
Measuring and Modeling Food Losses

Marco Mingione1, Carola Fabi2, and Giovanna Jona Lasinio1

Within the context of Sustainable Development Goals, progress towards Target 12.3 can be
measured and monitored with the Food Loss Index. A major challenge is the lack of data, which
dictated many methodology decisions. Therefore, the objective of this work is to present a
possible improvement to the modeling approach used by the Food and Agricultural
Organization in estimating the annual percentage of food losses by country and commodity.
Our proposal combines robust statistical techniques with the strict adherence to the rules of the
official statistics. In particular, the case study focuses on cereal crops, which currently have the
highest (yet incomplete) data coverage and allow for more ambitious modeling choices. Cereal
data is available in 66 countries and 14 different cereal commodities from 1991 to 2014. We use
the annual food loss as response variable, expressed as percentage over production, by country
and cereal commodity. The estimation work is twofold: it aims at selecting the most important
factors explaining losses worldwide, comparing two Bayesian model selection approaches, and
then at predicting losses with a Beta regression model in a fully Bayesian framework.
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1. Introduction

The Transforming our world: 2030 Agenda for Sustainable Development (2015), approved

by all the Member States of the United Nations (UN) in September 2015, officially came into

force on 1st January 2016. The Agenda includes 17 Sustainable Development Goals (SDGs)

and 169 Targets supported by a global monitoring framework with 231 Indicators, which

were established to track progress. Some of these goals are groundbreaking: indeed, for

many of them, there was no specific indicator, methodology, nor underlying data for the

measuring, and food losses reduction fell into this category. More precisely, the indicator to

measure and monitor food losses, associated with Target 12.3, was initially classified in Tier

III, meaning that an indicator and data collection method needed to be specifically

developed for that purpose. One significant challenge is the lack of reliable estimates of the

level of losses (and waste) worldwide, particularly in developing countries, for numerous

reasons (Fabi et al. 2018). Preliminary work indicates that food losses and waste remain

unacceptably high, impacting economic efficiency and natural resource usage, and

contributing to inefficient food systems. The widely quoted advocacy study “The Global

Food Loss and Waste – extent, causes, and prevention” (Gustavsson et al. 2011), published
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by the Food and Agricultural Organization of the United Nations (FAO), estimates that

yearly global food loss and waste account for 30% of the overall production, which is

equivalent to almost USD 1 trillion. Recently, model-based estimates in the State of Food

and Agricultural (SOFA) Report (FAO 2019) confirmed that food losses on the supply side

alone (after harvest and up to but excluding the retail level) amounted to almost 14% of

agriculture production and were worth at least USD 400 billion in 2016.

1.1. Literature on the Measurement and Estimation of Global Food Losses

Food loss measuring and monitoring is not a novel issue among experts in both the private and

public sectors. The UN General Assembly addressed the problem back in 1975 and passed a

resolution calling for “a 50% reduction of post-harvest losses by 1985”. In 1976, FAO identified

the major constraints causing post-harvest losses focusing on staple crops, including grains and

pulses. Two years later, the FAO produced an action program that led to the development of a

standard terminology and suitable methodology for the measurement of post-harvest losses,

formalized in the milestone publication, “Postharvest Grain Loss Assessment Methods” (Harris

and Lindblad 1978). Some methods and techniques explained in the manual were later revised

by Boxall (1986) over the period 1980–1986, in an attempt to simplify them. Additionally, in

1980 FAO published guidelines for the Assessment and Collection of Data on Post-Harvest

Food-Grain Losses (FAO 1980) to support the implementation of a statistical methodology

combining objective measurements with statistical survey sampling techniques to collect data

and produce accurate survey-based post-harvest loss estimates. Many other studies followed

these efforts in modeling and estimating losses. The most relevant and recent ones that have

received the highest level of worldwide consensus are: The African Post-harvest Losses

Information System (APHLIS), which developed a calculator to estimate cumulative post-

harvest losses over the entire value chain, as a percentage of production for nine cereals in Sub-

Saharan African countries (SSA); The Global Food Loss and Waste – extent, cause, and

prevention report (Gustavsson et al. 2011), that changed the world perception on food loss and

waste and uses a mass balance approach to quantify the volumes of food loss and waste at the

global level; Imputation of Loss Ratios, a technical report by an FAO consultant, Klaus

Grünberger (2013), who developed an econometric model to estimate loss using causal factors

and covariates, such as countries’ infrastructure, national income level, geographic region, and

commodity groups. The causal factors were not significant, hence the model was abandoned.

All these efforts have been hindered by little available data, which reflects the low

priority given to post-harvest losses until recently, and to the objective complexity and

cost of food loss data collection. These constraints persist and affect the quality of the

estimates and, consequently, the reliability of results. The dire lack of data, an

international definition of food losses and a recognized methodology to monitor loss

reduction underpinned the need to develop a standardized approach for measuring,

collecting data, and modeling food losses. A comprehensive methodology including a

measurable definition, an indicator, an aggregation method, an estimation model and a

range of data collection methods and tools has been developed by FAO to help countries

measure food losses and monitor progress against SDG target 12.3 (FAO 2019).

This article aims to present an improved model capable of estimating food losses at the

country-commodity level. The new model considers a set of explanatory variables that
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scientific literature has consistently identified as the causes or proxies of causes of losses in

all countries of the world. The purpose of using explanatory variables is to link losses with

their causal factors at the country-commodity level to support decisions on interventions,

investments, and policy-making. Our model’s main feature is that it builds on the finding

of previous efforts and works toward overcoming their weaknesses.

1.2. Definitions

In recent years, Food Loss and Waste (FLW) became a priority issue on the global agenda,

for both the public and private sector, as one aspect of sustainable global food systems. In the

absence of a commonly agreed definition, the various stakeholders have developed their

definitions of food loss and waste, albeit a pre-condition for a harmonized methodological

approach and data comparability is agreement on the terminology. For this reason FAO,

under the aegis of the Save Food initiative, undertook the development of a FLW

Definitional Framework in consultation with national and international stakeholders,

building on the previous definitions found in the literature and laying the foundation for a

consistent methodology. In what follows, we will only report the most important definitions

required for a proper comprehension of this work. For further details, we highly recommend

to take a look at the whole document (FAO 2014). In particular, the main definitions include:

. Food Supply Chain (FSC): the connected series of activities to produce, process,

distribute, and consume food; and

. Food Loss: the decrease in quantity or quality of food.

For the sake of measurability and consistency with the SDG 12.3 target formulation, an

operational definition of “Food Loss” was added to the Definitional Framework in 2016

(unpublished) drawn from FAO’s annual questionnaire on agriculture production whereby:

. Food Losses are crop and livestock product losses and cover all quantity losses along

the supply chain for all utilizations (food, feed, seed, industrial, other) up to, but not

including, the retail/consumption level. Losses of the commodity as a whole

(including edible and non-edible parts) and losses direct or indirect, which occur

during storage, transportation, and processing, also of relevant imported quantities,

are therefore all included; and

. Food Waste occurs from retail to the final consumption/demand stages.

1.3. SDG Framework

The UN has defined sustainable development as “development that meets the needs of the

present without compromising the ability of future generations to meet their own needs”.

At the same time, this means promoting resource and energy efficiency, sustainable

infrastructures, providing access to basic services, green and decent jobs, and a better

quality of life for all. In this respect, one aspect is to promote a “Responsible Consumption

and Production” (SDG 12). The third target under this goal (Target 12.3) states “By 2030,

[to] halve per capita global food waste at the retail and consumer levels and reduce food

losses along production and supply chains, including post-harvest losses”. FAO and UN

Environment are the custodians of SDG 12.3 and, for consistency with policy objectives,
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relevance, and measurement, the indicator has been split into two distinct sub-indicators

that focus on losses on the supply side and waste on the demand and consumption side of

the food systems, respectively. This work only focuses on the first sub-indicator, namely

the one on losses, which will be introduced in Subsection 1.4. For a complete overview

of the SDG and related Targets, the authors refer to Global indicator framework for the

Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable

Development which is accessible at https://unstats.un.org/sdgs/indicators/Global%20Indic

ator%20Framework%20after%202020%20review_Eng.pdf.

1.4. The Food Loss Index

At the global level, the GFLI, Global Food Loss Index (FAO 2019) is a composite indicator,

built as a weighted average of countries’ FLIs, Food Loss Indices (FAO 2019). A country

FLI is a fixed-base index that aggregates the losses of ten key commodities in the five main

food groups using economic weights (value of production in the base period). FAO is

partnering with national and international stakeholders to foster data collection along the

supply chains and build the evidence base for these commodities. Although the FLI uses

aggregated percentage losses along the supply chain, more disaggregated data at different

stages of the value chain (e.g., farm, transportation, storage, processing, and wholesale) is

needed to decide on appropriate interventions. The countries’ FLIs summarise complexities

of food loss and their dynamics to provide decision-makers with an overview of the

magnitude of the problem at the national level and an overall monitoring indicator.

