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Creativity is progressively acknowledged as the main driver for
progress in all sectors of humankind’s activities: arts, science, tech-
nology, business, and social policies. Nowadays, many creative
processes rely on many actors collectively contributing to an out-
come. The same is true when groups of people collaborate in the
solution of a complex problem. Despite the critical importance of
collective actions in human endeavors, few works have tackled
this topic extensively and quantitatively. Here we report about an
experimental setting to single out some of the key determinants
of efficient teams committed to an open-ended creative task. In
this experiment, dynamically forming teams were challenged to
create several artworks using LEGO bricks. The growth rate of the
artworks, the dynamical network of social interactions, and the
interaction patterns between the participants and the artworks
were monitored in parallel. The experiment revealed that larger
working teams are building at faster rates and that higher com-
mitment leads to higher growth rates. Even more importantly,
there exists an optimal number of weak ties in the social net-
work of creators that maximizes the growth rate. Finally, the
presence of influencers within the working team dramatically
enhances the building efficiency. The generality of the approach
makes it suitable for application in very different settings, both
physical and online, whenever a creative collective outcome
is required.
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Creativity is one of the most distinctive features of human
beings. The ability to conceive new ideas, objects, technolo-

gies, and business is one of the founding factors of our societies
in their quest for progress and better living conditions. As such,
creativity is a powerful engine behind innovation, be it artistic,
scientific, technological, or social.

The investigation of the very nature of creativity has a very
long history, from the philosophy of creativity to aesthetics
to experimental approaches to crack its very nature (1–3).
For centuries scholars have raised questions about the emer-
gence of creativity, its determinants, and the differences of
creativity in very different domains. More recently, heralded
by pioneering works of Shaw, Simon, and Newell (4) and due
to the terrific progress made in complexity science (5–7) and
artificial intelligence, the new field of computational creativ-
ity (for instance, ref. 8) emerged with the scope of defining
and understanding creativity through the concrete implemen-
tation of artificial creative systems. This way, the set of ques-
tions about creativity expanded to include what makes a system
creative, whether technology can enhance human creativity,
and what the best environments are to foster and nurture
creativity.

One of the most intriguing aspects of creativity concerns
the interplay between individual exploits and collective achieve-
ments. Unlike earlier times, modern creative industries (music,
games, cinema, publishing, computer programs, etc.) rely on
complex creation processes, where many actors (from dozens to
thousands) contribute little chunks of content in a complex pro-

cess eventually converging to a final product. Final products can
be songs, interactive scripts, video games, screenplays, computer
codes (9), or texts (10, 11).

Recent studies have investigated collective creative processes
leading to innovation from very different perspectives, e.g., the
creation of knowledge on a Q&A website (12); the impact of
mobility of scientists on scientific research (13); the design of
frameworks to speed up research discoveries (14); and the role of
serendipity in creative processes (6). Finally, some of us recently
proposed a modeling framework for the emergence of novel-
ties (5, 7, 15, 16), based on the notion of “adjacent possible
expansion” theorized by Stuart Kauffman (17) and capable of
reproducing many statistical patterns linked to the emergence of
novelties in a very general way.

One of the open critical questions concerning collective cre-
ative processes concerns the efficient team structure. Many
efforts have been devoted to identifying the conditions favor-
able for creativity to emerge (18–20). In real social systems,
agents have strong ties defined as frequently repeated connec-
tions and weak ties indicating sporadic interactions. Following
Granovetter (21), the presence of “weak ties” in a social net-
work might be one of the most critical drivers of collective
creativity, allowing for the flow of new information and eventu-
ally leading to the development of new creative ideas. However,
although few weak ties within a social group indicate the absence
of new information circulating between the members of the
groups, too many weak ties might prevent an efficient com-
munication between the individuals. In refs. 18 and 19 it is
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reported that a more significant number of weak ties should cor-
respond with higher creativity at work, up to a point; beyond
this point, there is less benefit realized from more substan-
tial amounts of weak ties, and they may constrain creativity
at work. Several models have been designed for studying the
interplay between social relations and the emerging dynamics
of information and cooperation (22–24). In ref. 25, it has been
reported that in heterogeneous groups a vast number of weak ties
can negatively affect the spreading velocity of information in a
social network.

