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Summary: Capture–Recapture methods are used to estimate the size of a population of interest which is only

partially observed. In such studies, each member of the population carries a count of the number of times it has been

identified during the observational period. In real-life applications, only positive counts are recorded, and we get a

truncated at zero observed distribution. We need to use the truncated count distribution to estimate the number of
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unobserved units. We consider ratios of neighbouring count probabilities, estimated by ratios of observed frequencies,

regardless of whether we have a zero-truncated or an untruncated distribution. Rocchetti et al. (2011) have shown

that, for densities in the Katz family, these ratios can be modelled by a regression approach, and Rocchetti et al. (2014)

have specialized the approach to the beta-binomial distribution. Once the regression model has been estimated, the

unobserved frequency of zero counts can be simply derived. The guiding principle is that it is often easier to find an

appropriate regression model than a proper model for the count distribution. However, a full analysis of the connection

between the regression model and the associated count distribution has been missing. In this manuscript, we fill the

gap and show that the regression model approach leads, under general conditions, to a valid count distribution; we

also consider a wider class of regression models, based on fractional polynomials. The proposed approach is illustrated

by analysing various empirical applications, and by means of a simulation study.

Key words: capture-recapture, mixed binomial distributions, ratio regression estimator, zero–truncated model.
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1. Introduction and background

Let us consider a target population with sizeN , and assume we are interested in estimating its

global size. Often, for this purpose, an identification mechanism is repeatedly used to register

units from the population. Only a portion of the population is registered, and we need to

estimate the number of unobserved units. Let us consider the binary indicator variable xit,

i = 1, . . . , N , t = 1, . . . , T , where xit = 1 if the i-th unit has been identified at the t-th

measurement occasion. It is assumed that xi∗ =
∑T

t=1 xit is available only if xi∗ > 0, ie

∃t = 1, . . . , T : xit > 0. When xi∗ = 0, the i-th unit remains unobserved. The quantity T

may be known a priori, or it may denote the maximum observed count, e.g. if we look at the

number of lesions of a given type in a sample of patients. By simply arranging units indices,

we may distinguish between the untruncated population X1, X2, . . . , XN and the truncated

sample X1, X2, . . . , Xn where, without lack of generality, Xn+1 = · · · = XN = 0. The target

population can be described by a probability density function (x, px), where x = 0, 1, · · · ,

and px denotes the probability of exactly x identifications for a generic unit, px > 0 and∑∞
x=0 px = 1. If we denote by fx the empirical frequency of units with count x, we notice that

partial observation leads to a zero-truncated sample with size n =
∑

x>0 fx. The empirical

relative frequency fx/N (which cannot be computed since N is unknown) gives an estimate

of px, while the observed empirical relative frequency fx/n provides an estimate of the zero-

truncated probability px/(1 − p0). As a result of the study design, f0 and N =
∑T

x=0 fx

remain unknown. Starting from the observed zero-truncated distribution, our purpose is to

find an estimate of the population size N , a special form of the capture-recapture problem

(see Bunge and Fitzpatrick, 1993; Wilson and Collins, 1992; Chao, 2001).

A popular choice is to model the distribution of X using an appropriate counting dis-

tribution, e.g. the binomial for fixed T or the Poisson when T is not known in advance.

We will focus on the case with T fixed in advance. Since the observed counts derive from
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repeated measurements of the same unit, and due to potential individual-specific unobserved

heterogeneity, mixed binomial distributions are an obvious choice. It is worth noticing that,

using a mixed binomial distribution, we account for between-individual variation but not

for within-individual variation. In the capture-recapture framework, the choice of a mixed

binomial model suffers from the lack of identifiability of the mixing distribution (see Link

2003), and from boundary problems in ML estimation, see e.g. Dorazio and Royle (2005).

Starting from the beta-binomial case, Rocchetti et al. (2014) propose a simple regression

model to describe ratios of successive probabilities, which can be fitted using observed

frequencies. Once fitted, the model is projected backward onto x = 0 to estimate the

frequency f0 of unobserved units. One may wonder whether a clear connection does exist

between the regression model and a proper counting distribution. That is, whether any

regression model corresponds to a proper counting distribution. In this manuscript, we fill

the gap and show that, under general conditions, each regression model corresponds to a

proper counting distribution. In this respect, we may also consider a wider and more flexible

family of regression models, based on the use of fractional polynomials, to cover a wide

variety of empirical situations.

The paper is structured as follows: in section 2 we introduce some benchmark data exam-

ples, to be used throughout the paper. In section 3, the probability ratio plot is proposed

as a screening tool to detect potential departures from homogeneity. Starting from the

properties of the ratio plot, section 4 discusses the estimation of the global size for the target

population. In section 5, the proposed estimators are applied to the benchmark data examples

introduced in section 2; we also discuss a model-averaged estimator. Identifiability of the

mixing distribution in zero-truncated binomial mixtures is discussed in section 6. Section

7 entails the analysis of a further, historic, example, where a mixed Poisson distribution
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represents a sensible choice. The last section contains discussion and concluding remarks.

The results from a simulation study are available as Supplementary Material.

2. Examples

Let us consider some real-life benchmark data examples. In two cases, f0 is known, and the

studies will be used to illustrate how well any estimator can recover f0.