The food loss data set can be treated as a longitudinal data set for a multivariate outcome

across different countries. In the ensuing sections, we will refer to the observed (or

estimated) loss percentage for country i, commodity j at year t as lijt. Therefore, the FLI for

country i in year t is defined as:

FLIit ¼

X
j
lijt�qijt0

�pjt0X
j
lijt0
�qijt0

�pjt0

�100 ð1Þ

where t0 is the reference year; qijt0
the production quantities by country and commodity in

the reference year, available in FAO’s corporate statistical database (FAOSTAT 2016);

pjt0
the fixed price (in USD) set by commodity for the (t0–1)-(t0 þ 1) average. At present,

the reference year is set to 2015 (the year in which countries adopted the SDGs), while lijt
can be either survey-based or model-based. The food loss percentages at the commodity or

country level can be interpreted as the average percentage of supply that does not reach the

retail stage. The FLI shows the relative change in percentage food loss for country i over

time, compared to the base year. Finally, using weights proportional to the total value of

agricultural production in the base year, the country indices can be aggregated to build the

GFLI. To achieve SDG 12.3, both GFLI and FLIs should ideally show that post-harvest

losses decrease compared to the base period from a base value of 100.

1.5. Basic Data Constraints

Primary data on losses are seldom compiled within the national statistical systems

worldwide: only 39 countries out of 185 reported losses for one product or more in FAO’s
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annual Questionnaires on Agricultural Production, including a section on product

utilization. Moreover, reporting on losses has increased slightly in recent years and data

was even more scarce in the past period. Data on utilization, including losses, stock

changes, and food supply, is used to compile the Supply Utilization Accounts (SUA) and

Food Balance Sheets (FBS). The FBS framework defines agricultural production net of

harvest losses and collects loss estimates net of harvest losses. It is worth noting that only

7% of loss data in FAOSTAT’s FBS domain (FAOSTAT 2016) was officially reported by

the countries in the period 1990–2016. The remaining 93% of records are estimated or

considered null. In conclusion, since representative data on losses are very scarce, the FLI

will be model-based. However, with the strong emphasis put on SDG 12.3 and the need for

evidence-based policy-making, one has to expect an increase in data availability in the

future years. The methodology provided herein attempts to further refine the 2016–18

FAO developed model, described in Subsection. 1.6.

1.6. FAO Current Modeling Approach – SOFA 2019

FAO developed a random effects model able to exploit panel data information, that is in a

cross-section – by commodity and country – and longitudinally over time to estimate

missing loss data and compile the FLI of all countries (FAO 2019). The model is part of the

methodology for monitoring progress against SDG 12.3 (see SDG indicators metadata at

https://unstats.un.org/sdgs/metadata/). Results were first published in the State of Food and

Agriculture 2019 edition (FAO 2019) and stated that global food losses along the supply

chain, up to but excluding the retail level, are almost 14% of 2016 total production. At

present, FAO can disseminate loss estimates at the global, regional, and commodity group

level. The model supplements the 7% officially reported loss data along the supply chain

with two additional data sets. The first one is a data set of food losses built from a literature

review to increase the coverage. The second one is a data set composed of over 200 possible

explanatory variables from various international sources (International Energy Association,

World Bank, FAO, and more), possibly representing causal factors or proxy variables for the

causes of losses. These causal factors can be grouped under common categories to be easily

managed by a model. These categories are Energy, Inputs and Associated Costs; Investment

and Monetary Policy; Social and Economic Factors; Storage, Transportation, and Logistics;

Weather and Crop Cycles. The random forest algorithm was used to standardize variables’

selection and choose the five most important ones by commodity grouping. The purpose was

to better capture the variation in the causes of losses by country or region and commodity.

Where the observations by country and commodity are fewer than three, a bare minimum to

run the model for a country-commodity combination, available information has been

clustered by commodity group on the assumption that causes and rates of losses are more

similar within the groups than across them (for example losses of maize and lentils are more

similar than losses of maize and fresh milk). The same assumption applies to the value chain

(e.g., traditional, capital-intensive, vertically integrated, and more) and solutions (improved

farm practices, infrastructures, cool chain, and others). Clustering scarce data evened out the

impact of outliers on the results. The coexistence of country-level estimates and cluster-level

estimates required a model hierarchy to fill in the results matrix. All the methodological

choices have been dictated by the need to overcome data scarcity.
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The rest of the article is structured as follows: Section 2 describes the available data and

some preliminary results on data consistency; Section 3 delves into the methodology. In

Section 4, we report and analyze the model results. Section 5 is dedicated to the

concluding remarks and discussion.

2. Available Data

We worked with official loss data extracted from FAOSTAT (2016). The data set covered

138 countries and 145 different commodities, with the most extended time series starting

in 1961 and ending in 2015, and included a total number of 18,472 records. A preliminary

exploratory analysis of the data highlighted some critical issues. First, some country-

commodity combinations presented loss levels larger than their total production: these

losses characterize several import-dependent countries in which domestic supply consists

mainly of imported produce. The FLI methodology deals with import-dependent countries

by changing the denominator in the ratio. In this work, we did not introduce any exception

and therefore we excluded these records from the analysis. Second, 4264 of country-

commodity-year combination records were equal to zero. Zero losses on such a large scale

are unlikely and instead point at under-coverage or missing data interpreted as nil

amounts. Moreover, the comparison of FAOSTAT data to loss factors found in the

literature showed a systematic difference. The SUA seems to underestimate the actual

losses within the countries and the explanation is manifold (Fabi et al. 2018). Case studies

in the literature tend to focus on countries where losses are high, and the problem is more

acute, representing an upper boundary. On the contrary, nation-wide estimates average

losses across all value chains, including the more efficient ones. Also, losses are

sometimes obtained as the balance for quantities that cannot be accounted for in the SUA.

Therefore, SUA data can be considered the lower boundary. Indeed, FAOSTAT data

showed a global loss average of 7.2% over the whole data set, which is 9.4% when

excluding zero values. Another data constraint and challenge to the modeling framework

is that countries tend to use carry-forward estimates on loss percentages, on the grounds

that systemic losses do not change quickly over time, which at the same time removes any

trend from the time series (see appendix, Subsection. 6.1, Figure 7a and 7b for

clarification). Additional information was gathered from more than 300 publications and

reports from various sources to increase observations and reduce the noise in the data.

These sources included reports from international organizations, such as the World Bank,

GIZ (Gesellschaft fur Internationale Zusammenarbeit), FAO, IFPRI (International Food

Policy Research Institute), sub-national reports, and academic institutions (Fabi et al.

2018). All data have been consolidated in a database that is continuously updated and

accessible at http://www.fao.org/platform-food-loss-waste/flw-data/en/.

2.1. Cereals and Cereal Products

This food category includes the largest share of available loss data. Hence, we focused our

modeling efforts on cereals.

More precisely, cereals data include 66 countries and 14 different commodities,

amounting to 196 country-crop combinations ð, 66 £ 14 as not all countries produce all

cereals). A simple average of the available data gives a loss percentage of 5.6%, but there
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is variability both by country and commodity (for further details see appendix, Subsection

6.1, Figures 8 and 9). Figure 1 represents a clear snapshot of the data availability: each

square identifies a country-crop combination, and it is colored according to the country-

crop temporal average.

The majority of estimates are provided by countries in North America and Europe

(NAE). In particular, 111 out of the 196 country-crop combinations (more than 50%) come

from NAE, whose average loss percentage is the lowest (only 3.24%), as reported in

Table 1. Sub-Saharan Africa (SSA) records the highest loss percentages, with losses

amounting to 24% of total production, although only five SSA countries reported data on

losses. This unbalanced data distribution does not introduce any bias in our methodology

because the estimation is carried out at the country-crop level. However, some bias may be

introduced when losses are aggregated at the global level. In this case, the weights used to

calculate the GFLI should be proportional to each country’s agricultural sector size.

Nevertheless, the representativeness of single countries or single macro-regions can differ

significantly. We do not want to compile the global losses by estimating missing country

data exclusively from countries within the same region (e.g., losses in Asian countries

estimated only losses of the Asian countries). Few available countries will determine

the estimates too heavily. If the few countries are not representative of the region, the

regional and ultimately the global estimates will underestimate/overestimate the actual

loss level.
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Fig. 1. Available data for cereals. Each square represents the temporal average loss by country and commodity.

Countries have been ordered on the x-axis with respect to the SDG region they belong Central Asia and Southern

Asia (CASA), Eastern Asia and South-eastern Asia (EASA), Western Asia and Northern Africa (WANA), Sub-

Saharan Africa (SSA), Latin America and the Caribbean (LAC), North America and Europe (NAE), Oceania (O).

Table 1. Average loss (%) and number of distinct country-crop combination by SDG region: Central Asia and

Southern Asia (CASA), Eastern Asia and South-eastern Asia (EASA), Western Asia and Northern Africa (WANA),

Sub-Saharan Africa (SSA), Latin America and Caribbean (LAC), North America and Europe (NAE), Oceania (O).

CASA EASA WANA SSA LAC NAE O

Loss(%) 5.86 10.53 8.58 24.09 9.67 3.24 3.27
nObs 16 9 24 5 29 111 2
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3. Methodology

This section will describe our proposal. We will first define the steps in our statistical

protocol and then delve into the model in detail. Our model will estimate losses by

country, commodity, and year for cereals in a full Bayesian framework, so as to reduce the

impact of critical issues in the data described in Section 2. After dealing with missing data

in the available predictors, we build a Beta regression model with a latent component (Wu

2009). The latent component captures variations at the country-crop level due to missing

information on other known causal factors such as the time of harvest, rainfall on crop

areas, and other variables that should be measured at crop level.