Despite the abundant literature on the subject, the problem of
how to best assemble a group of people with a specific creative
task is wide open. Here we address this problem by proposing
an experimental setting where a population of participants is
called to develop 3D artworks in open-ended environments using
LEGO bricks collectively. Here open-endedness refers both to
the dynamical composition of the working teams (participants
were free to join and leave teams at any time) and to the loose
constraints on the outcome. Participants were challenged to con-
tribute to the emerging artworks by either building new parts or
removing even substantial parts of them.

Through our experimental setup, we were able to record social
interactions among the participants using Radio Frequency
Identification (RFID) sensors developed within the SocioPat-
terns project (26–28). The same sensors were adopted to monitor
which artwork a specific participant contributed to and for how
long, among the several evolving in parallel. The networks of
interactions of users and users–artworks are intrinsically dynam-
ical (29, 30). The RFIDs allowed us to monitor the dynamics
of the social bonds which are continuously formed and broken
and to follow the constant restructuring of the working teams
(31–34).

In parallel with the social interactions, we monitored the
growth of each artwork through infrared depth sensors that pro-
vide in real time an accurate 3D reconstruction of the artworks.
This way, we could relate the dynamical composition of teams,
as mirrored through several observables, to the efficiency of the
building activity, measured through the growth rate.

The analysis of the ensemble of the data allowed us to draw
several important conclusions. First, faster growth of the art-
works is more likely to occur when the working teams have
specific topological features, namely an optimal balance between
weak and strong ties in a preferably large group. Also, the pres-
ence of influencers within the working teams greatly enhances
the building efficiency. Finally, a high level of commitment,
i.e., focusing on only one artwork, improves building efficiency.
The combination of all these circumstances emerges as a suf-
ficient condition to enhance the effectiveness of the collective
creative task.

Results
The experiments took place in the framework of an open event
dubbed KREYON Days that took place in Rome, Italy, from
2015 to 2017. On each day, for 3 d, from 9 AM until 7 PM,
participants were allowed to join and leave the experimental
hall at any time freely. Upon entrances, participants were reg-
istered and provided with RFID sensors (shown in Fig. 1A) to
be returned upon leaving the hall. Entrances and exits were
recorded. The RFID sensors allowed us to map face-to-face
interactions between individuals with a temporal resolution of
20 s. In other words, 2 participants are considered as interacting
if they stand in front of each other within a radius of 1 m for at
least 20 s. Through the RFID sensors, we were able to record the
total activity time of each user as well as of his/her social inter-
actions (see SI Appendix, section S1 for more information). In
the experimental hall, we installed three 1-m square large LEGO
building platforms, and a large stash of LEGO bricks was avail-
able. We chose LEGO bricks due to their popularity and the
immediacy of interaction they allow, independently of age, gen-
der, manipulation, and artistic skills. Fig. 1B shows a picture of
one of these platforms. Each building platform had, at any given
time, an assigned topic (e.g., “spring,” “Halloween”) and each
participant was free to decide to which building platforms to con-
tribute, not necessarily following the topic. The presence of vari-
ous artworks was necessary to study whether participants focused
their efforts on a single artwork or multiple ones and how this
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Fig. 1. (A) Scheme of the experiment. Participants were asked to wear RFID sensors allowing for the recording of their face-to-face interactions with time
steps of 20 s. We deployed 3 building areas into the experimental hall, equipped with RFIDs to map the amount of time spent in the surroundings of each
one. Each participant could freely join and leave the activity at any time. (B) Picture of one of the building areas. RFIDs can be seen right below the base.
Participants were asked to wear RFIDs at the waist level to allow the RFIDs of the building areas to detect them when they were close. (C) The aggregated
network obtained from the RFID data in 3 different days of the experiment. Larger nodes represent the building areas, while different colors represent
communities detected through the Louvain method for community detection, which assigns each node in the network to a unique community of highly
interconnected nodes (35).
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affected the growth of the artworks. RFID sensors were also
positioned all around the building platforms to monitor who con-
tributed at which side of the artworks, when, and for how long.
Through the RFID sensors, we reconstructed the dynamical net-
works of the participants as well as those of participants and
building platforms, with a 20-s time resolution. Fig. 1C shows the
aggregated networks obtained by the 3 dynamical networks in the
3 distinct days of activity. These networks were constructed by
considering all of the links that were active at least once, weight-
ing each link with the total activation time. The application of a
community detection algorithm (35) to these networks reveals a
clear community structure organized around the artworks (larger
nodes in Fig. 1C), so that each artwork belongs to a different
community. All of the interactions recorded by the RFIDs dur-
ing the experiment and the times series of the artwork volumes
are provided in Datasets S1–S9 and described in SI Appendix,
section S9.

