dependence of model parameters on the specific quantile τ we

consider. Let uit(h) = I(Sit = h) be the variable indicating the i-th unit is in

the h-th hidden state at occasion t and let uit(h, k) be the indicator variable

for the i-th unit moving from the h-th state at occasion t−1 to the k-th one at

t. Last, let ζig be the indicator variable for unit i = 1, . . . , n in the g-th LDO

class. For a given quantile τ , the (conditional) log-likelihood for complete data

is

`c(Ψ) =

n∑
i=1

{
m∑
h=1

ui1(h) log δh +

Ti∑
t=2

m∑
h=1

m∑
k=1

G∑
g=1

uit(k, h)ζig log qkh(g)+

+

G∑
g=1

ζig log πg − Ti log σ −
Ti∑
t=1

m∑
h=1

uit(h)ρτ

(
yit − µit(Sit = h)

σ

)}
(5)

The E-step of the algorithm requires the computation of the expected values

for the indicator variables uit(h), uit(h, k) and ζig, conditional on the observed

data and the current parameter estimates. As it is usual with hidden Markov

models, computation is simplified by considering the forward and the backward

variables (Baum et al, 1970). In the present framework, forward variables,

ait(h, g), define the joint density of the longitudinal measures up to occasion

t and the h-th state at t, for a generic individual in the g-th LDO class:

ait(h, g) = f [yi1:t, Sit = h | ζig = 1] . (6)
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Following Baum et al (1970), these terms can be computed recursively as

ai1(h, g) = δhfY |S
[
yi1 | Si1 = h

]
, (7)

ait(h, g) =

m∑
k=1

ait−1(k, g)qkh(g)fY |S
[
yit | Sit = h

]
.

Similarly, the backward variables, bit(h, g), represent the probability of the

longitudinal sequence from occasion t+ 1 to the last observation, conditional

on being in the g-th LDO class and in the h-th state at t:

bit(h, g) = f
[
yit+1:Ti

| Sit = h, ζig = 1
]
. (8)

Also backward variables can be derived recursively:

biTi(h, g) = 1, (9)

bit−1(h, g) =

m∑
k=1

bit(k, g)qhk(g)fy|sb
[
yit | Sit = h

]
,

For a detailed description of the Baum-Welch algorithm, see the seminal paper

by Baum et al (1970) and the reference monograph by Zucchini and MacDon-

ald (2009).

Computation of the expected complete data log-likelihood, conditional on

the observed data and the current parameter estimates, leads to

Q(Ψ | Ψ̂) =

n∑
i=1

{ m∑
h=1

ûi1(h) log δh +

Ti∑
t=2

m∑
h,k=1

G∑
g=1

ζ̂igûit(k, h | g) log qkh(g)+

+

G∑
g=1

ζ̂ig log πg − Ti log(σ)−
Ti∑
t=1

m∑
h=1

G∑
g=1

[
ûit(h)ρτ

(
yit − µit(Sit = h)

σ

)}
,

(10)

where ûit(h) and ζ̂ig represent the posterior expectation of the indicator vari-

ables we have previously introduced. Moreover, ûit(k, h | g) denotes the poste-

rior probability for the i-th unit who is in state k at occasion t− 1 and moves

to state h at occasion t, given she/he belongs to the g-th LDO class. These

posterior probabilities can be easily obtained by exploiting the forward and

backward variables (7) and (9) as:

ûit(h) =

∑
g ait(h, g)bit(h, g)πg∑

h

∑
g ait(h, g)bit(h, g)πg



Latent drop-out transitions in quantile regression 9

ûit(k, h | g) =
ait−1(k, g)qkh(g) fs|s (yit | Sit = h, ) bit(h, g)∑

h

∑
k ait−1(k, g)qkh(g) fY |S (yit | Sit = h, ) bit(h, g)

.