2.1 Utrecht homeless data

The city of Utrecht (NL) runs a shelter where homeless people can stay overnight. The

shelter is assumed to cover the city of Utrecht only. The distribution of the number of nights

homeless people stayed in the shelter within a 14-nights period in 2013 is reported in the

Supplementary Material. In this case T = 14, f1 = 36 people stayed one night, f2 = 11

people stayed two nights, and so forth. In total, 222 different homeless people stayed in the

shelter during the period, spending a total of S =
∑14

x=1 xfx = 2009 nights there. For more

details, see van der Heijden et al. (2014). It can be argued that not all the homeless people

spent at least one night at the shelter during the analyzed period. With the aim at improving

social policy interventions, the city of Utrecht is interested in estimating the total size of its

homeless population, N , or, equivalently, the size f0 of the hidden homeless population.

2.2 Golf tees data

The data entail a well known field experiment: 250 groups of golf tees, of two colors, have

been placed in groups with different size in a survey region of 1, 680m2, either exposed above

the surrounding grass, or partly hidden by it. They have been surveyed by the 1999 statistics

honours class at the University of St. Andrews (Scotland). Borchers et al. (2004) give details.

A total of 162 groups of tees were found and f0 = 88 group of tees were missed. The observed

distribution refers to the count of times each group of tees has been found by 8 independent

observers, see the Supplementary Material.
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2.3 Bowel cancer data

Over several years, from 1984 onwards, about 50000 subjects were screened for bowel cancer

at St Vincent’s Hospital in Sydney (Australia), see Lloyd and Frommer (2004a, 2004b, 2008).

The screening procedure was based on a sequence of binary diagnostic tests, self-administered

on T = 6 successive days. Since no screening test is 100% accurate, replications of the

diagnostic test over a number of days may help identify most cases. On each of 6 occasions,

the presence xit = 1 of blood in faeces has been recorded. People with six negative tests were

not further assessed and it remains unknown which disease status they have, while people

with at least one positive test had their true disease status determined by physical exam-

ination, sigmoidoscopy and colonoscopy. The aim is to estimate how many (say f0) cancer

patients have been missed by adopting this screening procedure. The frequency distribution

of the number of positive tests X is provided in the Supplementary Material, see the row

cancer (primary). Lloyd and Frommer (2004b) mention that 122 patients with confirmed

cancer status were screened again using the identical screening procedure. The frequency

distribution is provided in the Supplementary Material, see the row cancer (secondary). We

will focus on this secondary distribution as f0 is known there.

3. The probability ratio

Approaches to estimating the population size, N , or the number of unregistered units, f0,

from the observed, zero–truncated, count distribution follow a general scheme; px is modeled

by using some known distribution px(θ), indexed by the parameter θ. Based on the observed

data, and using the zero-truncated distribution px(θ)/[1 − p0(θ)], an estimate θ̂ is used to

derive an estimate of N by means of the Horvitz-Thompson estimator:

N̂ = n/[1− p0(θ̂)], f̂0 = n
p0(θ̂)

1− p0(θ̂)
.
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To illustrate this procedure, let us consider the binomial probability distribution

px(θ) = P (X = x | θ) =

(
T

x

)
θx(1− θ)T−x, (1)

x = 0, · · · , T and px = 0 for x > T . In this case, p0(θ) = (1−θ)T and the Horvitz-Thompson

estimator is defined by

N̂ = n/[1− (1− θ̂)T ].

Usually, θ is estimated fitting a zero-truncated distribution to the observed data, e.g. through

an EM-type algorithm. The major problem with homogeneous binomial models is that

they are often not flexible enough to produce good fit to the observed (zero-truncated)

distribution. In fact, unobserved heterogeneity may play a role in determining variability in

the probability to be registered; so, it is important to have a screening tool for binomiality.

This tool may be built on an interesting property of the binomial distribution, see Hoaglin

(1980):

px+1

px
=

(
T
x+1

)
θx+1(1− θ)T−x−1(
T
x

)
θx(1− θ)T−x

=
T − x
x+ 1

θ

1− θ
,

that is

Rx =
x+ 1

T − x
px+1

px
= ax

px+1

px
=

θ

1− θ
, (2)

where ax =
((
T
x

))
/
((

T
x+1

))
= (T − x)/(x + 1). Therefore, in the binomial distribution, the

ratio Rx is constant with respect to x. It is straightforward to estimate Rx = ax
px+1

px
by

rx = ax
fx+1/N

fx/N
= ax

fx+1

fx
,

where fx denotes the number of units that have been identified x times; this estimate does

not change whether we consider the truncated or the untruncated distributions. The graph

x → rx = ax
fx+1

fx
is called the ratio plot and was developed as a diagnostic device for the

binomial by Böhning et al. (2013). In a ratio plot, the pattern of a horizontal line can be

taken as supporting evidence for a binomial distribution. This is shown in Figure 1 (a) in
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the Supplementary Material, where 50000 simulated data from a binomial distribution with

index T = 6 and parameter θ = 0.4 are reported on the ratio scale (left panel). The ratio

plot shows clear evidence for a binomial distribution, while this feature is more difficult to

recognize in the frequency plot (right panel). Despite the (almost) absence of any random