3.1. Missing Predictors Imputation

A total number of K ¼ 34 explanatory variables were considered in the loss estimation

model. Most variables are proxies for relevant explanatory factors commonly found in the

scientific literature. Similar to the loss imputation model of the SDG methodology, these

factors can be grouped into categories relating to Energy, Economic Factors,

Transportation and Logistics, Building Materials and Weather and Crop Cycles (see

appendix, Subsection 6.2). However, not all the variables are available for all countries and

years, highlighting a severe missing data issue as the missingness in the set of predictors is

almost 19%. In particular, 16 out of the 34 variables contain at least one missing value and

13 out of these 16 have more than 30% of missing values overall. Assuming a MAR

mechanism, we consider three non-parametric missing value imputation methods: the

missForest algorithm (Stekhoven and Bühlmann 2012), Multiple Imputation by Chained

Equations (MICE) approach (White et al. 2011) and k-nearest neighbours (K-NN) as in

Franzin et al. (2016). With each imputed data set, we estimate the model in Equation (5) and

compare results in terms of variable selection and prediction accuracy. We do not report all

the details, but we simply note that the three imputation methods produce similar outputs in

terms of final model performances. We decided to keep the imputed data set with

missForest for its flexibility with respect to assumptions on data collection and distribution.

In the seminal paper (Stekhoven and Buhlmann 2012), the authors show how missForest

generally outperforms the two other imputation methods. Also, as demonstrated

empirically not only with our set of data (Waljee et al. 2013; Cihan 2018), the missForest

algorithm yields better results, especially in terms of out of sample prediction error. This

happens because of its non-parametric nature, which allows for the imputation of mixed-

type data. Being based on a Random Forest algorithm (Breiman 2001), it has no need for

tuning parameters, nor does it require, any assumptions about the distributional aspects of

the data. Besides, it offers a way to assess the quality of an imputation without the need for

setting aside test data nor performing cross-validations. In particular, the full potential of

missForest is deployed when the data include complex interactions or non-linear relations

between variables of unequal scales, as it is in our case study.

3.2. Beta Regression

Food losses are expressed as percentage of the total production, hence the Beta distribution

is the most natural assumption for their modeling. Indeed, the class of Beta regression
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models, firstly proposed by Ferrari and Cribari-Neto (2004), is commonly used to model

random variables that take values in the open standard unit interval (0, 1). The main

assumption is that the dependent variable is Beta-distributed and its mean m e ð0; 1Þ is

related to a set of regressors through a linear predictor with unknown coefficients and a

link function g : ð0; 1Þ! R, strictly increasing and twice differentiable. The model also

includes a precision parameter f . 0 (independent from m), which may be constant or

may depend on a set of predictors through a link function as well. This approach has the

advantage of naturally incorporating features such as heteroskedasticity or skewness,

which are commonly observed in data taking values in the standard unit interval.

We assume that our outcome variable yi; : : : ; yn is the realization of a random sample

such that yi , Beta(mi, f), i ¼ 1,...,n. Then, the Beta regression model is defined as

gðmiÞ ¼ x 0ib; where b is the k £ 1 vector of unknown parameters and xi is the vector of k

predictors. The logit function represents the most common choice as link function for g(·)

due to its shape and ease of interpretation, such as in any typical Generalized Linear Model

(GLM) framework.

3.3. Bayesian Variable Selection

Given the high dimensionality of the problem, which counts 34 predictors, our first

objective is to find a robust selection method for the most relevant factors that can explain

losses’ behavior. The goal is to find the subset of variables that can simultaneously catch

the dependencies and dynamics driving food losses, but that are also meaningful for policy

making. This issue is of paramount importance and raises several challenges. A known

problem when the number of relevant variables is large, is to account for possible

collinearity in order to avoid conflicting results when assessing the importance of strongly

correlated predictors (Ijarchelo et al. 2016).

In a Bayesian perspective, variable selection falls in the more general framework of

model choice and can be addressed with various possible approaches. In this work, we

consider two main alternative solutions: the spike and slab technique (Mitchell and

Beauchamp 1988) and the horseshoe prior (within the class of shrinkage priors),

introduced by Carvalho et al. (2010). Both techniques are based on specific choices for the

prior distributions associated to model’s coefficients. The first approach belongs to the

more general class of discrete mixtures, initially discussed in Mitchell and Beauchamp

(1988) and George and McCulloch (1993). It models prior knowledge on coefficients s

with a prior comprising both a point mass at zero and an absolutely continuous alternative;

the second approach, introduced by Tibshirani (1996), models fis prior distribution with

absolutely continuous shrinkage priors centered at zero.

3.1.1. Spike and Slab

Spike and slab is considered as the gold standard to combine variable selection with the

estimation of the regression parameters. With this technique, variables are chosen by

estimating the posterior probability of all the models within the considered class (O’Hara

et al. 2009), based on the a priori knowledge or expectation that only few variables truly

impact on the outcome. The main assumption is that the prior distribution of the k-th

regression parameter is a mixture of two components: a probability mass either exactly at
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or around zero (spike) and a flat distribution (slab) elsewhere. Therefore, this prior is often

written as:

bkjgk; c; e , gkNð0; c2Þ þ ð1–gkÞNð0; e
2Þ; ð2Þ

where e ! c and where gk [ {0; 1}, denoting absence or presence of the k-th variable in

the model. If e is set to 0, then the spike is taken to be a Dirac d0, at the origin.

In Kuo and Mallick (1998), gk is embedded in the regression equation as follows:

yi ¼
XK

k¼1

bkgkxik þ ei: ð3Þ

Independent priors are typically assumed forbk,gk and the response variance. In particular,

gk , Ber(pk), namely a Bernoulli distribution with success probability pk that reflects the

preference for including the k-th predictor in the model building: for example, pk ¼ 0.5, ;k is

associated to prior belief of the equally likely relevance of all possible 2k sub-models.

Once the model has been set up, it is usually fitted using Markov Chain Monte Carlo

(MCMC) and the variable selection part of the model entails estimating gk. As a result, the

posterior inclusion probability E gkjy
� �

can easily be calculated as the mean value of the

indicator gk as follows: E gkjy
� �

¼ Pðgk ¼ 1jyÞ ¼ 1
T
S

T
t¼1g

ðtÞ
k where T denotes the total

number of posterior samples. The selection rule consists merely of keeping those variables

with posterior inclusion probability larger than a given threshold. If the threshold is set at 0.5,

then the selection criterion is known as the Median Probability Model (MPM) by Barbieri

et al. (2004). This criterion is known to be robust as it is the optimal predictive model under a

squared error loss function with certain regularity conditions and the selected variables

appear in at least half of the visited models (Barbieri et al. 2004). The orthogonality of the

design matrix is required in all the sub-model scenarios to satisfy these conditions. If this is

not the case, inference based on marginal inclusion probability could be incorrect.

3.3.2. Horseshoe Prior

This approach assumes that each coefficient bk, is a priori distributed as a scale mixtures

of Normal distributions:

bkjlk;h , Nð0; l2
kh

2Þ;

lk , Cþð0; 1Þ; h , Cþð0; 1Þ
ð4Þ

where Cþ(0,1) represents the half-Cauchy distribution, lk is called local shrinkage

parameter and h is the global shrinkage parameter (Carvalho et al. 2009). The horseshoe is

named after the shape of the shrinkage coefficient, which is 1
ð1þl2

k
Þ

, Betað1
2
; 1

2
Þ and can be

interpreted as the posterior amount of weight that the posterior mean of bk places on 0.

Horseshoe prior’s main advantage lies in its flat tails allowing for strong signals to remain

large a posteriori and in its infinitely tall spike at the origin that severely shrink the bkS that

are very likely to be zero. It can be easily noticed that setting e ¼ 0 in Equation (2),

generates a prior distribution very close to Equation (4) that allows for only two values,

that is 0 and 1, instead of assigning continuous priors to gk, as in the case of the horseshoe.

For the sake of clarity, Figure 2 shows the distribution of the prior on bk in the case of the

spike and slab (2a) and the horseshoe (2b).
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3.4. The Model – Our Proposal

Our two alternative proposals combine the procedure described in Subsection 3.2 with the

ones described in Subsubsections 3.3.1 and 3.3.2, respectively. Let lijt be the observed loss

percentage in country i, for cereal j at year t and xikt be the value of the k-th explanatory

variable for country i at time t. The model with variable selection is expressed as follows:

lijt , Betaðmijt;fÞ;;i; j; t

logitðmijtÞ ¼ bit þ
k

X
xiktb

*

k þ nij; ;i; j; t ð5Þ

vij , Nð0; t2Þ; f , Unif ð5; 150Þ; t , Gammað4; 0:1Þ;

where bit is a temporal linear trend specific to country i and vij is the latent component

describing the nested commodity within country effect. We consider different trend

parameters for each country to capture different general behaviors dictated by country-

specific policies or climate conditions, or other unobserved factors. The temporal trend was

always included to detect generally well- or poor-performing countries in terms of the FLI.