ζ̂ig =

∑
h aiTi

(h, g)πg∑
g

∑
h aiTi

(h, g)πg

The M-step of the EM algorithm require the maximization of the Q(·) function

with respect to model parameters. Closed form solutions are available for the

parameters of the hidden Markov process:

δ̂h =

∑n
i=1 ûi1(h)

n
, q̂kh(g) =

∑n
i=1

∑Ti

t=1 ûit(k, h | g)∑n
i=1

∑Ti

t=1

∑m
h=1 ûit(k, h | g)

(11)

The estimated of the scale parameter for the longitudinal response is

σ̂ =
1∑n
i=1 Ti

Ti∑
t=1

m∑
h=1

ûit(h)ρτ (yit − µ̂it(Sit = h)) . (12)

Parameters in the longitudinal and in the LDO class model, (θ,λ), are esti-

mated by finding the zeros of weighted score functions. For the longitudinal

outcome, weights are given by the posterior probabilities of the hidden states,

ûit(h). The corresponding estimating equation is

n∑
i=1

Ti∑
t=1

m∑
h=1

ûit(h)
∂

∂θ

[
ρτ

(
yit − µit(sit)

σ̂

)]
= 0, (13)

For the latent drop-out model, the weights are given by the LDO class posterior

probabilities, ζ̂ig, and lead to the estimating equation

n∑
i=1

G−1∑
g=1

ζ̂ig
∂

∂λ

{
log

[(
eλ0g+λ1Ti

1 + eλ0g+λ1Ti

)
−
(

eλ0g−1+λ1Ti

1 + eλ0g−1+λ1Ti

)]}
= 0 (14)

The E- and the M- steps are repeatedly alternated until convergence, that is

until the following condition holds

`(r+1) − `(r) < ε,

for a fixed constant ε > 0. The algorithm reaches convergence for a given

number of hidden states, m, and of LDO classes, G, which we consider fixed

and known. For a given combination [m,G], several starting points are used

to avoid local maxima. As a result, we have a set of possible solutions, and

the final [m,G]-based estimates come from the model with the highest log-
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likelihood value obtained over the set of starting points considered. As it typ-

ically happens in the linear quantile mixed model framework, standard errors

for parameter estimates are derived by exploiting a non-parametric block boot-

strap (see eg Buchinsky, 1995). Bootstrap samples are obtained by sampling

individuals and retaining the corresponding longitudinal sequence to preserve

the within individual dependence structure.

5 Real data example: CD4 data

To explore the empirical behaviour of the model, we re-consider the CD4 cell

count data discussed, among others, by Zeger and Diggle (1994). These data

come from the Multicenter AIDS cohort study (MACS) conducted since 1984

with the aim at analysing HIV progression over time (for a detailed discussion

of the study, see Kaslow et al, 1987). It includes nearly 5000 gay and bisex-

ual men from Baltimore, Pittsburgh, Chicago and Los Angeles. As it is well

known, one of the effects of HIV is the reduction of T-lymphocytes, referred to

as CD4 cells, which play a vital role in immune function; the virus progression

can, therefore, be assessed by measuring the number of CD4 cells over time.

The analysed dataset entails 2376 repeated measurements coming from 369

men who were seronegative at the beginning of the study and seroconverted

during the analysed time window. They have been observed from 3 years be-

fore up to 6 years after the seroconversion: each individual has been followed

from a minimum of 1 to a maximum of 12 occasions. While the time occasions

are not equally spaced, the distribution of the time elapsed between successive

visits is concentrated around 0.50 (that is, half a year) and, therefore, we may

consider occasions as if they were equally spaced. This greatly simplifies no-

tation and estimation. At each visit, the level of T-lymphocytes in the blood

has been measured together with a number of covariates: years since serocon-

version (negative values indicate that the current CD4 measurement has been

taken before the seroconversion), age at seroconversion (centered around 30),

smoking (packs per day), recreational drug use (yes or no), number of sexual

partners, depression symptoms as measured by the CESD scale (larger values

indicate more severe symptoms). The response is defined by the log trans-

formed CD4 counts, that is log(1+CD4 count).