error, the nature of the distribution is not easily recognized, whereas the binomial structure

can easily be evinced from the ratio plot. Hence, the motivation for the use of the ratio plot

is in that it clearly shows whether substantial departures from the homogeneous binomial

distribution are observed; in the presence of a high sample size and number of trials, it may

help detecting a discrete mixing. For a smaller sample size, random error comes in and the

ratio plot could be supplemented by error bars to account for uncertainty. If we apply the

ratio plot concept to homeless people data, there is no evidence of a horizontal line, and the

same is true for the golf tees data. Instead, we observe a monotone pattern which might be

used as supporting evidence for population heterogeneity; a similar increasing pattern can be

observed for the bowel cancer data, see Figure 1 (b)–(d) in the Supplementary Material. As a

consequence, we will consider models where a mixing distribution h(θ) describes population

heterogeneity in the identification rates. The marginal distribution is:

p(x) =

∫ 1

0

(
T

x

)
θx(1− θ)T−xh(θ)dθ. (3)

The shape of the marginal distribution may vary substantially as a function of the mixing

distribution, as this term controls the departure from the homogeneous binomial model.

When the mixing distribution is not described by a 1-point mass (leading to the binomial

distribution), it can be shown that the ratios Rx are increasing in x. The ratio plots we

have seen for the benchmark data examples seem to suggest the presence of unobserved

population heterogeneity. Parametric choices for h(θ) such as the beta distribution have been

considered which often improve the fit considerably when compared to the binomial model.

Dicrete mixture models have also been suggested, see e.g. Norris and Pollock (1996), Pledger
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(2000), and Böhning and Kuhnert (2006). However, boundary problems may arise when the

parameter approaches the borders of the segment (0, 1), see Wang and Lindsay (2005, 2008),

and identifiability is an issue of great concern, see Link (2003). Given that we only observe

the zero-truncated distribution, we are left with the unsolved problem of choosing which

mixing is the best, not in terms of the observed fit, but rather in terms of estimating the

unknown f0. While a general solution to the problem does not exist, a sub-optimal solution

is to restrict the attention to identifiable families of distributions. The question is how do

we achieve alternative families? Could the ratio plot be used to determine the family of

interest? In this paper, we propose a general approach which produces identifiable families

of distributions that can be used to estimate the population size.

4. The regression approach

Let us start by the mixture model in equation (3). If we assume that the parameter θ is

distributed according to an arbitrary density h(θ), the marginal distribution is

px =

∫ 1

0

(
T

x

)
θx(1− θ)T−xh(θ)dθ . (4)

As remarked before, it can be easily proven that the marginal distribution satisfies the

following monotonicity property (Böhning et al. 2013)

a0
p1
p0

6 a1
p2
p1

6 a2
p3
p2

6 · · · .

where ax =
(
T
x

)
/
(
T
x+1

)
= x+1

T−x . In other words, the ratio plot for binomial mixtures is

monotone non–decreasing. In the context of species richness estimation, Hwang and Shen

(2010) consider the reciprocals of the elements in the ratio plot, and prove they define a mono-

tone non–increasing sequence. Rivest and Baillargeon (2014) consider terms log
(
px/
(
T
x

))
and show that, in the presence of individual-specific heterogeneity, they define a convex

sequence in x = 1, . . . , T , that is, the ratio plot is non–decreasing. These results and the
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analyzed examples suggest to model explicitly Rx as a non-decreasing function of x. This

ratio regression approach can be used to identify an appropriate distributional form without

the need to parametrically specify the mixing density h(θ). Let us assume that there exists

an unknown probability distribution p1, . . . , pT with all probabilities positive, i.e. px > 0,

∀x = 0, . . . , T , and let us consider the ratios:

Rx = axpx+1/px (5)

x = 0, . . . , T − 1. The coefficients ax are known constants, determined by the choice of

the reference distribution we would like to include. The reference distribution defines the

homogeneous distribution we get when no unobserved heterogeneity is present; that is, the

conditional distribution we use in (4). To give an example, if the upper limit T is known

and fixed, we may choose the binomial as reference distribution, with ax = (x+ 1)/(T − x).

If the range of the counts has no upper limit, we may would like to include the Poisson as

the reference distribution with ax = (x + 1). The point is that, if the observed count data

follow the reference distribution, the associated ratios Rx = axpx+1/px, x = 0, . . . , T − 1 are

constant over X. This implies that any regression model for Rx (or a suitable transformation

of it) with only the intercept term represents the reference distribution and, for this reason,

a non-null slope implies some unobserved heterogeneity. Let us assume that Rx can be linked

to a known set of predictor functions z0(x), · · · , zp(x), so that the following model is defined:

g(Rx) = β′z(x), (6)

where x = 0, · · · , T − 1, and g(·) is a monotone link-function, e.g. log(Rx) = β0 + β1x with

z0(x) = 1, z1(x) = x, that is Rx = exp(β0 + β1x). A general result can be proven.

Theorem 1: Let Rx > 0 be given for x = 0, · · · , T − 1, and let ax, x = 0, . . . , T − 1, be

known positive coefficients. Then, there exists a unique probability distribution p0, . . . , pT > 0



A flexible ratio regression approach for zero truncated capture-recapture counts 9

such that:

px+1 = Rxpx/ax , x = 0, · · · , T − 1.