Parameter f is known as the precision parameter, since for a given mijt, a larger f implies a

smaller variance for lijt. We also adopted a constant precision t2 across countries and

commodities after estimating several models with different precision parameters (e.g.,

country-specific, crop-specific, or their sum) that did not yield significantly different

estimates. Finally, according to the prior distribution ascribed to the regression coefficientsb
*

k

we can obtain either the spike and slab model (3) or the horseshoe model (4). While

hyperparameters for the shrinkage priors represent standard statistical choices commonly

used in the Bayesian variable selection procedures, hyperparameters for f and t are set to

obtain weekly informative priors. In the spike and slab model, we set gk , Ber(pk), adding a

further level to the model by treating pk with a bð5; 5Þ so that all the models were equally

likely to be selected a priori. The prior distribution on the trend coefficients bi is Nð0; 1000Þ.

3.5. Watanabe-Akaike Information Criterion

We compared the performances of the two variable selection procedures using the

Watanabe-Akaike Information Criterion (WAIC) proposed by Watanabe (2010). The

main assumption, which should hold in our model setting, is that the observed values are
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Fig. 2. Prior distribution of the k-th regression coefficient in the case of spike and slab prior (a) and horseshoe (b).
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conditionally independent given the parameters. If the model fits our data, then parameter

estimation should minimize the expected log-pointwise predictive density. More

precisely, let lpd ¼
Pn

i¼1log
Ð

p( yijy)p(ujy)du is the log-pointwise predictive density

and p ¼ S
n
i¼1Vpost½logðpðyijuÞÞ� is the estimated effective number of parameters, that is,

the sum of the posterior variance (Vpost) of the log-predictive density for each data point.

Following Vehtari et al. (2017), the expected log-pointwise predictive density is given by

elpd ¼ lpd 2p. The WAIC is then obtained as WAIC ¼ 22 z elpd. We use the WAIC

instead of the Deviance Information Criterion (DIC) for two reasons: (1) WAIC has the

desirable property of averaging over the posterior distribution rather than conditioning on

a point estimate, which is particularly relevant in a predictive context (Gelman et al.

2014); and (2) the DIC has a weaker theoretical justification (Celeux et al. 2006;

Spiegelhalter et al. 2014). Furthermore, since the final objective is to predict food losses,

the WAIC is the more appropriate choice as it is asymptotically equivalent to the Bayesian

leave-one-out cross-validation (Watanabe 2010) and hence it can be seen as a measure of a

model’s predictive performance.

4. Results

In this section, we present the results of our modeling effort. Subsection 4.1 will cover data

pre-processing, including dimensionality reduction; results of the variable selection are

reported in Subsection 4.2, and the out-of-sample predictions in Subsection 4.3. Note that

all the variables were standardized before the quantitative analysis.

4.1. Dealing With Collinearity

Following Subsection 3.3, we checked for the presence of multicollinearity in the

predictors. We notice that the estimation of the posterior inclusion probabilities in the spike

and slab framework is not reliable in the presence of severe collinearity. In particular,

following Bhadra et al. (2019a), optimality can be achieved in terms of parameters’

estimation if the design matrix is well-conditioned (e.g., orthogonal). The design matrix

orthogonality ensures that no information is shared among the predictors, while collinearity

has the effect of blurring distinctions between predictors in the variable selection process.

To this purpose, we first computed the correlation matrix (Figure 3a). Three different groups

of strongly correlated variables can easily be pointed out: the first one (the big black square at the

center of Figure 3a) includes all metals’ prices (e.g., potash, silver, iron, gold, lead, etc.); the

second one includes the prices of electricity, natural gas oil and derived products provided by the

International Energy Agency (IEA); the third group (bottom right corner) includes all the

economic variables from national accounts (such as net capital stocks) and credit to agriculture.

We carried out a preliminary dimensionality reduction on the predictors using a simple principal

component analysis (PCA) on 27 out of the 34 standardized variables in the three groups leaving

out the seven variables (i.e., rainfall (mm), temperature (C), biofuels, heat, coal, LPI, spending

on agriculture) in the top left square of Figure 3a, as they are not highly correlated with the others

or among them. Results show that three components can explain 81% of the total variance. The

first (principal) component can be interpreted as a proxy for input prices with metal prices (iron,

silver, copper, etc.) for implements and infrastructure, and fertilizers’ prices (potash, urea, etc.)

for growing crops (see Figure 10a in the appendix, Subsection 6.3). The second component can
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be interpreted as a proxy for investment in agriculture (capital stocks, credit to agriculture, and

more), but with negative loadings (see Figure 10b in the appendix, Subsection 6.3). In other

words, lower values of this component correspond to higher values of the considered variables.

The third component is a proxy for energy’s price (oil, natural gas, electricity, and more, see

Figure 10c in the appendix, Subsection 6.3). The final data set includes ten almost completely

uncorrelated variables (three components plus seven standardized variables), whose correlation

matrix is shown in Figure 3b.

4.2. Estimation

The estimation was carried out using JAGS (Plummer 2003), a well-known software for

Bayesian model estimation, which uses Gibbs Sampler and the Metropolis Within Gibbs

Sampler algorithms. For each variable selection approach, we ran the MCMC algorithm

with two chains, 120,000 iterations, a burn-in of 60,000 iterations, and a thinning of ten,

keeping 6,000 samples from each chain for inferential purposes. Coding examples for both

the estimation and prediction of the model with the different prior settings are available in

appendix, Subsection 6.4. From now on, we will refer to the model with spike and slab

priors as M1 and to the model with horseshoe prior as M2.

4.2.1. WAIC

The WAIC is equal to -19510.6 for M1 and -19522.8 for M2, meaning that the two

selection approaches are substantially equivalent, with M2 performing slightly better in

terms of goodness of fit.

4.2.2. Posterior Inclusion Probabilities and Selected Variables

Recall that the spike and slab procedure allows for estimating the posterior inclusion

probability for each predictor. We chose the Median Probability Model as the selection

rule (see Subsubsection 3.3.1), hence we kept all the variables with posterior inclusion

probability larger than 0.5.
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Fig. 3. Graphical representation of the correlation matrices: (a) before dimensionality reduction of 27

variables out of 34, (b) after dimensionality reduction.
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The horseshoe priors do not provide a straightforward variable selection technique, hence

we decided to keep all variables with coefficients whose 95% posterior credible intervals did

not include the 0 value. In other words, the whole point of shrinking priors is to shrink to zero

coefficients that are not significant, according to the classical likelihood definition. Figure 4

illustrates the outcome of the selection step. Both techniques select four variables, that is,

biofuels (price), spending on agriculture (i.e., the agriculture share in GDP, which is a proxy

for the agricultural sector relative importance in the national economies), the second principal

component (comp. 2), and the third principal component (comp. 3). Both the computed point

estimates and the credible intervals are comparable. In particular, according to M1, biofuels,

spending on agriculture, and comp. 2 are included in the model with probability equal to 1, and

comp. 3 is included with probability equal to 0.56 (see Table 3 in the Appendix, Subsection

6.5, for the exact numerical results). The temperature is selected only by M2, while according

to M1, its posterior inclusion probability ĝk is equal to 0.0075 u 0.

Biofuels has the most considerable effect (in absolute value) on the outcome with a positive

coefficient. This variable, measured by the IEA, represents solid biofuels, liquid biofuels, and

biogases produced with industrial and municipal waste. Biofuels are a possible utilization of

cereals, both the full grains and its waste or discarded quantities. In this respect, a

commissioned study by FAO (Kuiper and Cui 2020) found that reducing food losses could

decrease agricultural prices, which would benefit the production of meat and biofuels, through

lower agricultural input prices. This study can help explain the correlation between biofuels

price anpricd losses. An increase in biofuels price would increase the demand for input crops

and absorb larger amounts of cereals for industrial uses, thus reducing the quantities ultimately

lost. Unfortunately, biofuel data are often based on small sample surveys or other incomplete

information. Thus, the data give only a broad overview of the biofuel sector and are not strictly

comparable across countries (IEA 2019). Spending on agriculture has the second-largest

βk

–0.2 0.0 0.2 0.4

Temperature

SpendingOnAgri

Comp.3

Comp.2

Biofuels

Horseshoe Spike and slab

Fig. 4. Point estimates and 95% credibility intervals for b*k associated to the selected variables by M1 (Spike

and slab) and M2 (Horseshoe).
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effect and with a negative coefficient, while the coefficient associated with comp. 2, which

we recall is a proxy for investment, is positive. However, the component has negative

loadings on the original variables (see Figure 10b in appendix, Subsection 6.3), which means

that the higher the investments (or capital intensity), the lower the losses; it also means that

investing more in agriculture would reduce losses. Comp. 3 gives a small positive

contribution, both for M1 and M2, which is consistent with the other energy-related variable

(i.e., biofuels). Lastly, the temperature effect, selected only in M2, is the smallest. Moreover,

the temperature is not measured at the crop level and is a simple yearly average. Therefore,

we cannot interpret the relation as a direct effect of annual temperature on losses, but rather

as the combined phenomenon by which countries with higher average temperature tend to

experience smaller losses (at least in our set of data).