As it is often the case with longitudinal designs, some of the units in the

sample leave the study before its ending and thus present incomplete informa-

tion. In table 1, we report the number of individuals available at each visit;
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as it can be seen, only a small number of individuals presents complete data

records.

Table 1: CD4 data. Number of individuals in the study at each time occasion.

Visit 1 2 3 4 5 6 7 8 9 10 11 12

369 364 340 315 268 225 173 133 92 54 33 10

Figure 1 displays the mean response evolution during the follow up, for the

overall sample and for the sample stratified by whether or not units drop-out

from the study between the current and the subsequent time occasion. As it

may be noticed, a progressive decrease in the CD4 counts is observed, which is

coherent with the progression of the virus. However, some differences between

Fig. 1: CD4 data. Response variable distribution at each time occasion.
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the units that stay in and those that drop-out from the study between t and

t + 1 may be noticed. The latter (individuals) present CD4 levels which are

lower when compared to units remaining in the study beyond t+1, especially at

the beginning of the observation window. These findings suggest the potential

presence of some form of sample selection occurring as time goes by. To analyse

the effect of observed covariates on the HIV progression and account for the

missing data process, we have estimated a linear quantile hidden Markov model

with LDO-dependent transitions. To give some insight into the sensitivity of
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parameter estimates to modelling assumptions, we compare these results with

those obtained from the corresponding MAR version, the lqHMM proposed by

Farcomeni (2012). Being more severe HIV-related symptoms the main target

of inference, we have decided to focus on lower CD4 count levels, that is on

τ = (0.25, 0.50). For a generic quantile τ ∈ (0, 1), the following conditional

model has been fit:

µit(sit) = α(sit) + x′itβ

where α(sit) denotes a state-dependent random intercept, and xit includes

two continuous covariates (years since seroconversion and age), the dummy

variable drug (baseline: no) and three discrete variables (packs of cigarette

per day, number of sexual partners and CESD score). Both lqHMM and

lqHMM+QLDO have been fit for a varying number of hidden states (m =

2, ..., 5) and, if the case, for a varying number of LDO classes (G = 2, ..., 5). To

reduce the chance of being trapped in local maxima, we have adopted the fol-

lowing multi-start strategy. For the hidden Markov chain, a first deterministic

starting solution has been obtained by setting prior and transition probabilities

to δh = 1/m and qkh = (1 + sI(h = k))/(m+ s), h, k = 1, ...,m, (for a suitable

constant s) for all the LDO classes (if present). Parameters in the missing data

model have been initialized by fitting an ordered logit to the response obtained

by discretizing the distribution of the number of visits for each individual. To

avoid singularities, a fraction ξ of responses has been randomly perturbed.

Initial values for the fixed longitudinal model parameters correspond to the

maximum likelihood estimates of the linear quantile regression model under

independence, while the time-varying random intercept has been initialized

by adding Gaussian quadrature locations to the corresponding fixed intercept.

Random starting values have been obtained by perturbing the deterministic

ones. For each model (ie for each combination [m,G]), we have considered 30

starting points and retained the solution with the highest likelihood. In table

2, we report the corresponding AIC and the BIC values for such solutions.

As it was expected, because of the high number of parameters in

the lqHMM+QLDO formulation, both criteria suggest to retain the

solution with m = 5 and G = 1 for the quantiles we have considered.

However, by looking at the AIC values, we may notice only slight

differences between the solution [m = 5, G = 1] and [m = 5, G = 2].

This suggests that, despite the highly parametrized structure of the

lqHMM+QLDO formulation, model fit (as measured by the max-

imized log-likelihood value) is improved when accounting for the

missing data generation process. Furthermore, simulation results in
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Table 2: CD4 data. Model selection; penalized likelihood criteria for different
value of m and G at different quantiles.