To understand how the evolution of the team composition
(revealed by the dynamical networks of interactions) affects the
efficiency of the collective creative task, it is essential to mon-
itor the development of the artworks in time. Thus, we placed
infrared depth sensors on top of each building platform, with
their axes orthogonal to the plane of the platforms. These sen-
sors allowed us to monitor the growth, in time, of the volume
of each artwork. The depth sensors adopted have a sample rate,
which is higher than that of the RFID sensors. Hence, we aggre-
gated the volume measurements in time steps of 20 s starting
from the beginning of the experiment. Measuring time t in steps
of 20 s, we denote with V (t) the volume, measured in the num-
ber of standard bricks, of an artwork as a function of time t .
To compare the growth of different artworks, each reaching a
different maximum volume, we normalized the volumes so that
their maximum value is 1. The normalized volume is denoted
by V̂ (t).

SI Appendix, Fig. S7 shows examples of the time evolution
of V̂ (t) for the 3 artworks in each day. It is evident how the
growth of each artwork does not proceed with a regular pace.
It is characterized instead by bursts and collapses alternated with
moments of relative stasis. A natural way to quantify the build-
ing efficiency is by looking at the absolute value of the average
growth speed in a time interval of ∆t , defined as

v(t ; ∆t) =

∣∣∣∣∣ V̂ (t + ∆t)− V̂ (t)

∆t

∣∣∣∣∣ . [1]

Although other choices are indeed possible, the definition of
v(t) is quite straightforward and useful in identifying moments
of stasis and fast change of the artworks. Fig. 2A reports the
time evolution of v(t ; ∆t) with ∆t = 1,200 s for the artworks
of a generic day (see SI Appendix, section S3 for more com-
plete information). Note that in Eq. 1 we are considering the
average value of the variation of the volume; i.e., the growth
speed is definite positive. Please refer to SI Appendix, section S8
for a discussion about the cases in which the absolute value is
removed. The artworks play an important role in the organiza-
tion of the dynamic interaction network of the participants. In
SI Appendix, Fig. S3 we show that participants have longer inter-
action times with the artwork than with one another, while the
latter interactions are more frequent but shorter. Thus, we inves-
tigated the effect of its structure on the overall growth of the
artworks by singling out the subgraph of all of the contributors
to a specific artwork at each time step. Given all of the partici-
pants active at one particular time step t and all of the recorded
interactions between them and with the artworks, we denote the
overall network as Gt . At each time step, we can identify a work-
ing team of an artwork s as the subset gs(t ; ∆t)⊂Gt of all of
the participants that in the time interval It = [t , t + ∆t ] have at
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Fig. 2. (A–E) Time evolution of growth speed (A), weak ties (B), commit-
ment (C), social influence (D), and team size (E) on the third day of activity
of a specific artwork and for ∆t = 1,200 s. Lines of different colors represent
the time evolution of the metrics for different artworks.

least 1 recorded contact with any of the RFID sensors under
the artwork s . The identification of the working teams for each
artwork s allowed us to isolate which part of the interaction net-
works was relevant for the building activity performed in the time
interval It .

Having identified the working teams, we can now proceed to
investigate their properties, in terms of their dynamical composi-
tion and their topological structures. We investigate in particular
4 observables susceptible to play an essential role in the efficiency
of the collective building activity.

Weak Ties. A first significant quantity to look at is the fraction of
weak ties in a working team gs(t ; ∆t). A weak tie here is a link
between 2 individuals whose total interaction time is relatively
small compared to their total time of activity, tact, until time t . We
refer to the fraction of weak ties for a working team as Eweak/E ,
i.e., the fraction of links of gs(t ; ∆t) that are identified as weak
ties (see Materials and Methods for details).