Recall that in Equation (5), we set a different time trend for each country. M1 estimates

24 out of 66 countries with statistically significant trends: Nine of them show an increasing

trend and 15 of them show a decreasing trend. M2 instead identifies 30 countries with

significant trends (22 of which are the same as in M1), with ten countries showing an

increase and 20 a decrease in the food loss percentages over time. The largest estimated

random effect by both M1 and M2 belongs to Malta for wheat and is equal to 1.07 on the

logit scale, which corresponds to 70% percentage losses. However, the final loss factors,

including the covariates’ effect, are around 18%, close to the observed value in

FAOSTAT. We would like to point out that Malta is an island country that imports around

90% of its wheat consumption. Loss percentages in import-dependent countries should be

calculated based on domestic supply to include imports and correct extreme results. The

import-dependency has been dealt with in the FLI methodology but was overlooked in this

work because it was not relevant in this research context.

On the opposite side of the scale, M1 estimates the smallest effect for oats in Armenia, while

M2 does so for maize (corn) in Cuba. The point estimates are -5.45 and -5.58 on the logit scale,

which correspond to 0.43% and 0.37% of loss percentage, respectively (see the appendix,

Subsubsection 6.5.1 for further details). In Cuba’s case, the final estimates range between

approximately 15% (M1) and 25% (M2), on a similar level to the country’s reported losses.

The estimated values for the precision of the random effects t2 and the variance of the

outcome are u 0.1 and u 71 (thus a dispersion f 21 u 0.014), respectively, both for M1

and M2, meaning that the estimates are precise. Finally, the estimated value for the global

shrinkage parameter h 2 is equal to 0.01 (for h 2, we use the Maximum A Posteriori (MAP)

estimator since its posterior distribution is not symmetric. For details on variance’s

parameters, see the Appendix, Subsection 6.5).

4.3. Validation

To evaluate our models’ predictive performance, we split the sample into training and test

sets. The test set includes 953 data-points (i.e., 25% of the whole sample) and was built by

removing the last five observations from the time series of each country – crop

combination for time series lengths larger than eight years; only two observations were set

aside for prediction purposes otherwise. We used the Relative Mean Squared Error

(RMSE) to measure the difference between predicted and observed values. The RMSE is

computed as the ratio between each model’s prediction error (at the numerator) and the
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error that would have resulted by using the simple predictor (e.g., sample average). It can

be computed as:

RMSE ¼

Xnte

i¼1
ltei 2 l̂i
� �2

Xnte

i¼1
ltei 2 �ltr
� �2

; ð6Þ

where ltei are the observed losses in the test set, l̂i are the predicted losses and ltr is the sample

average of observed losses in the training set. Predictions are obtained using the selected

variables in M1 and M2, as described in Subsection. 4.2. For each model, we ran two chains

with 80,000 iterations each, applied a burn-in of 40,000, and a thinning of ten, then kept

4,000 samples from each chain for inference. The overall RMSE is 0.359 and 0.358 for M1

and M2, respectively, confirming again that the two approaches are equivalent. Figure 5

shows the observed losses in the test set and their predicted values. Perfect predictions

would lie on the dashed red line (or the identity line y ¼ x). Both models show a good

performance, especially for losses smaller than u 20% (the majority in the into data set).

Besides, the average coverage of the prediction intervals for both M1 and M2 is greater than

90%. In particular, it is equal to 92.34% for M1, while it is equal to 92.55% for M2.

M1 and M2 have comparable predictive performances when the error is evaluated

separately by country and commodity, although the RMSE is not uniformly distributed

across countries or across commodities. In particular, Pakistan and quinoa are the country

and the commodity with the highest RMSE, respectively. For Pakistan, we only have loss

data for one commodity (maize), with an approximately flat time series at about 5%, as

shown by the blue line in Figure 6c. The point predictions produced by our models

struggle to reproduce the flat trend in this country, suggesting some unexpected behavior

of one of the predictors (the spending on agriculture halved over the period) or an issue

with the target variable itself; nevertheless, observed values fall into the 95% prediction

1.00

0.75

Horseshoe

Observed

Spike and slab

0.25

0.50

Pr
ed

ic
te

d

1.000.750.500.25
0.00

0.00

Fig. 5. Observed vs predicted losses by the two sub-models. The dashed line represents the identity line y ¼ x.
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intervals for both models. Quinoa losses are only observed for Peru, as reported in

Figure 6a. The models underestimate losses for this commodity; however, also, in this

case, observed values fall into the 95% prediction intervals. Good prediction performances

are also shown in Figure 6b and 6d: both M1 and M2 catch the plateau and the decreasing

trend in the observed time series. For these two country-crop combinations, the prediction

error is about 0.00005 for Israel-sorghum and 0.0003 for Togo-millet. Notice that the error

for Israel-sorghum would have been equal to 0.0036 had we used the sorghum mean for

the prediction, or 0.0058 had we predicted losses with Israel mean; for Togo-millet, the

error would have been equal to 0.00037 had we used the millet mean, or equal to 0.008 had

we used with Togo mean.

5. Discussion

In this work, we present a substantial improvement over previous global food losses

modeling efforts. First, the proposed distributional framework is highly coherent with the

nature of the data: since food losses are expressed as proportions, the Beta distribution

represents a much more appropriate choice for describing their behavior. Second, the

proposed approach is very flexible: the model in Equation (5) could be applied to other

food groups when data will be available. Moreover, the hierarchical modeling structure

covers most food loss dynamics and is easily scalable when needed (e.g., to estimate losses

at supply chain step). Third, the two proposed variable selection techniques provided

equivalent results. Although being computationally more demanding, the spike and slab

priors allow for the computation of posterior inclusion probabilities for all the variables,

0.25

0.20

0.15

Lo
ss

Lo
ss

Lo
ss

Lo
ss

0.10

0.4

0.3

0.2

0.1

0.3

0.2

0.1

0.0

1992.5 1995.0 1997.5

0.10

0.05

0.00

1995 2000

19951990 2000

Year

(a) Peru - quinoa (b) Israel - sorghum

(c) Pakistan - maize (corn) (d) Togo - millet

Year

Year Year

2005

2005 2010 2015

2000 2004 2008

Spike and slab Horseshoe Spike and slab

Horseshoe Spike and slabHorseshoe Spike and slab

Horseshoe

Fig. 6. Observed time series and predicted values by the two sub-models with 95% predictive intervals for 4
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providing a rigorous and straightforward way towards variables’ choice. On the other

hand, the horseshoe priors require the choice of a posteriori selection criteria, although it

is considerably less demanding in terms of computational effort. Hence, it should be

preferred when the latter poses a serious issue.

One caveat associated with the use of this model is that it is more demanding in terms of

the number of observations than the hierarchical mixed-effect model developed for the

SDG 12.3 methodology and the SOFA 2019 report. Our model could be developed and

tested for cereals only, which account for the largest share of available data. It is not a

viable option to date to compile the FLI, which needs to cover all five commodity groups,

eventually with very few observations.

We would like to further remark that quality and reliability issues affect both the

explaining variables and the outcome in our case study. We dealt with these issues using a

Bayesian approach, which allows for the modeling of parameters’ uncertainty at the prior

level, but the correction of such values is not within the scope of this work and would require

additional investigation. In this regard, we are aware that, in general, multiple imputation

should be used, as suggested in Sinharay et al. (2001). Indeed, single imputation techniques

usually underestimate the imputation process’s uncertainty, and the imputed data may

display a smaller variance. To handle this issue, we can consider building a model that

includes a measurement error term for the imputation step. However, the increase in

computational complexity does not seem to justify this solution. For these reasons, as also

suggested by an anonymous reviewer, we believe that the imputation of missing data in such

a context could become in itself a good method paper, hence we leave this for future

developments. We also expect, when a larger amount of data will be available, to obtain the

same results if we estimate the model using a maximum likelihood approach. In this work,

we decided to test only Bayesian techniques because they allow to perform probabilistic

uncertainty quantification in the model choice process unlike, for example, with a lasso

regression. Furthermore, the lasso’s optimality (theoretical properties) is only guaranteed in

the framework of standard linear regression (e.g., Gaussian outcome). There is a very

interesting paper by Groll et al. (2019) in which the authors propose a lasso-type

penalization for generalized additive models, but in the discussion, they state that “the

number of true parameters is partly overestimated.” An extensive comparison between the

lasso and the horseshoe is given in Bhadra et al. (2019a). Here, the authors argue that even

though the lasso estimation procedure is typically computationally faster, the horseshoe

prior performs better in terms of estimation thanks to its heavy tails, making it adaptive to

sparse data and robust to large signals. Moreover, Polson and Scott (2010, 2012) and Datta

and Ghosh (2015) have shown that horseshoe empirically outperforms lasso in terms of

out-of-sample predictive sum of squares errors. Last but not least, the lack of speed can be

easily overcome, as proposed in Terenin et al. (2019) and Bhadra et al. (2019b).

Overall, all the proposed models produced promising results, in terms of (1) the

explanatory variables that were selected; (2) the possibility to use country-level estimates

instead of clustered or global estimates; (3) the estimated trends (see FAO 2019 for

comparison). More extended tests will be carried out when the data collection effort that

should be undertaken by the national and international stakeholders to support policy-

making towards the achievement of SDG 12.3 produces significant improvements in data

availability.
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6. Appendix

6.1. More Details on Data Avilability

Fig. 7. Time series of available data for cereals in Austria (left panel) and Ecuador (right panel).