LDO classes

Hidden States 1 2 3 4

τ = 0.25

AIC

2 3247.36 3215.99 3218.02 3231.74

3 2895.26 2876.79 2870.91 2890.06

4 2655.24 2642.60 2646.09 2656.89

5 2550.21 2550.92 2556.75 2589.15

BIC

2 3298.20 3278.56 3292.32 317.77

3 2969.56 2978.47 2999.97 3046.49

4 2760.83 2799.03 2853.36 2915.01

5 2694.91 2777.74 2865.71 2980.23

τ = 0.50

AIC

2 2688.11 2664.24 2665.12 2672.56

3 2448.49 2432.94 2436.74 2450.87

4 2310.55 2305.78 2308.59 2337.79

5 2239.02 2242.75 2255.94 2282.33

BIC

2 2738.95 2726.81 2739.42 2758.59

3 2522.79 2534.62 2565.80 2607.30

4 2416.15 2462.22 2515.86 2595.90

5 2383.72 2469.57 2564.90 2673.41

section 6 show that the BIC leads, in most of the cases, to mod-

els with a lower (than the truth) number of LDO classes. Last, as

discussed by Molemberghs et al (2015), for any MNAR model we

can find a MAR model with exactly the same fit. Therefore, since

usually MNAR models are more complex than the corresponding

MAR ones, as it is the case here, we could not rely on model fit

only. Rather, our aim is to study the sensitivity of parameter esti-

mates when we move far from the MAR assumption. In this sense,

lqHMM+QLDO is a necessary counterpart to lqHMM in the pres-
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ence of (potentially) non-ignorable missingess. Based on these find-

ings, we will consider the model [m = 5, G = 2] as the potential

competitor for the MAR version (the lqHMM).

Table 3 reports the estimated parameters for the longitudinal data model

under the lqHMM and the lqHMM+QLDO specifications, with corresponding

95% confidence intervals (within brackets). These have been computed using

a block non-parametric bootstrap, with B = 1000 resamples. As it can be

Table 3: CD4 data. Estimated parameters for the longitudinal data model at
different quantiles.

lqHMM lqHMM+QLDO

τ = 0.25

α1 4.738 (3.238 ; 4.956) 4.728 (3.221 ; 4.944)

α2 5.699 (5.395 ; 5.750) 5.693 (5.435 ; 5.752)

α3 6.126 (6.051 ; 6.164) 6.118 (6.073 ; 6.155)

α4 6.509 (6.413 ; 6.562) 6.500 (6.446 ; 6.549)

α5 6.843 (6.757 ; 6.935) 6.832 (6.772 ; 6.922)

Age 0.001 (-0.006 ; 0.005) 0.001 (-0.006 ; 0.005)

Drugs -0.033 (-0.084 ; 0.068) -0.025 (-0.074 ; 0.062)

Packs 0.082 (0.051 ; 0.096) 0.082 (0.048 ; 0.095)

Partners 0.011 (0.002 ; 0.018) 0.010 (0.000 ; 0.017)

CESD -0.004 (-0.006 ; -0.001) -0.004 (-0.006 ; -0.001)

Timesero -0.091 (-0.121 ; -0.075) -0.089 (-0.121 ; -0.073)

τ = 0.50

α1 5.628 (5.074 ; 5.753) 5.618 (5.142 ; 5.751)

α2 6.198 (6.014 ; 6.252) 6.197 (6.060 ; 6.233)

α3 6.524 (6.393 ; 6.574) 6.522 (6.450 ; 6.558)

α4 6.805 (6.719 ; 6.874) 6.797 (6.753 ; 6.854)

α5 7.191 (7.084 ; 7.291) 7.182 (7.112 ; 7.271)

Age -0.003 (-0.007 ; 0.005) -0.003 (-0.007 ; 0.005)

Drugs 0.036 (-0.016 ; 0.110) 0.038 (-0.007 ; 0.082)

Packs 0.049 (0.014 ; 0.068) 0.048 (0.011 ; 0.067)

Partners 0.002 (-0.003 ; 0.012) 0.001 (-0.004 ; 0.011)

CESD -0.005 (-0.007 ; -0.001) -0.005 (-0.007 ; -0.001)