Commitment. Another important element of the collective build-
ing activity what is we define as commitment. The commitment h
quantifies how evenly is distributed the total effort of an individ-
ual over the 3 artworks. h is based on the total interaction time
between an individual and the artworks. h will be 1 if all such
time has been spent on a single artwork and 0 if it is evenly dis-
tributed among the three (see Materials and Methods for details).
Fig. 3C reports the distribution of the commitment h , which has
a peak at h = 1 corresponding to individuals committed to only
1 artwork.

Social Influence. We now focus our attention on the role of
socially influential individuals in working teams, identified as
very effective information spreaders in the social network (30).
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Fig. 3. (A) Inverse cumulative distributions of the interaction times between participants, conditioned on the total activity time of 1 of the 2 participants. (B)
Same distributions as in A scaled by the average interaction time, 〈δt(tact)〉, of individuals with a given activity time tact . (C) Distribution of the commitment
of the participants in all days of activity. (D) Distribution of social influence of the participants in all days of activity.

To identify influential individuals in our dynamical interaction
networks, we adopted the SI (susceptible-infected) model of
epidemic spreading (30). In this way, every individual is associ-
ated with an observable, ri , quantifying his/her level of influence
(see Materials and Methods for details). Fig. 3D reports the
distribution of the social influence r . We observe the peak of
poorly influential people and a marked peak of fairly influential
individuals.

Team Size. Finally, one natural measure we take into account is
the size of each working team. Since the size of each working
team depends on the length of the interval It adopted for its
definition, we scale the team size (|gs(t ; ∆t)|) by ∆t to mitigate
this effect. See Materials and Methods for a more precise defini-
tion of the fraction of weak ties, commitment, social influence,
and team size. The 4 observables just defined are fundamental
to unveil the interplay between the structure and composition
of the working teams and the evolution of the artworks, i.e., the
outcome of the open-ended collective building activity. Given a
specific artwork and the sequence of working teams that worked
on it, gs(t ; ∆t), we can look at the time series of the 4 observ-
ables defined above. Fig. 2 reports an example of these behaviors
for 1 artwork and 1 choice of ∆t and we refer to SI Appendix
for a more detailed account. We can now investigate whether
the overall artworks’ growth is affected by the structure and
composition of the working teams. To this end we correlate the
growth speed and the time series reported in Fig. 2 of the frac-
tion of weak ties (Fig. 2B), the level of commitment (Fig. 2C),
the social influence (Fig. 2D), and the team sizes (Fig. 2E).
Fig. 4 reports the trends of the growth speeds as a function of
the 4 observables above. More in detail, for each observable
and each choice of ∆t , we averaged the values of the growth
speeds corresponding to a binned range of values of the observ-
able. In this way, for each bin of the observable, we obtain
an average value for the growth speed. It is first interesting to
observe as the scatter plots are robust with respect to the choice
of ∆t . An interesting pattern is observed in the relationship
between the growth speed and the fraction of weak ties (Fig. 4A).
In this case, we observe the existence of an optimal value of
the fraction of weak ties to maximize the growth speed of the
artworks. This result is in agreement with the framework devel-
oped by Granovetter (21): A few weak ties in a working team
indicate that the working teams are not so open-ended, which
results in a poor inflow of new information and reduced effec-
tiveness in carrying out the creative task. On the other hand,
too many weak ties indicate a working team whose turnover is
so high that no efficient communication can be established. In
other words, the fraction of weak ties is quantifying the balance
between the exploit and the explore strategies of working teams
(16). As the presence of weak ties fosters the diffusion of infor-
mation (33), a working team with a large number of weak ties
might easily explore new ideas at the cost of less communica-
tion efficiency. Due to their reduced ability to access further
information, working teams with few weak ties are forced to
reuse already exploited ideas. What emerges very clearly is that