Fig. 8. Average loss percentage by country.

Mingione et al.: Measuring and Modeling Food Losses 189



6.2. Factors

Fig. 9. Average loss percentage by crop.

Table 2. All available causal factors or proxy variables for the causes of losses, by source and category.

Variable Source Category Description

Lead World bank pink sheets Building materials World lead prices, annual

average (nominal)

Coal World bank pink sheets Energy prices World coal prices, annual

average (nominal)

Copper World bank pink sheets Building materials World copper prices, annual

average (nominal)

Nickel World bank pink sheets Building materials World nickel prices, annual

average (nominal)

Crude oil World bank pink sheets Energy prices World crude oil prices,

annual average (nominal)

Crude petrol World bank pink sheets Energy prices World crude petrol prices,

annual average (nominal)

Aluminum World bank pink sheets Building materials World aluminum prices,

annual average (nominal)

Zinc World bank pink sheets Building materials World zinc prices, annual

average (nominal)

Potash World bank pink sheets Fertilizer World potash prices, annual

average (nominal)

Urea World bank pink sheets Fertilizer World urea prices, annual

average (nominal)

Phosrock World bank pink sheets Fertilizer World phosrock prices,

annual average (nominal)

TSP World bank pink sheets Fertilizer World TSP prices, annual

average (nominal)

DAP World bank pink sheets Fertilizer World DAP prices, annual

average (nominal)

Natural gas International energy agency Energy prices World natural gas prices,

annual average (nominal)
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Table 2. Continued

Variable Source Category Description

Gas World bank pink sheets Energy prices World natural gas prices,

annual average (nominal)

Heat International energy agency Energy prices World natural gas prices,

annual average (nominal)

Geothermal International energy agency Energy prices World natural gas prices,

annual average (nominal)

Oil International energy agency Energy prices World natural gas prices,

annual average (nominal)

Oil product International energy agency Energy prices World natural gas prices,

annual average (nominal)

Biofuels International energy agency Energy prices World biofuels prices, annual

average (nominal)

Electricity International energy agency Energy prices World electricity prices,

annual average (nominal)

Platinum World bank pink sheets Building materials World platinum prices,

annual average (nominal)

Silver World bank pink sheets Building materials World silver prices, annual

average (nominal)

Gold World bank pink sheets Building materials World gold prices, annual

average (nominal)

Iron World bank pink sheets Building materials World iron prices, annual

average (nominal)

Tin World bank pink sheets Building materials World tni prices, annual

average (nominal)

Credit to

agriculture

FAOSTAT Economic factors Credit to agriculture

Net capital

stocks

FAO agriculture capital

stock database

Economic factors Net capital stocks of

agriculture, forestry and

fishing

Gross fixed

capital

formation

FAO agriculture capital

stock database

Economic factors Gross fixed capital formation

of agriculture, forestry and

fishing

Gross capital

stocks

FAO agriculture capital

stock database

Economic factors Gross capital stocks of

agriculture, forestry and

fishing

Consumption

fixed

capital

FAO agriculture capital

ctock database

Economic factors Consumption fixed capital

of agriculture, forestry

and fishing

Spending on

agriculture

International food policy

research insitute

Economic factors Share of agricultural GDP

Logistic

perform-

ance index

World bank Transportation and

logistics

Composite indicator for

evaluating trade logistics

Rainfall World bank Weather Yearly average in mm

Temperature World bank Weather Yearly average in degree

Celsius
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6.3. Factor Diagram

Fig. 10. Path diagram representation of PCA, showing variables associated to the 1st component (a), to the 2nd

component (b) and to the third component (c).
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6.4. Example Codes

6.4.1. Spike and Slab Implementation
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6.4.2. Horseshoe Implementation

Mingione et al.: Measuring and Modeling Food Losses 195



Journal of Official Statistics196



6.5. Estimation And Diagnostics

Table 3. Selected variables with the two different priors and 95% posterior credibility intervals of the b*k.

Model Variable ĝ q.025 Mean q.975

Biofuels 1 0.345 0.449 0.558
M1 SpendingOnAgri 1 20.231 20.190 20.149

Comp.2 1 0.136 0.178 0.219
Comp.3 0.56 0.037 0.081 0.125

Biofuels 0.332 0.439 0.547
SpendingOnAgri 20.224 20.180 20.136

M2 Comp.2 0.132 0.173 0.213
Comp.3 0.035 0.078 0.120
Temperature 20.0617 20.021 20.005

Fig. 11. Traceplots of the estimated variance components by M1: variance of the random effects t2 (a) and

variance of the outcome ø (b).

Mingione et al.: Measuring and Modeling Food Losses 197



Fig. 12. Posterior density of the estimated variance components by M1: variance of the random effects t2 (a)

and variance of the outcome ø (b).

Fig. 13. Traceplots of the estimated variance components by M2: global shrinkage parameter h2 (a), variance

of the random effects t2 (b) and variance of the outcome ø(c).

Fig. 14. Posterior density of the estimated variance components by M2: global shrinkage parameter h2 (a),

variance of the random effects t2 (b) and variance of the outcome ø (c).
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6.5.1. Country-Crop Random Effects

Table 4. Point estimates and 95% credible intervals for the country-crop random effects by M1.

Country Crop q.025 Mean q.975

Afghanistan wheat 22.77 22.44 22.14

Albania wheat 22.82 22.50 22.20

Argentina barley 23.73 23.32 22.96

Argentina maize (corn) 24.39 23.86 23.39

Argentina oats 23.51 23.13 22.80

Argentina rice 24.27 23.80 23.38

Argentina rye 24.18 23.71 23.29

Armenia barley 25.05 24.33 23.65

Armenia maize (corn) 23.29 22.90 22.56

Armenia oats 26.54 25.46 24.52

Armenia other cereals 24.68 24.12 23.60

Armenia wheat 25.48 24.78 24.11

Austria barley 24.51 24.10 23.70

Austria maize (corn) 24.28 23.88 23.49

Austria oats 24.14 23.75 23.37

Austria rye 24.71 24.29 23.87

Austria triticale 23.93 23.51 23.11

Austria wheat 25.08 24.63 24.20

Azerbaijan barley 24.34 23.94 23.57

Azerbaijan maize (corn) 23.97 23.61 23.27

Azerbaijan rice 21.80 21.55 21.31

Azerbaijan wheat 24.33 23.93 23.56

Belgium barley 25.24 24.35 23.49

Belgium maize (corn) 25.59 24.67 23.76

Belgium oats 25.54 24.61 23.73

Belgium rye 23.13 22.38 21.64

Belgium wheat 25.47 24.53 23.65

Canada barley 26.15 25.45 24.84

Canada green corn (maize) 23.64 23.12 22.66

Canada oats 25.80 25.10 24.48

Canada rye 24.41 23.80 23.28

Canada wheat 26.11 25.38 24.70

China maize (corn) 23.05 22.43 21.89

Cuba maize (corn) 28.72 25.42 22.63

Cyprus barley 25.55 24.72 24.00

Cyprus wheat 24.42 23.61 22.88

Czechia barley 25.03 24.49 24.00

Czechia oats 25.28 24.72 24.23

Czechia rye 25.11 24.54 24.02

Czechia wheat 25.30 24.76 24.27

Denmark barley 23.31 22.94 22.58

Denmark oats 23.31 22.92 22.55

Denmark rye 23.31 22.93 22.59

Denmark wheat 23.43 23.04 22.68

Ecuador barley 22.78 22.50 22.23

Ecuador maize (corn) 22.93 22.63 22.33

Ecuador oats 22.16 21.90 21.66
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Table 4. Continued

Country Crop q.025 Mean q.975

Ecuador rice 23.03 22.72 22.43

Ecuador wheat 22.77 22.49 22.23

Egypt barley 23.18 22.81 22.47

Estonia barley 24.76 24.20 23.68

Estonia rye 24.39 23.89 23.43

France barley 23.95 23.47 23.03

France maize (corn) 23.84 23.38 22.93

France oats 23.91 23.42 22.96

France rice 23.66 23.21 22.76

France wheat 23.94 23.47 23.03

Georgia maize (corn) 23.30 22.99 22.70

Georgia wheat 21.61 21.37 21.14

Germany barley 22.62 22.14 21.67

Germany maize (corn) 22.43 21.95 21.49

Germany oats 22.59 22.11 21.64

Germany rye 22.53 22.05 21.60

Germany triticale 22.80 22.31 21.83

Germany wheat 22.64 22.15 21.68

Guatemala maize (corn) 24.49 24.11 23.76

Guatemala rice 23.94 23.61 23.31

Guatemala sorghum 24.71 24.32 23.97

Guatemala wheat 23.33 23.09 22.84

Guyana rice 25.25 23.97 23.05

Hungary maize (corn) 24.27 23.87 23.49

Hungary oats 24.43 24.00 23.61

Hungary rice 23.70 23.19 22.70

Hungary rye 23.89 23.50 23.13

Hungary wheat 24.00 23.59 23.22

India barley 23.64 22.80 22.09

India maize (corn) 21.81 21.26 20.75

India millet 22.85 22.17 21.58

India sorghum 22.42 21.81 21.25

lndia wheat 23.20 22.45 21.80

Indonesia maize (corn) 23.00 22.66 22.35

Indonesia rice 23.01 22.67 22.35

Ireland barley 23.04 22.72 22.41

Ireland oats 23.17 22.84 22.54

Ireland wheat 22.81 22.50 22.20

Israel barley 21.28 21.04 20.80

Israel maize (corn) 23.59 23.25 22.95

Israel sorghum 23.08 22.56 22.10

Italy barley 24.56 23.93 23.32

Italy maize (corn) 24.73 24.08 23.47

Italy oats 23.28 22.74 22.22

Italy sorghum 23.70 22.88 22.21

Italy wheat 23.83 23.25 22.70

Japan barley 21.28 20.68 20.07

Japan rice 24.86 24.15 23.45

Japan wheat 22.17 21.53 20.87
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Table 4. Continued