Timesero -0.110 (-0.126 ; -0.084) -0.108 (-0.125 ; -0.080)



Latent drop-out transitions in quantile regression 15

easily noticed, age and drugs play no role in explaining the evolution of the

CD4 cell counts over time. For both models, and for all the analysed quantiles,

more severe depression symptoms lead to a decrease in the response variable;

as expected, increases in the time since seroconversion corresponds to a reduc-

tion in the level of T-lymphocytes. The effect of Timesero is slightly reduced

under the lqHMM with respect to the lqHMM+QLDO specification. Results

for the remaining covariates follow. Smoking more cigarettes (for τ = 0.25 and

τ = 0.50, with stronger effect in the former case) and having more sexual part-

ners (for τ = 0.25 only) are associated to higher CD4 cell counts. According to

Zeger and Diggle (1994), the positive effect of such risk factors may be due to

immune response stimulation or, simply, to a form of selection bias: healthier

men stay longer in the study and continue their usual practices. Regarding

state-dependent intercepts, the estimates increase with the quantile level and,

in all the analysed models, higher CD4 cell counts correspond to “higher”

hidden states. When comparing results obtained under the lqHMM and the

lqHMM+QLDO specification, no substantial differences can be observed; this

suggests that the class of models we are considering is rather robust with re-

spect to possible misspecification of the missing data generating mechanism.

However, when looking at the bootstrap confidence intervals, slight differences

emerge. That is, if we consider the missing data process, we obtain narrower

intervals and, therefore, parameter estimates turns out to be more reliable. By

matching the results discussed so far with the estimated initial and transition

probabilities, more thoughtful information on individual trajectories can be

obtained. In table 8, we report the Markov chain parameters estimated under

the lqHMM formulation. For τ = 0.25, it is clear that most of the patients start

the study with a medium/high level of CD4 cell counts (δ3 + δ4 + δ5 > 0.9).

As the time passes by, the estimated Q matrix highlights a high variability in

the longitudinal trajectories. Transitions between states are quite likely; units

being in lower hidden states generally tend to move towards higher baseline

values. When analysing results we have obtained for the median (τ = 0.50), a

different evolution of the response variable seems to be recovered. Here, inter-

mediate hidden states are the most likely at the beginning of the observation

window (δ2 + δ3 + δ4 > 0.85) and transitions between states are less frequent

than those observed for τ = 0.25 (qhh > 0.8,∀h = 1, ...,m). If any transition is

observed, the probability of moving towards “lower” states is slightly higher

than that of moving towards the highest ones.

The analysis of results obtained under the lqHMM+QLDO specification

can help understanding the effect of a potentially non-ignorable missingess.
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In figure 2, we report the estimated LDO class probabilities. It may be no-

ticed that, for both quantiles, higher classes are associated with increasing

time to drop-out. That is, units staying longer into the study belong to the

second LDO class. We report in tables 9-10 the estimates for the initial and

Fig. 2: CD4 data. LDO class probabilities for τ = 0.25 (left) and τ = 0.50
(right).
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the transition probabilities under the lqHMM+QLDO specification for the two

classes (LDO1 and LDO2). Initial probability estimates, for all the analysed

quantiles, suggest that the first hidden state is quite unlikely at the beginning

of the study. Units are almost equally distributed over the remaining states.

Concerning the transition probability matrices, parameter estimates highlight

the presence of individuals in the sample who experience quite a different dis-

ease progression over time. Class LDO1 is characterized by shorter individual

sequences and mostly include subjects who leave the study in the first few

occasions. Within this class, the estimated transitions for τ = 0.25 are quite

similar to those observed for the lqHMM specification. Units with a particu-

larly low CD4 count move towards “higher” hidden states. The only remarkable

difference between lqHMM and lqHMM+QLDO is related to q̂11 that, under

the latter approach, is much higher (q̂11(LDO1) = 0.931 vs q̂11 = 0.798). This

is probably due to some units in the sample that leave the study with very

low CD4 levels and that, under the MAR approach, are not clearly identified.