Furthermore, we have that

p0 =

[
1 +R0/a0 + (R0/a0)(R1/a1) + · · ·+

T−1∏
x=0

Rx/ax

]−1
.

Proof. Let Rx > 0 be given for x = 0, · · · , T − 1. Any probability distribution p0, . . . , pT > 0

will meet the constraint p0 + · · · + pT = 1. Since the probability distribution needs also to

fulfill the recurrence relation px+1 = Rxpx/ax, we have that

1 = p0 + · · ·+ pT = p0 + p0R0/a0 + p0R0/a0R1/a1 + · · ·+ p0

T−1∏
x=0

Rx/ax

= p0(1 +R0/a0 + (R0/a0)(R1/a1) + · · ·+
T−1∏
x=0

Rx/ax). (7)

Hence, it follows that

p0 = 1/[1 +R0/a0 + (R0/a0)(R1/a1) + · · ·+
T−1∏
x=0

Rx/ax]

necessarily, and 0 < p0 < 1. The remaining probabilities follow from the recurrence formula,

and px+1 = Rxpx/ax implies that 0 < px+1 < 1, x = 0, . . . , T − 1. This ends the proof.

The value of this theorem lies in the fact that any regression model fulfilling the regularity

condition Rx > 0, x = 0, . . . , T − 1 leads to a proper probability distribution, which is

obtained by mixing the reference distribution, specified by the coefficients ax. The link

function defines a one-to-one mapping from the positive axis into the real line, and guarantees

the regularity conditions Rx > 0, x = 0, . . . , T − 1 hold. Estimation may be based on the

likelihood function

L(β) =
T∏
x=1

(
px

1− p0

)fx
where px is a function of Rx = g−1(β′z(x)), and hence of β, via Theorem 1. We suggest to use

the following procedure for practical purposes. We estimate Rx by its empirical counterpart,
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rx = ax
fx+1

fx
, and study its dependence on x. This process could help generate ideas on how

to develop an appropriate regression model. Once we have chosen the link function g(·), we

fit the model

g(rx) = β′z(x) + εx, (8)

where εx is such that E(εx) = 0 and cov(εx) = Σ. Here β = (β0, · · · , βp)′ represents a

(p+1)-dimensional vector of unknown fixed parameters, associated to the regression functions

z(x) = (z0(x), · · · , zp(x))′. If an estimate Σ̂ is available, the generalized least squares estimate

of β is known to be

β̂ = (X′Σ̂−1X)−1X′Σ̂−1Y.

where Y has elements g(rx) and X has rows z0(x), . . . , zp(x), x = 1, · · · , T − 1, since no

observation is available for x = 0. Details on how to estimate Σ are discussed in Rocchetti

et al. (2011, 2014). One of the peculiar features of the ratio regression approach is that

the model remains invariant whether the untruncated or the zero-truncated distribution is

considered. In fact, we may observe that:

Rx = ax
px+1

px
= ax

px+1/(1− p0)
px/(1− p0)

x = 0, . . . , T − 1. Clearly, R0 is defined for the untruncated distribution only. For the zero-

count frequency, a regression-based estimator can be derived:

ĝ(r0) = β̂′z(0)⇒ r̂0 = g−1
(
β̂′z(0)

)
Two estimators can be defined on the basis of the estimated regression model for rx. First,

we can use the fitted values r̂x = g−1(β̂′z(x)), x = 0, · · · , T−1 to estimate the corresponding

probability mass at 0 according to Theorem 1:

p̂0 =

[
1 + r̂0/a0 + (r̂0/a0)(r̂1/a1) + · · ·+

T−1∏
x=0

r̂x/ax

]−1
. (9)
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Given this probability mass, the Horvitz-Thompson estimator is:

N̂HT =
n

1− p̂0
= n+ f̂0,HT

Second, once a given regression model has been fitted and corresponding parameters esti-

mated, we may use the recurrence relation rx = axfx+1/fx and project it onto x = 0, to get

an estimate of f0:

f̂0,reg = a0f1/r̂0 = a0f1/g
−1(β̂′z(0)) .

The associated population size estimator follows:

N̂reg = n+ f̂0,reg .

4.1 Using fractional polynomials

The ratio regression approach allows a wide range of regression models to be considered to fit

empirical ratios. The only restriction is that the model should have an intercept β0 included

and the link function should be such that r̂x = g−1(β̂′z(0)) > 0, x = 0, . . . , T − 1. The

former guarantees that the associated reference distribution is included, the latter ensures

that the regression model corresponds to a proper probability distribution. For example,

if ax = x + 1, then log(Rx) = β0 implies that the associated distribution, according to