Country Crop q.025 Mean q.975

Kyrgyzstan rice 26.05 25.12 24.32

Lesotho maize (corn) 21.61 21.17 20.76

Lithuania barley 24.47 24.02 23.60

Lithuania wheat 23.96 23.44 22.96

Luxembourg wheat 26.13 23.13 20.32

Macedonia maize (corn) 22.68 22.27 21.89

Macedonia rye 22.51 22.16 21.83

Malta wheat 0.82 1.07 1.34

Mauritania sorghum 22.69 22.31 21.95

Mauritius maize (corn) 21.32 20.97 20.65

Moldova wheat 22.52 21.98 21.49

Nepal barley 22.31 22.07 21.83

Nepal maize (corn) 22.35 22.10 21.87

Nepal wheat 22.32 22.07 21.83

Netherlands barley 23.40 23.06 22.73

Netherlands maize (corn) 22.40 22.10 21.81

Netherlands rye 23.23 22.77 22.36

Netherlands triticale 23.07 22.56 22.12

Netherlands wheat 24.01 23.64 23.28

New Zealand barley 23.90 23.45 23.04

New Zealand oats 23.58 23.17 22.80

Nicaragua maize (corn) 21.48 21.23 20.99

Nicaragua rice 23.76 23.38 23.04

Norway barley 23.23 22.92 22.64

Norway oats 23.67 23.33 23.03

Norway rye 22.94 22.65 22.38

Norway wheat 22.42 22.17 21.92

Pakistan maize (corn) 23.84 22.93 22.22

Panama maize (corn) 23.10 22.75 22.42

Panama rice 23.25 22.89 22.55

Peru barley 21.19 21.00 20.80

Peru maize (corn) 23.15 22.84 22.56

Peru quinoa 21.83 21.61 21.40

Peru rice 24.15 23.58 23.08

Peru rye 23.12 22.70 22.34

Peru wheat 21.55 21.34 21.14

Philippines maize (corn) 24.59 24.07 23.59

Philippines rice 24.29 23.78 23.32

Poland barley 23.04 22.76 22.49

Poland buckwheat 23.27 22.97 22.69

Poland maize (corn) 23.01 22.73 22.46

Poland oats 22.75 22.49 22.24

Poland rye 23.23 22.94 22.65

Poland triticale 23.21 22.91 22.64

Poland wheat 23.05 22.76 22.50

Portugal maize (corn) 24.55 24.07 23.63

Portugal rice 25.93 25.36 24.84

Portugal rye 24.18 23.76 23.38

Portugal wheat 24.93 24.48 24.06
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Table 4. Continued

Country Crop q.025 Mean q.975

Romania maize (corn) 24.79 24.23 23.73

Romania wheat 25.00 24.44 23.93

Russia barley 23.61 23.11 22.62

Russia maize (corn) 23.47 22.95 22.44

Russia other cereals 22.03 21.59 21.16

Russia rice 23.40 22.92 22.44

Russia wheat 23.98 23.45 22.93

Saudi Arabia wheat 24.42 23.80 23.25

Slovakia barley 23.29 22.95 22.64

Slovakia maize (corn) 22.66 22.39 22.13

Slovakia oats 23.60 23.26 22.95

Slovakia rye 23.66 23.29 22.95

Slovakia wheat 23.77 23.40 23.06

South Korea rice 23.71 23.26 22.86

Spain barley 25.11 24.20 23.43

Spain maize (corn) 24.72 24.09 23.48

Spain rye 24.59 24.01 23.47

Spain wheat 24.71 24.08 23.47

Sri Lanka maize (corn) 22.50 22.25 22.02

Sri Lanka millet 23.61 23.31 23.02

Sri Lanka rice 22.98 22.70 22.43

Sweden barley 23.45 23.11 22.79

Sweden mixed grain 23.08 22.76 22.48

Sweden rye 23.02 22.70 22.39

Sweden wheat 23.41 23.07 22.76

Switzerland barley 23.67 23.28 22.92

Switzerland maize (corn) 23.70 23.31 22.94

Switzerland oats 23.66 23.27 22.91

Switzerland rye 23.57 23.19 22.85

Switzerland triticale 24.21 23.44 22.77

Switzerland wheat 23.59 23.21 22.87

Syria wheat 23.35 22.88 22.46

Tanzania maize (corn) 23.43 22.99 22.60

Toga millet 21.58 21.34 21.10

Turkey mixed grain 21.63 21.45 21.27

Turkey oats 22.01 21.81 21.62

Turkey rice 23.48 23.18 22.91

Turkey rye 22.01 21.81 21.62

Turkey wheat 22.54 22.32 22.10

Turkmenistan rice 24.23 23.42 22.77

Ukraine maize (corn) 23.21 22.88 22.57

Ukraine oats 23.21 22.90 22.61

Ukraine rice 23.93 23.56 23.21

Ukraine rye 23.59 23.22 22.88

United Kingdom barley 24.73 24.22 23.76

United Kingdom oats 24.74 24.22 23.74

United Kingdom wheat 24.10 23.67 23.27

Uzbekistan maize (corn) 24.99 24.01 23.21

Venezuela maize (corn) 21.66 21.46 21.25

Venezuela rice 22.35 22.09 21.84

Venezuela sorghum 21.55 21.35 21.16
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Table 5. Point estimates and 95% credible intervals for the country-crop random effects by M2.

Country Crop q.025 Mean q.975

Afghanistan wheat 22.76 22.45 22.15

Albania wheat 22.84 22.51 22.21

Argentina barley 23.74 23.33 22.97

Argentina maize (corn) 24.40 23.86 23.39

Argentina oats 23.51 23.14 22.81

Argentina rice 24.29 23.81 23.38

Argentina rye 24.18 23.71 23.30

Armenia barley 25.02 24.31 23.63

Armenia maize (corn) 23.25 22.88 22.55

Armenia oats 26.55 25.43 24.50

Armenia other cereals 24.65 24.10 23.57

Armenia wheat 25.46 24.76 24.09

Austria barley 24.47 24.05 23.65

Austria maize (corn) 24.24 23.84 23.45

Austria oats 24.10 23.71 23.32

Austria rye 24.67 24.24 23.84

Austria triticale 23.87 23.46 23.06

Austria wheat 25.04 24.59 24.14

Azerbaijan barley 24.34 23.93 23.56

Azerbaijan maize (corn) 23.97 23.61 23.27

Azerbaijan rice 21.80 21.55 21.31

Azerbaijan wheat 24.33 23.93 23.56

Belgium barley 25.19 24.31 23.47

Belgium maize (corn) 25.56 24.63 23.74

Belgium oats 25.47 24.57 23.68

Belgium rye 23.10 22.34 21.61

Belgium wheat 25.44 24.50 23.61

Canada barley 26.10 25.42 24.81

Canada green corn (maize) 23.61 23.09 22.63

Canada oats 25.78 25.07 24.49

Canada rye 24.38 23.78 23.26

Canada wheat 26.09 25.36 24.69

China maize (corn) 23.05 22.44 21.91

Cuba maize (corn) 28.44 25.58 22.71

Cyprus barley 25.53 24.72 24.00

Cyprus wheat 24.42 23.61 22.86

Czechia barley 25.03 24.51 24.02

Czechia oats 25.28 24.74 24.26

Czechia rye 25.12 24.56 24.04

Czechia wheat 25.32 24.77 24.28

Denmark barley 23.32 22.92 22.55

Denmark oats 23.30 22.90 22.52

Denmark rye 23.31 22.92 22.55

Denmark wheat 23.41 23.02 22.67

Ecuador barley 22.80 22.51 22.24

Ecuador maize (corn) 22.95 22.64 22.35

Ecuador oats 22.16 21.91 21.67

Ecuador rice 23.02 22.72 22.43

Ecuador wheat 22.78 22.50 22.23

Egypt barley 23.19 22.82 22.48
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Table 5. Continued