When we look at the results for τ = 0.50, the estimated transitions suggest

a progressive reduction in the median response over time. Comparing results

obtained under the MNAR and the MAR approach, it is clear that such an

evolution is better identified when accounting for the missing data process.

In fact, under the LDO specification, the probability of moving towards the

“lowest” state is higher than that observed for lqHMM and with probability

equal to one individuals do not further move. This result helps detect units
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that drop-out early from the study after experiencing a steep and sudden re-

duction in CD4 count levels.

Focusing on class LDO2 (ie the class associated with units staying longer

into the study) different longitudinal paths can be observed. When consider-

ing the left tail of the response distribution (τ = 0.25), the first two hidden

states are seldom visited and, if any transition is observed, units move towards

“higher” states in at the next occasion. The only exception is for the estimate

q̂31 = 0.184 which is probably associated to some units that experience a sud-

den decrease in the CD4 level followed by an increase at the subsequent visit.

Regarding the other hidden states, if any transition is observed, units generally

tend to move towards higher baseline values. A similar path can be observed

for the median response, τ = 0.50, where the estimated Q matrix is almost

diagonal, apart from the first hidden state which is, however, seldom reached.

Also in this case, as for τ = 0.25, if any transition is observed, this is generally

towards higher intercept values.

To support the results we have discussed so far, we report in figure 3 the longi-

tudinal trajectories of individuals classified (via a MAP criterion) into LDO1

(left) and LDO2 (right), for τ = 0.25 and τ = 0.50. Local polynomial regres-

sion curves (blue lines), 95% confidence intervals (gray bands) and mean values

(blue dots) are reported. Due to the missing data process, wider confidence

intervals are observed at the last measurement occasions. As expected, units

in LDO1 class leave the study earlier in time and experience a more evident

reduction in the CD4 counts during the follow-up time. On the other hand,

longer longitudinal sequences and more stable response patterns are observed

for those units who are classified in LDO2, both for τ = 0.25 and τ = 0.50.

While we can not postulate the proposed model is correct and the lqHMM

is not (this is not our aim indeed), we may observe that, by considering an

inhomogeneous hidden Markov representation due to a non random missing

data generating process, some of the parameter estimates slightly change in-

terpretation and we get a more complete and coherent picture of the response

variable dynamics.

6 Simulation study

To evaluate the empirical behaviour of the proposed model, we have performed

the following simulation study. Data have been generated from a Gausian

HMM+QLDO with m = 4 states and G = 2 LDO classes. For the missing

data model, we have considered the following set of model parameters: λ =
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Fig. 3: CD4 data. Longitudinal trajectories by LDO class, for τ = 0.25 (left)
and τ = 0.50 (right).
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(4.41,−0.63). Based on such values, “higher” LDO classes are associated to

longer longitudinal sequences. Initial probabilities for the hidden Markov chain

have been fixed to δ = (0.05, 0.39, 0.48, 0.08), while transition probabilities

have been set equal to

Q(LDO1) =


1.00 0.00 0.00 0.00

0.27 0.73 0.00 0.00

0.00 0.23 0.71 0.06

0.05 0.06 0.00 0.89

 Q(LDO2) =


0.91 0.09 0.00 0.00

0.05 0.92 0.03 0.00

0.02 0.03 0.94 0.01

0.00 0.00 0.01 0.99



Based on these parameter values, individuals belonging to the first LDO

class move towards “lower” hidden states with a higher probability than units

belonging to the second class. We have decided to reduce the distance between

the transition probability matrices associated to the LDO classes when com-

pared to those estimated on the real data. This has been done to verify the

ability of the estimation algorithm in recovering the “true” latent structure. As

regards the longitudinal observations, covariates available for the CD4 dataset

have been directly considered. The following values for the fixed parameters

have been fixed: βtimeSero = −0.088, βage = 0.006, βdrugs = 0.148, βpacks =

0.055, βpartners = 0.009, βcesd = −0.004; on the other hand, state-specific ran-

dom intercepts have been set to α = {5.861, 6.306, 6.650, 7.039}.
Based on these parameters, we have simulated the response variable from a