Theorem 1, is the Poisson. In principle, there are no further restrictions on the side of

possible regression models. In the following, we will use a log link, that is g(rx) = log(rx),

but other choices are possible as well. While a single choice for the link function may be

considered as a restriction, we propose to widen the family by considering a more flexible

regression predictor. Since any regression model will ultimately be used for prediction, it

should be simple to estimate and robust to departures due to sampling variability; that is,

it should perform stable. We found that fractional polynomials may be appropriate in this

context because they are simple, stable and may approximate a wide range of continuous
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functions, see Royston and Sauerbrei (2008). A fractional polynomial of order k for rx is:

g(rx) = β0 +
k∑
j=1

βj(x+ 1)αj , (10)

where αj is chosen from a standard set of powers, say S = {−2,−1,−0.5, 0., 0.5, 1, 2, 3}, with

the convention that when αj = 0 log(x + 1) is used. According to Royston and Sauerbrei

(2008), S includes the most commonly used power transformations. They also point out that

“ (...) k 6 2 provides enough flexibility for modelling many types of continuous functions

we encounter in the health sciences and elsewhere”. We consider fractional polynomials of

at most order 2, since higher order polynomials would lead to overfitting. This restriction

would not imply the class of fractional polynomial regressions is not wide enough to provide

a good fit; if one looks at the 8× 8 matrix of all α1 × α2 combinations of powers, it can be

noticed that the lower (upper) triangular matrix identifies 28 different fractional polynomials

of order 2 (with α1 6= α2), plus the 8 fractional polynomials of order 1 on the diagonal. A

similar approach is discussed by Hwang and Shen (2010); by re-wording their proposal using

the current notation, we get the non-linear regression model:

1

rx
= γ0 exp (γ1x

γ2) + εx

which, however, if not properly constrained, may lead to negative estimates at x = 0.

Considering the linear predictor only and adopting a log scale, the model can be equivalently

written as:

log rx = − log(γ0)− γ1xγ2

which is a particular case of the regression model we are discussing, but with a power not

fixed a priori. Rocchetti et al. (2011) describe a regression estimator based on the ratio plot

for distributions in the Katz family, proving linearity of the same. Willis and Bunge (2015)

generalize this work and consider Kemp-type family of distributions; they adopt a nonlinear

regression model for the ratios of successive probabilities, based on ratios of polynomials.
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The family of Kemp-type distributions is shown to include mixed Poisson distributions, but

it is wider and allows to handle departures from the mixed Poisson. Model parameters are

estimated by nonlinear least squares.

5. Examples (continued)

5.1 Golf tees

We recall the fractional polynomial of order 1:

log rx = β0 + β1(x+ 1)α + εx . (11)

Let us now consider the fitted values obtained by estimating the fractional polynomial above

for the golf tees data. As a first step, we evaluated the likelihood obtained by fitting the

regression model with varying α ∈ S, to the complete distribution, considering f0 as known.

The best fit corresponds to the power α = 0.5.

[Table 1 about here.]

The fit with α = 0.5 is good with observed χ2 =
∑T

x=0
(fx−f̂x)2

f̂x
= 9.98, on ν = (T − 1)− p =

9 − 1 − 2 = 6 degrees of freedom. For comparison purposes, we also include the fitted

frequencies obtained by the homogeneous binomial model which is entirely unsatisfactory;

an improved fit can be found by applying the beta-binomial model. The fit of the beta-

binomial is evidently and considerably better (χ2 = 9.11) than the fit for the binomial,

and it is found to be comparable to the fractional polynomial (11) with α = 0.5. Our

interest is, however, in predicting f0 when it is unobserved. Hence, as a second step, we

choose the order of the fractional polynomial by considering the truncated distribution;

after the order has been chosen, we predict log (r̂0) = β̂0 + β̂1(x + 1)α at x = 0, leading to

f̂0,reg = a0f1 exp(−β̂0− β̂1). The optimal value of α was found to be α = 1. The estimates of

f0 using the proposed regression approach, also for α = 0.5, the best value for the untruncated

distribution, and some competing estimators are reported in Table 2. For the binomial and
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the beta-binomial models, we have used an EM algorithm, see Web Appendix B. As standard

comparative estimators, we provide the Chao lower bound estimator (Chao 1987) and the

Turing estimator (Good 1953). Details on these estimators are given in Web Appendix B.

In all cases, however, the proposed approach clearly outperforms the others.

[Table 2 about here.]

5.2 Bowel cancer data

As a first step, we evaluated the likelihood associated to varying α ∈ S, and used the

complete distribution (f0 observed and known) to estimate model parameters. The best fit

corresponds to powers α = 0.5 and α = 0.

Table 3 reports the observed and the fitted frequencies obtained through the binomial,

beta-binomial and the fractional polynomial models with α = 0 and α = 0.5.

[Table 3 about here.]

As a second step of the analysis, we have fitted the regression model for varying values of

α ∈ S to the observed (truncated) distribution, with f0 unknown, as it would be in real-life

cases.

[Table 4 about here.]