Country Crop q.025 Mean q.975

Estonia barley 24.79 24.22 23.71

Estonia rye 24.40 23.90 23.44

France barley 23.98 23.51 23.07

France maize (corn) 23.90 23.42 22.99

France oats 23.96 23.46 23.00

France rice 23.70 23.24 22.81

France wheat 23.97 23.51 23.07

Georgia maize (corn) 23.32 23.01 22.72

Georgia wheat 21.64 21.39 21.16

Germany barley 22.69 22.20 21.73

Germany maize (corn) 22.49 22.01 21.54

Germany oats 22.64 22.17 21.68

Germany rye 22.60 22.11 21.64

Germany triticale 22.89 22.37 21.89

Germany wheat 22.71 22.21 21.73

Guatemala maize (corn) 24.49 24.11 23.76

Guatemala rice 23.93 23.60 23.29

Guatemala sorghum 24.71 24.32 23.96

Guatemala wheat 23.33 23.09 22.85

Guyana rice 25.25 23.98 23.05

Hungary maize (corn) 24.30 23.89 23.50

Hungary oats 24.47 24.02 23.62

Hungary rice 23.73 23.21 22.73

Hungary rye 23.89 23.51 23.14

Hungary wheat 24.02 23.61 23.23

India barley 23.63 22.80 22.11

India maize (corn) 21.82 21.26 20.74

India millet 22.85 22.17 21.56

India sorghum 22.43 21.82 21.25

India wheat 23.22 22.45 21.81

Indonesia maize (corn) 22.95 22.61 22.28

Indonesia rice 22.97 22.62 22.28

Ireland barley 23.00 22.67 22.34

Ireland oats 23.14 22.80 22.47

Ireland wheat 22.78 22.45 22.14

Israel barley 21.28 21.04 20.81

Israel maize (corn) 23.60 23.26 22.95

Israel sorghum 23.08 22.56 22.10

Italy barley 24.63 23.99 23.37

Italy maize (corn) 24.79 24.14 23.53

Italy oats 23.33 22.80 22.29

Italy sorghum 23.75 22.95 22.28

Italy wheat 23.89 23.31 22.75

Japan barley 21.36 20.77 20.17

Japan rice 24.94 24.24 23.55

Japan wheat 22.25 21.62 20.97

Kyrgyzstan rice 26.03 25.11 24.30

Lesotho maize (corn) 21.62 21.17 20.76

Lithuania barley 24.53 24.07 23.64
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Table 5. Continued

Country Crop q.025 Mean q.975

Lithuania wheat 24.04 23.49 23.00

Luxembourg wheat 26.05 23.10 20.14

Macedonia maize (corn) 22.68 22.29 21.90

Macedonia rye 22.51 22.17 21.85

Malta wheat 0.81 1.06 1.32

Mauritania sorghum 22.68 22.31 21.97

Mauritius maize (corn) 21.29 20.95 20.63

Moldova wheat 22.53 21.97 21.46

Nepal barley 22.35 22.10 21.86

Nepal maize (corn) 22.38 22.14 21.90

Nepal wheat 22.35 22.10 21.86

Netherlands barley 23.41 23.07 22.74

Netherlands maize (corn) 22.41 22.11 21.82

Netherlands rye 23.24 22.78 22.37

Netherlands triticale 23.08 22.57 22.13

Netherlands wheat 24.03 23.65 23.28

New Zealand barley 23.92 23.46 23.05

New Zealand oats 23.59 23.18 22.80

Nicaragua maize (corn) 21.45 21.19 20.94

Nicaragua rice 23.72 23.34 22.98

Norway barley 23.22 22.92 22.63

Norway oats 23.66 23.33 23.02

Norway rye 22.94 22.64 22.37

Norway wheat 22.42 22.16 21.92

Pakistan maize (corn) 23.87 22.93 22.22

Panama maize (corn) 23.08 22.72 22.39

Panama rice 23.23 22.86 22.52

Peru barley 21.21 21.01 20.81

Peru maize (corn) 23.15 22.85 22.57

Peru quinoa 21.84 21.62 21.40

Peru rice 24.17 23.59 23.09

Peru rye 23.13 22.71 22.35

Peru wheat 21.56 21.35 21.15

Philippines maize (corn) 24.56 24.02 23.55

Philippines rice 24.26 23.74 23.28

Poland barley 23.03 22.75 22.49

Poland buckwheat 23.26 22.96 22.68

Poland maize (corn) 23.01 22.73 22.46

Poland oats 22.75 22.49 22.24

Poland rye 23.23 22.94 22.66

Poland triticale 23.20 22.91 22.63

Poland wheat 23.03 22.76 22.50

Portugal maize (corn) 24.53 24.06 23.62

Portugal rice 25.95 25.37 24.84

Portugal rye 24.19 23.76 23.37

Portugal wheat 24.93 24.47 24.05

Romania maize (corn) 24.79 24.23 23.74

Romania wheat 25.03 24.46 23.95

Russia barley 23.65 23.13 22.65
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Table 5. Continued

Country Crop q.025 Mean q.975

Russia maize (corn) 23.48 22.98 22.48

Russia other cereals 22.04 21.61 21.19

Russia rice 23.43 22.94 22.47

Russia wheat 24.00 23.46 22.96

Saudi Arabia wheat 24.45 23.81 23.27

Slovakia barley 23.31 22.97 22.64

Slovakia maize (corn) 22.67 22.40 22.16

Slovakia oats 23.61 23.27 22.96

Slovakia rye 23.67 23.30 22.96

Slovakia wheat 23.78 23.41 23.08

South Korea rice 23.72 23.27 22.87

Spain barley 25.12 24.22 23.46

Spain maize (corn) 24.74 24.11 23.51

Spain rye 24.60 24.03 23.49

Spain wheat 24.72 24.10 23.52

Sri Lanka maize (corn) 22.46 22.20 21.94

Sri Lanka millet 23.58 23.25 22.93

Sri Lanka rice 22.94 22.64 22.36

Sweden barley 23.47 23.12 22.79

Sweden mixed grain 23.08 22.77 22.48

Sweden rye 23.03 22.71 22.41

Sweden wheat 23.40 23.08 22.77

Switzerland barley 23.67 23.29 22.92

Switzerland maize (corn) 23.71 23.31 22.95

Switzerland oats 23.65 23.27 22.91

Switzerland rye 23.57 23.20 22.87

Switzerland triticale 24.21 23.45 22.79

Switzerland wheat 23.59 23.22 22.88

Syria wheat 23.33 22.85 22.44

Tanzania maize (corn) 23.44 23.01 22.62

Toga millet 21.59 21.34 21.10

Turkey mixed grain 21.64 21.46 21.28

Turkey oats 22.01 21.82 21.62

Turkey rice 23.48 23.19 22.92

Turkey rye 22.02 21.82 21.63

Turkey wheat 22.55 22.32 22.11

Turkmenistan rice 24.22 23.43 22.77

Ukraine maize (corn) 23.20 22.87 22.57

Ukraine oats 23.21 22.89 22.59

Ukraine rice 23.94 23.55 23.20

Ukraine rye 23.58 23.21 22.86

United Kingdom barley 24.72 24.22 23.76

United Kingdom oats 24.74 24.22 23.75

United Kingdom wheat 24.10 23.67 23.27

Uzbekistan maize (corn) 25.00 24.02 23.22

Venezuela maize (corn) 21.68 21.47 21.26

Venezuela rice 22.37 22.10 21.84

Venezuela sorghum 21.57 21.36 21.16
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Fig. 15. Comparison between M1 and M2 for both point and interval estimates of country-crop random effects.
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regression.” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

74(2):287–311. DOI: https://doi.org/10.1111/j.1467-9868.2011.01015.x.

Sinharay, S., H.S. Stern, and D. Russell. 2001. “The use of multiple imputation for the

analysis of missing data.” Psychological methods, 6(4):317. DOI: https://doi.org/10.

1037/1082-989X.6.4.317.

Journal of Official Statistics210

https://doi.org/10.1016/j.csda.2019.06.005
https://doi.org/10.1016/j.csda.2019.06.005
http://www.fao.org/3/i4315e/I4315E.pdf
http://www.fao.org/3/a-i2697e/index.html
http://pdf.usaid.gov/pdf_docs/PNAAG842.pdf
https://www.iea.org/statistics/resources/balancedefinitions/
https://doi.org/10.3923/rjasci.2016.428.438
https://doi.org/10.1080/01621459.1988.10478694
https://www.jstor.org/stable/pdf/25053023.pdf?refreqid=excelsior%3A325e1cb3fa930037a8f90bdab30b9ac5
https://www.jstor.org/stable/pdf/25053023.pdf?refreqid=excelsior%3A325e1cb3fa930037a8f90bdab30b9ac5
https://doi.org/10.1080/01621459.1988.10478694
https://doi.org/10.1080/01621459.1988.10478694
https://doi.org/10.1214/09-BA403
https://doi.org/10.1214/09-BA403
https://www.r-project.org/conferences/DSC-2003/Proceedings/
https://doi.org/10.1093/acprof:oso/9780199694587.003.0017
https://doi.org/10.1093/acprof:oso/9780199694587.003.0017
https://doi.org/10.1111/j.1467-9868.2011.01015.x
https://doi.org/10.1037/1082-989X.6.4.317
https://doi.org/10.1037/1082-989X.6.4.317


Spiegelhalter, D.J., N.G. Best, B.P. Carlin, and A. van der Linde. 2014. “The deviance

information criterion: 12 years on.” Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 76(3):485–493. DOI: https://doi.org/10.1111/rssb.12062.
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