a right balance of weak and strong ties is leading to optimal
growth for the artworks. The level of commitment (Fig. 4B) pos-
itively correlates with the growth speed. Working teams with
more committed individuals, i.e., individuals who focused pri-
marily on 1 single artwork, tend to be more effective in terms
of the amount of volume produced during the building activ-
ity. Fig. 4C shows the dependence of the growth speed on social
influence. In this case, we observe that a stronger presence of
influential people leads to best building performance. Finally,
the dependence on the team size (Fig. 4A) shows that larger
teams tend to be more productive in terms of volume growth.
This result is not surprising considering that besides having more
“workforce,” large teams are also able to share and test more
ideas, easing the realization of new parts of the artworks. In
SI Appendix, section S8, we isolate the cases where artworks
have grown and those in which their volume decreased. While
in the first case all of the results presented here are confirmed,
in the second one there is no evidence that the growth speed
correlates with the team size. The framework emerging can be
summarized by saying that the best way to assemble a team for a
creative task is to have it large, full of firmly committed, pos-
sibly influential, individuals, and with a right balance between
weak and strong ties. At this point, it is still not clear whether
the different features just described should all occur at the same
time or not. In principle, different combinations might occur at
separate times. For example, teams with the right amount of
weak ties without influential individuals might still be among
those very effective in the building activity. In SI Appendix,
section S6, we applied the nonnegative matrix factorization
(NNMF) dimensionality reduction algorithm (36) to identify

Fig. 4. (A–D) Binned scatter plots of the growth speeds of the artworks
vs. the fraction of weak ties (A), the commitment (B), the social influence
(C), and the team size (D). All of the observables have been computed for
different time windows ∆t.
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mixed conditions in which high growth speed might occur. Sur-
prisingly, we find that the only cases in which highly efficient
building conditions are likely to happen are when all of the 4
conditions mentioned above are present at the same time. What
emerges is then a very specific identikit of effective working
teams in terms of their structure and composition. Performing
the same analysis using latent Dirichlet allocation (37) leads to
similar results.

Discussion
The understanding of collective creative processes has been
boosted by the fast-growing relevance of creative processes,
where an open-ended multitude of contributors cooperate
toward an important collective outcome. The question of what
is the best way to organize the interactions within the community
of creators and what features a working team should have to get
the best out of the collective process is wide open.

Here we provided experimental pieces of evidence of the criti-
cal ingredients underlying efficient, creative cooperation. To this
end, we conceived and deployed a real-world open-ended exper-
iment in which teams of participants were committed to the
realization of artworks using LEGO bricks.

The growth of the artworks was monitored through depth
sensors, while the interactions between the participants were
monitored employing RFID sensors worn by each of them. In
this way, we obtained a real-time parallel picture of the growth
of the artworks and the evolution of social interactions. Through
this comprehensive monitoring, we were able to correlate the
dynamical evolution of a working team, along with its features,
to the growth speed of the emerging artworks.

We have identified 4 key determinants underlying a faster
growth of the artworks. In particular, we discovered the follow-
ing: 1) There exists an optimal value of the fraction of weak
ties within the working teams that makes their outcome par-
ticularly efficient. This result implies that the self-organized
working teams greatly benefited from a balance between weak
and strong ties in the network of interactions. In turn, this high-
lights the relevance of a subtle equilibrium between exploit and
explore strategies for creative purposes. 2) Working teams with
more committed individuals perform much better. 3) Influen-
tial individuals, i.e., individuals with a more significant potential
to spread their ideas within the team, greatly enhance the per-
formances of the team itself. 4) Finally, larger teams tend to
perform better.

Despite the interest of these results, the experiment could be
improved to allow the study of collective creativity in a more
general sense. Growth speed is a simple observable measuring
the level of coordination of team members, but the experimental
setting allows for the monitoring of other quantities related to
the popularity of the artworks. In this sense, we can monitor the
ability of an artwork to attract new contributors and, at the cost
of more complexity in the setup, it is possible to directly ask the
participants their opinion about the originality and creativity of
the artworks.

The generality and the effectiveness of the proposed exper-
imental framework make it suitable to be extended to other
kinds of joint activities both in real and in virtual worlds:
for instance, the realization of collective works like texts,
screenplays, music, video games, free software, or situations
where work division is relevant, as in large institutions or
corporations.

Materials and Methods
Experimental Protocols Approval and Participants’ Consent. All methods
in experiments E1 to E3 were carried out in accordance with rel-
evant guidelines and regulations. The experimental protocols used
have been approved by the General Data Protection Regulation (EU)
2016/679. Informed consent was obtained from all subjects. For partici-

pants below 18 y old, informed consent was obtained from parents or
legal tutors.