The estimates of f0 for α = 0, α = 0.5 (best-fitting powers for the untruncated data) and

α = 1 (best-fitting power for the truncated data) are provided in Table 4 with f̂0 = 11 for

α = 0.5 and f̂0 = 6 for α = 1. The ratio regression approach provides the best estimate

though there seems to be space for improvements. By using the model with α = 0, that is

log rx = β0 + β1 log(x + 1) + εx, we get f̂0 = 21; it is worth noticing that this is actually

supported as the best fractional polynomial model when we consider the untruncated data

(see Table 3) and the Chi-square as index of model fit. This power is, however, not the best

choice when the truncated distribution is considered. From this discussion, it is clear that
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the model that best fits the truncated distribution is not necessarily the model that best fit

the untruncated distribution, and therefore it may result in the best estimate of f0. So, it

could be interesting to consider not only the best model but rather a range of good models,

which could be averaged to get a more reliable estimate for f0. To this aim, we consider

the best 3 models with respect to the maximized log-likelihood or the Akaike information

criterion (AIC) if model complexity varies. For the general case, let AIC(i) denote the value

of the AIC for the best (i = 0), the second best (i = 1) and the third best (i = 2) model, so

that AIC(0) 6 AIC(1) 6 AIC(2). The AIC-based weights are:

wi = exp(AIC(0) − AIC(i))

i = 0, 1, 2. Burnham and Anderson (2002) discuss AIC-based model averaging in details.

In the case of equally parameterized models, the previous expression reduces to the (expo-

nentiated) difference in the maximized log-likelihood values, that is the (log-) ratio of the

maximized likelihood value to the likelihood value for the best fitting model. We use these

weights to produce a model averaged estimate for f0:

f̂ma0 =
∑
i

wif̂0,i/
∑
i

wi,

where f̂0,i denotes the estimate obtained according to model i, i = 0, 1, 2. The weighted

estimate is fa0 = 94 for the golf tees data and fa0 = 11 for the secondary bowel cancer data.

These estimates seem to give corrections in the right direction to the estimates provided by

the best model for both datasets. This point will be further evaluated in a simulation study

available as Supplementary Material.

5.3 Utrecht homeless data

We now turn to the homeless data for the city of Utrecht. Table 5 reports the fitted frequencies

obtained via the homogeneous binomial, the beta-binomial models, and the ratio regression

model with α = 1 the best fitting first-order fractional polynomial. In this case, f0 is unknown
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and, therefore, we are not able to compare the models that best fit the untruncated and the

truncated distribution. Further, given that f0 is unknown, we have no benchmark to compare

with.

[Table 5 about here.]

The estimates of f0 are provided in Table 6 with f̂0 = 66 for the model with α = 1; the

ratio regression approach seems to provide a realistic estimate by adjusting the lower bound

estimate of Chao f̂0 = 55 to the above. The binomial estimate f̂0 = 0 is clearly too low as is

the Turing estimate f̂0 = 3.

[Table 6 about here.]

The results from the beta-binomial need some comments. Evidently, the beta-binomial model

reaches a good fit to the truncated distribution for the homeless data, but the estimate of

881 for f0 seems unrealistically high. How can this be explained? Again, the ratio regression

approach may be of help. Let us consider the beta-binomial distribution

px =

(
T

x

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(x+ a)Γ(T − x+ b

Γ(T + a+ b)
(12)

leading to the ratio Rx = ax
px+1

px
= x+a

T−x−1+b , ax = (x+ 1)/(T − x), or, equivalently:

log(Rx) = log(x+ a)− log(T − x− 1 + b).

The beta-binomial requires a, b > 0, but the ratio plot with fitted beta-binomial shows that

the best parameter estimate for a is negative. The value of a = −0.36 does not create

difficulties for the range of observed counts x = 1, . . . , T but leads to an infeasible value for

x = 0 producing an infinite value estimate for f0. Restricting the parameter space to a > 0

does not avoid this problem since the maximum likelihood estimate occurs at the boundary.

For a thourough discussion about boundary and identifiability-related problems, see Mao and

You (2009). The value of 881 has likely occurred at a stage where the computational algorithm

has reached a lack-of-progress stopping rule. For some data constellations, potentially with
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a misleading excellent fit to the zero-truncated data, these boundary problems occur and

clearly pose some questions about the beta-binomial as a feasible model. In our perspective,

the ratio regression approach may help recognize these situations.

6. Identifiability

The issue of identifiability within the general class of mixtures of zero-truncated binomial

distributions has been brought to a general audience by Link (2003). The key argument is

best explained by one of his examples. Let us consider the mixed binomial distribution:

px =

∫ 1

0

(
4

j

)
θx(1− θ)4−x h(θ)dθ, (13)

x = 0, · · · , 4. Link (2003) considers two choices for h(θ):

• h(θ) ∼ U(a, b) with a = 0.026 and b = 0.80

• h(θ) ∼ 0.576421× δ0.286245 + 0.423579× δ0.676474,

where δθ is the one-point distribution putting a unit mass at θ. The untruncated binomial

mixtures we can derive by using (13) are different, but the associated zero–truncated mixtures

are identical, see Table 7. Should we have observed only the zero–truncated distribution, it

would be impossible to distinguish between the uniform and the two-component distribution

when looking for the best fitting model. Hence, unless we refer to a specific form (say e.g.

continuous) for the mixing distribution, it would be impossible to derive a unique estimate

for p0, and consequently, for f0 and N . This leads to the fact that N (which is a function

of p0) is non-identifiable in the general class of zero–truncated binomial mixture models.