Gaussian distribution, with variance σ2 = 0.23, corresponding to the variance

for the AL density estimated in the real data application at τ = 0.50. Mean
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values have been defined according to the following model

µit(sit) = α(sit) + x′itβ,

We have simulated B = 200 samples and estimated a lqHMM+QLDO for

different quantiles, τ = {0.25, 0.50}, and for different choices of m and G,

m = {3, 4, 5} and G = {1, 2, 3}.
The bias and the standard deviation of parameter estimates for the longi-

tudinal data model, for fixed m = 4 and G = 2, are reported in table 4. As it

Table 4: Simulation study. Bias and standard deviation of longitudinal model
parameters for the lqHMM+QLDO with m = 4 and G = 2. τ = {0.25, 0.50}.
B = 200 simulated samples

τ = 0.25 τ = 0.50

Bias Sd Bias Sd

α1 0.0099 0.0027 0.0102 0.0013

α2 0.0150 0.0008 0.0134 0.0034

α3 0.0222 0.0018 0.0109 0.0018

α4 0.0230 0.0204 0.0050 0.0075

βtimeSero -0.0017 0.0026 0.0011 0.0009

βage -0.0004 0.0004 -0.0002 0.0001

βdrugs -0.0073 0.0027 -0.0118 0.0031

βpacks 0.0005 0.0010 0.0002 0.0012

βpartners -0.0006 0.0007 0.0001 0.0003

βcesd 0.0000 0.0001 0.0000 0.0001

is expected, a higher bias is observed for the parameters related to the hidden

Markov chain when compared to the fixed effect estimates. The quality of re-

sults reduces (that is the bias and the sd tend to increase) when considering

the left tail of the response distribution since it represents a low density region

with reduced information.

We report in tables 5-6 the bias and the standard deviation (within brack-

ets) of the estimated transition probability matrices for the LDO classes con-

sidering τ = 0.25 and τ = 0.50, respectively. For both quantiles, parameters

are estimated with good accuracy in term of bias and (relatively) low variabil-

ity, whatever the LDO class and the hidden state.
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Table 5: Simulation study. Bias and standard deviation (within brackets) of
transition probability matrices for the lqHMM+QLDO with m = 4 and G = 2.
τ = 0.25. B = 200 simulated samples

1 2 3 4

LDO1

1 -0.002 (0.00) 0.002 (0.00) 0.000 (0.00) 0.000 (0.00)

2 -0.041 (0.01) 0.041 (0.01) 0.000 (0.00) 0.000 (0.00)

3 0.000 (0.00) -0.074 (0.03) 0.062 (0.06) 0.011 (0.03)

4 0.002 (0.02) -0.032 (0.02) 0.000 (0.00) 0.030 (0.03)

LDO2

1 0.017 (0.00) -0.017 (0.00) 0.000 (0.00) 0.000 (0.00)

2 0.012 (0.02) -0.009 (0.02) -0.003 (0.00) 0.000 (0.00)

3 0.007 (0.01) -0.006 (0.01) 0.004 (0.01) -0.005 (0.00)

4 0.005 (0.00) 0.024 (0.01) -0.004 (0.00) -0.025 (0.02)

Table 6: Simulation study.Bias and standard deviation (within brackets) of
transition probability matrices for the lqHMM+QLDO with m = 4 and G = 2.
τ = 0.50. B = 200 simulated samples

1 2 3 4

LDO1

1 -0.003 (0.00) 0.003 (0.00) 0.000 (0.00) 0.000 (0.00)

2 -0.042 (0.02) 0.042 (0.02) 0.000 (0.00) 0.000 (0.00)

3 0.007 (0.00) -0.054 (0.02) 0.032 (0.03) 0.014 (0.01)

4 -0.004 (0.01) -0.034 (0.01) 0.000 (0.00) 0.038 (0.03)