Weak Ties. Given 2 participants i and j at time t, we indicate the weight
of the link connecting them in Gt as δti,j . This weight represents the total
interaction time of i and i, i.e., the total duration of all their contacts as
recorded by their RFIDs. A participant with a larger activity time, tact , will
feature on average larger interaction times. This is reflected in Fig. 3A,
where we show that the distribution of the interaction times gets broader
as the total activity time tact grows. Considering the average interaction
time, 〈δt(tact)〉, of an individual with an activity time tact , we normalize
the interaction time of i and j as δti,j/〈δt(tact)〉. Fig. 3B shows the distri-
bution of these quantities, highlighting that the dependence on δt(tact)〉
has disappeared. We can now say that the link (i, j) is a weak tie for the
participant i if δti,j < |δt|(ti

act), where |δt|(ti
act) is the average of the distri-

bution of all of the δti,j of the participants with the same activity time of
the participant i. Note that with this definition a link which is a weak tie
for i might not be a weak tie for j, since they might have a different activ-
ity time. Thus, the link (i, j) is a weak tie, if and only if it is a weak tie for
both i and j.

Given a working team gs(t; ∆t), we define the fraction of weak ties in
the team as Eweak/E, where Eweak is the number of links in gs(t; ∆t) that
are weak ties and E is the total number of links. A value of Eweak/E = 1
indicates that all of the links are weak ties and hence that all of the
members of the working team have not interacted frequently during their
activities.

Commitment. Here we give the proper definition of commitment. Similarly
to the case of contacts between participants, it is possible to define the total
interaction time between the individual i and 1 of the 3 artworks s (with s∈
{1, 2, 3}). This interaction time δts

i quantifies how much of the total effort
of the participant i has been devoted to the artwork s. Thus, indicating with
Ti =

∑
s ts

i the total time i has spent building, we can define the commitment
for the participant i as

hi = 1−
1

log 3

∑
s

ts
i

Ti
log

ts
i

Ti
. [2]

In this way, an individual working only on a single artwork would fea-
ture h = 1. On the other hand, an individual who worked evenly on the
3 artworks would feature h = 0. We can extend the definition of the com-
mitment to a working team by simply averaging its values over all of the
members of the team.

Social Influence. The importance of an individual within a social network is
usually quantified with simple metrics such as the degree, the closeness cen-
trality, and the betweenness centrality (38). Although initially defined for
static networks, these observables naturally extend to dynamical networks
(39, 40). We refer to SI Appendix, section S5 for a brief investigation on
the correlations between centrality metrics for static networks and growth
speed. A common way in which importance can be assessed is through infor-
mation diffusion models, which are typically used also in epidemic spreading
simulations (30). Hence, we used a simple SI model of epidemic spreading
(30) running on the global dynamic interaction network of participants’
interactions. In turn, every individual i, i.e., every node of the network,
acts as the starting seed of a virtual infection and we measure the frac-
tion of nodes, ri , infected at the end of the spreading process. The social
influence of an individual participant is then identified as the fraction ri .
The higher ri is, the higher the level of influence of individual i. Note that
the SI model depends on 1 parameter β ∈ [0, 1], namely the transmission
rate. To have an estimate of r independent of this parameter, we repeated
the simulations for several values of β and averaged the different results
for ri . Fig. 3D shows the distribution of r for all of the participants in
the experiment in all of the 3 d of activity. While the distribution is quite
heterogeneous, the peak for ri = 0 indicates that a considerable fraction
of participants had a small influence on the others. We can extend the
definition of social influence to a working team gs(t; ∆t) by simply aver-
aging its values over all of the members of the team. See SI Appendix,
section S4 for more details on the simulation of the epidemic spreading
process.

Team Size. The limited size of the building supports allowed only a limited
number of participants to work together at the construction of each art-
work at a time. Even though the RFID sensors attached to each artwork
might have recorded the presence of participants just around it and not
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participating to the construction, it is reasonable to assume that a working
team with a large number of members will also be one in which many dif-
ferent people have given their contribution to the artwork. Obviously, as
∆t increases we also expect the size of gs(t; ∆t) to increase accordingly so
that sizes at different ∆t are not comparable. To have a definition of team
size easily comparable across very different situations, we consider a nor-

malized observable as the ratio between the size of gs(t; ∆t) and ∆t, i.e.,
gs(t; ∆t)/∆t.
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