A key point in the example of Link (2003) consists in the fact that the class of mixing

distributions on the zero-truncated binomial kernel is not identifiable itself as two different

mixing distributions may give identical mixture distributions. Working with an identifiable

class of discrete zero-truncated mixtures (in the sense that identical mixtures invoke identical

mixing distributions) will avoid the problem illuminated by Link (2003) as it cannot happen
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that identical mixtures lead to different mixing distributions. To make valid inference for p0,

however, it is necessary to assume that the class of mixture models is also valid when we

look at the frequency of units with x = 0. It is one of the benefits of the ratio regression

approach that identifiability for the zero-truncated part is easy to check as we outline below.

[Table 7 about here.]

It is interesting to view this example from the perspective of the ratio regression approach.

Clearly, R0 and its empirical counterpart, r0 are only defined for the untruncated count

distribution; Figure 1 shows the ratio plot for the two mixtures. The ratios are identical for

the zero–truncated and for the untruncated count mixtures at x = 1, 2, 3. Obviously, what

makes the difference is the observed value for R0.

[Figure 1 about here.]

The Figure makes it clear that it is impossible to say which of the two models is correct

if only the untruncated part has been observed. By adopting the argument of Sanathanan

(1977), we could say that R0 can not be identified by looking at the truncated distribution

only. The ratio regression approach cannot change this situation, but it could be interesting

to see which way the ratio regression approach would take in this case. Just from the zero–

truncated part it seems reasonable to use a straight line model (the dashed line in Figure

1). The regression parameters are definitely identifiable as long as the design matrix X is of

full rank. The straight line (based only on the zero–truncated distribution) seems to be a

reasonable (and intermediate) guess/approximation for the true model, either the uniform or

the discrete one. It is interesting to see that the quadratic model (the solid line), estimated

on the zero–truncated distribution clearly favours the uniform mixture. In this particular

situation, however, we may not be interested in using the quadratic model since it is too

complex for the situation at hand and it would not allow any goodness-of-fit evaluation since

it is a saturated model.
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One conclusion from this analysis is that one has to be careful in allowing the size of the

class of models under consideration becoming too large; we feel that one way to achieve

flexible and well fitting models (keeping identifiability) is via the ratio regression approach.

This class can be enriched by looking at suitable classes of functions other than fractional

polynomials, even if we suggest to choose simple/robust models, especially for small T .

7. A historic example: Shakespeare word frequency data

In a historic paper, Efron and Thisted (1976) used the work of Shakespeare to illustrate

the number of species problem. According to Spevack (1968), Shakespeare’s known works

comprise 884,647 total words, of which 14,376 are types appearing just once, 4,343 are types

appearing twice, etc. In our notation, Xi denotes the number of times the i-th word appears

in Shakespeare’s work, so that fx is the number of words appearing exactly x times. In this

situation it seems reasonable to work with a Poisson mixture:

px =

∫ ∞
0

exp(−θ)θx/x! h(θ)dθ (14)

where h(θ) is some mixing density coping with potential heterogeneity in the Poisson rate

parameter. Note that in this case we set ax = x + 1 to include the Poisson as the base

distribution, which corresponds to a constant (log) ratio Rx over the range of x. Using a

gamma density for h(θ), we obtain a marginal negative binomial distribution:

px =
Γ(x+ k)

Γ(x+ 1)Γ(k)
(1− p)xpk,

with event parameter p ∈ (0, 1), and shape parameter k > 0. The negative binomial is one

of the models discussed by Efron and Thisted (1976). In this case, ax = (x+ 1) and

Rx = (1− p)(x+ k),
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It defines a straight line in x with intercept term β0 = k(1− p) and slope β1 = (1− p). This

model is seemingly supported when looking at the ratio plot of rx = (x+ 1)fx+1/fx against

x; in fact, it seems to give some evidence of a straight line pattern (see Figure 2, left panel).

[Figure 2 about here.]

The corresponding non-linear model log(rx) = β0 + β1 log(x + k) experiences a negative

estimate k̂ = −0.3890, which is indeed very close to the value given in Efron and Thisted

(1976), equal to -0.3954. Although the fit is excellent, as Figure 2 (right panel) shows,

the negative binomial distribution becomes improper since r̂0 is negative, a useless model

for predicting f0. Implementing a boundary condition k > 0 diminishes the fit considerably.

Alternatively, we can consider the ratio regression approach; the best second-order fractional

polynomial model is provided here by the following specification:

log rx = β0 + β1(x+ 1)−2 + β2 log(x+ 1) (15)

The corresponding fit is illustrated in Figure 2, right panel, with virtually no visible difference

to the fit of the improper negative binomial. The benefit of the ratio regression approach is

that a valid count distribution can be derived from model (15) via the result of Theorem 1.

The result is that, when the conditions of Theorem 1 are valid, an estimate for f0 can be

easily derived, and this may help solve the boundary problems.

8. Discussion

In this paper, starting from the work of Rocchetti et al. (2011, 2014), we introduce a

regression approach to estimate the unknown size of a potentially elusive population. The

approach is based on modelling ratios of successive probabilities, and can be readily applied to

arbitrary mixtures of count distributions. The idea of using a regression approach to develop

estimators for the population size may be fruitfully linked to the ratio plot developed by

Böhning et al. (2013) as a diagnostic tool for homogeneity. A regression approach to estimate
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the size of a population has been also investigated by Hwang and Shen (2010), Rivest and

Baillargeon (2014) and Willis and Bunge (2015). The empirical behaviour of the regression

estimator has been investigated in the context of the Katz family of distributions by Rocchetti

et al. (2011) and for beta-binomial distributions by Rocchetti et al. (2014). However, all these

proposals still lack a general perspective and do not discuss the conditions for the regression

model to lead to a proper counting distribution. In the present paper, we proved that, under

simple conditions, any regression model for the ratios provides a feasible count distribution.