LDO2

1 0.027 (0.01) -0.027 (0.01) 0.000 (0.00) 0.000 (0.00)

2 0.015 (0.01) -0.008 (0.01) -0.007 (0.00) 0.000 (0.00)

3 0.004 (0.00) -0.002 (0.01) -0.001 (0.01) -0.001 (0.00)

4 0.007 (0.00) 0.026 (0.01) -0.004 (0.00) -0.029 (0.01)

Last, in table 7, we show the distribution of the estimated number of hidden

states and LDO classes, using the AIC and the BIC criteria. As it is clear,

AIC outperforms BIC in recovering the true number of states and classes. In

fact, BIC tends to heavily penalize highly parametrized models. In the present

context, for both quantiles, the BIC index suggests to adopt a lqHMM, that
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Table 7: Simulation study. Performance of penalized likelihood critera. Values
of m and G estimated with BIC and AIC. τ = {0.25, 0.50}. B = 200 simulated
samples

BIC AIC

G = 1 G = 2 G = 3 G = 1 G = 2 G = 3

τ = 0.25

m = 3 0.00 0.00 0.00 0.00 0.00 0.00

m = 4 0.99 0.01 0.00 0.00 1.00 0.00

m = 5 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0.50

m = 3 0.00 0.00 0.00 0.00 0.00 0.00

m = 4 0.97 0.03 0.00 0.00 0.89 0.00

m = 5 0.00 0.00 0.00 0.00 0.11 0.00

is a lqHMM+QLDO with a single LDO class (ie G = 1). On the contrary,

AIC seems to recover with higher accuracy the real model structure and it

should be considered as a better choice to estimate m and G. When comparing

τ = 0.25 and τ = 0.50, slightly better results are obtained in the former case.

AIC always identifies the right model for τ = 0.25, while some anomalies can

be observed for τ = 0.50, where, in 11% of samples, a further hidden state

is selected. This is probably due to a more variable behaviour in terms of

state-specific locations which can be seldom observed at τ = 0.25.

To summarize, results we have obtained highlight the effectiveness of the

estimation algorithm in recovering the “true”, underlying, model structure.

The quality of parameter estimates we have obtained in this simulation study

suggests that the results presented in section 5 for the CD4 data analysis may

be considered as quite reliable. The proposed model can be seen as a valid and

flexible approach to handle informative missing data patterns while controlling

for time-varying sources of unobserved heterogeneity in longitudinal profiles.

While the choice of letting Q vary with the LDO class may lead to a substantial

increase in the number of parameters, it may help describe the changes in the

behaviour of units with a (possibly) different propensity to drop-out from the

study.
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7 Conclusions

Quantile regression represents an interesting alternative to standard mean re-

gression when the researcher’s interest is on the tails of the response variable

distribution and/or potential outliers may affect the mean values. When re-

sponses are repeatedly measured over time on the same sample units, depen-

dence between observations has to be taken into consideration to ensure valid

inferential conclusions. In the presence of a potentially informative missing

data mechanism, however, parameter estimates may result biased due to the

“selection” of units remaining under observation. In this paper, we propose

a linear quantile hidden Markov model with drop-out dependent transitions.

Within this framework, we obtain a more detailed picture of the response vari-

able distribution and, jointly, address the problem of potentially non-ignorable

missingness. More in detail, the latent drop-out class variable allows to cap-

ture (time-invariant) unobserved sources of heterogeneity shared by individuals

with a similar propensity to drop-out. Such propensities lead to different tran-

sitions across the states of the hidden Markov chain; the marginal model for

the longitudinal response is, therefore, given by a finite mixture of lqHMMs.

We have re-analysed a benchmark dataset and compared the results with

those obtained under the “standard” lqHMM by Farcomeni (2012). Although

with the proposed approach the number of parameters consistently increases, a

clearer description of the observed data is obtained; this renders the proposed

methodology an interesting and valuable alternative to existing modelling ap-

proaches.
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