This means that a regression model may lead to a proper marginal distribution, but the

latter does not necessarily correspond to any known or standard mixed count distribution.

This is a relevant finding of the proposed approach. Furthermore, the approach is based on

finding the most appropriate regression model with respect to fitting the available (truncated)

data, considering a wide range of fractional polynomial functions. These functions are often

flexible enough to cope with various and general forms of nonlinearity. We have shown how

a modified Horvitz-Thompson estimator can be defined, where the probability of missing a

unit is estimated through the proposed regression model.

As it is well known, a major problem with mixed binomial distributions is that we can

not identify the mixing distribution if no limitations on the class of mixing distributions

is introduced. In this context, identifiability still is a concern, but the effort is moved to

choosing the model of a given order that best fit the observed, truncated, distribution, and

this is essentially unique. Another aspect of the proposed approach is the introduction of

model-averaged estimators. This idea seems to mitigate the potential bias of the best AIC

estimator which may overfit the truncated part of the distribution. By using an AIC-weighted

estimator we also have the chance, within a specified class of models, to recover potential

problems related to a single model, as shown in the simulation study.
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Supplementary material

Web Appendices, Tables and Figures referenced in Sections 2.1–2.3 and 5.1 are available with

the paper at the Biometrics website on Wiley Online Library. The web-based supplementary

materials also include a simulation study to analyze the proposed model behaviour under

various conditions.
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Table 1
Golf tees data: untruncated distribution, observed and fitted frequencies. Estimates for binomial, beta-binomial, and

regression models based on fractional polynomial of order 1, power α = 0.5

count observed binomial beta-binomial α = 0.5

0 88 19.51 91.05 86.01
1 46 58.60 40.33 44.26
2 28 77.02 28.47 26.63
3 21 57.85 22.51 19.48
4 13 27.15 18.65 16.82
5 23 8.16 15.79 16.28
6 14 1.53 13.41 16.35
7 6 0.16 11.19 14.95
8 11 0.01 8.61 9.22

χ2 16306.15 9.11 9.98
Table 2

Golf tees data: observed (f0) and estimated frequency (f̂0) for binomial, beta-binomial and regression models with
first-order fractional polynomial and power α = 0.5, 1, Chao and Turing estimators

observed binomial Turing beta-binomial Chao α = 0.5 α = 1

88 2 10 126 33 93 56
Table 3

Secondary bowel cancer data: untruncated distribution, observed and fitted frequencies. Estimates for binomial,
beta-binomial, and regression models based on fractional polynomial of order 1, power α = 0, 0.5

count observed binomial beta-binomial α = 0 α = 0.5

0 22 0.88 18.22 22.37 24.74
1 8 6.75 14.19 8.23 11.89
2 12 21.5 13.37 7.55 8.89
3 16 36.5 13.61 10.55 9.7
4 21 34.85 14.8 17.42 13.95
5 12 17.75 17.84 27.3 22.65
6 31 3.77 29.98 28.6 30.18

χ2 726.87 8.59 14.96 15.35
Table 4

Secondary bowel cancer data: observed (f0) and estimated frequency (f̂0) for binomial, beta-binomial and regression
models with first-order fractional polynomial, power α = {0, 0.5, 1}, Turing and Chao estimators

observed binomial Turing beta-binomial Chao α = 0 α = 0.5 α = 1

22 0 1 6 2 21 11 6
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Table 5
Utrecht homeless data: observed (truncated) and fitted frequencies: binomial, beta-binomial, and regression models,

first-order fractional polynomial, α = 1

count observed binomial beta-binomial α = 1

1 36 0.00 27.80 16.07
2 11 0.03 15.25 6.84
3 6 0.24 11.06 3.00
4 11 1.19 9.03 1.51
5 5 4.33 7.91 0.92
6 7 11.89 7.28 0.70
7 6 24.83 6.97 0.68
8 11 39.72 6.91 0.85
9 3 48.41 7.12 1.35
10 8 44.24 7.65 2.68
11 7 29.41 8.72 6.46
12 12 13.44 10.93 17.88
13 22 3.78 16.86 50.86
14 77 0.49 78.51 112.21

χ2 493376.33 14.42 368.65
Table 6

Utrecht homeless data: estimated frequency (f̂0) for binomial, beta-binomial and regression models with first-order
fractional polynomial, power α = 1, Turing and Chao estimators

observed binomial Turing beta-binomial Chao α = 1

? 0 3 881 55 66
Table 7

Untruncated and truncated count distributions according to model (13)

count x
mixture model probability 0 1 2 3 4

uniform px 0.227 0.255 0.243 0.190 0.085
px/(1− p0) - 0.329 0.315 0.246 0.110

discrete px 0.154 0.279 0.266 0.208 0.093
px/(1− p0) - 0.329 0.315 0.246 0.110
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